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ABSTRACT

Physics-informed neural networks (PINNs) embed physical laws into data-driven
learning and are becoming increasingly influential in climate and ocean forecast-
ing. Yet effectively capturing multi-scale variability across high and low frequen-
cies while maintaining training stablility and ensuring convergence remains chal-
lenging for conventional PINNs. We introduce M2F-PINN, a novel Transformer-
based multi-scale frequency-domain multi-PINN algorithm designed to 1) miti-
gate spectral bias via Fourier representation learning, and 2) analyze multi-scale
characteristics through frequency-domain modeling, and 3) incorporate physics
priors using multiple PINNs. M2F-PINN leverages multi-scale Fourier networks
to learn spectral components and multi-scale interactions, and employs a 3D Swin
Transformer in an autoregressive setting to capture spatiotemporal regularities.
The advantages of M2F-PINN include: 1) adaptively learns frequency compo-
nents multi-scales to improve multi-scale dynamics; 2) jointly estimates phys-
ical coefficients within the PINN modules, refining representations of physical
processes; 3) preserves the Transformer framework, enabling compatibility with
diverse architectures and structural decoupling; 4) extensive experiments on real-
world ocean datasets show that M2F-PINN outperforms deep-learning baselines
and competitive ocean models (e.g., XiHe, WenHai) in predicting ocean current
fields, achieving superior performance across multiple time horizons.

1 INTRODUCTION

The ocean serves as both a reservoir and regulator of energy within the Earth’s climate system.
Oceanic currents constitute the primary form of seawater movement, driven by multiple factors in-
cluding wind forces, the Coriolis effect generated by Earth’s rotation, variations in seawater density,
and the distribution of landmasses and oceans. However, the prediction of oceanic currents across
global regions remains insufficiently accurate and inefficient, thereby impacting climate forecasting.

While traditional numerical methods possess distinct advantages in terms of physical consistency
and interpretability, they have limitations in predicting ocean flow fields. For instance, due to
simplified parameterizations and computational constraints, traditional numerical models face bot-
tlenecks in coupling multi-scale ocean processes and exhibit low computational efficiency. Deep
learning-based artificial intelligence methods have emerged prominently and are widely applied in
meteorological forecasting and ocean forecasting, owing to their flexibility, strong adaptability, and
high computational efficiency. In the field of meteorological forecasting, models such as Four-
CastNet Pathak et al. (2022), GraphCast Lam et al. (2023), and Pangu Weather Bi et al. (2023)
have all demonstrated excellent predictive performance. On the other hand, in the more complex
ocean domain, ocean forecasting models including AI-GMOS Xiong et al. (2023), XiHe Wang et al.
(2024), and WenHai Cui et al. (2025) have exhibited powerful end-to-end prediction capabilities,
yet they still lack consideration of ocean physical dynamic processes and suffer from insufficient
interpretability. Subsequently, there have also been studies focusing on physics-guided loss func-
tions (e.g., the LangYa model Yang et al. (2024)), accurate prediction of storm surges Zhu et al.
(2025), and accurate prediction of tsunami wave fields Someya & Furumura (2025). However, the
aforementioned studies still suffer from three key limitations: insufficient prediction accuracy, in-
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adequate performance in capturing ocean multi-scale dynamic fields, and insufficient utilization of
ocean frequency-domain information.

Ocean current field data contain not only long-time-series temporal information (e.g., abrupt events)
but also abundant frequency-domain information (e.g., periodic features). Therefore, frequency-
domain information learning is also a necessary approach to improve prediction accuracy. There
have been numerous studies on the application of deep learning in the frequency domain and for
high-frequency data. Tancik et al. Tancik et al. (2020) proposed a Fourier feature network, which
transforms input data into a combination of sine and cosine periodic functions. This enables the neu-
ral network to learn high-frequency and low-frequency information separately, thereby effectively
addressing the spectral bias issue when learning high-frequency information. For low-resolution
observational data, Shaopeng Li et al. Li et al. (2025) developed a Frequency-Domain Physics-
Informed Neural Network (PINN) to more accurately predict the 3D spatiotemporal wind fields of
wind turbines. Chao Song et al. Song & Wang (2023) used a PINN with embedded Fourier features
to simulate multi-frequency seismic wavefields. Recent work on Neural Tangent Kernel (NTK) the-
ory has shown that the components corresponding to larger eigenvalues in the objective function
of deep learning neural networks generally exhibit higher convergence rates, while eigenvalues de-
crease rapidly as the frequency of the objective function increases Jacot et al. (2018); Rahaman et al.
(2019); Zhi-Qin et al. (2020). This reveals that neural networks always tend to learn low-frequency
patterns first, followed by the remaining components.

To address the aforementioned issues, this study proposes M2F-PINN, a multi-scale frequency-
domain multi-PINN method, for the accurate prediction of ocean current fields. M2F-PINN learns
the spectral features of multi-scale data via Fourier representation learning, and incorporates physi-
cal priors using PINN—this not only ensures physical consistency but also endows the method with
strong physical interpretability. By enabling the feature interaction between the two (i.e., spectral
features and physical priors), M2F-PINN further achieves more accurate ocean prediction. We ver-
ify the superior performance of the M2F-PINN model through experiments with different prediction
horizons. In summary, our contributions can be summarized as follows:

• An ocean forecasting framework, M2F-PINN, integrates a Swin Transformer backbone
with a masking strategy to enable long-horizon prediction of oceanic variables. By jointly
modeling temporal dynamics and spectral structure, the framework delivers accurate fore-
casts across timescales.

