Sourcing trustworthy documents for training contextual
machine translation systems

Anonymous ACL submission

Abstract

Despite the fact that document context is known
to be vital for resolving a range of translation
ambiguities, most machine translation systems
continue to be trained and to operate at the
sentence level. A common explanation is the
lack of document-level annotations for exist-
ing training data. In this paper, we investi-
gate whether having such annotations would
be helpful, even with the knowledge that much
of bitext mined from the web may have been
translated poorly by humans or by (sentence-
level) MT. Working with large-scale parallel
and monolingual data sets that we produced
in-house, we build large-scale contextual MT
systems into German, French, and Russian. We
find that contextual MT systems benefit most
when document samples are constructed from
high-quality back-translated monolingual data
only. We also show that these improvements
are only visible when the systems are evaluated
on their generative ability on dense test sets, as
opposed to contrastive discrimination between
good and bad examples. The results confirm
our suspicion that bitext crawled from the web
may be of a quality that is too low to reliably
maintain contextual cues for training MT.

1 Introduction

There are two key components to the remarkable
advances in the field of natural language process-
ing over the past few years. The first of these is
the architecture, which is the original transformer
(Vaswani et al., 2017) with a number of incremen-
tal tweaks, but importantly, scaled to larger model
sizes. The second is the data: training on more
and more of it, and extending the basic unit from
the single sentences to documents. Encoder-only
models such as BERT (Devlin et al., 2019) allowed
up to 512 tokens of context, bringing training sam-
ple lengths well over ones employed for machine
translation even today. Decoder-only large lan-
guage models (LLMs) extended this to thousands

of tokens (Brown et al., 2020), and make use of
documents as their basic unit of training.

Instead of simple architectures and document-
level data used to train LLMs, machine translation
models make almost no use of contextual data, and
research tends to focus on complex architecture
changes (e.g., Lopes et al. (2020); Yu et al. (2020)).
Despite significant prior work on the topic (§ 7),
and general acknowledgment of the need to move
on (Sennrich, 2018), contextual translation has not
managed to take hold, and sentence-level systems
continue to dominate. This leaves a gap between
them and their increasingly powerful LLM coun-
terparts, which are expanding to larger and larger
contexts.

One reason for this is the lack of document-level
annotations for MT training data. Although most
bitext originates in documents, the typical extrac-
tion pipeline drops this information in the clean-
ing and deduplication process, such that dataset
releases remain sentence-based. Similarly, mono-
lingual data used for backtranslation is commonly
released without this information. This hampers
contextual efforts from the beginning, and the re-
sulting small-data scenarios invite architectural ex-
perimentation. While it is assumed that having this
information would resolve the problem, the answer
may not be that simple. It has long been known that
data quality matters as much as quantity (Koehn
and Knowles, 2017; Ott et al., 2018), and it has
been known even longer that much of the parallel
data available on the web is of low quality, whether
produced by amateur or underpaid translators or
MT systems.

We explore this central problem by building
the first large-scale, state-of-the-art standard Trans-
former model translation systems trained on data
with complete document annotations. We are able
to do this because instead of public data, we use a
private, in-house dataset (§ 2) that we have crawled
ourselves. This crucially allows us to explore the



effects of document annotations sourced from both
parallel and monolingual (backtranslated data), to-
gether and in isolation, in order to quantify their
effects. We find that:

* Document annotations sourced from parallel
and back-translated monolingual data produce
large gains in document-level contrastive met-
rics, where the task is to discriminate correct
from manipulated translations (§ 5.2).

* Crucially, however, if we instead evaluate
contextual systems generatively (i.e., whether
their output correct disambiguates context-
sensitive words), the accuracy gains are signif-
icantly smaller, but only for systems trained
from crawled bitext (§ 5.3).

e Standard sentence-level metrics are much
more discriminative between sentence- and
contextual systems when applied to datasets
that are dense in discourse phenomena (§ 5.4).

Our findings suggest that sourcing documents from
crawled parallel data may not be reliable, at least
without heavy filtering for quality. In a nod to the
importance of open research, we repeat a subset of
our experiments on English—-German public data
(8§ 6), corroborating our main result, and suggesting
a path for future work.

