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ABSTRACT

Training object detection models usually requires instance-level annotations, such
as the positions and labels of all objects present in each image. Such supervision is
unfortunately not always available and, more often, only image-level information
is provided, also known as weak supervision. Recent works have addressed this
limitation by leveraging knowledge from a richly annotated domain. However, the
scope of weak supervision supported by these approaches has been very restric-
tive, preventing them to use all available information. In this work, we propose
ProbKT, a framework based on probabilistic logical reasoning that allows to train
object detection models with arbitrary types of weak supervision. We empirically
show on different datasets that using all available information is beneficial as our
ProbKT leads to significant improvement on target domain and better generaliza-
tion compared to existing baselines. We also showcase the ability of our approach
to handle complex logic statements as supervision signal. Our code is available at
https://github.com/molden/ProbKT

1 INTRODUCTION

Object detection is a fundamental ability of numerous high-level machine learning pipelines such
as autonomous driving [4} [16], augmented reality [42] or image retrieval [[17]. However, training
state-of-the-art object detection models generally requires detailed image annotations such as the box-
coordinates location and the labels of each object present in each image. If several large benchmark
datasets with detailed annotations are available [26;15], providing such detailed annotation on new
specific datasets comes with a significant cost that is often not affordable for many applications.

More frequently, datasets come with only limited annotation, also referred to as weak supervision.
This has sparked research in weakly-supervised object detection approaches [25; 165 40], using
techniques such as multiple instance learning [40]] or variations of class activation maps [3]. However,
these approaches have been shown to significantly underperform their fully-supervised counterparts
in terms of robustness and accurate localization of the objects [39].

An appealing and intuitive approach to improve the performance of weakly supervised object detection
is to perform transfer learning from an existing object detection model pre-trained on a fully annotated
dataset [14} 46} 43]]. This approach, also referred to as transfer learning or domain adaptation, consists
in leveraging transferable knowledge from the pre-trained model (such as bounding boxes prediction
capabilities) to the new weakly supervised domain. This transfer has been embodied in different ways
in the literature. Examples include a simple fine-tuning of the classifier of bounding box proposals of
the pre-trained model [43]], or an iterative relabeling of the weakly supervised dataset for retraining a
new full objects detection model on the re-labeled data [46].
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Figure 1: ProbKT: Weakly supervised knowledge transfer with probabilistic logical reasoning. (Left)
A model can be trained on the source domain using full supervision (labels, positions) but only on a
limited set of shapes (cylinders and spheres). (Middle) The pre-trained model does not recognize
the cubes from the target domain correctly. (Right) The model can adapt to the target domain after
applying ProbKT and can recognize the cubes.

However, existing approaches are very restrictive in the type of weak supervision they are able to
harness. Indeed, some do not support new object classes in the new domain [20], others can only use
a label indicating the presence of an object class [46]. However, in practice, the supervision on the
new domain can come in very different forms. For instance, the count of each object class can be
given, such as in atom detection from molecule images where only chemical formula might be given.
Or, when many objects are present on an image, a range can be provided instead of an exact class
counts (e.g. "there are at least 4 cats on this image"). Crucially, this variety of potential supervisory
signals on the target domain cannot be fully utilized by existing domain adaption approaches.

To address this limitation, we introduce ProbKT, a novel framework that allows to generalize
knowledge transfer in object detection to arbitrary types of weak supervision using neural probabilistic
logical reasoning [27]]. This paradigm allows to connect probabilistic outputs of neural networks with
logical rules and to infer the resulting probability of particular queries. One can then evaluate the
probability of a query such as "the image contains at least two animals" and differentiate through
the probabilistic engine to train the underlying neural network. Our approach allows for arbitrarily
complex logical statements and therefore supports weak supervision like class counts or ranges,
among other. To our knowledge, this is the first approach to allow for such versatility in utilizing the
available information on the new domain.

To assess the capabilities of this framework, we provide extensive empirical analysis of multiple object
detection datasets. Our approach also supports any type of objects detection backbone architecture.
We thus use two popular backbone architectures, DETR [[7]] and RCNN [34] and evaluate their
performance in terms of accuracy, convergence as well of generalization on out-of-distribution data.
Our experiments show that, due to its ability to use the complete supervisory signal, our approach
outperforms previous works in a wide range of setups.

Key contributions: (1) We propose a novel knowledge transfer framework for object detection relying
on probabilistic programming that uniquely allows using arbitrary types of weak supervision on the
target domain. (2) We make our approach amenable to different levels of computational capabilities
by proposing different approximations of ProbKT. (3) We provide an extensive experimental setup to
study the capabilities of our framework for knowledge transfer and out-of-distribution generalization.

2 RELATED WORKS

A comparative summary of related works is given in Table[I] We distinguish three main categories:
(1) pure weakly supervised object detection methods (WSOD) that do not leverage a richly annotated
source domain, (2) unsupervised object detection methods with knowledge transfer (DA or domain
adaptation methods) that do not use supervision on the target domain and (3) weakly supervised
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object detection methods with knowledge transfer (WSOD w/transfer) that are restrictive in the
type of supported weak supervision. To our knowledge, our work is the first to allow for arbitrary
supervision on the target domain (and supporting new classes in the target domain) while also
leveraging knowledge from richly annotated domains. ProbKT supports arbitrary weak supervision
thanks to the inherited expressiveness of Prolog [41]] which is based on a subset of first-order predicate
logic, Horn clauses and is Turing-complete.

Weakly supervised object detection (WSOD) This class of method allows training object detection
models with only weak supervision. One can thus train these approaches directly on the target domain.
However, they do not allow to leverage potentially available richly annotated datasets, which has
been shown to lead to worse performance [39]. Different flavors of WSOD architectures have been
proposed relying on a variety of implementations such as multiple instance learning (MIL)-based
[25; 140] or class activation (CAM) based [47; 3]]. In contrast to WSOD methods, our approach is
designed to exploit existing richly annotated datasets and thus provides increased performance on the
target domain. For a comprehensive review of WSOD methods we refer the reader to Shao et al. [39].

Domain adaptation methods (DA) In contrast to WSOD methods, domain adaptation methods do
rely on fully supervised source domain dataset. However, they do not assume any supervision on the
target domain and are therefore not equipped to exploit such signal when available [37; 8} 22 48]].

WSOD with knowledge transfer Our approach belongs to the class of weakly supervised object
detection models with knowledge transfer. These methods aim to transfer knowledge from a source
domain, where full supervision is available, to a target domain where only weak labels are available.
Existing work in this class of models only allows for limited type of supervision of the target domain.
Most architectures only support a label indicating the presence or absence of a class of object in the
image[/14;146; 43]]. Inoue et al. [20] allows for class counts as weak supervision but unfortunately
does not allow for new classes in the target domain. In contrast, ProbKT natively allows for class
counts and new classes as well as other types of weak supervision.

