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Abstract—This paper introduces a novel method for enhancing
robotic systems using Large Language Models (LLMs). We focus
on leveraging LLMs to substantially improve robots’ decision-
making and interaction with their environment. Our proposed
framework employs an agent-based approach, where robots
utilize LLMs for sophisticated pattern recognition, environmen-
tal understanding, and autonomous decision-making. The main
innovation of this research is the integration of LLMs into
a robotic system, enabling robots to process large volumes
of unstructured data, recognize complex patterns, and make
informed decisions with increased precision and efficiency. This
integration marks a significant leap in robotic cognitive abilities,
surpassing the constraints of traditional programming. Our
methodology transforms LLMs into dynamic elements within
robotic systems, fostering enhanced and responsive interactions
with the environment. Robots equipped with LLMs are thus
capable of advanced autonomous operations, including navigating
complex environments, solving intricate problems, and interact-
ing more naturally with humans. The primary contribution of
this work is the creation of an agent-based graph framework,
designed to facilitate collaborative problem-solving in robotic
systems. This framework consists of multiple agents working
collaboratively, spanning from data ingestion to comprehensive
world understanding and decision-making. These agents include
modules responsible for various operational aspects, such as
environmental analysis, data processing, and specialized LLMs
for data interpretation and summarization. Positioning LLMs
as proactive, inquisitive agents, our approach enables them to
actively seek information and efficiently collaborate with other
agents to complete tasks. The dynamic nature of this graph
search and inter-agent communication model is a considerable
innovation in robotics, offering a more integrated and effective
approach for robots to tackle complex tasks, thereby enhancing
their ability to operate autonomously and intelligently in diverse
environments.

Keywords—large Language Models, agent-based approach,
autonomous operations, graph framework, mixture of experts.

I. INTRODUCTION

In the rapidly evolving field of robotics, the implementa-
tion of data-driven decision-making is becoming increasingly
essential. With industries across the globe transitioning into
the digital era, they confront the significant challenge of nav-
igating through vast quantities of structured and unstructured
data. The complexity of extracting valuable insights from
multimodal data sources is a critical barrier in this regard.

Enter Large Language Models (LLMs) based on transformer
architectures [1], [2], which are revolutionizing paradigms
across various domains, including robotics. These models, no-
table for their expansive parameters, excel in identifying subtle
patterns and contextual information in data, often surpassing
traditional analytical methods. LLMs find applications ranging
from content analysis to complex tasks such as trend predic-
tion and anomaly detection. In robotics, they are invaluable
for tasks such as environmental understanding and decision-
making.

However, the integration of LLMs into robotics is not devoid
of challenges. A primary concern is the potential for these
models to generate inaccurate or ’hallucinated’ information.
Additionally, applying them in complex, multi-step robotic
procedures presents significant difficulties.

This paper proposes an innovative approach to augment the
capabilities of LLMs within robotics. Central to this approach
is an agent-based graph where multiple agents, including
LLMs, collaborate to address challenges specific to robotics.
These agents range from a data source providing accurate
information to Python libraries for data visualization, or even
other LLMs for data processing and summarization. This
methodology positions LLMs as proactive, inquisitive entities
within robotic systems, seeking clarity and collaborating with
other agents for effective task execution. This dynamic inter-
agent communication framework promises a more comprehen-
sive and innovative approach to solving complex robotic tasks.
[3] discusses the usage of LLMs in databases and it’s pros and
cons for research and education.

Additionally, the utilization of LLMs in robotic systems
parallels the Mixture of Experts concept, where each agent
specializes in a particular aspect of robotic operation. This
paper further explores this connection by establishing a math-
ematical framework that integrates the mixture of experts
paradigm with LLMs in robotics. This effort in combining
LLMs with mixture of experts concepts signifies a significant
advancement in the field of robotics, paving the way for more
intelligent and autonomous robotic systems.
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II. FRAMEWORK

In the core framework of this research paper, we present an
integrated assembly of intelligent agents specifically designed
to collaboratively execute tasks and respond to the unique
requirements of a personal robot in post-workout care. These
agents, while versatile, are endowed with specialized capabil-
ities tailored to the task given to the robot. The primary agent
is the Principal Supervisor that always runs and it can spin off
other agents to accomplish the tasks. Below are more details
about the principal supervisor and the example of other agents:

1) Principal Supervisor: This overarching agent is re-
sponsible for orchestrating the activities of the other
agents and ensuring seamless interactions among them.
It dynamically coordinates the task flow, adapting in
real-time to the user’s immediate needs and the available
resources.