2 The challenge of data

Publicly available translation datasets typically do
not come with document annotations. While the
Conference on Machine Translation has made over-
tures in this direction, including ensuring that test
data is source-language-natural and contains doc-
ument information, parallel and monolingual data
is limited to a small subset of all data' for which
such information is easily retained.

We wish to experiment with and compare annota-
tions sourced from both parallel and backtranslated
monolingual datasets. We therefore turn instead to
a state-of-the-art, large collection of in-house data.

2.1 Data description

We work with three language pairs:
English—German, English—French, and
English—Russian. We chose these languages

"Parallel: europarl, news-commentary, CzEng, and Rapid;
Monolingual: news-crawl (en, de and cs), europarl, and news-
commentary. Source: http://www2.statmt.org/wmt23/
translation-task.html

because of the availability of good contextual
evaluation data in each of them (§ 3). Our data
comprises the following sources (Table 1):

* Monolingual and parallel data crawled from
the web, all containing document metadata.

* CCMatrix parallel data (Schwenk et al,
2021b), which has no document information.

Although the dataset is proprietary, we can say
the following about it. There is nothing in it that
would surprise any researcher who has experience
assembling machine translation datasets for high-
resource languages; data has been crawled from the
web using standard techniques. The monolingual
data sources focus on sites where we expect data to
have been written natively. This includes large col-
lections of news data (10%), data linked from the
Open Directory Project? (40%), filtered webcrawl
(40%), and Wikipedia and its outlinks (10%). The
parallel data sources include a rough equivalent of
Paracrawl as well as CCMatrix. Statistics for the
data can be seen in Table 1.

We emphasize that our full set of experiments
are not possible with public data, but that we cor-
roborate the subset that are with open data (§ 6).

2.2 Problems with parallel data

Translation is a core facilitator of cross-cultural
communication, and also an expensive one, when
undertaken by humans. It is therefore not surpris-
ing that automated machine translation has long
been one of the success stories from the field of
natural language processing, with widespread com-
mercial adoption and popularization, especially
with the release of Google Translate in 2004. Un-
fortunately, one consequence of this success has
been a “poisoning of the well”, where machine
translation outputs are later collected as training
data for new systems (Venugopal et al., 2011).

It is standard practice to filter out the worst qual-
ity translations with various techniques. At the
same time, not all machine-generated data is bad
for training. An example, sourced from our paral-
lel data, can be found in Table 2. The individual
sentence pairs are fine for training sentence-level
systems, but become problematic when training
contextual ones. While we don’t know if this was
generated by machine or a (tired or underpaid) hu-
man, we do know that even large NMT systems

2ht’cps: //odp.org
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‘ English-French English-German English—Russian

source ‘ lines docs mean ‘ lines docs mean ‘ lines docs mean
mono 1664 55 29.7]2054 70 2912027 65 31
parallel

— crawled | 123.1 37 33.0 | 116.7 47 166 | 724 47 132
— ccmatrix 65.1 0 - 454 0 - 2.4 0 -

Table 1: Statistics of the training data used in our experiments (lines and docs in millions). The mean column is the
mean document length in sentences of documents with > 2 sentences.

English

| German

Unique Moorish style villa set in a tropical oa-
sis with pool, guest accommodation and amazing
views. (SEP) Property Reference 1846 (SEP) It
was built by the current owner, who put love and
care into every detail.

Einzigartige maurische Villa in einer tropischen
Oase mit Pool, Gisteunterkunft und herrlicher
Aussicht. (SEP) Referenznummer 1846 (SEP) Es
wurde vom jetzigen Besitzer gebaut, der Liebe und
Sorgfalt in jedes Detail legte.

Table 2: An example of bad data drawn from the parallel data pool. While the sentence-level translations are fine,
the incorrect pronoun Es in the third sentence suggests sentence-level machine or low-quality human translations.

are sensitive to small amounts of poor data® This is
all to say that contextual translation introduces a
new quality dimension that is invisible to stan-
dard filtering pipelines, and the problem may in
fact be quite large, since all machine translation
content in the wild will have been generated by
sentence-level systems. We do not expect to see
this problem for our monolingual data, which is
target-side native.