Neural probabilistic logical reasoning Probabilistic logical reasoning combines logic and probability
theory. Favored for its high-level reasoning abilities, it was introduced as an alternative way to deep
learning in the quest for artificial intelligence [10]. Statistical artificial intelligence [32; 23] and
probabilistic logic programming [11]] are examples of areas relying on these premises. In a unification
effort, researchers have proposed hybrid architectures, embedding both deep learning and logical
reasoning components [38; [35]. Our work builds upon the recent advances in the field, where
combinations of deep learning, logical, and probabilistic approaches were introduced [27], allowing
high-level reasoning with uncertainty using differentiable neural network architectures.

Method Type Annotated source dom.  Weak supervision New classes Implementation

Lietal. [25] ‘WSOD X presence/absence v MIL-based

Bilen and Vedaldi [6] WSOD X presence/absence v/ spatial pyramid pooling layer

Song et al. [40] WSOD X presence/absence v MIL based

Zhou et al. [47] WSOD X mix v CAM-based

Bae et al. [3] WSOD X mix v CAM based

Kundu et al. [24 DA v one-shot v Class-Incremental DA

Saito et al. [37] DA v X X Strong-Weak Distribution Alignment
Chen et al. [8] DA v X X Adversarial training

Kim et al. [22] DA v X X Adversarial training and Domain Diversification
Zhu et al. [48] DA v X X selective region adaptation framework
Deselaers et al. [14] WSOD w/transfer v presence/absence v CRF-based, iteratively

Zhong et al. [46 WSOD wi/transfer v/ presence/absence v/ MIL based, iteratively

Uijlings et al. [43 WSOD w/transfer v presence/absence v MIL based, non iteratively

Inoue et al. [20 WSOD wi/transfer v/ class counts X DA + pseudolabeling, iteratively

ProbKT (ours) WSOD w/transfer v/ arbitrary v Probabilistic logical reasoning, iteratively

Table 1: Summary table of related works with weakly supervised object detection(WSOD), Domain
Adaptation(DA) and weakly supervised knowledge transfer methods (WSOD w/ transfer).

3 METHODOLOGY

3.1 PROBLEM STATEMENT

We consider the problem of weakly supervised knowledge transfer for object detection. Using a
model trained on a richly annotated source domain, we aim at improving its performance on a less
richly annotated target domain.
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Let D, = {(Ii,b%,y¢) :i =1,...,Ns)} be a dataset issued from the source domain and consisting
of N, images I, along with their annotations. We write b’ € R™** and ¢ € {1,.., K,}™ for the
box coordinates and class labels of objects in image I°. n; is the number of objects present in image
I and K is the total number of object classes in the source domain. This represents the typical
dataset required to train classical fully-supervised object detection architectures. The target dataset
Dy = {(I},q}) :i=1,...,N;)} contains N; image from the target domain along with image-level
annotations ¢:. These annotations are logical statements about the content of the image in terms of
object classes and their location. Examples include the presence of different classes in each image
(i.e. the classical assumption in weakly supervised object detection) but also extends to the counts of
classes or a complex combination of counts of objects attributes (e.g. "two red objects, and at least
two bicycles"). What is more, the logical statements g} can include classes not already present in the
source domain. This type of logical annotation is then strictly broader than the restrictive supervision
usually assumed.

Based on the availability of a source dataset and a target dataset as described above, our goal is then
to harness the available detailed information from the source domain to perform accurate object
detection on the target domain. A graphical illustration of this process is given in Figure[I]

3.2 BACKGROUND

3.2.1 OBIJECT DETECTION

Object detection aims at predicting the location and labels of objects in images. One then wishes
to learn a parametric function fy : Z — {B x RE} with fo(I) = {(b,p,)}" = {(bi,Py.i) 1 i =
1,...,7} such that the distance between predicted and true boxes and labels, d({(b, p,)}", {(b, y)}"),

is minimum. Objects detection architecture would usually output box features proposals {h; : i =
1,...,7} conditioned on which they would predict the probability vector of class labels p, ; = g, (h;)

and the box location predictions b; = g, (h;) using shared parametric functions gp(+) and gp(-). For
an object n, we write the predicted probability of the object belonging to class & as ﬁﬁjn

3.2.2 PROBABILISTIC LOGICAL REASONING

Probabilistic logical reasoning uses knowledge representation relying on probabilities that allow
encoding uncertainty in knowledge. Such a knowledge is encoded in a probabilistic logical program P
as a set of NV probabilistic facts U = {Uj, ..., Uy} and M logical rules F' = {f1, ... fas } connecting
them. A simple example of probabilistic fact is "Alice and Bob will each pass their exam with
probability 0.5" and an example of logical rule is "if both Alice and Bob pass their exam, they
will host a party". Combining probabilistic facts and logical rules, one can then construct complex
probabilistic knowledge representation, that can also be depicted as probabilistic graphical models.

Probabilistic logical programming allows to perform inference by computing the probability of a
particular statement or query. For instance, one could query the probability that "Alice and Bob
will host a party". This query is executed by summing over the probabilities of occurrence of the
different worlds w = {uy,...,un} (i.e. individual realization of the set of probabilistic facts) that
are compatible with the query q. The probability of a query ¢ in a program P can then be inferred
as Pp(q) =Y, P(w) - I[F(w) = ¢|, where F(w) = ¢ stands for the fact that propagation of the
realization w across the knowledge graph, according to the logical rules F' leads to g being true.

Remarkably, recent advances in probabilistic programming have lead to learnable probabilistic
facts [27]). In particular, the probability of a fact can be generated by a neural network with learnable
weights. Such a learnable probabilistic fact is then referred to as a neural predicate U?, where we
make the dependence on the weights 6 explicit. One can then train these weights to minimize a loss

that depend on the probability of a query ¢: 6 = argmin, L(P(q | 9)).

Our approach builds upon this ability to learn neural predicates and uses DeepProbLog [27] as the
probabilistic reasoning backbone. DeepProbLog is a neural probabilistic logic programming language
that allows to conveniently perform inference and differentiation with neural predicates. We refer the
reader to the excellent introduction of Manhaeve et al. [28]] for further details about this framework.
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3.3 PROBKT: WEAKLY SUPERVISED KNOWLEDGE TRANSFER WITH PROBABILISTIC LOGICAL
REASONING

A graphical description of our approach is presented in Figure 2] Our framework starts from a
pre-trained object detection model fy on the source domain. The backbone of this model is extracted
and inserted into a new object detection model f; with new target box position predictors and box
label classifiers. This new model is then used to predict box proposals along with the corresponding
box features on target domain images I;. These box features are then fed to a new target box position
predictor and box label classifier. The predictions of this classifier are considered neural predicates
and are given to a probabilistic logical module. This module evaluates the probability of queries ¢,
the loss, and the corresponding gradient that can be backpropagated to the classifier and the backbone.
As we want to maximize the probability of the queries being true, we use the following loss function:

Lo= > —logPp(a:| f; (1) (D

(1t,9¢)E€D:

In theory, the backbone can be trained end to end with this procedure. Our experiments showed
that only updating the box features classifiers resulted in more stability as also shown in previous
works [46]. We then adopt here the same iterative relabeling strategy, as described next.