2) Sensing-Based Information Gatherer : Specialized in
utilizing the robot’s sensory data to identify available
snacks and drinks at home, this agent ensures that the
most up-to-date and relevant inventory information is
always used in decision-making.

3) Online Research Agent: This agent is tasked with re-
trieving and analyzing online information through search
for a given task. Retrieval Augmented Learning(RAG)
is based on this concept [4] [5].
User Preference Analyst:

a) Profile Data Reviewer: Focuses on examining the
user’s preferences.

b) Feedback Processor: Analyzes feedback from pre-
vious interactions to refine future recommenda-
tions, improving personalization over time.

4) Decision-Making Agent: Integrates insights from the
other agents to select the most suitable choices based
on the given preferences, data and the task.

5) Path Planning Coordinator: Plans and executes the
optimal path for the robot to complete the task. This
agent ensures efficient navigation and handling within
the given environment.
To better understand this consider a request made from
the user to the robot: “I’ve just finished exercising. Could
you please get me a drink and a snack to help me
recover?”

As an example, the framework could spin off these agents
to accomplish the task. Each of these tasks has an objective
and a method that they follow:

1) Information Search by Perception: Objective: Identify
available snacks and drinks at home.
Method: The robot uses its perception data (like cam-
eras, sensors) to scan the home environment. It cross-
references this real-time data with the previously stored
inventory data in its database to determine what items
are currently available.

2) Online Information Retrieval: Objective: Gather infor-
mation on the health benefits and nutritional value of the
available items.

Method: The robot accesses online databases and nu-
trition websites to retrieve up-to-date information about
the healthiness of each available food item. This step
ensures that the recommendations are based on the latest
nutritional research and data.

3) User Preference and Allergy Considerations: Objec-
tive: Take into account the user’s preferences and any
allergy considerations.
Method: The robot consults the user’s profile, which
contains information about dietary preferences, allergies,
and past choices. This helps in tailoring the snack and
drink selection to the user’s specific health requirements
and taste preferences.

4) Decision Making: Objective: Select the most suitable
snack and drink for the user.
Method: Based on the information gathered from the
previous steps, the robot uses its decision-making algo-
rithms to choose the best snack and drink. This decision
is based on nutritional value, user preferences, and any
specific post-workout recovery needs identified from the
workout data.

5) Planning the Path and Delivery: Objective : Efficiently
retrieve and deliver the selected items to the user.
Method: The robot plans the optimal path to navigate
the home environment, considering obstacles and the
shortest route. It then retrieves the selected snack and
drink and delivers them to the user. This step involves
physical navigation and manipulation skills to ensure
safe and efficient delivery.

Each of these subtasks leverages the robot’s capabil-
ities in perception, data processing, user interaction,
and physical navigation, ensuring a personalized and
efficient post-workout care experience.

III. STATE BASED DYNAMIC GRAPH WITH BREADTH FIRST
PROGRESSION

We introduce the State-Based Dynamic Graph with Breadth-
First Progression, a framework centered around the Principal
Supervisor. This system exemplifies advanced coordination
and decision-making in robotic tasks. It dynamically adapts to
real-time feedback and operational states to efficiently manage
and deploy a range of specialized agents for comprehensive
task execution. The Principal Supervisor functions as an asyn-
chronous coordinator for auxiliary agents, with its decision-
making process directly linked to its evolving state, which
changes based on feedback and outputs from subordinate
agents.