3 The challenge of evaluation

A basic hurdle in the path to contextual transla-
tion is the difficulty of evaluation. We expect that
contextual systems will produce improved transla-
tions of discourse-level phenomena, however, the
frequency of these phenomena in standard corpora
is not known, and we expect them to be relatively
rare. Attempts to automatically identify sentences
requiring context have shown the task to be diffi-
cult (Bawden et al., 2018) but possible with hand-
created rules (Fernandes et al., 2023; Wicks and
Post, 2023). Consequently, improvements may be
hard to measure and observe with standard metrics.

Fortunately, there exist a range of test sets that
have been developed to capture extra-sentential
phenomena. By and large, these test sets are con-
trastive ones, where the task is to use a model’s
score to discriminate between good and bad exam-
ples. We begin by cataloguing those that we make

3A classic example is source-copy data (Ott et al., 2018)

use of in this paper (§ 5.2). We then describe a
generative extension that makes better use of these
contrastive test sets in (§ 3.2).

3.1 Contrastive test sets

The dominant paradigm for evaluation of long-
tail document phenomena has been so-called con-
trastive evaluation, in which a system is tested on
its ability to discriminate between correct and in-
correct translation pairs. The correct examples are
usually taken from found text; the incorrect ones
are created by inserting an error of some sort. Sys-
tems are evaluated on the percentage of time they
correctly score the positive example above its in-
correct variant, by way of model score. Table 3
contains examples of each test set.

ContraPro (EN-DE) Miiller et al. (2018) focus
on the German pronouns es, er, and sie. They pair
sentences containing naturally-found instances of
pronouns drawn from OpenSubtitles (Lison and
Tiedemann, 2016) with two variants that are iden-
tical except that the correct pronoun has been re-
placed with each of the two incorrect ones.

ContraPro (EN-FR) In the course of evaluat-
ing a number of metrics for document MT, Lopes
et al. (2020) introduced an extension of the EN-
DE ContraPro for EN-FR. Its examples are also
drawn from OpenSubtitles, but since French has
only two pronouns, there is only one contrastive



The
working. | Der
ich durchlaufen, Sir. {

has passed every test, sir. It’s
hat jeden Test erfolgre-
,Es,Sie} funktioniert.

(a) ContraPro example. Contrastive examples are formed
by substituting incorrect pronouns.

Veronica, thank you, but you saw what happened.
We all did. | Beponuka, cnacu6o, HO THI BHUjENA,
YTO MPOU30LLIO0. MBI BCE XOTEJIH.

(b) GTWiC example. The first Russian sentence uses the
formal register.

Table 3: Examples from contrastive test sets.

pair per found instance (contrastive pronouns retain
the grammatical number of their counterpart).

GTWiC (EN-RU) (Voita et al., 2019b) Good
Translation, Wrong in Context (GTWiC) tests verb
selection (500 instances) and morphology (500) in
the presence of source-side ellipsis.

3.2 Testing generative ability

The challenge sets above test whether a model can
discriminate between good and bad examples. As
we will show, many document models perform ex-
tremely well on these tasks (Table 5), but produce
the wrong pronoun when asked to translate the
source. The contrastive nature of these test sets is
at odds with the actual task: what is needed are
metrics that directly evaluate a model’s generative,
rather than its discriminative, ability.

Fortunately, we can transform them into genera-
tive test sets. We simply translate the source side,
in context, and then determine whether the correct
pronoun is present in the output. We then compute
accuracy over the test set. This is not a perfect
metric, since a correct translation may have para-
phrased around the pronoun, but we do not expect
that to systematically favor any particular system.

4 Experimental setup

All of our models are trained from the parallel (P)
and back-translated monolingual (53) data pools.
The monolingual data is backtranslated (Sennrich
et al., 2016) using sentence-level transformer sys-
tems (Vaswani et al., 2017) with 12 encoder and 6
decoder layers, trained for 20 virtual epochs* on
the parallel data.

“We define a virtual epoch as updates from one billion
target-side tokens.