ﬁe(PP(Q) | pyv B)

T

/ Probabilistic Reasoning
] T ] 1
py.t] bo Py, i)] N
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Figure 2: ProbKT. The pre-trained object detection backbone outputs the box features h for the
detected objects. Box classifiers (red) and box position predictors (blue) then predict corresponding

label predictions p, and box position predictions b that are fed to the probabilistic reasoning layer.

This layer computes the probability of the query along with the gradients with respect to p, and b
that can be backpropagated through the entire network.

3.3.1 ITERATIVE RELABELING

The approach described above allows to fine-tune our model f; to the target domain. To further
improve the performance, we propose an iterative relabeling strategy that consists in multiple steps :
fine-tuning, re-labeling and re-training. A similar has also been proposed by Zhong et al. [46].

Fine-tuning. This step corresponds to training ProbKT on the weakly supervised labels, by
minimizing the loss of Equation [T}

Re-labeling. Once ProbKT has been trained, we can use its predictions to annotate images in the
target domain. In practice, we only relabel images for which the model predictions comply with the
available query labels in order to avoid too noisy labels.

Re-training. The re-labeled target domain can be used to re-train the object detection backbone of
ProbKTin a fully-supervised fashion.
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This procedure can be repeated multiple times to improve the quality of the relabeling and the quantity
of relabelled in the target domain dataset. A graphical representation of the relabeling pipeline is
presented in Figure[3]

Pre-training Fine-tuning Re-labeling Re-training

Figure 3: Iterative relabeling. A full cycle is composed of a fine-tuning, a re-labeling and a re-training
step. After one cycle, the fine-tuning step and/or re-labeling step can be iteratively repeated.

3.3.2 COMPUTATIONAL COMPLEXITY AND APPROXIMATIONS

The computational complexity of inference in probabilistic programming depends on the specific
query ¢ and several approximations have been proposed for improving the computation time [44]]. We
propose two approaches for reducing the computational cost adapted to object detection: (1) filtering
the data samples before applying ProbKT (see Appendix Section [C.I]) or (2) when the supervision
consists of the class labels counts, considering only the most probable world (ProbKT#*) instead of all
possible worlds.

3.3.3 PROBKT#*: THE MOST PROBABLE WORLD AND CONNECTION TO HUNGARIAN
MATCHING

The probabilistic inference step requires a smart aggregation of all worlds compatible with the query
q. Yet, in certain cases, one can reduce the computational cost by only considering the most probable
world. Indeed, consider the case when the query consists of the list of different class labels in the
images. For a number of boxes n proposed by the objects detectlon model, the query can be written
as the set of labels ¢ = {y’ : i = 1,..., 7 }. If we further write py as the probability of the label of
box n belonging to class k given by the model (as introduced in Sectlon@ we have:

n!

Pplq) = oy oyt e poi Z IR

Jj=1 j=1 n

where o; corresponds to the j th permutation of the query vector ¢. To avoid the computation of each
possible world contribution, one can only use the configuration with the largest contribution to Pp(q)
and discard the other ones.

This possible world corresponds to the permutation o* that satisfies:

o* = argmaxlog Hp”ﬂ(") = argmapr”ﬂ(”) = argmmz 1-— ( )).

n n

Remarkably, this corresponds to the solution of the best alignment using the Hungarian matching

algorithm with cost cn) = (1- ﬁgf,ﬁ”)) as used, among others, in DETR [7]. Thus, when the
query is is the set of class labels, the most plausible world can thus be inferred with the Hungarian
matching algorithm. In Appendix [C.2] we also show that the gradient of ProbKT can be interpreted
as a probability weighted extension of the gradient resulting from the Hungarian matching.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our approach on three different datasets: (1) a CLEVR-mini dataset, (2) a Molecules
dataset with images of chemical compounds, and (3) an MNIST-based object detection dataset. For
each dataset, three subsets, corresponding to different domains, are used: (1) a source domain, (2)
a target domain, and (3) an out-of-distribution domain (OOD). The source domain is the richly
annotated domain that was used to pre-train the object detection model. The target domain is
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the domain of interest but with image-level annotations only. Lastly, the OOD domain contains
images from a different distribution than the source and target domains and is used to study the
generalizability of the models. Source and target domains are split into 5 folds of train and validation
sets and an independent test set. We focused our experiments on the small sample regime (range
1k-2k numbers of samples) both for the source as the target domain. More details on each dataset can
be found in Appendix [B]

4.2 MODELS

In the experiments, we apply our method ProbKT on two different pre-trained object detection
backbone models: (1) DETR [7]] and (2) FasterRCNN [34]]. Both are pre-trained on the COCO
dataset [26]]. We also evaluate an Hungarian-algorithm approximation (ProbKT#*) of our method when
the weak supervision allows it. For sake of conciseness, we omit the results of ProbKT* here but they
can be found in Appendix [D} The details of the training procedures, as well as the hyper-parameters
used for the different models and the different datasets are summarized in Table d]in Appendix[A]

4.2.1 BASELINE MODELS

As shown in Section [2] all available approaches for weakly supervised object detection are very
restrictive in terms of the supervision signal they support. Our main comparison partner is the state
of the art WSOD-transfer method [40].

Additionally, we compare our approach against a Resnet50 [18] backbone pre-trained on Ima-
geNet [[12]. Fine-tuning is performed by adding an extra multitask regression layer that is trained to
predict the individual counts of the objects in the image as in Xue et al. [45]]. This architecture natu-
rally relies only on label counts in the target images for fine-tuning. We then predict box predictions
using class activation maps as in Bae et al. [3]] to compare its performance on object localization. We
call this approach Resnet50-CAM.

When the supervision signal allows it, we also compare with a DETR model trained end-to-end
jointly on target and source domains, masking the box costs in the matching cost of the Hungarian
algorithm for image-level annotated samples. We call this approach DETR-joint.

Model Data Domain ~ CLEVR count acc. CLEVR mAP (mAP@IoU=0.5) Mol. count. acc ~ Mol. mAP (mAP@IoU=0.5)
Resnet50-CAM target domain  0.97 £ 0.005 0.036 £ 0.014 (0.200 £ 0.071) 0.978 £0.004 0.0+0.0(0+0)
Resnet50-CAM 00D 0.831 £ 0.016 0.029 £ 0.010 (0.153 £ 0.044) 0.0£0.0 n/a*

Resnet50-CAM source domain  0.993 £ 0.003 0.035 £ 0.019 (0.178 + 0.084) 0.828 & 0.021 0.0£0.0(0+0)
WSOD-transfer target domain ~ 0.944 + 0.004 0.844 + 0.005 (0.988 + 0.001) 0.001 0.0 0.018 £ 0.004 (0.061 + 0.011)
WSOD-transfer 00D 0.73 £0.011 0.79 £ 0.005 (0.969 + 0.001) 0.003 =+ 0.002 n/a*

WSOD-transfer source domain  0.989 =+ 0.001 0.926 + 0.001 (0.995 + 0.0) 0.0£0.0 0.021 £ 0.003 (0.069 + 0.009)
DETR-joint target domain  0.159 £ 0.133 0.579 £ 0.012 (0.684 £ 0.019) 0.357 + 0.196 0.197 4 0.055 (0.481 + 0.071)
DETR-joint OOD 0.084 £ 0.039 0.534 £0.012 (0.66 £ 0.012) 0.024 £0.021 n/a*