• Physics-informed neural constraints are incorporated with uncertainty-aware adaptive
weighting of multiple PDE-based losses. These constraints enhance physical consistency
and interpretability while capturing abrupt, event-like variations in ocean time series.

• A multi-scale frequency-domain module with a tunable Fourier mapping learns projection
matrices and scale parameters end-to-end, mitigating spectral bias and improving the rep-
resentation of both low- and high-frequency components in ocean currents.

2 PRELIMINARIES

Fourier feature embeddings. PINNs are known to learn low frequencies first (spectral bias). We
enrich the coordinate encoding with Gaussian Fourier features to expose higher frequencies to the
network: Sample rows b⊤ℓ ∈ R1×d i.i.d. from N (0, σ2Id) and define, for x ∈ Rd,

γσ(x) =
1√
m

[cos(Bx) ∥ sin(Bx)] ∈ R2m, B =

b
⊤
1
...
b⊤m

 . (1)

In expectation this induces an RBF kernel,

E[⟨γσ(x), γσ(x′)⟩] = exp

(
−1

2
σ2∥x− x′∥22

)
(2)

with bandwidth ℓ = 1/σ. Larger σ sharpens locality and increases the representation of high-
frequency content. We use multi-scale embeddings by concatenating {γσℓ

}Lℓ=1 (small σℓ for
global/low-frequency, large σℓ for local/high-frequency), optionally learning per-scale amplitudes
and the projection matrix B to adapt to oceanic spectra.
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NTK view of spectral bias. Let fθ(X) denote network outputs at the N training inputs X =
{xi}Ni=1. Under the standard infinite-width/gradient-flow approximation, the training dynamics lin-
earize:

d

dt
fθ(X) ≈ −K(X,X) (fθ(X)− Y ) , (3)

with the NTK Gram matrix Kij =
〈

∂fθ(xi)
∂θ ,

∂fθ(xj)
∂θ

〉
. Diagonalizing K = Q⊤ΛQ shows that

the error along eigenvector qk decays as exp(−λkt); small λk components converge slowly, which
constitutes spectral bias when high-frequency eigenvectors align with small eigenvalues. This lens
will be used to interpret the effect of Fourier features and our multi-scale design on convergence
across spatial frequencies.

3 PROPOSED M2F-PINN

3.1 GENERAL FRAMEWORK OF M2F-PINN

Here, we develop a bivariate autoregressive neural network built on the Swin Transformer architec-
ture. The inputs are the oceanic eastward current velocity (U ) and ocean northward current velocity
(V ). The model first performs downsampling within an encoder to extract hierarchical features,
followed by upsampling in a decoder to reconstruct the outputs, thereby enabling representation
learning from the data, as illustrated in Figure 1. The training algorithm for ocean forecasting with
M2F-PINN is implemented as shown in Algorithm 1.

Algorithm 1 Training algorithm for ocean forecasting with M2F-PINN
1: Input: Preprocessed ocean dataset D, initial model fθ, and hyperparameters
2: Output: Optimized model parameters θ
3: hyperparameters: Training epochs E, learning rate lr, weight for each vari-

ables [T, S, U, V, Z], Fourier feature parameters {FF mapping low, FF mapping high,
FF scale low, FF scale high, FF hidden dim}

4: Load ocean dataset and construct dataloader B
5: Initialize model fθ, optimizer O, scheduler S, parameters of Fourier fea-

tures {FFlow(mapping low, scale low), FFhigh(mapping high, scale high),
FFprocessor(hidden dim)}, Precompute coordinate grid and static Fourier features

6: for epoch = 1 to E do
7: for each batch (x, ytrue) in B do
8: xff low ← FFlow(coordinates)
9: xff high ← FFhigh(coordinates)

10: xff processed ← FFprocessor([xff low, xff high])
11: xenhanced ← concat(x, xff processed)
12: ypred ← fθ(xenhanced)
13: Ldata ←WeightedMSE(ypred, ytrue) ▷ According to Equation 33
14: LPDE-UV ← MSE(physical informed(ypred)) ▷ According to Equations 34–35
15: LTotal ← Ldata + LPDE-UV
16: O.zero grad()
17: LMTL.backward()
18: O.step()
19: end for
20: end for
21: return θ

3.2 PHYSICAL-INFORMED CHARACTERISTICS OF M2F-PINN

Two partial differential equations (PDEs) are employed in this study, which impose physical con-
straints on the two variables of U and V respectively, so as to establish the accurate spatiotemporal
evolution of ocean current fields. The momentum equations (in the zonal direction and meridional
direction) are indispensable for describing ocean circulation. They directly drive thermohaline trans-
port, energy cycles, biological diffusion, and climate mechanisms, and serve as key factors in both
dynamic modeling and data-driven forecasting.

3
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Figure 1: Overview of the M2F-PINN framework. First, ocean current fields are fed into a multi-
scale Fourier feature mapping module to obtain learned representations, which are concatenated with
the raw inputs and passed to a 3D Swin Transformer encoder; a decoder then performs autoregressive
reconstruction of the current fields. Second, the reconstructed fields are constrained by the two
momentum equations from geophysical fluid dynamics, and an uncertainty-aware adaptive scheme
automatically balances the data fidelity loss and the PDE-based losses. Finally, the multi-scale
Fourier features mapping captures both low- and high-frequency components of the ocean currents,
alleviating spectral bias and improving cross-scale predictive skill.