Creating samples We create our training data
on the fly using SOTASTREAM (Post et al., 2023),
which iterates over randomized permutations of
Pand B. To generate each sample, SOTASTREAM
first chooses between these two pools uniformly. A
run-time flag determines whether contextual sam-
ples are enabled for each pool (denoted P, and
By, respectively). If not, it simply returns the next
sentence pair. If so, it then samples a maximum to-
ken length, and concatenates sentences on both
sides until this length is reached on the source
side, or the document is exhausted. Concatenated
sentences are joined with a special (SEP) token,
which facilitates sentence alignment at inference
time. Contextual samples are chunked, meaning
they are formed from adjacent, non-overlapping
sequences of sentences in the training data, in con-
trast to the “multi-resolution” approach (Sun et al.,
2022), which creates training samples from many
overlapping sub-sequences of each input document.
The training toolkit is then responsible for buffer-
ing as many samples as are needed to sort and form
batches for training.

Models All of our models are transformers
trained with Marian (Junczys-Dowmunt et al.,
2018a,b). For each language, we build a single joint
unigram subword model (Kudo, 2018) of size 32k.
Our experiments with different model capacities
(Appendix A) led us to use a 12-layer encoder, a
6-layer decoder, an embedding dimension of 1,024,
and a feed-forward network size of 16,384. We
train for 40 virtual epochs. We use a batch size of
500k target-side tokens. Our maximum document
sample length is L = 256 tokens.

Our models then vary based on whether multi-
sentence samples are sourced from the backtrans-
lated data, the parallel data, both, or neither. We
compare the following models, using the syntax
NAME(pooly, pools) to denote the pools of data
each draws from:

* SENT(P,B). A sentence-level baseline.

* SENT(P,B). A deficient setting that takes
the sentence-level baseline and tests it with
document-context inputs.’

* Doc(Py,B4). A contextual system, with doc-
uments from parallel and back-translated data.

*In this setting alone, no (SEP) token is used when com-
bining sentences, since the sentence model has not seen them.



* Doc(Py,B). A contextual system, with docu-
ments drawn from parallel data only.

* Doc(P,B,). A contextual system, with docu-
ments drawn from backtranslated data only.

Inference For inference, we use an overlapping
approach. Each input sentence (the payload) is
prepended with left sentence context, up to a maxi-
mum token length, L, which includes the payload.
The translation system then translates this as a sin-
gle unit. The (SEP) token is then used to extract
the payload’s translation. This is repeated for all
sentences in a test set, allowing standard sentence-
level metrics to be applied to the results.

Evaluation In addition to the contrastive and gen-
erative contextual test suites described in Section 3,
we compute COMET® (Rei et al., 2020) and BLEU
(Papineni et al., 2002) scores, the latter using sacre-
bleu (Post, 2018),” on a WMT test set.’

5 Results

5.1 Sentence-level metrics

We begin by establishing baseline scores on stan-
dard corpus-level metrics when translating with
each model at the sentence level. In addition to a
commercial baseline (Microsoft, accessed via API),
we present results when translating at both the sen-
tence and document levels. Table 4 contains results
for all models translating the test corpora in two
modes: without context (top block), and with con-
text (bottom block). In this way, we can look at
the effect of context at both training and inference
time. We observe:

* State-of-the-art performance for all models
when translating at the sentence level, without
context;

* A fairly consistent gain of roughly a
COMET point when moving from the
baseline sentence-level translation with
SENT(P,B) (first row top sent-level section)
to Doc(P.By);

* No consistent improvement in these metrics
when adding context at inference time to the
Doc(P,By) system (or other doc systems)

SCOMET version 1.1.3 with model wmt20-comet-da; we
multiply scores by 100 for readability.

7Signauwe: nrefs:1|case:mixed|eff:no]|
tok:13a|smooth:exp|version:2.3.1

8WMT?22 for en-de and en-ru (2,037 lines in 271 docs),
and WMT15 for en-fr (1,500 lines in 76 docs).

It seems that training with extended context im-
proves the systems’ ability to translate, even with-
out context, but on these test sets, there are not
widespread gains from employing context at in-
ference time. Section 5.4 suggests this may be
because discourse phenomena are too rare in these
largely news test sets.

5.2 Contrastive suites

Next, we turn to the document-level contrastive and
generative metrics described in § 5.2-3.2.