A. Dynamic Agent Operation Framework

The core of this system is the Principal Supervisor, func-
tioning as an asynchronous coordinator for auxiliary agents. Its
decision-making process is directly linked to its evolving state,
which changes based on feedback and outputs from subordi-
nate agents. Starting with the initial task of providing post-
workout care, the Principal Supervisor strategically invokes

0366
Authorized licensed use limited to: GOOGLE. Downloaded on September 17,2024 at 00:44:59 UTC from IEEE Xplore.  Restrictions apply. 



specific agents to gather necessary information and execute
tasks. This includes agents for perception-based information
gathering, online nutrition research, user preference analysis,
decision-making, and path planning. The agents to be engaged
are selected and ranked based on their relevance and efficacy
for the task, ensuring an optimized and iterative approach until
the objective is achieved.

Fig. 1. Proposed algorithms for LLM: each agent works in a breadth first
search approach to perform each tasks

B. Example Execution: Providing Post-Workout Care

1) Part 1: Initial Data Gathering and Analysis:
1) Principal Supervisor Initiation: Receives the task of

providing post-workout care, including snack and drink
selection.

2) Perception-Based Information Gathering: Activates to
scan and identify available items using sensory data.

3) Online Nutrition Research Agent: Invoked to gather
health and nutritional information about the available
items.

4) User Preference Analysis: Engages to review user profile
data for preferences and allergies.

2) Part 2: Decision-Making and Path Planning:
1) Decision-Making: With the gathered data, the Principal

Supervisor analyzes and selects the most suitable snack
and drink.

2) Path Planning Agent: Plans the optimal route for item
retrieval and delivery within the home environment.

3) Part 3: Execution and Delivery:
1) Execution of Retrieval: The principal supervisor com-

mands the robot to retrieve the chosen items efficiently.
2) Delivery: Ensures the safe and timely delivery of the

items to the user.
3) Feedback Integration: Collects user feedback post-

delivery to refine future recommendations.
In this adapted methodology, the principal supervisor dy-

namically coordinates a team of specialized agents, each

playing a pivotal role in ensuring the robot effectively provides
personalized post-workout care. This approach showcases the
potential of a state-based dynamic graph and breadth-first
progression in managing complex, multifaceted tasks within
the realm of robotics.

Fig. 2. Flow diagram to visualize the dynamic graph

IV. MIXTURE OF EXPERT AGENTS

The mixture of local experts model, as described in [6],
functions as a successful algorithm that employs a divide-
and-conquer approach rooted in conditional computation. This
model comprises a gating model, multiple expert models, and
a training methodology geared towards learning these models’
parameters. The proposed collaborative LLM agent approach
closely resembles the Mixture of experts model, which we
will call as Mixture of expert agents (MoEA model). In the
proposed MoEA model Each expert LLM agent specializes in
a specific section of the input space which includes different
subtasks like sensing, retrieval etc. The principal supervisor
can be approximated as the trainable probabilistic Gating
Network (GN) assigning regions to different expert agents.

Fig. 3. Mixture-of-expert agents architecture.

A. Mathematical Framework

Enhanced performance in machine learning is often achiev-
able by integrating multiple models, an approach encapsulated
in the concept of committee machines [6], [7]. This method
involves either averaging the predictions from a set of models,
known as boosting, or selecting a single model for making
predictions, akin to decision trees. When implemented in a
probabilistic setting, this approach facilitates a more nuanced
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decision process through the distribution of input space among
various models.

Consider an input vector x, a target t, and a parameter set
GGG = {GGGg,GGGe}, where Gg and Ge are the gating and expert
parameters, respectively. Within this framework, a group of N
experts forms a mixture model that yields the output t with a
probability P (t|x,GGG), represented as:

P (t|x,GGG) =

N∑
n=1

P (t, n|x,GGG) =

N∑
n=1

P (n|x,GGGg)P (t|n, x,GGGe).

(1)
Equation 1 delineates the mixture distribution, which may

be either discrete or continuous. A basic MoEA architecture,
illustrated in Figure 3, comprises N trainable experts. The
outputs from these experts are weighted by the gating network
and aggregated by the pooling system. This architecture is
trained so that each expert models a specific aspect of the
mixture model, while the gating system determines the mixing
parameters P (i|x,GGGg).

The primary objective in training the MoEA architec-
ture is to optimize the parameters that maximize the log-
likelihood of a given dataset D, comprising Nv training
patterns x1, . . . , xNv

. The log-likelihood function l(D,GGG) is
formulated as:

l(D,GGG) =

Nv∑
i=1

ln

(
N∑

n=1

P (n|x,GGGg)P (t|n, x,GGGe)

)
. (2)

This function is maximized, as discussed in [8], under the
assumption of a Gaussian mixture model, where each expert
is responsible for modeling a component of the mixture.

