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ABSTRACT

Preference optimization, particularly through Reinforcement Learning from Hu-
man Feedback (RLHF), has achieved significant success in aligning Large Lan-
guage Models (LLMs) to adhere to human intentions. Unlike offline alignment
with a fixed dataset, online feedback collection from humans or AI on model gen-
erations typically leads to more capable reward models and better-aligned LLMs
through an iterative process. However, achieving a globally accurate reward model
requires systematic exploration to generate diverse responses that span the vast
space of natural language. Random sampling from standard reward-maximizing
LLMs alone is insufficient to fulfill this requirement. To address this issue, we
propose a bilevel objective optimistically biased towards potentially high-reward
responses to actively explore out-of-distribution regions. By solving the inner-
level problem with the reparameterized reward function, the resulting algorithm,
named Self-Exploring Language Models (SELM), eliminates the need for a sepa-
rate RM and iteratively updates the LLM with a straightforward objective. Com-
pared to Direct Preference Optimization (DPO), the SELM objective reduces in-
discriminate favor of unseen extrapolations and enhances exploration efficiency.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT
and Llama-3-8B-Instruct models, SELM significantly boosts the performance on
instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well
as various standard academic benchmarks in different settings.

1 INTRODUCTION

Large Language Models (LLMs) have recently achieved significant success largely due to their abil-
ity to follow instructions with human intent. As the defacto method for aligning LLMs, Reinforce-
ment Learning from Human Feedback (RLHF) works by maximizing the reward function, either a
separate model (Ouyang et al., 2022; Bai et al., 2022; Gao et al., 2023) or reparameterized by the
LLM policy (Rafailov et al., 2024b;a; Azar et al., 2023; Zhao et al., 2023), which is learned from
the prompt-response preference data labeled by humans. The key to the success of alignment is the
response diversity within the preference data, which prevents reward models (RMs) from getting
stuck in local optima, thereby producing more capable language models.

Offline alignment methods (Rafailov et al., 2024b; Tang et al., 2024) attempt to manually construct
diverse responses for fixed prompts (Cui et al., 2023; Ivison et al., 2023; Zhu et al., 2023), which,
unfortunately, struggles to span the nearly infinite space of natural language. On the other hand,
online alignment follows an iterative procedure: sampling responses from the LLM and receiving
feedback to form new preference data for RM training (Ouyang et al., 2022; Guo et al., 2024).
The former step helps explore out-of-distribution (OOD) regions through randomness in sampling.
However, in standard online RLHF frameworks, maximizing the expected reward learned from the
collected data is the only objective for the LLM, sampling from which often leads to responses
clustered around local optima. This passive exploration mechanism can suffer from overfitting and
premature convergence, leaving the potentially high-reward regions unexplored.

To address this issue, we propose an active exploration method for online alignment that elicits
novel favorable responses. In its simplest form, an optimism term αmaxy r(x, y) is added to the
reward-fitting objective (e.g., logistic regression on dataset D), denoted as −Llr, resulting in a bilevel
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Figure 1: Intuition of our method. For a fixed prompt
x, a reward model r(x, y) tries to fit the ground-
truth reward r∗(x, y). The blue and green RMs are
equally good when using standard reward-fitting loss
Llr, since the observed preference data (red stars) are
fitted equally well. However, the green RM has a larger
maxy r(x, y) and thus a lower optimistically biased
loss Llr − αmaxy r(x, y). Therefore, the response yu
at which the uncertainty is high can be elicited and then
proceeded for human feedback to reduce uncertainty.

optimization objective for the reward model r:

max
r

max
y

αr(x, y)− Llr(r;D), (1.1)

where α is a hyperparameter controlling the degree of optimism. The intuition is illustrated in Figure
1. Specifically, minimizing the vanilla reward-fitting loss Llr is likely to give a locally accurate
RM that overfits the observed data and gets stuck in local minima. Random sampling from this
vanilla RM may take a long time to explore the OOD regions that contain the best response. By
incorporating the optimism term, we obtain an RM that both fits the data well and has a large
maxy r(x, y). This ensures that the greedy response yu from it is either globally optimal when
uncertainty in high-reward regions is eliminated, or potentially good in unexplored areas where
r(x, yu) can be arbitrarily huge due to the relaxed reward-fitting loss. Feedback from humans on
these responses yu can then reduce uncertainty and train a more accurate RM.

In this paper, we formulate this idea within the context of online direct alignment, where the LLM
is iteratively updated without a separate RM. We first introduce two modifications to the bilevel
RM objective in (1.1), namely adding KL constraints and using relative maximum reward. Then we
derive a simple LLM training objective by applying the closed-form solution of the inner-level prob-
lem and reparameterizing the reward with the LLM policy. The resulting iterative algorithm is called
Self-Exploring Language Models (SELM). We show that the policy gradient of SELM is biased to-
wards more rewarding areas. Furthermore, by reducing the chance of generating responses that are
assigned low implicit rewards, SELM mitigates the indiscriminate favoring of unseen extrapolations
in DPO (Rafailov et al., 2024b;a) and enhances exploration efficiency. We also prove that SELM
can find an ε-optimal policy within Õ(1/ε2) samples, demonstrating its sample efficiency.

In experiments, we implement SELM using Zephyr-7B-SFT (Tunstall et al., 2023b) and Llama-3-
8B-Instruct (Meta, 2024) as base models. By fine-tuning solely on the UltraFeedback (Cui et al.,
2023) dataset and using the small-sized PairRM (Jiang et al., 2023) for iterative AI feedback, SELM
boosts the performance of Zephyr-7B-SFT and Llama-3-8B-Instruct by a large margin on AlpacaE-
val 2.0 (Dubois et al., 2024) (+16.24% and +11.75% LC win rates) and MT-Bench (Zheng et al.,
2024) (+2.31 and +0.32). SELM also demonstrates strong performance on standard academic
benchmarks and achieves higher pairwise LC win rates against the very strong iterative DPO base-
line, with almost no additional computational overhead under fair comparisons.