For generative document metrics, we took spe-
cial care with SENTx(P,B). It was not trained
with the separator token, so we do not use it when
joining sentences for inference. This means that
we cannot reliably identify the payload sentence,
which complicates evaluation. We work around
this by applying the Moses sentence splitter.” Spot-
checking suggests this to be a reasonable heuristic.

Table 5 contains results for all three language
pairs. Across all three language pairs, there is an
interesting pattern: in the contrastive metrics, the
document systems improve over the sentence base-
line, as a block. However, the generative metrics
see their best results in the DOC(P,B) system, of-
ten by a large margin. This is especially true for
ContraPro and GenPro for EN—DE and EN—FR.
Additionally, the SENT*(P,B) system improves
over the SENT(P,3) system when measured con-
trastively, but these gains are not reflected in the
generative metric. This calls into question the reli-
ability of contrastive metrics, since we know this
system has no generative document capacity.

5.3 A closer look at GenPro

In this section we look closer at the difference be-
tween the Doc(Py4,B4) and Doc(P,B,;) EN—DE
systems in Table 5, which have similar ContraPro
scores but divergent GenPro scores. Table 6 pro-
vides a breakdown in performance between the two
systems by antecedent distance and pronoun type.
The systems perform similarly intrasententially (a
distance of 0), but are quite divergent when the pre-
diction requires looking into the context. Interest-
ingly, we see that the gains are due to DOC(P,By)’s
ability to correctly predict sie and er. DOC(P 4,B84)
is actually better at predicting es. This suggests that
it simply overpredicts es, the majority pronoun.
We note that GenPro may penalize a system that
produces a correct sentence not containing the pro-

9https://github.com/mediacloud/
sentence-splitter
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EN—DE

EN—FR EN—RU

model BLEU COMET | BLEU COMET | BLEU COMET

Microsoft | 373 62.0 | 408 67.6 | 33.1 67.3
© SENT(P.B) 37.2 61.6 | 45.6 69.0 | 340 70.0
5 DoC(PyBas) | 375 62.0 | 45.1 700 | 34.1 70.4
g Doc(PgB) | 370 613 | 454 69.2 | 335 70.0
“ Doc(P.Bg) | 372 622 | 445 69.8 | 343 70.2
'S Doc(Pg.Ba) | 379 62.1 | 425 69.1 | 343 69.2
+ Doc(PyB) | 375 62.1 | 43.6 67.6 | 33.6 68.5
S Doc(P.By) | 370 62.1 | 43.1 70.1 | 34.1 70.6

Table 4: Metric scores on WMT22/WMT15 test sets when translating as sentences (top block) and with document
context (bottom block). Numbers within a column are comparable. A main comparison is SENT(P,3)—the sentence
level baseline translating sentences—with DOC(P,B;)—the best doc system, translating as documents.

EN—DE  EN-FR EN—RU
model C/Pro G/Pro | C/Pro GfPro | elling  Glellinn | ellvp  Glellyp
Literature | 70.8 - | 832 - | 76.2 - | 80.0 -
SENT(P.B) | 500 332 71.6 225|518 2481938 4.6
SENTX(P.B) | 69.0 463 | 93.1 623|770 328|550 192
DoC(Pa.Bg) | 76.5 47.8 | 951 625|842 358 | 68.0 260
Doc(Pg.B) | 71.6 419 | 943 604|762 318|662 264
Doc(P.By) | 77.9 70.5| 948 773 | 84.6  39.6 | 66.0  28.4

Table 5: Document contrastive test suites and their generative variants. Contrastive scores (C/*) are over the entire
dataset in order to compare with the literature, while generative scores are over extra-sentential items only. Literature
scores are taken from Lopes et al. (2020, EN—FR,EN—DE), and Voita et al. (2019b). Feeding documents to
SENT*(P,B) (which it wasn’t trained on) increases contrastive scores over the sentence baseline and generally
brings generative scores within line of doc systems trained with parallel data.

noun, or unfairly credit a system that happens to
generate the pronoun by accident. We do not expect
that this will systematically favor any one system,
but it does mean that small differences may not be
important. Spot-checking suggests to us that the
large differences reported in Table 5 capture actual
improvements.