Momentum equation in zonal direction. The momentum equation is the application of Newton’s
second law in the ocean, describing the variation of velocity in time and space. The momentum
equation in the zonal direction can be expressed as follows:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= ν∇2U (4)

where ν is the eddy viscosity coefficient. This equation reflects that the variation of flow velocity
in the zonal direction is jointly influenced by the inertial term, Coriolis force, and gravitational
gradient.

Momentum equation in meridional direction. Similarly, the momentum equation in the merid-
ional direction is expressed as:

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= ν∇2V (5)

The physical meaning is that the variation of velocity with time and space is governed by inertia,
the Coriolis force, and the gravitational potential energy gradient. These two sets of momentum
equations constitute the fundamental equations of ocean dynamics.

3.3 MULTI-SCALE FOURIER REPRESENTATION LEARNING OF M2F-PINN

To mitigate spectral bias and expose both low- and high-frequency oceanic structures to the network,
we embed space–time coordinates with a multi-scale Fourier map before feeding them into the
PINN. This section formalizes the mapping, analyzes its NTK behavior, and explains how it interacts
with the physics residuals.
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3.3.1 NTK VIEW: HOW FOURIER BANDS RESHAPE LEARNING RATES

By Equation 3, the error dynamics satisfy ė(t) = −K e(t). With the multi-scale Fourier embedding
Γ(·), we simply replace the kernel by KΓ (entries defined as in Eq. (3) but with features Γ). We
then focus on the Fourier-specific spectrum: on near-uniform grids with periodic boundaries, KΓ

is approximately translation-invariant; its eigenvectors are (discrete) Fourier modes {φk}, and the
eigenvalues equal the discrete Fourier transform of the kernel’s first row. For the Gaussian kernel,

λk(σ) ∝ exp

(
−∥ωk∥2

2σ2

)
, (6)

so increasing σ flattens the spectrum and raises the learning rates of high-frequency modes. With
multiple bands, the effective spectrum becomes λ̄k =

∑
ℓ α

2
ℓλk(σℓ). A 1-D calculation and the

dependence on grid spacing are given in Appendix A.2.

3.3.2 EXTENSION TO PINNS: COUPLING DATA AND PHYSICS THROUGH A BLOCK NTK

In M2F-PINN, we optimize a composite objective

L = Ldata︸︷︷︸
observations

+λpde Lpde︸︷︷︸
physics residual

+λicLic + λbcLbc. (7)

Stack the errors evaluated on observation sites and PDE collocation points as E(t) = [eu(t); er(t)] .
Linearizing the dynamics yields the block NTK

Ė(t) = −K(t)E(t), K(t) =

[
Kuu(t) Kur(t)
Kru(t) Krr(t)

]
(8)

where Kuu is the data NTK, Krr is the residual NTK, and Kur = K⊤
ru are cross terms induced by

parameter sharing. More details in Appendix A.3.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Dataset. The GLORYS12 high-resolution reanalysis data provided by the Copernicus Marine Ser-
vice Jean-Michel et al. (2021) is used to train and evaluate of the model. From this dataset, U and
V are adopted as input variables. To rigorously assess generalization, the dataset is split into two
subsets: a training set (2005) and a test set (2006–2008).

Experiments details. We conduct experiments over the global ocean domain using a continuous
four-year observation period on the GLORYS12 reanalysis dataset. In the performance, ablation,
and robust experiments, the depths of coordinate axis in used dataset is distributed from 0.49 m to
130.7 m. Specifically, the depths includes the following 13 depths: 0.49 m, 2.65 m, 5.08 m, 7.93
m, 11.40 m, 15.81 m, 21.60 m, 29.44 m, 40.34 m, 55.76 m, 77.85 m, 109.73 m, 130.67 m. The
experiments are conducted on a computer equipped with an Intel Xeon Platinumn 8352, 128GB of
RAM, and two NVIDIA A100 80GB GPUs for model training and testing. We adopt the Adam
optimizer with an initial learning rate of 5 × 10−4, which decays following a cosine annealing
schedule. The weight decay is set to 3× 10−6, and the model is trained for 100 epochs.

The evaluation metrics include Root Mean Square Error (RMSE), Anomaly Correlation Coefficient
(ACC), and Physical Inconsistency Coefficient (PIC). The definitions of the first two are provided in
the Appendix A.6, while the definition of PIC is as follows:

PIC(v, t) =
1

n

n∑
i=1

(f(vtarget)− f(vpred))
2 (9)

where f denotes the residual of the physical loss in Equation 2 ∼ 3, vtarget represents the ground
truth of the oceanographic variable at the next time step, and vpred is the predicted value obtained
from the model based on the previous time step.
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4.2 EXPERIMENT PERFORMANCE

The experimental data include U and V variables of ocean currents across the global ocean region.
For the forecasting accuracy of multi-variables in the ocean, we selected deep learning baselines in-
cluding Convolutional Neural Networks (CNN, specifically ResNet) and Recurrent Neural Networks
(RNN, specifically LSTM), as well as two additional baselines: MeshGraphNets (based on Graph
Neural Networks) and Fourier Neural Operators (FNO). Meanwhile, the physics-informed model,
M2F-PINN, was integrated into the aforementioned baselines to form M²F-CNN and M²F-RNN.
In addition, two excellent ocean forecasting models, XiHe and WenHai, are included for compari-
son. All models are trained on data form 2005 and evaluated on unseen data from 2006-2008, and
three random trials are additionally run. Reported metrics represent average performance over the
2006-2008 test period.

Figure 2: Visualization of U variable over four consecutive days. Columns from left to right show:
input, ground truth, prediction, and bias; each row represents one of four consecutive days.