DETR-joint source dom. 0.923 £+ 0.049 0.908 £ 0.017 (0.992 £ 0.001) 0.232 £0.127 0.23 £ 0.063 (0.565 =+ 0.08)
RCNN (pre-trained) target domain 0.0 + 0.0 0.586 £ 0.014 (0.598 £ 0.013) 0.592 £ 0.007 0.568 £ 0.005 (0.785 & 0.004)
RCNN (pre-trained) OOD 0.0£0.0 0.582 + 0.012 (0.603 + 0.011) 0.348 & 0.036 n/a*

RCNN (pre-trained) ~ source domain  0.988 4 0.002 0.984 £ 0.01 (0.996 + 0.0) 0.948 £ 0.004 0.737 £ 0.005 (0.979 £ 0.0)
DETR (pre-trained)  target domain 0.0 £ 0.0 0.498 + 0.019 (0.533 + 0.024) 0.464 +0.033 0.314 £ 0.006 (0.542 % 0.006)
DETR (pre-trained) OOD 0.0£0.0 0.477 +0.013 (0.531 + 0.021 ) 0.002 £ 0.001 n/a*

DETR (pre-trained) ~ source domain  0.97 + 0.009 0.945 % 0.009 (0.992 + 0.001) 0.581 & 0.022 0.409 £ 0.005 (0.722 % 0.004)
ProbKT (DETR) target domain ~ 0.946 + 0.014 0.803 + 0.011 (0.989 + 0.006) 0.508 & 0.027 0.204 £ 0.02 (0.507 + 0.014)
ProbKT (DETR) 00D 0.726 + 0.035 0.715 % 0.006 (0.974 + 0.006) 0.004 £ 0.003 n/a*

ProbKT (DETR) source domain  0.987 £ 0.003 0.948 + 0.005 (0.995 + 0.001) 0.549 + 0.026 0.38 +0.013 (0.713 + 0.006)
ProbKT (RCNN) target domain  0.975 %+ 0.003 0.856 =+ 0.039 (0.993 + 0.001) 0.942 + 0.009 0.289 £ 0.041 (0.829 + 0.054)
ProbKT (RCNN) 00D 0.89 £ 0.022 0.833 £ 0.042 (0.991 + 0.001) 0.603 £ 0.037 n/a*

ProbKT (RCNN) source domain  0.995 &+ 0.002 0.941 £ 0.041 (0.998 £ 0.001) 0.96 + 0.002 0.666 £ 0.005 (0.978 £ 0.002)

Table 2: Results of the experiments for the datasets: CLEVR-mini and Molecules. Reported test
accuracies over the 5 folds. Best method is in bold for each metric and data distribution. *: OOD test
set of Molecules dataset has no bounding box labels.

4.3 EVALUATION METRICS
We evaluate the performance of the models on the different datasets based on two criteria : the count

accuracy and the objects localization performance. The count accuracy measures the ratio of correct
images where all individual counts of (all detected) objects are correct. To evaluate how well the
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model is performing in localizing the different objects in the image we report the mean average
precision (mAP) performance, a widely used metric for evaluating object detection models.

4.4 WEAKLY SUPERVISED KNOWLEDGE TRANSFER WITH CLASS COUNTS

We first investigate the performance of ProbKT when the weakly supervision consists of class counts
only. The query ¢ for each image then consists of the number of objects from each class in the image.
We evaluate the models on the CLEVR-mini and Molecules datasets. For the Molecules dataset, the
query for an image containing 6 carbon atoms (C), 6 oxygen atoms (O) and 12 hydrogen atoms (H)
would result in the following query: ¢ = ([C, O, H], [6, 6, 12]). These weak labels in the case of the
Molecules dataset are widely and easily available in the form of the chemical formula of the molecule
on the image (e.g CgH120g). The recognition of atomic level entities on images of molecules is a
challenge in the field of Optical Chemical Structure Recognition (OCSR) [19; 33); 29} [19]]. For the
CLEVR-mini dataset, the query for an example image containing 2 spheres, 1 cylinder and 3 cubes
would be ¢ = ([Cube, Cylinder, Sphere], [3, 1, 2]). Formal descriptions of the queries for each task
are presented in Appendix [E]

Results of the experiments are summarized in Table[2] We observe on both datasets that ProbKT is
able to transfer knowledge from the source domain to the target domain and improve count accuracy
on the target domain and in most cases also on the source domain. The count accuracy increases on
both the target domain and on OOD, suggesting better generalization performance. This is in contrast
with Resnet50-CAM which performs well on the target domain of the Molecules dataset but fails
on OOD. We also note a significant improvement in object localization (mAP) for ProbKT on the
CLEVR-mini dataset. However, fine-tuning seems detrimental for mAP on the Molecules dataset.
This can be explained by the very small bounding boxes in the Molecules dataset. We therefore
also report the mAP@IoU=0.5 where we observe some increase in performance after fine-tuning.
Lastly, we observe that our approach outperforms WSOD-transfer on all metrics for both datasets.
WSOD-transfer performs well on CLEVR-mini but fails for the Molecules dataset. This can be
explained by the fact that this method only supports class indicators (whether a class is present in the
image), which is particularly detrimental in molecules images containing a lot of objects.

4.5 OTHER TYPES OF WEAK SUPERVISION
4.5.1 CLASS RANGES

The annotation of images is a tedious task, which limits the availability of fully annotated datasets.
When the number of objects on an image is large, counting the exact number of objects of a particular
class becomes too time-consuming. A typical annotation in this case consists oof class ranges where,
instead of exact class counts, an interval is given for the count. For example an image from the
CLEVR-mini dataset with more than 4 cubes, exactly 4 cylinders and less than 4 spheres would
result in the following query: ¢ = ([cube, cylinder, sphere], [[4, ool, [4, 5, [0, 4[] ). We evaluate this
experimental setup and report results in Table[3] We observe that ProbKT performs significantly
better than WSOD-transfer on count accuracy, which still uses only presence/absence labels. We
note that Resnet50-CAM is unable to use this type of supervision and is thus reported as n/a.