5.4 Discourse-dense datasets

Table 4 show modest improvements when translat-
ing WMT news test sets as documents, with docu-
ment systems. What is not clear is what the upper
bound on performance is for document-level sys-
tems; in other words, how much unrealized gain is
there that could have been addressed by contextual
translation? This is difficult to answer because we
don’t know how many document-level phenomena
there are in these test sets (in fact, we suspect there
are relatively few).

As a means of assessing the question, we turn
again to the ContraPro (EN—DE and EN—FR)
datasets, which we know to be extremely rich in
one particular kind of discourse phenomena: pro-
noun selection.'” We take the 12k positive exam-
ples along with their references as a dense test set.
We also create a second, shifted test set compris-
ing the set of sentences that occur ten sentences
after each sentence in ContraPro. This second test
set is likely to be significantly less rich in docu-
ment phenomena than ContraPro. We then com-
pute COMET scores on these two test sets, trans-
lating their sentences with both SENT(P,B) and
Doc(P,By).!!

As we see in Table 7, the best document system
(Doc(P,By)) is much better than the sentence base-

1%We confirm that OpenSubtitles is not in our training data.
"Documents have a maximum of 250 SPM tokens and 10
sentences.



0 1+
all BT all BT
all 743 732 | 47.77 705
es 86.2 81.2 943 88.8
sie 729 73.6 | 299 64.7
er 61.7 63.5 | 20.7 58.8
sieler | 67.5 68.7 | 252 61.8

Table 6: Breakdown of ContraGen pronoun prediction
accuracy by antecedent distance between two docu-
ment systems: one (“all”’) trained on docs from every-
where (DOC(P4,5,)), and the other (“BT”) trained on
docs only from BT data (Doc(P,By)). The former has
significantly-lower extra-sentential generative capacity.

EN—DE EN—FR
system dense shifted | dense  shifted
SENT(P,B) 214 314 | 362 385
Doc(Py4,By) | 27.8 339 | 384 392
Doc(Py,B) 2600 341 | 37.6 393
Doc(P,By) 324 347 | 40.6 39.6
improvement ‘ +11.1 33| +44 +1.1

Table 7: COMET scores on the two OpenSubtitles
datasets, the first (dense) discourse-dense, the second
(shifted) less so. The gap between translating without
and with context is much larger on the discourse-dense
subset.

line on ContraPro (+11.1 COMET for EN—DE,
+4.4 for EN—FR), suggesting that where docu-
ment phenomena are rich, a document system’s
gains can be captured by standard metrics. The gap
also exists on the shifted test set (+3.3 EN—DE,
+1.1 EN—FR), but is much smaller. Notably,
the other document systems are clustered close
to Doc(P,B,) on the shifted test set, but trail in
the middle on the dense test set. Finally, the gaps
are much tighter for EN—FR than for EN—DE,
which might suggest this dataset is less discourse-
dense, or that the general task—with two pronouns,
instead of three—is easier for that language.

Together, these facts suggest a challenge for the
evaluation of document-level systems, which is
the need to automatically identify sentences that
require context to translate correctly.

6 Results on public data

The full breadth of this paper’s experiments was not
possible on public datasets, due to the lack of docu-
ment annotations on large-scale parallel data. How-

WMT22

system BLEU COMET | C/Pro  G/Pro
SENT(P.B) | 35.8 60.6 | 56.7 239
Doc(P.By) | 35.8 594 | 834 643

Table 8: Metrics on the only two models we are able to
build on public data. Similar patterns are observable to
those seen in Tables 4 and 5.

ever, we can build the SENT(P,B) and Doc(P,B,)
systems with a subset of the WMT22 EN—DE data
with monolingual document annotations, and see
whether they exhibit the same pattern.