Figure 3: Visualization of V variable over four consecutive days.

6
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Table 1: Experimental performance comparison.

Models U -RMSE(↓) V -RMSE(↓) U -ACC(↑) V -ACC(↑) U -PIC(↓) V -PIC(↓)

CNN 5.36 ± 0.1781 19.55 ± 0.1917 0.942 ± 0.0023 0.742 ± 0.0026 7250.50 ± 388.35 9802.44 ± 272.30
M²F-CNN 0.05 ± 0.0079 0.06 ± 0.0129 0.955 ± 0.044 0.926 ± 0.0053 4610.53 ± 0.4166 5378.97 ± 0.2349
RNN 10.16 ± 8.3810 24.24 ± 8.2873 0.862 ± 0.1386 0.584 ± 0.2757 9686.31 ± 0.0632 11917.8 ± 0.4382
M²F-RNN 0.12 ± 0.0144 0.12 ± 0.0133 0.746 ± 0.0015 0.595 ± 0.0045 7063.19 ± 639.37 9562.37 ± 449.80
MeshGraphNets 0.04 ± 0.0047 0.04 ± 0.0060 0.938 ± 0.0031 0.920 ± 0.0025 8004.71 ± 0.6538 11558.25 ± 0.5353
FNO 0.14 ± 0.0049 0.11 ± 0.0052 0.035 ± 0.0045 -0.030 ± 0.0025 7237.35 ± 1.0132 10686.15 ± 0.9500
XiHe 0.19 0.19 0.963 0.938 380907.58 441561.92
WenHai 0.17 0.16 0.903 0.923 1344.1 84768.29
M2F-PINN 0.03 ± 0.0003 0.03 ± 0.0001 0.972 ± 0.008 0.953 ± 0.0036 0.71 ± 0.0032 0.80 ± 0.0063

Table 2: Forecasting performance across different prediction horizons.
Models U -RMSE(↓) V -RMSE(↓) U -ACC(↑) V -ACC(↑) U -PIC(↓) V -PIC(↓)

M2F-PINN-1day 0.03 ± 0.0003 0.03 ± 0.0001 0.972 ± 0.008 0.953 ± 0.0036 0.71 ± 0.0032 0.80 ± 0.0063
M2F-PINN-7day 0.13 ± 0.0024 0.14 ± 0.0053 0.841 ± 0.0081 0.720 ± 0.0051 1.61 ± 0.0082 1.27 ± 0.0068
M2F-PINN-30day 0.18 ± 0.0031 0.16 ± 0.0046 0.690 ± 0.0018 0.618 ± 0.0125 1.11 ± 0.0224 1.50 ± 0.0124
M2F-PINN-60day 0.19 ± 0.0006 0.17 ± 0.0007 0.752 ± 0.0110 0.704 ± 0.00758 2.25 ± 0.0042 1.90 ± 0.0103

As shown in Table 1, the proposed M2F-PINN model almost achieves the best performance in terms
of the RMSE, ACC, and PIC metrics. For the U and V variables, M2F-PINN achieves the RMSE
of 0.03, with accuracy values reaching 0.972 and 0.953, respectively, while its PIC values are as
low as 0.71 and 0.80. This performance outperforms traditional deep learning baselines and their
variants, as well as the ocean-specific models XiHe and WenHai. M2F-PINN imposes constraints on
ocean dynamics through multi-physics-informed mechanism, and effectively learns high-frequency
and low-frequency data information via multi-scale Fourier feature mapping—thereby enhancing
the prediction accuracy of ocean current fields. Figure 2 and Figure 3 present global visualizations
of the U and V variables generated by the M2F-PINN model for four consecutive days in September,
2006.

Beyond the 1-day forecasting horizon, we also test the model performance on medium-range ocean
forecasting (1-day, and 7-day) as well as long-term and seasonal ocean forecasting (30-day, and 60-
day). As shown in Table 2, the ocean forecasts across different prediction horizons are presented,
demonstrating the excellent generalization ability of the M2F-PINN model in long-term prediction.
The 1-day setting is best across all metrics (e.g., U /V -RMSE 0.03/0.03, U /V -ACC 0.972/0.953,
U /V -PIC 0.71/0.80). As the horizon lengthens, errors increase and accuracies decrease in a smooth
trend—by 60 days, U /V -RMSE reaches 0.19/0.17 and U /V -ACC 0.752/0.704, with U /V -PIC rising
to 2.25/1.90. The reported uncertainties are small (mostly 10−3 scale), indicating stable performance
across runs.

4.3 ABLATION STUDY

In the ablation study, the core components of the M2F-PINN method are ablated, including the
trainable B matrix, trainable scale, and trainable frequencies method, PINN-base, and data-base. As
shown in Table 3, the M2F-PINN model consistently achieves near-optimal performance across all
evaluation metrics, including the RMSE, ACC, and PIC of both the U and V flow fields. Specifically,
the three performance indicators remain largely stable under different configurations, such as the
presence or absence of training B, variations in training scale, and training frequencies. In the
ablation study on PINN-Base model, the RMSE slightly increases from 0.03 to 0.04, while the
ACC decreases by approximately 0.1. However, the most pronounced change is observed in the
PIC metric, indicating that the multi-scale Fourier network enhances the PINN’s ability to capture
the underlying physical laws. Similarly, in the data-based experiments, both the RMSE and ACC
exhibit minor decreases, whereas the PIC again shows the largest decline, further demonstrating that
the incorporation of PINN facilitates the learning of more interpretable physical patterns.