2 BACKGROUND

Large Language Models. A language model π ∈ ∆X
Y typically takes the prompt x ∈ X as

input and outputs the response y ∈ Y . Here, X and Y are finite spaces of prompts and responses,
respectively. Given the prompt x ∈ X , a discrete probability distribution π(· | x) ∈ ∆Y is generated,
where ∆Y is the set of discrete distributions over Y . After pretraining and Supervised Fine-Tuning
(SFT), preference alignment is employed to enhance the ability of the language model to follow
instructions with human intentions.

Reinforcement Learning from Human Feedback (RLHF). Standard RLHF frameworks consist
of learning a reward model and then optimizing the LLM policy using the learned reward.

Specifically, a point-wise reward r(x, y) : X × Y → R represents the Elo score (Elo & Sloan,
1978) of the response y given the prompt x. Then the preference distribution can be expressed by
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the Bradley-Terry model that distinguishes between the preferred response yw and the dispreferred
response yl given prompt x, denoted as yw ≻ yl | x, using the logistic function σ:

p(yw ≻ yl | x) := Eh

[
1(h prefers yw over yl given x)

]
= σ

(
r(x, yw)− r(x, yl)

)
=

exp
(
r(x, yw)

)
exp
(
r(x, yw)

)
+ exp

(
r(x, yl)

) , (2.1)

where h denotes the human rater and the expectation is over h to account for the randomness of the
choices of human raters we ask for their preference. When provided a static dataset of N compar-
isons D = {xi, yw,i, yl,i}Ni=1, the parameterized reward model can be learned by minimizing the
following logistic regression loss:

Llr(r;D) = −E(x,yw,yl)∼D
[
log σ

(
r(x, yw)− r(x, yl)

)]
. (2.2)

Using the learned reward, the LLM policy π ∈ ∆X
Y is optimized with reinforcement learning (RL) to

maximize the expected reward while maintaining a small deviation from some base reference policy
πref, i.e., maximizing the following objective

J (π) = Ex∼D,y∼π(·|x)
[
r(x, y)

]
− βDKL(π ||πref), (2.3)

where β is a hyperparameter and DKL(π ||πref) := Ex∼D[KL(π(· | x) ||πref(· | x))] is the expected
Kullback-Leibler (KL) divergence. An ideal πref is the policy that helps mitigate the distribution
shift issue (Rafailov et al., 2024b; Guo et al., 2024) between the true preference distribution and
the policy π during the off-policy RL training. Since we only have access to the dataset D sampled
from the unavailable true preference distribution, πref can be obtained by fine-tuning on the preferred
responses in D or simply setting πref = πSFT and performing RLHF based on the SFT model.

Direct Alignment from Preference. With the motivation to get rid of a separate reward model,
which is computationally costly to train, recent works (Rafailov et al., 2024b; Azar et al., 2023; Zhao
et al., 2023; Tunstall et al., 2023b; Ethayarajh et al., 2024) derived the preference loss as a function
of the policy by changing of variables. Among them, DPO (Rafailov et al., 2024b) shows that when
the BT model in (2.1) can perfectly fit the preference, the global optimizers of the RLHF objective
in (2.3) and the following loss are equivalent:

LDPO(π;D) = −E(x,yw,yl)∼D

[
log σ

(
β log

π(yw | x)
πref(yw | x)

− β log
π(yl | x)
πref(yl | x)

)]
.

3 SELF-EXPLORING LANGUAGE MODELS

3.1 RM-FREE OBJECTIVE FOR ACTIVE EXPLORATION

In this section, we present several modifications to the optimistically biased objective (1.1) motivated
in the introduction. Then we derive an RM-free objective for the LLM policy and analyze how active
exploration works by examining its gradient.

First, we consider the equivalence of (1.1): maxr −Llr(r;D) + αmaxπ Ey∼π[r(x, y)], where the
inner π is deterministic when optimal. To account for the change of π relative to the reference policy
πref, we introduce two modifications: (1) replacing the optimistic bias term maxπ Ey∼π[r(x, y)] with
maxπ Ey∼π,y′∼πref [r(x, y) − r(x, y′)], and (2) incorporating a KL-divergence loss term between π
and πref. These changes ensure that the resulting optimistic RM elicits responses with high potential
unknown to the reference policy πref while minimizing the deviation between π and πref.

Formally, for the reward r, the bilevel optimization problem with optimism is formulated as:

max
r

−Llr(r;Dt) + αmax
π

(
Ex∼Dt,y∼π(·|x)

y′∼πref(·|x)

[
r(x, y)− r(x, y′)

]
− βDKL(π ||πref)︸ ︷︷ ︸

F(π;r)

)
, (3.1)

where Dt = {xi, y
t
w,i, y

t
l,i}Ni=1 is the associated dataset at iteration t and Llr is the logistic regression

loss defined in (2.2). The nested optimization in (3.1) can be handled by first solving the inner

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

optimization F(π; r) to obtain πr that is optimal under r. The solution is as follows and we defer
all the derivations in this section to Appendix A.

πr(y | x) := argmax
π

F(π; r) =
1

Z(x)
πref(y | x) exp

(
r(x, y)/β

)
,

where the partition function Z(x) =
∑

y πref(y|x) exp(r(x, y)/β). By substituting π = πr into
F(π; r), we can rewrite the bilevel objective in (3.1) as a single-level one:

max
r

−Llr(r;Dt) + αF(πr; r).