We use all available parallel data provided for
WMT22 (Kocmi et al., 2022):'> Europarl v10
(Koehn, 2005), Paracrawl v9 (Bafién et al., 2020),
Common Crawl,!> News Commentary, Wiki Ti-
tles v3, Tilde MODEL Corpus (Rozis and Skadins,
2017), and Wikimatrix (Schwenk et al., 2021a). A
few of these resources have document-level infor-
mation, but we do not use any of it. For monolin-
gual data, the only data available with document
metadata is News Crawl.'* We used all even years
from 2008-2020, backtranslating it from German
to English with an internal system. No filtering is
applied. From this data, we train the only two of
our systems supported by this setup: SENT(P,B)
and Doc(P,B,). These are trained for 40 virtual
epochs each using the same settings described in
Section 5.1

Results can be found in Table 8. They are en-
couraging: we see the same pattern of improvement
between SENT(P,B) and Doc(P,B,), although the
absolute numbers are lower. Compared to our in-
house data, the document metrics are even better
for SENT(P,B).

7 Related Work

A good early survey of work in contextual transla-
tion is Maruf et al. (2019), who cover work with
both RNN and Transformer frameworks along a
rich taxonomy.

The transition to neural architectures was there-
fore a paradigm enabler for document transla-
tion. Much work, including that with transform-
ers, has focused on separately encoding the con-

Zstatmt. org/wmt22/translation-task.html
Bhttps://commoncrawl.org/
“https://data.statmt.org/news-crawl/de-doc/
SMono data: 311.2m lines, 14.1m docs, with a mean sen-
tence length of 21.9 sentences. Parallel data: 297.6m lines.
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text from the current sentence, in attempts to con-
centrate the relevant portions of the history and
decrease sequence length. This includes cache
models (Tu et al., 2018; Kuang et al., 2018), hi-
erarchical attention (Miculicich et al., 2018), sepa-
rately encoding context (Voita et al., 2018; Zhang
et al., 2018), allowing attention across a batch of
pseudo-documents (Wu et al., 2023), encoding
sentence position (Bao et al., 2021; Lupo et al.,
2023), and sparse attention mechanisms (Guo et al.,
2019). Another approach is post-processing ap-
proaches inspired by automatic-post-editing but us-
ing document-level language models (Voita et al.,
2019a). Yu et al. (2020) use Bayes’ rule to factor
translation and language modeling, translating sen-
tences independently but using a document-level
target language model to rerank candidates. Sun
et al. (2022) also proposed to use standard trans-
former models, using small architectures and no
monolingual data, and with a “multi-resolutional”
training approach that creates overlapping docu-
ments.

Standard datasets containing document annota-
tions include OpenSubtitles (Lison and Tiedemann,
2016), WIT3 (Cettolo et al., 2012), News Com-
mentary, and Europarl (Koehn, 2005). Liu and
Zhang (2020) provide a nice survey, and release
a small amount of government-crawled new data
for Chinese—Portuguese. The Conference on Ma-
chine Translation (WMT) began releasing limited
document-level data for DE-EN and CS-EN in
2019 (Barrault et al., 2019). This limitation has
forced researchers to get creative. Dobreva et al.
(2020) incorporate finer-grained document struc-
ture using side constraints and the cache model
of Kuang et al. (2018). The idea to draw docu-
ment data only from monolingual sources has also
been tried. Voita et al. (2019b) built a monolingual
post-editing system that took the output of a base-
line system and used it for document-level “repair”.
They found that it helped, but their models were
small. Sugiyama and Yoshinaga (2019) also used
target-side data for backtranslation, evaluating in
small-data settings with BLEU and contrastive met-
rics. Our work differs by scaling this to very large
web-crawled datasets, and by showing that parallel
data, as a whole, may be harmful.

A center point of document-level research is on
metrics. PROTEST (Guillou and Hardmeier, 2016)
was similar in spirit to our ContraGen. They used
hand-designed pronoun test cases and looked for
the correct pronoun in the system output. Failure

cases were referred to humans for analysis. Laubli
et al. (2018) provided early evidence that document-
level metrics would be helpful. There has also
been recent work in building automatic metrics that
make use of context. BlonDe (Jiang et al., 2022)
was evaluated in Chinese—English and works by
automatically identifying discourse-relevant phe-
nomena in the output and comparing them to a
reference, optionally combined with an n-gram flu-
ency component. Doc-COMET (Vernikos et al.,
2022) is simpler and builds sentence representa-
tions from context. Both metrics are interesting
but await deeper evaluation and we did not ex-
plore them in this paper. Vamvas and Sennrich
(2021) have noted the problem with the discon-
nect between contrastive evaluation and generative
ability for machine translation, but suggest using
machine-generated minimal pairs that are closer to
model distributions, and don’t explore directly mea-
suring generative ability. Fernandes et al. (2023)
use translation models to identify sentences that
then informed the development of rules to iden-
tify contextually-dependent sentences. Wicks and
Post (2023) adopt a similar approach that identifies
contextual sentences with hand-built rules.