Model Data Domain MNIST count acc.  MNIST sum acc.  MNIST mAP (mAP@IoU=0.5) CLEVR* countacc. CLEVR* mAP (mAP@IoU=0.5)
Resnet50-CAM target domain  0.044 £ 0.041 0.506 & 0.063 0.003 4 0.003(0.014 £ 0.011) n/a n/a

Resnet50-CAM 00D 0.01 £ 0.009 0.015 4 0.004 0.003 + 0.002(0.011 + 0.007) n/a n/a

Resnet50-CAM source domain  0.127 4 0.132 0.649 4 0.108 0.005 4 0.004(0.028 £ 0.018) n/a n/a

WSOD-transfer target domain  n/a n/a n/a 0.944 £ 0.004 0.844 =+ 0.005 (0.988 + 0.001)
‘WSOD-transfer 00D n/a n/a n/a 0.73 £0.011 0.79 & 0.005 (0.969 £ 0.001)
‘WSOD-transfer source domain  n/a n/a n/a 0.989 £ 0.001 0.926 £ 0.001 (0.995 + 0.0)
RCNN (pre-trained) ~ target domain  0.292 + 0.005 0.298 4 0.005 0.632 4 0.014 (0.685 £ 0.002) 0.0 +0.0 0.586 4 0.014 (0.598 + 0.013)
RCNN (pre-trained) OOD 0.205 £ 0.004 0.212 4 0.004 0.631 £ 0.013 (0.683 £ 0.002) 0.0+ 0.0 0.582 4 0.012 (0.603 £ 0.011)
RCNN (pre-trained) ~ source domain  0.961 4 0.008 0.961 4 0.008 0.917 £ 0.021 (0.988 +0.002)  0.988 £ 0.002 0.984 + 0.01 (0.996 + 0.0)
ProbKT (RCNN) target domain ~ 0.902 + 0.005 0.903 £+ 0.005 0.786 + 0.021 (0.974 4 0.001)  0.971 + 0.006 0.838 4 0.034 (0.993 + 0.001)
ProbKT (RCNN) 00D 0.863 + 0.008 0.865+0.008 0.778 +£0.021 (0.97 +0.001)  0.884 % 0.01 0.812 =+ 0.036 (0.991 + 0.001)
ProbKT (RCNN) source domain  0.967 + 0.004 0.967 + 0.004 0.873 4 0.016 (0.989 + 0.001) 0.994 + 0.001 0.922 4 0.035 (0.998 £ 0.001)

Table 3: Results of the experiments on the MNIST object detection dataset and on CLEVR* dataset
(*CLEVR uses ranges of class counts as labels instead of exact class counts). Reported test accuracies
over the 5 folds. Best method is in bold for each metric and data distribution.
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4.5.2 COMPLEX QUERIES

More complex types of weak supervision than the ones considered above are also possible. To
illustrate the capabilities of our approach, we build an MNIST object detection dataset where images
show multiple digits as objects. Examples images are available in Appendix [B] The weak supervision
is here the sum of all digits in the image : ¢ = SUM(digits). Our ProbKT can seamlessly integrate
this type of supervision as shown in Table[3] As all other baselines are unable process this type of
supervision, we compare against a pre-trained RCNN and a variation of Resnet50-CAM where we
add an extra neural network layer that sums the individual counts to give the resulting sum. We report
count accuracy, mAP and sum accuracy. The sum accuracy measures the ratio of correct images
where the predicted sum (instead of the label of the digits) is correct. Details about the results on
extra experiments with DETR as backbone using complex types of weak supervision can be found in

Appendix

4.6 ABLATION STUDIES

CLEVR Dataset Performance 10 Mol. Dataset Performance 10 MNIST Dataset Performance
S Lo — — > S ——— .
308 o8 Q08
5 fos
= 3 5
806 é(‘j 0.6 T g o6
< T — <
= = 0.4 — 04
S04 —— RCNN (ProbKT) B —— RCNN (ProbKT) T
€02 RCNN (ProbKT*) €02 RCNN (ProbKT*) €02
3 —— DETR (ProbKT) 3 —— DETR (ProbKT) H —— RCNN (ProbKT)
O o0 —— DETR (ProbKT*) O 0.0 —— DETR (ProbKT*) 0.0 DETR (ProbKT)
0 1 2 3 4 2 3 4 2 3 4
Iteration Iteration Iteration

(a) CLEVR iterative relabeling (b) Molecules iterative relabeling (c) MNIST iterative relabeling

Figure 4: Iterative relabeling performance for the different datasets. Iteration O: pretrained on source
domain. Iteration 1: fine-tuned. Iteration 2: re-labeled and re-trained. Iteration 3: relabeled and
re-trained. Iteration 4: relabeled and re-trained.

Iterative relabeling. In Figure [ we plot the evolution of the performance on the test sets after
multiple rounds of fine-tuning and re-labeling, as detailed in Section[3.3.1} The final performance
reported in the results tables is selected based on best relabeling iteration on the validation dataset. We
observe that iterative relabeling after fine-tuning can improve performance significantly. Nevertheless,
the benefit of iterative relabeling is less pronounced for DETR on the Molecules dataset. We impute
it to the fact that the fine-tuned DETR model is less accurate on this dataset.

Object detection backbone

Our method can seamlessly accommodate different object detection backbones. In Table 2] we
present the results for our method with a DETR[7]] and a FasterRCNN[34] backbone. We observe
that FasterRCNN is typically performing better. In particular, the DETR backbone performs poorly
on the Molecules dataset. This could be due to the small objects in the Molecules dataset. Indeed,
Carion et al. [7] recommend to use DETR-DCS5 or DETR-DC5-R101 for small objects instead.

5 CONCLUSIONS AND DISCUSSION

Objects detection models are a key component of machine learning deployment in the real world.
However, training such models usually requires large amounts of richly annotated images that are
often prohibitive for many applications. In this work, we proposed a novel approach to train object
detection models by leveraging richly annotated datasets from other domains and allowing arbitrary
types of weak supervision on the target domain. Our architecture relies on a probabilistic logical
programming engine that efficiently blends the power of symbolic reasoning and deep learning
architecture. As such, our model also inherits the current limitations from the probabilistic reasoning
implementations, such as higher computational complexity. We proposed several approaches to
speed-up the inference process significantly and our work will directly benefit from further advances
in this field. Lastly, the versatility of probabilistic programming could help support other related tasks
in the future, such as image to graph translation.
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Reproducibility Statement Details for reproducing all experiments shown in this work are available
in Appendix [E] More details on the datasets used in the experiments can be found in Appendix [B}
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A TRAINING DETAILS

For the hyper-parameters the idea was to stay as close as possible to the defaults of the pre-trained
standard models although some lightweight tuning was done. In Table {f]a summary is given for the
hyper-parameters used for the different models.

Model dataset epochs Ir Ir_step_size Ir-gamma momentum batch size weight decay optimizer
DETR pre-train (retrain) CLEVR max 100  0.0001 7(7-8) 0.1 8 0.0001 AdamW
DETR pre-train (retrain) ~ Mols. max 100  0.0001 20 (20) 0.1 8 0.0001 AdamW
DETR pre-train (retrain) MNIST max 100  0.0001 15-20(20) 0.1 8 0.0001 AdamW
RCNN pre-train (retrain) ~ all datasets max 30 0.005 5(5) 0.1 0.9 1 0.0005 SGD
RCNN Finetune all datasets max 20  0.001 16 Adam
DETR Finetune CLEVR/Mols  max 20  0.001 16 Adam
DETR Finetune MNIST max 20  0.01 16 Adam
DETR Finetune* CLEVR/Mols  max 100  0.002 20 0.1 8 0.0001 AdamW
RCNN Finetune* CLEVR max 20 0.001 15 Adam
RCNN Finetune® Mols max 20 0.00001 15 Adam
DETR masked box loss ~ CLEVR/Mols max 100 0.0001 7 0.1 8 0.0001 AdamW
Resnet50-CAM models  all datasets max 500 0.001 32 Adam

Table 4: Overview of hyperparameters for the different models, most hyperparamaters are left default
from standard models. Tuning was mostly done on learning rate and learning rate scheduling. For
every fold/dataset the best epoch/Ir/Ir_step_size model is used based on validation data.