Following the implicit reward formulation in DPO, we reparameterize the reward function with
θ ∈ Θ as r̂θ(x, y) = β(log πθ(y | x) − log πref(y | x)), which is the optimal solution of (2.3) and
can express all reward classes consistent with the BT model as proved in (Rafailov et al., 2024b).
With the above change of variable, we obtain the RM-free objective for direct preference alignment
with optimism:

max
πθ

−LDPO(πθ;Dt)− αβEx∼D,y∼πref(·|x)
[
log πθ(y | x)

]
. (3.2)

We now analyze how this new objective encourages active exploration. Specifically, we derive the
gradient of (3.2) with respect to θ as

βE(x,yw,yl)∼Dt

[
σ
(
r̂θ(x, yl)− r̂θ(x, yw)

)(
∇θ log πθ(yw | x)−∇θ log πθ(yl | x)

)]
︸ ︷︷ ︸

−∇θLDPO(πθ;Dt)

− αβEx∼D,y∼πθ(·|x)
[
exp
(
−r̂θ(x, y)/β

)
∇θ log πθ(y | x)

]
. (3.3)

We note that the second line, corresponding to the gradient of the optimism term, decreases the log-
likelihood of response y generated by πθ that has a high value of exp(−r̂θ(x, y)/β). Therefore, the
added optimism term biases the gradient toward parameter regions that can elicit responses y with
high implicit reward r̂θ, consistent with our intuition outlined in Figure 1.

This also explains why Eπref [log πθ] is minimized in our objective (3.2), which is equivalent to max-
imizing the KL divergence between πref and πθ, while the reverse KL in the policy optimization ob-
jective (2.3) is minimized. For the DPO gradient ∇θLDPO(πθ;Dt), the degree of deviation of policy
πθ from πref only affects the preference estimated with r̂θ. In other words, σ(r̂θ(x, yl)− r̂θ(x, yw))
is a scalar value and the policy deviation only determines the step size of the policy gradient, instead
of its direction. On the other hand, our added exploration term directly controls the direction of
the gradient toward potentially more rewarding areas while still fitting the preference data in Dt.
As more feedback data is collected iteratively, deviating from the unbiasedly fitted model incurs a
higher DPO loss, which ultimately dominates our objective at convergence. This mechanism en-
sures that the resulting LLM effectively balances between exploring novel responses and exploiting
previously observed ones, leading to a more accurate and aligned model.

3.2 ALGORITHM

With the optimistically biased objective derived above, the language model can actively generate
OOD responses worth exploring. Human or AI feedback follows to reduce the uncertainty in these
regions. These two steps are executed iteratively to get a more and more aligned model.

In practice, we split the offline preference dataset into three portions with equal sizes, one for each
iteration. Besides, we use AI rankers, such as external RMs, to provide feedback on the model-
generated response and the original chosen, rejected responses. The complete pseudocode of our
algorithm, named Self-Exploring Language Models (SELM), is outlined in Algorithm 1.

Algorithm 1 Self-Exploring Language Models (SELM)
Input: Reference model πref, preference dataset D, online iterations T , optimism coefficient α.
1: for iteration t = 1, 2, . . . , T do
2: Set Dt as the t-th portion of D and generate y ∼ πref(· | x) for each prompt x in Dt.
3: Rank {y, yw, yl} and update Dt to contain the best (chosen) and worst (rejected) responses.
4: Train the LLM πθt = argmaxπθ

{−LDPO(πθ;Dt)− αEx∼Dt [log πθ(y | x)]}, let πref = πθt .
5: end for

4
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4 ANALYSIS

4.1 SELF-EXPLORATION REDUCES INDISCRIMINATE FAVOR OF UNSEEN EXTRAPOLATIONS

It has been observed recently (Rafailov et al., 2024a; Pal et al., 2024; Xu et al., 2024) that DPO
decreases the likelihood of responses generated by the reference policy. It is because for any prompt
x, at convergence when πθ ̸= πref, it holds that

Ey∼πref

[
r̂θ(x, y)/β

]
= Ey∼πref

[
log πθ(y | x)− log πref(y | x)

]
= −KL

(
πref(· | x) ||πθ(· | x)

)
< 0,

while at the beginning of training when πθ = πref, the above terms are zero. Thus, the expected im-
plicit reward r̂θ as well as the likelihood of πθ will decrease on the reference model’s responses. This
indicates that DPO stimulates a biased distribution favoring unseen extrapolated responses. In the
online iterative setting that we consider, the LLM policy generates responses and receives preference
feedback alternately, where biasing towards OOD regions may sometimes help discover outstanding
novel responses. However, DPO indiscriminately favors unseen extrapolations and passively ex-
plores based purely on the randomness inherent in sampling from the LLM. As a consequence, the
vast space of natural language makes it almost impossible to exhaustively explore all the possible
responses and identify those that most effectively benefit alignment.

Next, we demonstrate that SELM mitigates this issue by performing guided exploration. Specifi-
cally, consider the proposed self-exploration objective in (3.2), which, in addition to the standard
DPO loss, also minimizes Ex,y∼πref [log πθ(y | x)]. We now investigate how the probability distribu-
tion changes with this term incorporated.
Theorem 4.1. For any ρ ∈ Θ in the policy parameter space, let r̂ρ(x, y) = β(log πρ(y | x) −
log πref(y | x)) be the reparameterized implicit reward. Denote πmin

ρ as the policy that minimizes
the expected implicit reward under the KL constraint, i.e.,

πmin
ρ (· | x) := argmin

π
Ex,y∼π(·|x)

[
r̂ρ(x, y)

]
+ βDKL(π ||πρ). (4.1)

Then minimizing Ex,y∼πref [log πθ(y|x)] decreases the likelihood of responses sampled from πmin
ρ :

min
πθ

Ex,y∼πref(·|x)
[
log πθ(y | x)

]
= min

πθ

Ex,y∼πmin
ρ (·|x)

[
log πθ(y | x)

]
.