7
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Table 3: Ablation study of M2F-PINN.

Description U -RMSE(↓) V -RMSE(↓) U -ACC(↑) V -ACC(↑) U -PIC(↓) V -PIC(↓)

M2F-PINN 0.03 0.03 0.972 0.953 0.71 0.80
w/o training B 0.039 0.040 0.967 0.948 0.71 0.81
w/o training scale 0.035 0.036 0.973 0.956 0.72 0.82
w/o training frequencies 0.035 0.036 0.973 0.956 0.70 0.81
PINN-Base 0.04 0.04 0.965 0.941 86.94 57.79
Data-Base 0.05 0.05 0.951 0.914 6127.38 7434.28

4.4 EXPLAINABILITY FROM PIC OF M2F-PINN

The PIC values quantify the deviation between model predictions and the true underlying ocean
dynamics. Figures 4 and 5 visualize the PIC values of the U and V variables, respectively, across
the six models used in the ablation experiments. It can be observed that the differences between
Figure 4(a) of M2F-PINN and Figure 4(b)(c)(d) are minimal, whereas the first four panels exhibit a
clear global advantage over the PINN-base and Data-base models. This result indicates that M2F-
PINN better conforms to ocean dynamical principles and achieves superior physical consistency.

Figure 4: Visualization of U PIC values.

Figure 5: Visualization of V PIC values.
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5 RELATED WORKS

Neural Network-Based Weather and Ocean Forecasting. Numerous studies have been conducted
on neural network-based weather forecasting. FourCastNet Pathak et al. (2022) leverages an adap-
tive Fourier neural operator network, while Pangu Weather Bi et al. (2023) introduces a hierar-
chical temporal aggregation method to minimize the iterative loss accuracy of autoregressive pre-
dictions at different time steps.The Fengwu series Chen et al. (2023a); Han et al. (2024) models
serve as comprehensive climate forecasting models covering multiple scales, including nowcast-
ing, medium-range forecasting, and multi-year to interannual forecasting. The Fuxi series Chen
et al. (2023b); Zhong et al. (2024b;a); Chen et al. (2024); Zhong et al. (2024c) models adopt a cas-
caded architecture optimized for different forecasting horizons and represent the first operationally
viable high-precision global weather cycling assimilation and forecasting AI system that integrates
real observations into forecasting. Additionally, GraphCast Lam et al. (2023), GenCast Price et al.
(2023), and OneForecast Gao et al. (2025) employ graph neural networks to model the Earth’s at-
mospheric state on a spherical grid. In contrast, ocean forecasting still requires further development.
AI-GMOS Xiong et al. (2023) adopts a Fourier-based masked autoencoder as its backbone struc-
ture; XiHe Wang et al. (2024), a hierarchical transformer, effectively captures both local and global
oceanic information; Kunpeng Zhao et al. (2025) implements a longitude-cyclic deformable con-
volutional network to achieve fine-grained modeling of multi-scale oceanic features; and Langya
Yang et al. (2024) develops a cross-spatiotemporal and atmosphere-forced ocean forecasting system
guided by physics-informed loss functions. However, the aforementioned ocean forecasting models
exhibit insufficient utilization of frequency-domain and high-frequency oceanic information, and
face challenges in terms of generalization and physical interpretability.

PINNs in Scientific Computing and Climate-Ocean Modeling. The emergence of PINNs has ad-
dressed the most critical limitation of neural networks—their nature as black-box systems lacking
interpretability and physical consistency. Raissi et al. Raissi et al. (2020) demonstrated the effective-
ness of PINNs in solving classical nonlinear PDE problems across various interdisciplinary fields.
Subsequently, PINNs have been widely applied in materials science, mechanics, fluid dynamics,
and other scientific and engineering domains Diligenti et al. (2017); Liu et al. (2022); Zhang et al.
(2022); Abueidda et al. (2023). In the frequency domain, Xu et al. Xu et al. (2019) utilized Random
Fourier Features Rahimi & Recht (2007) to approximate stationary kernels with sinusoidal input
mappings, and proposed techniques for adjusting mapping parameters. Tancik et al. Tancik et al.
(2020) employed Fourier feature mapping to convert the effective Neural NTK into a stationary
kernel with adjustable bandwidth. Wang et al. Wang et al. (2021) constructed a novel architecture
incorporating spatiotemporal and multi-scale random Fourier features, and verified how such a co-
ordinate embedding layer could yield robust and accurate PINN models. Currently, research on the
application of PINNs in climate and ocean modeling includes the following: ClimODE Verma et al.
(2024) and PIHC-MoE Chalapathi et al. (2024) integrate implicit PDE constraints into the model
architecture; NeuralGCM Kochkov et al. (2024) parameterizes atmospheric dynamics; and WenHai
Cui et al. (2025) incorporates physical parameterization of air-sea coupling into deep neural net-
works. However, studies on introducing Fourier mapping networks into ocean forecasting remain
relatively scarce. Nevertheless, high-frequency information of ocean flow fields is equally crucial
for prediction accuracy and thus requires consideration.

6 FURTHER DISCUSSION AND CONCLUSION

In this paper, we introduces a novel multi-scale frequency-domain PINN forecasting algorithm,
M²F-PINN. This algorithm leverages the 3D Swin Transformer for autoregressive learning of data
patterns, while utilizing Fourier representation learning in the multi-scale frequency domain to effec-
tively alleviate the spectral bias issue. Additionally, it incorporates physically interpretable physical
knowledge through the physical constraints of multi-PINN.