B. Training of Mixture of Expert Agents

The training mechanism of a Mixture of Expert Agents
(MoEA) represents a sophisticated and structured learning
approach, where the Principal Supervisor, often an advanced
Large Language Model (LLM) specifically tailored through
initial prompt engineering [9] [10] [11], plays a central role.
This supervisor’s primary responsibility lies in accurately
determining the most suitable expert LLM for a given task,
taking into account the specific context of the input. This
selection process is iterative and dynamic. At each step of a
task, the supervisor assesses the present situation and selects
an expert LLM best suited to address that particular phase
of the task. Following the selection, the chosen expert LLM
executes its assigned role, and the results of this action are
fed back to the supervisor. This continuous feedback loop
is critical as it allows the supervisor to make well-informed
decisions regarding the deployment of expert agents in future
steps.

A notable feature of this training method is the imple-
mentation of a high-temperature setting when operating the
supervisor LLM repetitively. Within the realm of LLMs,
high temperature typically translates to outputs that are less
predictable and more diverse [12]. Such a setting is invaluable

for probing a broad array of potential solutions and strate-
gies the model might adopt. The system generates numerous
pathways using a breadth-first strategy. These pathways are
then meticulously evaluated based on their effectiveness in
accomplishing the given task.

To promote and reinforce effective strategies, a reward-
based system is integrated into the training process. Pathways
that successfully complete tasks are acknowledged with pos-
itive rewards. Importantly, the system is designed to favor
efficiency – pathways achieving task completion in fewer
steps are rewarded more generously than those requiring more
steps. This approach encourages the model not merely to find
solutions but to seek the most resource-efficient solutions.
Such an incentive structure fosters the development of answers
that are accurate and also resource-conscious.

Training extends to both the supervisor LLM and the expert
agent LLMs, guided by a reinforcement learning framework
[13] where rewards play a pivotal role in shaping behavior.
Over time, this training regimen refines the supervisor’s ability
to judiciously select the appropriate expert for each task, based
on timing and requirements. This gradual refinement enhances
the overall performance and efficiency of the MoEA system.
The ultimate objective is to cultivate a robust, adaptive model
capable of skillfully navigating a variety of tasks, effectively
utilizing the specialized expertise of different agents to achieve
optimal outcomes.

V. CONCLUSION

In our upcoming endeavors, our primary focus will revolve
around the expansion and fine-tuning of state-based dynamic
graph methodologies, aiming to open up fresh horizons in the
realm of robotic adaptability and intelligence. Several promis-
ing directions await exploration. One avenue involves applying
state-based dynamic graph techniques to intricate robotic sys-
tems like collaborative robots or self-driving vehicles. This ap-
plication aims to bolster real-time decision-making in dynamic
settings, enhancing their capabilities significantly. Another
area of interest pertains to devising training algorithms for
MoEA (Mixture of Expert Agents) within LLMs (Large Lan-
guage Models) through the utilization of state-based dynamic
graphs. This development aims to refine the decision-making
processes in robots by factoring in environmental states and
task requirements. Furthermore, implementing adaptive expert
selection mechanisms using graph models in robotics repre-
sents an intriguing endeavor. This approach empowers robots
to judiciously select the most pertinent expert(s) for each state
or task, thereby optimizing their performance. Moreover, we
are delving into the realm of automatic expert discovery and
integration within MoEA frameworks. By leveraging state-
based graphs, this research aims to equip robots with the
ability to autonomously discover and seamlessly integrate new
experts, enhancing their capabilities progressively. Addition-
ally, a key focus area involves addressing forgetfulness in
MoEA models. We aim to strategize approaches that mitigate
forgetting in these models, ensuring sustained robotic learning
and adaptation over extended periods through the application
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of state-based dynamic graph methodologies. By concentrating
efforts on these pivotal areas, our future research endeavors
aim to propel substantial advancements in robotics, fostering
the evolution of more intelligent and adaptable robotic sys-
tems.
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