The proofs for theorems in this section can be found in Appendix B and C. The above theorem
states that maximizing the divergence between πθ and πref is essentially reducing the probability of
generating responses with low implicit rewards reparameterized by any policy parameter ρ during
training. In other words, the LLM policy not only exploits the existing preference data but also
learns to avoid generating the text y that is assigned a low reward value. This process occurs in
every iteration with updated reference models. Consequently, responses with high potential rewards
are selectively preferred and many commonplace responses receive a small probability mass, thus
mitigating the indiscriminate favoring of unseen responses and improving the exploration efficiency.
In the next section, we will formally prove that the self-exploration mechanism is sample-efficient.

4.2 SELF-EXPLORATION IS PROVABLY SAMPLE-EFFICIENT

We prove the sample efficiency of the proposed self-exploration mechanism by establishing a sub-
linear cumulative regret. Specifically, the cumulative regret R(T ) up to T iterations is defined as
the cumulative performance discrepancy between the learned policy πt at iteration t and the optimal
policy π∗ over the run of the algorithm:

R(T ) =

T∑
t=1

[J (π∗)− J (πt)].

Assumption 4.2 (Realizable Policy Class with Regularity Condition). We assume access to a policy
class Π containing the optimal policy π∗. Moreover, we assume that∣∣∣∣log π(y | x)

πref(y | x)

∣∣∣∣ ≤ Rmax.

for any π ∈ Π and prompt-response pair (x, y).

5
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Assumption 4.2 stipulates that the policy class Π is sufficiently comprehensive to include the optimal
policy. Additionally, it imposes a bounded condition on log(π/πref), which has been identified as
the implicit reward function for DPO (Rafailov et al., 2024b).

Theorem 4.3. Under Assumption 4.2, let η =
√
TdPGEC/(exp(4Rmax) log(|Π|/δ)), α =

2/(η exp(4Rmax)), and δ ∈ (0, 1). Then with probability at least 1− δ, we have

R(T ) ≲
√
dPGEC · exp(2Rmax) · T · log(|Π|/δ),

where ≲ omits absolute constants, and dPGEC is a preference-based version of Generalized Eluder
Coefficient (GEC; Zhong et al., 2022) defined in Appendix C.1 capturing the complexity of learn-
ing problem. For log-linear policy class Π = {πθ : πθ(y |x) ∝ exp(⟨ϕ(x, y), θ⟩/β)} with d-
dimensional feature ϕ, it holds that dPGEC ≤ Õ(d).

Since the cumulative regret is sublinear in the number of iterations T , the above theorem indicates
that the policy πt converges to the optimal π∗ within sufficient iterations. Moreover, by the standard
online-to-batch argument, Theorem 4.3 shows that SELM is capable of finding an ε-optimal policy
with a sample complexity of Õ(1/ε2). This highlights the sample efficiency of SELM from the
theoretical perspective.

5 RELATED WORK

Data Synthesis for LLMs. A key challenge for fine-tuning language models to align with users’
intentions lies in the collection of demonstrations, including both the SFT instruction-following
expert data and the RLHF preference data. Gathering such data from human labelers is expensive,
time-consuming, and sometimes suffers from variant quality (Ouyang et al., 2022; Köpf et al., 2024).
To address this issue, synthetic data (Liu et al., 2024a) has been used for aligning LLMs. One line of
work focuses on generating plausible instruction prompts for unlabeled data by regarding the target
output as instruction-following responses (Li et al., 2023a; Wu et al., 2023; Josifoski et al., 2023;
Taori et al., 2023; Li et al., 2024a). Besides, high-quality data can also be distilled from strong
models for fine-tuning weaker ones (Gunasekar et al., 2023; Abdin et al., 2024; Li et al., 2023b;
Ding et al., 2023; Peng et al., 2023). To construct synthetic datasets for offline RLHF, a popular
pipeline (Cui et al., 2023; Tunstall et al., 2023b; Wang et al., 2024b; Ivison et al., 2023; Zhu et al.,
2023) involves selecting responses sampled from various LLMs on a set of prompts in the hope to
increase the diversity of the data that can span the whole language space. However, data manually
collected in such a passive way does not consider what improves the model most through its training,
leaving the potentially high-reward regions unexplored.

Iterative Online Preference Optimization. Compared to offline RLHF algorithms (Rafailov
et al., 2024b; Zhao et al., 2023; Azar et al., 2023) that collect preference datasets ahead of train-
ing, online RLHF (Ouyang et al., 2022; Guo et al., 2024), especially the iterative/batched online
RLHF (Bai et al., 2022; Xu et al., 2023; Chen et al., 2022; Gulcehre et al., 2023; Hoang Tran, 2024;
Xiong et al., 2023; Calandriello et al., 2024; Rosset et al., 2024) has the potential to gather better and
better synthetic data as the model improves. As a special case, self-aligned models match their re-
sponses with desired behaviors, such as model-generated feedback (Yuan et al., 2024; Yuanzhe Pang
et al., 2024; Sun et al., 2024; Wang et al., 2024a). Unfortunately, the above methods still passively
explore by relying on the randomness during sampling and easily get stuck at local optima and over-
fit to the current data due to the vast space of natural language. A notable exception is Dwaracherla
et al. (2024), which proposed to use ensembles of RMs to approximately measure the uncertainty for
posterior-sampling active exploration. On the contrary, our method explores based on the optimistic
bias and does not estimate the uncertainty explicitly, bypassing the need to fit multiple RMs.