Limitations and Future Work. PINNs incorporate the momentum equation under the Navier-
Stokes equations, while the coupled constraints of multi-variables in ocean systems—such as salinity
and temperature—have not been fully integrated. Another potential research direction is that the
predictive capability of PINNs for more extreme ocean events (e.g., tsunamis and severe storms)
still requires further validation.

9
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A APPENDIX

A.1 PROOF OF SPECTRAL BIAS THROUGH THE LENS OF THE NEURAL TANGENT KERNEL

Assumptions. We work in the standard infinite-width (or lazy-training) regime with gradient-flow
dynamics and small learning rates. When Fourier features are used on a near-uniform training grid
with periodic boundary conditions, the NTK is approximately translation-invariant and its eigenvec-
tors align with discrete Fourier modes. The subsequent analysis relies on these assumptions.

Fourier feature embedding is a technique for transforming input features, enabling the network to
learn multi-scale variations in the output. The core idea of Fourier feature embedding is to map
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the input v to an embedding γ(v), defined by Equation 28. We consider the neural network as a
fully connected network with scalar outputs, where parameters θ are initialised from a Gaussian
distribution N (0, 1). The training dataset is denoted as {Xtrain, Ytrain}, where Xtrain = (xi)

N
i=1 and

Ytrain = (yi)
N
i=1. The loss function is defined as minimising the mean squared error:

L(θ) =
1

N

N∑
i=1

|f(xi, θ)− yi|2 (10)

NTK is defined as:

Kij = K(xi, xj) =

〈
∂f(xi, θ)

∂θ
,
∂f(xj , θ)

∂θ

〉
(11)

Where, NTK is a kernel matrix measuring the similarity between inputs xi and xj , defined through
the gradient inner product of the network’s parameters. Under infinitely wide networks and small
learning rates, NTK converges to a deterministic kernel K∗ and remains invariant during training
Jacot et al. (2018).

df(Xtrain, θ(t))

dt
≈ −K · (f(Xtrain, θ(t))− Ytrain) (12)

Equation 12 is derived from the continuous limit of gradient descent (gradient flow). Assuming
an infinitesimal learning rate, the change in the network output f obeys a linear ODE. This models
network training as a linear system, with NTK K governing the dynamics.

f(X, θ(t)) = Ytrain − e−Kt (Ytrain − f(X, θ(0))) (13)

Solving the ODE in Equation 12 with the initial condition f(Xtrain, θ(0)) ≈ 0 (as induced by random
initialization) yields Equation 13. The network output approaches the target Ytrain as t increases, with
the convergence rate governed by the matrix exponential e−Kt (i.e., by the spectrum of K).

The kernal K-function of NTK is defined as: K = QTΛQ, where Q is an orthogonal matrix (whose
columns are the eigenvectors qi), and Λ is a diagonal matrix (whose diagonal entries are the eigen-
values λi). The decomposition of error under the basis of features is

QT (f(Xtrain, θ(t))− Ytrain) = −e−ΛtQTYtrain (14)

Further derivation yields:


qT1
qT2
...
qTN

 (f − Ytrain) =


e−λ1t

e−λ2t

. . .
e−λN t



qT1
qT2
...
qTN

Ytrain (15)

Specifically, substitute the spectral decomposition e−Kt = QT e−ΛtQ and then multiply by QT on
the left. The error component along the ith eigenvector decays as e−λit. Large λi values correspond
to rapid convergence, while small values indicate slow convergence. This explains ‘spectral bias’:
if high-frequency eigenvectors correspond to small λi, the network favours learning low-frequency
components Ronen et al. (2019); Rahaman et al. (2019). Furthermore, total Error Decomposition is:

f − Ytrain =

N∑
i=1

(f − Ytrain, qi)qi =

N∑
i=1

(e−λitqTi Ytrain)qi (16)

The training error is projected onto the NTK feature basis, with the network first learning the direc-
tions of large eigenvalues (typically low-frequency components). The above derivation emphasises
that spectral deviation is fundamentally a “eigenvector deviation”, as eigenvectors determine learn-
ing frequency while eigenvalues determine velocity.
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A.2 PROOF OF LARGE-SCALE σ LEADS TO HIGH-FREQUENCY EIGENVECTORS

Domain & measure. All integral operators below are defined on the one-dimensional torus T =
[0, 1] (or [0, 2π]) with the uniform measure; on [0, 1] we use the periodic extension of the kernel.
This ensures that translation-invariant kernels admit Fourier eigenfunctions.

Consider a two-layer unbiased neural network with Fourier characteristics, shown in Equation 1.
According to Equation 11, the NTK is:

K(xi, xj) =
1

m

m∑
k=1

cos(bTk (xi − xj)) (17)

To investigate the characteristic system of the kernel function K, we consider the limit case of K as
the number of points approaches infinity. Under this limit condition, the characteristic system of K
approaches that of the kernel function K(x, x′) satisfying the following equation.∫

C

K(x, x′)g(x′) dx′ = λg(x) (18)

As the number of points approaches infinity, the eigenvectors of the NTK matrix converge to the
eigenfunctions of the integral operator.