B DATASETS

We evaluate our approach on three different datasets: (1) a CLEVR-mini dataset, (2) a Molecules
data set with images of chemical compounds, and (3) an MNIST-based object detection dataset. For
each dataset, three subsets, corresponding to different domains, are used: (1) a source domain, (2) a
target domain, and (3) an out-of-distribution domain (OOD). Source and target domains are split into
5 folds of train and validation sets and an independent test set. Sizes of the different splits per dataset
are summarized in Table

14
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Dataset Type Split Size (number of samples)
MNIST object detection ~ Source  train 700
MNIST object detection ~ Source  validation 300
MNIST object detection ~ Source  test 1000
MNIST object detection  Target  train 700
MNIST object detection  Target  validation 300
MNIST object detection  Target  test 1000
MNIST object detection OOD test 1000
Molecules Source train 1400
Molecules Source  validation 600
Molecules Source test 1000
Molecules Target  train 1400
Molecules Target  validation 600
Molecules Target  test 1000
Molecules 00D test 1000

Table 5: Dataset sizes for the different splits. For train and validations splits 5 folds are used.

B.0.1 CLEVR-MINI DATASET

The CLEVR-mini dataset for our experiments is a selection of samples from the CLEVR dataset [21]].
The different types available in the CLEVR dataset are combinations of shapes (cube, sphere, and
cylinder), materials (metal and rubber), and sizes (large and small). Colors are ignored as the images
are first converted to grayscale before feeding them to the models. For the richly annotated source
domain, we randomly select images with only sphere or cylinder-shaped objects (no cubes) and with
a maximum of four objects per image and a minimum of three objects. For the weakly annotated
target domain we experiment with two type of annotations. Firstly we experiment when we have the
class counts of objects in the image available. Secondly, instead of the exact counts of classes in the
image the annotations only specify if there is exactly one object class in the image or multiple. The
advantage of this kind of labeling is that the annotator does not need to count the objects and instead
just make a distinction of only one object class in image or multiple. The images in the target domain
can contain all combinations of object types (including cube-shaped objects) and allow a minimum
of five objects per image and a maximum of six objects per image. For the OOD dataset we also
select images with all possible combinations of object types, always with 10 objects per image. Some
example images from the CLEVR-mini dataset can be found in Figure[l]

B.0.2 MOLECULES DATASET

The Molecules dataset contains images depicting chemical compounds. For the richly annotated
source domain, a procedure similar as described in Oldenhof et al. [29, 30] was executed using an
RDK:it [2] fork for generating the bounding box labels for the individual atoms present in the images.
In the source domain, we allow the following atom types: carbon (C), hydrogen (H), oxygen (O), and
nitrogen (N). In the weakly annotated target domain, we only have the counts of the atoms present
which translates to the chemical formula of the molecule in the image (e.g CsH120g). The same
classes from the source domain (C, H, O, and N) are also present in the target domain as well as an
extra atom type: sulfur (S). The OOD test dataset consists of 1000 images from the external UoB
dataset [[36] where chemical compounds containing only the atom types present in the target domain
(C, H, O, N, and S). Some example images from the Molecules dataset are visualized in Figure@

B.0.3 MNIST OBJECT DETECTION DATASET

The MNIST object detection dataset is generated [1] using the original MNIST dataset [[13]]. Each
image consists of three MNIST digits randomly positioned in the image. The MNIST object detection
dataset allows experimenting with a more arbitrary type of weak supervision. Each object in this
dataset represents a digit that can be aggregated. This allows to label an image with only the sum
of all digits in the image instead of the class counts of the objects. For the richly annotated source
domain digits 7, 8, and 9 are left out. The weakly annotated target domain has all possible digit
classes (0-9). The labels of the target domain only contain the sum of all digits. For the OOD test
dataset, images are used that contain maximum of four MNIST digits, instead of three digits as in the
other domains. Some example images from the MNIST object detection dataset are visualized in

Figure 6]
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Figure 5: Weakly supervised knowledge transfer with probabilistic logical reasoning (ProbKT).
On the left we have source domain where a model can be trained using bounding box informa-
tion(labels,positions) but only on a limited set of atom types (C,H, O, N). In the middle we can see
that the pre-trained model is not able to recognize the sulfur (S) from target domain correctly. On the
right we see that the model is able to adapt to target domain after probabilistic reasoning using weak
labels (e.g. counts of objects on image) and is able to recognize the sulfur (S).

Source Domain Target Domain

Preds from pretrained (on S. dom.) Preds from pretrained (on S. dom.) Preds after ProbKT

digits =1{0,1,2,3,4,5,6} digits = {0,1,2,3,4,5,6,7.8.9}
Y = { boxes : = (labels, positions) } Y= { query:=q } (q= {sum of all digits =20} )

Figure 6: Weakly supervised knowledge transfer with probabilistic logical reasoning (ProbKT).
On the left we have source domain where a model can be trained using bounding box informa-
tion(labels,positions) but only on a limited set of digits (0, 1, 2, 3,4, 5, 6). In the middle we can see
that the pre-trained model is not able to recognize the digit eight (8) from target domain correctly. On
the right we see that the model is able to adapt to target domain after probabilistic reasoning using
weak labels (e.g. sum of digits on image) and is able to recognize the digit eight (8).

C PROBKT AND PROBKT®* SUPPLEMENTARY DETAILS

C.1 FILTERING SAMPLES

The computation complexity of inference in the probabilistic programming module grows with
the number of possible worlds. In turn, the number of possible worlds grows with the number of
probabilistic facts 7.

One avenue to reduce the computational cost of the inference step is then to artificially reduce the
number of probabilistic facts in each image. Let {p,, : n = 1,...,72} and ¢ the corresponding
inference query. We compute the filtered set of probabilistic facts p, ,, by setting
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1 ifph, >0
Phn=140 if3k'stpk, >5 and pk, <6 2)
f)’;yn otherwise.

The parameter § € [0, 1] is a threshold at which we consider the probabilistic fact as certain. A
probability of 1 or 0 effectively discards the probabilistic fact p, ,, from the inference procedure.
However, we also have to update the inference query q to reflect this filtration. We write ¢ the filtered

query q.

Example To illustrate this filtration strategy let’s consider an MNIST image with 3 digits in the
image : {3,4, 7}. The query ¢ corresponds to the class labels in the images. Thatis ¢ = {3, 4, 7}. The
object detection backbones outputs 3 box features with corresponding probabilities {py 0, Dy, 1, Dy,2, }-
Now let e.g. 152,1 = 0.99. We can filter out p, | (i.e the prediction for a digit 3 is certain), and
compute the filtered query ¢ = {4, 7}.

Remark Equation[2|suggests a filtering based on the output probabilities only. However, one can
also use information about the query for the filtration. For instance, one would only filter out a
probabilistic fact if it is consistent with the query ¢. In the example above, it would be wiser not
to filter out e.g. ﬁ2,1 = 0.99 as no images are supposedly present in the image. One should then
ideally propagate this probabilistic fact to the inference module such as to update the weights of the
backbone and learn from this error.