Active Exploration. In fact, active exploration has been widely studied beyond LLMs. Similar to
Dwaracherla et al. (2024), most existing sample-efficient RL algorithms first estimate the uncertainty
of the environment using historical data and then either plan with optimism (Auer, 2002; Russo &
Van Roy, 2013; Jin et al., 2020; Mehta et al., 2023; Das et al., 2024), or select the optimal action from
a statistically plausibly set of values sampled from the posterior distribution (Strens, 2000; Osband
et al., 2013; 2023; Zhang, 2022; Li et al., 2024c). The proposed self-exploration objective can be
categorized as an optimism-based exploration method. However, most previous works require the
estimation of the upper confidence bound, which is often intractable. Ensemble methods (Osband
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et al., 2024; Chua et al., 2018; Lu & Van Roy, 2017) can serve as approximations to estimate the
uncertainty but are still computationally inefficient. MEX (Liu et al., 2024b) proposed to combine
estimation and planning in a single objective similar to ours and established theoretical guarantees
under traditional RL setups. RPO (Liu et al., 2024c) proposed to use an adversarially chosen reward
model for policy optimization, but focuses on mitigating overoptimization in offline settings.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

We adopt UltraFeedback (Cui et al., 2023) as our training dataset, which contains 61k preference
pairs of single-turn conversations. For the external ranker during online alignment, we choose the
small-sized PairRM (0.4B) (Jiang et al., 2023). All experiments are conducted on 8xA100 GPUs.

Due to the absence of performant open-source online direct alignment codebases at the time of this
study, we first implement an iterative version of DPO as the baseline, adhering to the same steps
as Algorithm 1 but training the LLM with the standard DPO objective. Then we conduct a grid
search over hyperparameters, such as the batch size, learning rate, and iteration number, to identify
the optimal settings for the iterative DPO baseline. We follow these best settings to train SELM.
In addition, we apply iterative DPO and SELM on instruction fine-tuned models. Specifically, we
consider two series of LLMs: Zephyr (Tunstall et al., 2023b) and Llama-3 (Meta, 2024), to demon-
strate the robustness of SELM. Since the official Zephyr-7B-β model is fine-tuned with DPO on
the same UltraFeedback dataset, to avoid overoptimization, we choose Zephyr-7B-SFT1 as the base
model and perform 3 iterations of SELM after a single iteration of standard DPO training on the first
portion of the training data (we refer to this model as Zephyr-7B-DPO). For Llama-3-8B-Instruct2
that is already fine-tuned with RLHF, we directly apply 3 iterations of SELM training.

6.2 EXPERIMENT RESULTS

We first report the performance of SELM and the baselines on the instruction-following chat bench-
marks AlpacaEval 2.0 (Dubois et al., 2024) and MT-Bench (Zheng et al., 2024) in Table 1. We
can observe that for AlpacaEval 2.0, SELM significantly boosts Zephyr-7B-SFT and Llama-3-8B-
Instruct, achieving length-controlled (LC) win rate improvements of +16.24% and +11.75%, re-
spectively. This enhancement results in models that are competitive with or even superior to much
larger LLMs, such as Yi-34B-Chat (Young et al., 2024) and Llama-3-70B-Instruct. For the multi-
turn MT-Bench, which exhibits higher variance, we report the average scores of SELM and DPO
baselines across 3 runs. We observe that SELM improves the scores by +2.31 and +0.32, respec-
tively. Furthermore, the proposed method self-explores and enhances the model monotonically, with
consistent performance improvements in each iteration. This validates the robustness of our algo-
rithm. Compared to other iterative post-training algorithms, such as SPIN (Chen et al., 2024), DNO
(Rosset et al., 2024), and SPPO (Wu et al., 2024), SELM gains more improvements on both bench-
marks when using the weaker base model (Zephyr-7B-SFT), and achieves the best performance
when using Llama-3-8B-Instruct as the base model.

Notably, the implemented iterative DPO is obtained through comprehensive grid searches of hyper-
parameters and practical designs (see Appendix D for details), making it a strong baseline compara-
ble with SOTA online alignment algorithms fine-tuned from more advanced models. For example,
DPO Iter 3 (Zephyr) achieves an MT-Bench score of 7.46, representing a 2.16 improvement over
Zephyr-SFT (5.30) and coming close to DNO (7.48), which is fine-tuned from the stronger model
Orca-2.5-SFT (6.88). Additionally, SPPO achieves an MT-Bench score of 7.59, a modest improve-
ment of 0.08 over Mistral-it (7.51). SELM leverages the optimal hyperparameters of iterative DPO
while delivering improvements with almost zero additional computational overhead.

We also conduct pairwise comparisons between SELM, iterative DPO, and the base models to val-
idate the effectiveness of our method. The results for AlpacaEval 2.0 are shown in Figure 2. We
observe that with the same number of training iterations and data, SELM consistently outperforms

1https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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the iterative DPO counterpart. Additionally, when using Zephyr-7B-SFT as the base model, SELM
outperforms iterative DPO even when the latter is trained with twice the data.