K(x, x′) =
1

m

m∑
k=1

cos
(
zTk (x− x′)

)
(19)

To better understand the behaviour of eigenfunctions and their corresponding eigenvalues, we con-
sider a simpler case by setting n = 1 and m = 1. Specifically, we take the input x ∈ R, a compact
domain C = [0, 1], and Fourier characteristics B = b ∈ R sampled from the Gaussian distribution
N(0, σ2). The kernel function can then be expressed as

K(x, x′) = cos(b(x− x′)) (20)

Under these circumstances, we may compute precise expressions for the eigenfunctions and their
corresponding eigenvalues. For the kernel function K, its non-zero eigenvalues are given by the
following formula:

λ =
1

2
± sin b

2b
(21)

For K(x, x′) = cos(b(x − x′)) on [0, 1], the integral operator has rank at most 2 with eigenvalues
above; for an interval of length L, λ±(b) =

L
2 ±

sin(bL)
2b . The corresponding eigenfunction g(x) must

take the following form:

g(x) = C1 cos(bx) + C2 sin(bx) (22)

where C1 and C1 are constants. We immediately observe that the frequency of the eigenfunctions is
determined by the parameter b, whilst the spacing between eigenvalues is governed by sinb/b. Fur-
thermore, it should be noted that the parameter b is randomly sampled from a Gaussian distribution
N(0, σ2), implying that the larger the chosen value of σ, the higher the probability of b assuming
larger numerical values. Consequently, we may conclude that ‘spectral bias’ effectively corresponds
to ‘eigenvector bias’—namely, the principal eigenvectors associated with larger eigenvalues deter-
mine the frequency range the network prioritises for learning. Within this simplified model, larger σ
values not only induce higher frequencies in the feature functions but also narrow the intervals be-
tween eigenvalues. In network performance, selecting an appropriate σ value to align the frequency
of NTK principal eigenvectors with that of the objective function plays a crucial role. This not only
accelerates convergence but also effectively enhances network performance. Consequently, Fourier
feature analysis not only effectively addresses spectral bias but also accelerates convergence of the
high-frequency components of the objective function.
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Proposition (Spectrum of the expected RBF kernel on Td). With random Fourier features B ∼
N (0, σ2I), the expected kernel

Kσ(∆) = E[cos(B⊤∆)] = exp

(
−σ2

2
∥∆∥2

)
(23)

has eigenfunctions φk(x) = ei2πk·x and eigenvalues equal to the discrete Fourier coefficients:

λk(σ) ∝ K̂σ(2πk) ∝ exp
(
−2π2∥k∥2/σ−2

)
(24)

Hence, as σ increases, the spectrum flattens and high-frequency modes receive larger weights; with
multiple bands, λ̄k =

∑
ℓ α

2
ℓλk(σℓ).

A.3 PROOF OF THE NTK FEATURE SYSTEM DETERMINES PINNS TRAINING

We now turn our attention back to physical information neural networks for addressing forward
and inverse problems involving partial differential equations, whose solutions may exhibit multi-
scale behaviour. The NTK employed by PINNs exhibits a slightly more intricate network architec-
ture than that utilised by conventional regression models. To this end, we adopt the experimental
framework proposed by Wang et al. Wang et al. (2022), selecting generalised partial differential
equations with appropriate boundary conditions and employing the corresponding training datasets{(

xi
b, g

(
xi
z

))}Nz

i=1
,
{(

xi
r, f

(
xi
r

))}Nr

i=1
.

Based on these assumptions, we define the neural network gradient computation for PINNs as fol-
lows:

K(t) =

[
Kuu(t) Kuv(t)
Kvu(t) Kvv(t)

]
(25)

where Kvu(t) = KT
uu(t) Kuu(t) ∈ RNz×Nz Kuu(t) ∈ RNz×Nv Kvv(t) ∈ RNv×Nv , its

(i, j)th element is given by the following formula:

(Kuu)ij(t) =

〈
dB[u](xi

z, θ(t))

dθ
,
dB[u](xj

z, θ(t))

dθ

〉
(26)

(Kuv)ij(t) =

〈
dB[u](xi

z, θ(t))

dθ
,
dN [u](xj

v, θ(t))

dθ

〉
(27)

(Kvv)ij(t) =

〈
dN [u](xi

v, θ(t))

dθ
,
dN [u](xj

v, θ(t))

dθ

〉
(28)

Subsequently, the training dynamics of PINNs under gradient descent with an infinitesimal learning
rate can be characterised by the following system of ordinary differential equations.[

dB[u](xz,θ(t))
dt

dN [u](xv,θ(t))
dt

]
= −

[
Kuu(t) Kuv(t)
Kvu(t) Kvv(t)

]
·
[
B[u](xz,θ(t))− g(xz)
N [u](xv,θ(t))− f(xv)

]
(29)

Then, the NTK framework enables us to demonstrate the following proposition. Assuming the
training dynamics of PINNs satisfy the aforementioned equations, and the spectral decomposition
of Kuu(0) and Kvv(0) is given by

Kuu(0) = MT
u ΛuM

T
u

Kvv(0) = MT
v ΛvM

T
v

(30)

Among these, Mu and Mv are orthogonal matrices formed by the eigenvectors of Kuu(0) and
Kvv(0) respectively, whilst Λu and Λv are diagonal matrices whose elements correspond to the
eigenvalues of Kuu(0) and Kvv(0) respectively. Under the given assumptions,(i) For all t ≥ 0,
K(t) ≈ K(0); (ii) Kuu(0) and Kvv(0) are positive definite.

B = MT
v ,Kvu(0)Mu (31)
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And obtain,

MT

([
B[u](xb,θ(t))
N [u](xv,θ(t))

]
−

[
g(xb)
f(xv)

])
≈ e−PT Λ̃P tMT

[
g(xb)
f(xv)

]
(32)

where M =

[
Mu 0
0 Mv

]
, P =

[
I 0

−BΛ−1
u I

]
, Λ =

[
Λu 0
0 Λv −BTΛ−1

u B

]
.