C.2 GRADIENT OF THE LIKELIHOOD
The ProbKT likelihood has the following form:
%Y
=2 1II H by,
acE, 1 j

where « is a "possible world" matrix of indicator variables:

S 1 objectiis of class j
710 otherwise,

and F is the set of all possible o worlds compatible with the logical annotation g.
Lemma 1. The gradient of the likelihood has the following form:

RO LY

where the weight has the form:

Ciy =PEIO; =)= > [ Iurivizinrs’

a€EBlo;=; V' J’
In case of the Hungarian matching the most probable possible word is selected, which corresponds to
setting the conditional probability P(E|O; = j) to 1 if object 4 is paired with label j and 0 otherwise.

The ProbKT gradient can be interpreted as a probability weighted extension of the gradient resulting
from the Hungarian matching.

D FULL RESULTS

In Table[6] we present the full results for the MNIST experiment. We report the count accuracy (i.e..
correct identification of the digits in the image), sum accuracy (i.e. correct estimation of the sum of
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Model Type mnist count acc. mnist sum acc. mnist mAP (mAP@IoU=0.5)
Resnet50-CAM (baseline) In-distribution  0.044 4+ 0.041 0.506 &+ 0.063  0.003 £ 0.003(0.014 £ 0.011)
Resnet50-CAM (baseline) OOD 0.01 £ 0.009 0.0154+0.004  0.003 £ 0.002(0.011 £ 0.007)
Resnet50-CAM (baseline) Source Domain  0.127 4= 0.132 0.649 £0.108  0.005 % 0.004(0.028 £ 0.018)
DETR (Pre-trained) In-distribution ~ 0.26 4+ 0.012 0.262 +0.01 0.518 +0.014 (0.637 £ 0.017)
DETR (Pre-trained) 00D 0.173 +£0.01 0.177 +£0.009  0.51 £0.012 (0.632 £+ 0.015)
DETR (Pre-trained) Source Domain  0.859 + 0.031 0.86 £+ 0.031 0.781 4 0.009 (0.957 + 0.008)
DETR (ProbKT) In-distribution ~ 0.662 + 0.064 0.664 +0.065  0.615 4 0.025 (0.856 £ 0.037)
DETR (ProbKT) 00D 0.532 +0.083 0.533 £0.082  0.591 4 0.03 (0.845 £ 0.038)
DETR (ProbKT) source domain ~ 0.878 £+ 0.023 0.879 £0.023  0.737 +0.014 (0.952 + 0.009)
RCNN (Pre-trained) In-distribution 0.292 4+ 0.005 0.298 £ 0.005  0.632 4+ 0.014 ( 0.685 + 0.002 )
RCNN (Pre-trained) 00D 0.205 £+ 0.004 0.2124+0.004  0.631 +0.013 (0.683 £ 0.002)
RCNN (Pre-trained) source domain  0.961 £ 0.008 0.961 +0.008  0.917 4+ 0.021 (0.988 + 0.002)
RCNN (ProbKT) In-distribution 0.902 £+ 0.005 0.903 £ 0.005  0.786 4+ 0.021 (0.974 £ 0.001)
RCNN (ProbKT) 00D 0.863 = 0.008 0.865 +0.008  0.778 +0.021 (0.97 £+ 0.001)
RCNN (ProbKT) source domain  0.967 £ 0.004 0.967 +£0.004  0.873 +0.016 (0.989 + 0.001)

Table 6: Results of the SUM experiments on the MNIST object detection dataset. Reported test
accuracies over the 5 folds.

the digits in the image) and the mean average precision (mAP) (i.e. a common object detection metric
that reflects the ability to predict the positions and labels of the objects). We observe that the Resnet
baseline performs poorly, lacking the necessary logic to process this dataset. We used both DETR
and RCNN as object detection backbones in our experiments, showing high test accuracies when
fine-tuned with our approach. As the results suggest, RCNN backbones lead to better performance
than the DETR backbone.

Model Data Domain CLEVR count acc. CLEVR mAP (mAP@IoU=0.5) Mol. count. acc  Mol. mAP (mAP@IoU=0.5)
Resnet50-CAM target domain  0.97 £ 0.005 0.036 & 0.014 (0.200 £ 0.071) 0.978 £0.004 0.0+£0.0(0£0)
Resnet50-CAM OOD 0.831 £ 0.016 0.029 £ 0.010 (0.153 £ 0.044) 0.0+0.0 n/at

Resnet50-CAM source domain  0.993 + 0.003 0.035 £+ 0.019 (0.178 + 0.084) 0.828 £ 0.021 0.0£0.0(0+£0)
‘WSOD-transfer target domain  0.944 £ 0.004 0.844 £ 0.005 (0.988 £ 0.001) 0.001 £ 0.0 0.018 4 0.004 (0.061 £ 0.011)
‘WSOD-transfer 00D 0.73 +0.011 0.79 £ 0.005 (0.969 £ 0.001) 0.003 £ 0.002 n/at

‘WSOD-transfer source domain  0.989 + 0.001 0.926 £ 0.001 (0.995 + 0.0) 0.0+0.0 0.021 £ 0.003 (0.069 + 0.009)
DETR-joint target domain  0.159 + 0.133 0.579 £+ 0.012 (0.684 £ 0.019) 0.357 £ 0.196 0.197 £ 0.055 (0.481 £ 0.071)
DETR-joint OOD 0.084 £ 0.039 0.534 £ 0.012 (0.66 £ 0.012) 0.024 £ 0.021 n/al

DETR-joint source dom. 0.923 £ 0.049 0.908 £ 0.017 (0.992 £ 0.001) 0.232 £0.127 0.23 £ 0.063 (0.565 =+ 0.08)
DETR (Pre-trained) target domain 0.0 £ 0.0 0.498 £ 0.019 (0.533 £ 0.024) 0.464 £ 0.033 0.314 £ 0.006 (0.542 + 0.006)
DETR (Pre-trained) OOD 0.0+0.0 0.477 +0.013 (0.531 £ 0.021 ) 0.00240.001  n/al

DETR (Pre-trained) ~ source domain  0.97 & 0.009 0.945 £ 0.009 (0.992 £ 0.001) 0.581 £ 0.022 0.409 £ 0.005 (0.722 £ 0.004)
ProbKT*(DETR) target domain  0.949 & 0.005 0.728 £ 0.014 (0.99 £ 0.003) 0.589 £ 0.042 0.373 & 0.02 (0.669 £ 0.045)
ProbKT*(DETR) OOD 0.741 £ 0.038 0.606 & 0.017 (0.977 £ 0.004) 0.008 £ 0.008 n/at

ProbKT*(DETR) source domain  0.985 % 0.004 0.937 £ 0.006 (0.995 £ 0.001) 0.275 £ 0.066 0.371 4 0.021 (0.649 £ 0.041)
ProbKT(DETR) target domain  0.946 & 0.014 0.803 £ 0.011 (0.989 + 0.006) 0.508 £ 0.027 0.204 £ 0.02 (0.507 £ 0.014)
ProbKT(DETR) 00D 0.726 £ 0.035 0.715 £ 0.006 (0.974 + 0.006) 0.004 £ 0.003 n/at