AlpacaEval 2.0 MT-Bench
Model LC Win Rate Win Rate Avg. len Avgerage 1st Turn 2nd Turn
Zephyr-7B-SFT 8.01 4.63 916 5.30 5.63 4.97
Zephyr-7B-DPO 15.41 14.44 1752 7.31 7.55 7.07
DPO Iter 1 (Zephyr) 20.53 16.69 1598 7.53 7.81 7.25
DPO Iter 2 (Zephyr) 22.12 19.82 1717 7.55 7.85 7.24
DPO Iter 3 (Zephyr) 22.19 (↑14.18) 19.88 1717 7.46 (↑2.16) 7.85 7.06
SELM Iter 1 (Zephyr) 20.52 17.23 1624 7.53 7.74 7.31
SELM Iter 2 (Zephyr) 21.84 18.78 1665 7.61 7.85 7.38
SELM Iter 3 (Zephyr) 24.25(↑16.24) 21.05 1694 7.61 (↑2.31) 7.74 7.49
Llama-3-8B-Instruct 22.92 22.57 1899 7.93 8.47 7.38
DPO Iter 1 (Llama3-It) 30.89 31.60 1979 8.07 8.44 7.70
DPO Iter 2 (Llama3-It) 33.91 32.95 1939 7.99 8.39 7.60
DPO Iter 3 (Llama3-It) 33.17 (↑10.25) 32.18 1930 8.18 (↑0.25) 8.60 7.77
SELM Iter 1 (Llama3-It) 31.09 30.90 1956 8.09 8.57 7.61
SELM Iter 2 (Llama3-It) 33.53 32.61 1919 8.18 8.69 7.66
SELM Iter 3 (Llama3-It) 34.67 (↑11.75) 34.78 1948 8.25 (↑0.32) 8.53 7.98
SPIN 7.23 6.54 1426 6.54 6.94 6.14
Orca-2.5-SFT 10.76 6.99 1174 6.88 7.72 6.02
DNO (Orca-2.5-SFT) 22.59 24.97 2228 7.48 7.62 7.35
Mistral-7B-Instruct-v0.2 19.39 15.75 1565 7.51 7.78 7.25
SPPO (Mistral-it) 28.53 31.02 2163 7.59 7.84 7.34
Yi-34B-Chat 27.19 21.23 2123 7.90 - -
Llama-3-70B-Instruct 33.17 33.18 1919 9.01 9.21 8.80
GPT-4 Turbo (04/09) 55.02 46.12 1802 9.19 9.38 9.00

Table 1: Results on AlpacaEval 2.0 and MT-Bench averaged with 3 runs. Names inside the brackets
are the models that are aligned based upon. The red arrows indicate the increment or decrement
from the base model. Compared to iterative DPO and other online alignment baselines, SELM gains
more improvements based on the weaker Zephyr-7B-SFT model and achieves superior performance
that is competitive with much larger SOTA models when fine-tuned from Llama-3-8B-Instruct.

SELM Iter 3

SELM Iter 2

SELM Iter 1

DPO Iter 3

DPO Iter 2

DPO Iter 1

Zephyr-7B-DPO

SELM Iter 3

SELM Iter 2

SELM Iter 1

DPO Iter3

DPO Iter2

DPO Iter1

Zephyr-7B-DPO

50.00 52.85 55.93 53.64 53.88 56.54 66.02

47.15 50.00 55.60 53.26 53.59 58.33 65.56

44.07 44.40 50.00 52.32 49.65 53.91 64.43

46.36 46.74 47.68 50.00 49.78 52.25 61.58

46.12 46.41 50.35 50.22 50.00 51.69 61.29

43.46 41.67 46.09 47.75 48.31 50.00 60.24

33.98 34.44 35.57 38.42 38.71 39.76 50.00

Zephyr-7B-DPO

SELM Iter 3

DPO Iter 3

SELM Iter 2

DPO Iter 2

DPO Iter 1

SELM Iter 1
Llama3-It

SELM Iter 3

DPO Iter3

SELM Iter 2

DPO Iter2

DPO Iter1

SELM Iter 1

Llama3-It

50.00 51.79 51.96 52.18 52.69 53.41 61.39

48.21 50.00 50.10 50.46 52.28 53.71 60.70

48.04 49.90 50.00 51.24 51.91 52.91 60.57

47.82 49.54 48.76 50.00 51.30 53.82 60.52

47.31 47.72 49.75 48.70 50.00 50.20 59.62

46.59 46.29 47.09 46.18 49.80 50.00 59.23

38.61 39.30 39.43 39.48 40.38 40.77 50.00

Llama-3-8B-Instruct

Figure 2: Pairwise comparison between SELM, iterative DPO, and base models. Scores represent
the LC win rates of the row models against the column models. Models positioned in higher rows
have higher LC win rates against the base model and thus better performance.

Beyond instruction-following benchmarks, we also evaluate SELM and the baselines on several
academic benchmarks, including GSM8K (Cobbe et al., 2021), HellaSwag (Zellers et al., 2019),
ARC challenge (Clark et al., 2018), TruthfulQA (Lin et al., 2021), EQ-Bench (Paech, 2023), and
OpenBookQA (OBQA) (Mihaylov et al., 2018). To better reflect the capabilities of LLMs, we
adopt various settings for these benchmarks, including zero-shot, few-shot, and few-shot Chain-
of-Thought (CoT) settings. The accuracy results for these multiple-choice QA benchmarks are
provided in Table 2. It can be observed that both our method and the baselines can degrade after
the RLHF phase on some benchmarks, which is known as the alignment tax (Askell et al., 2021;
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Noukhovitch et al., 2024; Li et al., 2024b). Nevertheless, our method is still able to improve the
base models on most of the benchmarks and offers the best overall performance.

We note that SELM is one of the instantiations of the proposed self-exploration objective in (1.1),
with reparameterized reward functions and algorithm-specific designs described in Section 3.2, such
as the dataset partition and update rule. However, this objective is not restricted to the current
implementation and can also be directly applied to any other online alignment framework, with or
without a separate reward model, regardless of differences in algorithm designs. Thus, the proposed
method is orthogonal to and can be integrated directly into the recent online RLHF workflows (Dong
et al., 2024; Xiong et al., 2023; Hu et al., 2024) that incorporate additional delicate designs with
carefully curated datasets.