The above argument demonstrates that, under certain assumptions, the NTK feature system of
PINNs is determined by the eigenvectors of Kuu and Kvv . This implies that, assuming the NTK
matrix is invertible, infinitely wide or sufficiently wide PINNs are equivalent to kernel regression.
However, based on the authors’ experience, the NTK matrix of PINNs is invariably degenerate. Con-
sequently, in practical applications, one cannot freely perform kernel regression predictions without
introducing additional regularisation.

A.4 LOSS DEFINITION OF M2F-PINN

We embed physics-based constraints into the neural architecture using a set of two PDEs that govern
the temporal-spatial evolution of key oceanographic variables of ocean current fields: U and V . The
M2F-PINN model receives raw ocean state information as input and implicitly learns to estimate
their temporal and spatial derivatives. These derivatives are then used to approximate the system’s
physical evolution over a short time interval ∆t. The overall training objective comprises three loss
components: one data-driven prediction loss and two physics-informed residual losses derived from
equation 4 ∼ 5. The data loss Ldata-i, supervises predictions for two oceanographic variables: U and
V. The formulation of data loss can be expressed as follows:

L1 =

2∑
i=1

Ldata-i ·Wi, where Ldata-i = MSE(vpred − vreal) (33)

Here, vpred and vreal denote the predicted and ground-truth values of each oceanographic variable,
respectively. The weights Wi are fixed and manually calibrated to balance the relative scale of
each variable by using the inverse of their early-stage training losses, computed from GLORYS12
reanalysis data spanning 2005–2006. The specific weights are set as follows: [ U: 0.38, V: 0.30].

The remaining two loss terms encode physics-informed constraints derived from PDEs that govern
the temporal and spatial evolution of the ocean current. Each physics-informed loss is derived from
a corresponding physical law that governs the evolution of oceanographic variables. The second
loss L2 represents momentum equation in zonal direction as shown in Equation 34, the third loss
L3 represents momentum equation in meridional direction as shown in Equation 35. We employ
an uncertainty-weighted strategy Kendall et al. (2018) to adaptively adjust the weights of multiple
losses.

L4 = MSE(
∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− αUV∇2U) (34)

L5 = MSE(
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
− αUV∇2V ) (35)

The physics-informed losses are formulated independently of the Transformer architecture, ensuring
that their computation and optimization are decoupled from the model’s neural network components.

A.5 IMPLEMENTATION DETAILS OF THE MULTI-SCALE FOURIER AND EXPERIMENTS

In the multi-scale Fourier mapping network, two Fourier embedding layers (low-frequency and
high-frequency) share identical dimensionality. Subsequently, the data passes through a shared feed-
forward layer, where the cat layers operate at both high and low dimensions. Finally, the Fourier
features are concatenated with the original data before entering the model network. In this paper,
we set the initial frequencies to 0.1 Hz and 1.0 Hz. Additionally, we set the B matrix, scale value,
and high/low frequency parameters within the Fourier mapping network as variables that the neural

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

network can learn, enabling dynamic adaptation to global ocean data. Input dimension is 3 (lon-
gitude, latitude, depth), mapping dimension is 16 (feature richness balanced with GPU capacity),
frequency factors are 0.1 and 1 (frequency value). Create coordinate network → normalise grid →
obtain frequency domain features → transform shape → concatenate Fourier features with original
data. Slightly adjust original network parameter values to match Fourier network output shape.

A.6 EVALUATION METRICS

When we suppose Given an input variable V , the model predicts its future state V̂ at the next time
step. We evaluate the prediction performance using latitude-weighted Root Mean Squared Error
(RMSE) and latitude-weighted Anomaly Correlation Coefficient (ACC). At a specific time step t,
the RMSE and ACC for predicted oceanographic variables (T, S, U, V, and Z) are defined as follows:

RMSE(υ, t) =

√∑W
i=1

∑H
j=1 L(i)(V̂

υ
i,j,t −Vυ

i,j,t)
2

W ×H
(36)

ACC(v, t) =

∑
i,j L(i)V̂

′v
i,j,t − V ′v

i,j,t√∑
i,j L(i)(V̂

′v
i,j,t)

2 ×
∑

i,j L(i)(V
′v
i,j,t)

2
(37)

where L(i) is the weight at latitude ϕi. V ′ denotes the difference between Y and the climatol-
ogy. In this study, we calculate the annual averages of the above evaluation metrics to assess model
performance in a year. This approach aligns with the primary objective of this study—to investi-
gate potential advantages of incorporating physics-informed neural networks into ocean forecasting
models.

Beyond predictive accuracy, another key contribution of M2F-PINN is its ability to learn physically
consistent predictions. To quantify that, we introduce the Physical Inconsistency Coefficient (PIC)
Elabid et al. (2022); Daw et al. (2022), which evaluates the degree to which the model’s outputs
violate from established physical laws. The PIC is formally defined in Equation 9.

A.7 ADDTIONAL RESULTS

Figure 6 and 7 present visualizations of the U and V components across 13 vertical layers on
September 6, 2006, respectively.

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, Large Language Models (LLMs) were utilized to aid in polishing the English writing.
Specifically, the LLM was employed to enhance the fluency, accuracy, and clarity of the English
text.
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Figure 6: Visualization for U component in 13 layers. In our vertical discretization scheme, layer1
to layer12 correspond to the 13 ocean layers from the surface downward, with layer0 representing
the sea surface and layer12 indicating the deepest layer.
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Figure 7: Visualization for V component in 13 layers.
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