ProbKT(DETR) source domain  0.987 4 0.003 0.948 £ 0.005 (0.995 + 0.001) 0.549 £ 0.026 0.38 +0.013 (0.713 £ 0.006)
RCNN (pre-trained)  target domain 0.0 £ 0.0 0.586 £ 0.014 (0.598 £ 0.013) 0.592 £ 0.007 0.568 £ 0.005 (0.785 =+ 0.004)
RCNN (pre-trained) OOD 0.0+0.0 0.582 £ 0.012 (0.603 £ 0.011) 0.348 £ 0.036 n/at

RCNN (pre-trained)  source domain  0.988 £ 0.002 0.984 £ 0.01 (0.996 + 0.0) 0.948 £ 0.004 0.737 £ 0.005 (0.979 £ 0.0)
ProbKT*(RCNN) target domain  0.974 & 0.004 0.855 £ 0.025 (0.994 + 0.001) 0.945 £ 0.006 0.24 4 0.042 (0.788 £ 0.073)
ProbKT#*(RCNN) OOD 0.901 £ 0.017 0.827 £ 0.022 (0.991 + 0.001) 0.592 £ 0.032 n/al

ProbKT#*(RCNN) source domain  0.993 & 0.002 0.95 4 0.021 (0.998 + 0.0) 0.96 £ 0.003 0.655 4 0.01 (0.974 £ 0.004)
ProbKT(RCNN) target domain  0.975 £ 0.003 0.856 £ 0.039 (0.993 + 0.001) 0.942 £ 0.009 0.289 + 0.041 (0.829 £ 0.054)
ProbKT(RCNN) OOD 0.89 4 0.022 0.833 4 0.042 (0.991 £+ 0.001) 0.603 £ 0.037 n/a!

ProbKT(RCNN) source domain  0.995 £ 0.002 0.941 £ 0.041 (0.998 £ 0.001) 0.96 4 0.002 0.666 £ 0.005 (0.978 £ 0.002)

Table 7: Results of the experiments for the datasets: CLEVR-mini and Molecules. Reported test
accuracies over the 5 folds. Best method is in bold for each metric and data distribution.

100D test set of Molecules dataset has no bounding box labels.
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E SOURCE CODE AND DATASETS

The source code and basic instructions are available on https://github.com/molden/
ProbKT. The source code integrates features from the Weights & Biases (WandB) platform [5].
Basic features are supported without the need for an account on WandB but to make full use of all
features we recommend to create an account.

Datasets can be downloaded here:
¢ CLEVR-mini dataset https://figshare.com/s/db012765e5a38el4ef9c

¢ Molecules dataset https://figshare.com/s/3dc3508d39bf4cff8c7f

e MNIST object detection dataset https://figshare.com/s/
c760de026£000524dbba

ProbLog script used in the ProbKT Probabilistic logical reasoning framework for counting of
objects on an image (as on CLEVR-mini dataset):

:— use_module (library(lists)).

nn (mnist_net, [X],Y,(0,1,2,3,4,5,6,7,8,9,10,11]) :: digit(X,Y).
count ([]1,X,0).

count ([X]|T],X,Y):- count (T,X,Z), Y is 1+Z.

count ([X1]|T]1,X,Z):— X1\=X,count (T, X, Z).

countall (List,X,C) :—
sort (List,Listl),
member (X, Listl),
count (List,X,C).

roll([],L,L).
roll([H|T],A,L):— roll (T, [Y|A],L), digit(H,Y).

countpart (List, [],[]).
countpart (List, [H|T], [F|IL]):— countall (List,H,F), countpart(List,T,L).

count_objects (X,L,C) :— roll(X,[],Result), countpart (Result,L,C).

The query g in the case of class counts would be count_objects (X, L, C). For example an
image X with 1 small metal cube and 3 large rubber cylinders would result in the following query:
count_objects (X, [small_metal cube, large_rubber_ cylinder], [1,3]).

ProbLog script used in the ProbKT Probabilistic logical reasoning framework for aggregating
the digits on an image:

:— use_module (library(lists)) .

nn (mnist_net, [X],Y,[(0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).
sum([],0).

sum([X|T],Y):= sum(T,Z), Y is X+Z.

roll([],L,L).

roll ([H|T],A,L):- roll (T, [Y|A],L), digit (H,Y).
sum_digits(X,Y) :- roll(X,[],Result), sum(Result,Y).

The query ¢ in the case of sum of digits would be sum_digits (X, Y). For example an image X
with as sum of digits 12 would result in the following query: sum_digits (X, 12).

ProbLog script used in the ProbKT Probabilistic logical reasoning framework for taking into
account non-exact counts on images
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:— use_module (library(lists)).
nn (mnist_net, [X],Y,(0,1,2,3,4,5,6,7,8,9,10,11]) :: digit(X,Y).

count ([],X,0).
count ([X|T],X,Y):— count (T,X,Z), Y 1is 1+Z.
count ([X1]|T],X,Z):— X1\=X,count (T,X,Z).

countall (List,X,C,A) :—
A=0,
sort (List, Listl),
member (X, Listl),
count (List,X,C) .

countall (List,X,C,A) :—
A=1,
sort (List,Listl),
member (X, Listl),
count (List, X, R),
R>C.

countall (List,X,C,A) :—
A=-1,
sort (List, Listl),
member (X, Listl),
count (List, X, R),
R<C.

roll([],L,L).
roll([H|T],A,L):— roll(T,[Y|A],L), digit(H,Y).

countpart (List, [], []
countpart (List, [H|T],
countpart (List,T,L,B).

range_count_objects (X,L,C,S) :— roll(X,[],Result),
countpart (Result,L,C,S).

The query ¢ in the case of non exact counts of objects would be
range_count_objects (X,L,C,S). For example an image X with exactly one
metal small cube and multiple rubber large spheres would result in the following query:
range_count_objects (X, [s_metal_cube, 1l_rubber_sphere], [1,1]1,[0,1]).

E.1 INFERENCE EXAMPLE FOR MNIST DATASET

To illustrate the inference process let us follow the evaluation of the clause sum ( [x1, x2],8),
what can result from query sum_digits (X, 8) in case of two visible digit in the image X.

This clause is true if and only if X; + Xs = 8.

In case of MNIST digits ({0, 1, ..., 9}) enumerating the possible worlds would give the following
set:

{(0,8),(1,7),(2,6),...,(8,0)} 3)

After summing the probability of all possible worlds we get:

p1(0)p2(8) +p1(1)p2(7) + -+ + p1(0)p2(8), 4)
where p; and po are the distribution of random variable X; and X5 respectively.

Or in a general form:

py(Y) =Y p(X)pa(Y — X1). (5)
X1
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As expected the distribution of the sum is the convolution of the distributions of the two terms. This
observation trivially generalizes to more than two terms. The cost function corresponding to the
maximum likelihood estimation is the negative log-likelihood — log(py (Y)).
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