Models GSM8K
(8-s CoT)

HellaSwag
(10-s)

ARC
(25-s)

TruthfulQA
(0-s)

EQ
(0-s)

OBQA
(10-s) Average

Zephyr-7B-SFT 43.8 82.2 57.4 43.6 39.1 35.4 50.3
Zephyr-7B-DPO 47.2 84.5 61.9 45.5 65.2 38.0 57.0
DPO Iter 1 (Zephyr) 45.5 85.2 62.1 52.4 68.4 39.0 58.8
DPO Iter 2 (Zephyr) 44.9 85.4 62.0 53.1 69.3 39.4 59.0
DPO Iter 3 (Zephyr) 43.2 85.2 60.8 52.5 69.1 39.6 58.4
SELM Iter 1 (Zephyr) 46.3 84.8 62.9 52.9 68.8 39.6 59.2
SELM Iter 2 (Zephyr) 46.2 85.4 62.1 53.1 69.3 39.6 59.3
SELM Iter 3 (Zephyr) 43.8 85.4 61.9 52.4 69.9 39.8 58.9
Llama-3-8B-Instruct 76.7 78.6 60.8 51.7 61.8 38.0 61.3
DPO Iter 1 (Llama3-It) 78.5 81.7 63.9 55.5 64.1 42.6 64.4
DPO Iter 2 (Llama3-It) 79.4 81.7 64.4 56.4 64.3 42.6 64.8
DPO Iter 3 (Llama3-It) 80.1 81.7 64.1 56.5 64.1 42.6 64.8
SELM Iter 1 (Llama3-It) 78.7 81.7 64.5 55.4 64.1 42.4 64.5
SELM Iter 2 (Llama3-It) 79.3 81.8 64.7 56.5 64.2 42.6 64.9
SELM Iter 3 (Llama3-It) 80.1 81.8 64.3 56.5 64.2 42.8 65.0
SPIN 44.7 85.9 65.9 55.6 54.4 39.6 57.7
Mistral-7B-Instruct-v0.2 43.4 85.3 63.4 67.5 65.9 41.2 61.1
SPPO (Mistral-it) 42.4 85.6 65.4 70.7 56.5 40.0 60.1

Table 2: Performance comparison between SELM and the baselines on academic multi-choice QA
benchmarks in standard zero-shot, few-shot, and CoT settings. Here, n-s refers to n-shot. The red
and blue texts represent the best and the second-best results.
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Figure 3: Ablation on the optimism coefficient α and the change of the reward distribution. Left:
The length-controlled win rates of SELM with different α on AlpacaEval 2.0. Middle: Comparison
of reward distributions at iteration 2 with different α. Right: SELM initially explores and then shifts
to higher-reward regions as more training iterations are performed.

We first provide ablation studies to better understand the explorative optimism term. We begin
by investigating the effect of the optimism coefficient α. In Figure 3 (Left), we plot the LC win
rates of SELM when using Zephyr-7B-SFT as the base model for different α in the AlpacaEval 2.0
benchmark. We find that setting a small α, such as 0.0001, leads to very similar behaviors to the
iterative DPO (α = 0) baseline, while SELM with a large α may become overly optimistic and
thus not very effective. These results meet our expectations, suggesting that proper values of α are
essential for achieving the best trade-off between exploration and exploitation.
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Next, we study the difference in reward distributions with varied α and iterations. Specifically, for
prompts from the 2k test set of UltraFeedback, we greedily sample from the LLM and generate
rewards for the responses with PairRM. We then calculate the fraction of data that lies in each
partition of rewards. The results for different α values of SELM Iter 2 (Zephyr) in Figure 3 (Middle)
indicates that increasing α results in distributions that are concentrated in higher-reward regions.
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Figure 4: Difference of implicit re-
ward between SELM and DPO on
the chosen and rejected responses.
SELM assigns a higher implicit re-
ward than DPO for both responses.

Additionally, Figure 3 (Right) demonstrates that the reward
distribution shifts to the right (higher) as more training itera-
tions are performed. This shift corresponds to an initial explo-
ration phase, where the LLM generates uncertain responses of
varying quality, followed by an exploitation phase as feedback
is incorporated and more training data is collected.

We also conduct ablation studies on the implicit reward
captured by the SELM and DPO models. Recall that for
both SELM and DPO, the implicit reward takes the form of
r̂θ(x, y) = β(log πθ(y | x) − log πref(y | x)). We calcu-
late the reward difference r̂SELM(x, y) − r̂DPO(x, y) for each
prompt x in the UltraFeedback holdout test set. Here, we
study the implicit reward of the good (chosen) and bad (re-
jected) responses, so y = yw or y = yl. We then sort the
reward difference and plot the results for Zephyr-based mod-
els after iteration 1 in Figure 4. The plot clearly shows that for
both chosen and rejected responses, SELM produces higher
implicit rewards compared to DPO, aligning with the proposed
optimistically biased self-exploration objective.
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Figure 5: SELM actively explores
by favoring high-reward responses.

In Section 4, we show that SELM engages in more active ex-
ploration by prioritizing high-reward responses compared to
DPO, which indiscriminately favors unseen extrapolations and
explores passively. To validate this, we sample three responses
from SELM and DPO Iter 2 (Zephyr) for each prompt and we
calculate the subtraction of the mean implicit rewards. As il-
lustrated in Figure 5, SELM consistently achieves higher im-
plicit rewards across most prompts, with the positive reward
differences being notably larger in magnitude, supporting our
claim regarding SELM’s active exploration behavior.