8 Conclusions

Machine translation research and production sys-
tems continue to be dominated by sentence-level
approaches. A common explanation for this short-
coming is the lack of document-annotated parallel
data. We have shown that parallel data may ac-
tually not be a trustworthy source of document
training samples, and that good systems can be
built with documents sourced from back-translated
monolingual data alone, where document annota-
tions are easier to come by. Although we have not
investigated why this is the case, a reasonable ex-
planation is that it is due to contamination from
low-quality sentence-level machine-translated (and
potentially also human) translations. We have also
shown the importance of evaluating contextual ma-
chine translation output in its generative capacity,
rather than in its ability to discriminate good out-
puts from bad ones. Finally, we have shown that
standard sentence-level metrics can distinguish be-
tween document- and sentence-level systems, so
long as they are sufficiently dense in discourse phe-
nomena.



Limitations

With respect to reproducibility, the deepest limita-
tion of our paper is our use of private, rather than
public, data. As we explained, this was a necessity,
since public data does not contain the annotations
we need. There is therefore a risk that our findings
might not be reproducible by other teams working
with (necessarily) different datasets. We have at-
tempted to mitigate this problem by reproducing
a subset of our results on publicly available data,
where our findings stood. We hope that this corrob-
oration, together with the the fact that harvesting
data from the web is itself a well-understood sci-
ence, help mitigate this risk. Finally, although we
suspect our results will hold for language pairs
beyond the three we investigated, further compli-
cations could arise, and it is possible they will not
generalize.
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arch params | BLEU COMET C/Pro G/Pro
6/1k 146m 27.0 4877 652 584
6/2k 171m 27.4 49.7 66.2 58.7
6/4k 221m 28.0 51.0 69.7 629
12/4k  297m 28.4 51.8 706 66.0
6/8k 322m 27.8 51.0 71.7 628
12/8k  448m 28.6 525 742 67.1
6/16k  523m 28.4 51.7 745 649
18/8k  574m 28.8 53.0 750 67.1
12/16k  750m 28.9 52.8 75.8 685
18/16k 977m 29.3 533 755 694

Table 9: Model capacity (encoder layers / FFN / #
params) for an EN-DE document model, ordered by
param. count. Decoder depth is always 6 layers. Scores
were computed on a checkpoint after 30k updates.
BLEU and COMET scores are on WMT21, translating
as sentences. C/Pro is over the complete test set, while
G/Pro is over only sentences with external anaphora.
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A Model capacity

Much work in investigating document-level ma-
chine translation has been limited to standard-size
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Transformer architectures (cf. Zhang et al. (2018);
Sun et al. (2022); Lopes et al. (2020)). Yet it stands
to reason that modeling longer-range phenomena
will require increased model capacity, and in fact,
the base model size we chose for our experiments
(12 layer encoder, 16k FFN) reflects this. Here, we
provide more detail, varying two model parameters
only: (i) the number of encoder layers, and (ii) the
width of the model feed-forward layer (encoder and
decoder side). We keep all other parameters the
same, including fixing the decoder depth to 6. Fo-
cusing on changes to the encoder depth helps limit
grid search and is justified by prior work showing
that (relatively cheap) encoder layers can be traded
for (relatively expensive) decoder layers with no
penalty (Kasai et al., 2020). We alternate between
increasing the number of encoding layers, and in-
creasing the dimension of the Transformer feed-
forward layer.

Table 9 contains English—-German results. Un-
surprisingly, all scores continue to rise, up to the
wide 18-layer model. Both increasing the number
of encoder layers, and increasing the size of the
FFN, contribute to better performance. This sug-
gests that the common approach of working with
6-layer Transformer base models is not enough
for document-context MT. There is more to gain
by moving to larger models and likely, to larger
datasets and context lengths, as well.
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