7 CONCLUSION & FUTURE WORK

In this paper, we introduced an active preference elicitation method for the online alignment of large
language models. By incorporating an optimism term into the reward-fitting objective, the proposed
bilevel self-exploring objective effectively balances between exploiting observed data and exploring
potentially high-reward regions. Unlike standard online RLHF algorithms that passively explore
the response space by sampling from the training LLM, whose sole objective is maximizing the
expected learned reward, our method actively seeks diverse and high-quality responses. This self-
exploration mechanism helps mitigate the risk of premature convergence and overfitting when the
reward model is only locally accurate. To optimize this bilevel objective, we solve the inner-level
problem and reparameterize the reward with the LLM policy, resulting in a simple yet novel iterative
alignment algorithm called Self-Exploring Language Models (SELM). Compared to DPO, SELM is
provably sample-efficient and improves the exploration efficiency by selectively favoring responses
with high potential rewards rather than indiscriminately sampling unseen responses.

Our experiments, conducted with Zephyr-7B-SFT and Llama-3-8B-Instruct models, demonstrate
the efficacy of SELM with consistent improvements on AlpacaEval 2.0, MT-Bench, and academic
benchmarks with minimal computational overhead. These results underscore the ability of SELM
to enhance the alignment and capabilities of LLMs by promoting more diverse and high-quality
responses. Since the proposed technique is orthogonal to the adopted online RLHF workflow, it will
be interesting to apply our method within more sophisticated alignment frameworks with advanced
designs, which we would like to leave as future work.
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Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, et al. Understanding the perfor-
mance gap between online and offline alignment algorithms. arXiv preprint arXiv:2405.08448,
2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif Rasul,
Alexander M. Rush, and Thomas Wolf. The alignment handbook. https://github.com/
huggingface/alignment-handbook, 2023a.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023b.

Xiyao Wang, Jiuhai Chen, Zhaoyang Wang, Yuhang Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi
Zhou, Tom Goldstein, Parminder Bhatia, Furong Huang, et al. Enhancing visual-language
modality alignment in large vision language models via self-improvement. arXiv preprint
arXiv:2405.15973, 2024a.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36, 2024b.

14

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? arXiv preprint
arXiv:2306.14111, 2023.

Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin, Qi Su, and Chang Zhou. Self-evolved
diverse data sampling for efficient instruction tuning. arXiv preprint arXiv:2311.08182, 2023.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sam-
pling from human feedback: A provable kl-constrained framework for rlhf. arXiv preprint
arXiv:2312.11456, 2023.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719, 2024.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv e-prints, pp. arXiv–2404, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Shenao Zhang. Conservative dual policy optimization for efficient model-based reinforcement learn-
ing. Advances in neural information processing systems, 35:25450–25463, 2022.

Tong Zhang. From ε-entropy to kl-entropy: Analysis of minimum information complexity density
estimation. The Annals of Statistics, pp. 2180–2210, 2006.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong Zhang.
Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond. arXiv
preprint arXiv:2211.01962, 2022.

Han Zhong, Guhao Feng, Wei Xiong, Li Zhao, Di He, Jiang Bian, and Liwei Wang. Dpo meets ppo:
Reinforced token optimization for rlhf. arXiv preprint arXiv:2404.18922, 2024.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving llm
helpfulness and harmlessness with rlaif, November 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DERIVATIONS IN SECTION 3.1

We begin by deriving (3.2). The solution for the inner-level optimization problem of (3.1) is as
follows:

max
π

F(π; r) = max
π

Ex∼Dt,y∼π(·|x)
y′∼πref(·|x)

[
r(x, y)− r(x, y′)

]
− βDKL(π ||πref)

= Ex∼Dt

[
β logEy∼πref(·|x)

[
exp(r(x, y)/β)

]]
− Ex∼Dt,y′∼πref(·|x)

[
r(x, y′)

]
(A.1)

When the reward r is reparameterized by r̂θ(x, y) = β(log πθ(y | x)− log πref(y | x)), we have that
the first term in (A.1) is 0. The bilevel objective (3.1) then becomes

max
r

−Llr(r;Dt)− αEx∼D,y′∼πref(·|x)
[
r(x, y′)

]
.

By reparameterizing the reward with the LLM, we obtain the desired results in (3.2).

Then we provide the derivation of (3.3). We primarily consider the gradient of the newly incorpo-
rated term Ex∼D,y∼πref(·|x)[log πθ(y | x)]. Specifically, we have

∇θEx∼D,y∼πref(·|x)
[
log πθ(y | x)

]
= Ex∼D

[∑
y

πref(y | x)∇θ log πθ(y | x)
]

= Ex∼D,y∼πθ

[πref(y | x)
πθ(y | x)

∇θ log πθ(y | x)
]

= Ex∼D,y∼πθ

[
exp
(
−r̂θ(x.y)/β

)
∇θ log πθ(y | x)

]
.

For the derivation of the DPO gradient ∇θLDPO(πθ;Dt), we refer the readers to Rafailov et al.
(2024b).

B PROOF OF THEOREM 4.1

Proof of Theorem 4.1. The solution to the KL-constrained reward minimization objective (4.1) is

πmin
ρ (y | x) = πρ(y | x) exp

(
−r̂ρ(x, y)/β

)
/Z(x),

where Z(x) =
∑

y πρ(y | x) exp(−r̂ρ(x, y)/β) = 1. Then we have πmin
ρ (y | x) = πref(y | x), i.e.,

the reference policy πref achieves the lowest implicit reward reparameterized by any ρ.

C PROOF OF THEOREM 4.3

We present the following theoretical version of the proposed self-exploration algorithm. The key
modification in Algorithm 1 lies in its pragmatic strategy for constructing the chosen and rejected
responses. Despite this adjustment, the core principles of leveraging the self-exploration objective
during online alignment remain the same.

Algorithm 2 Self-Exploring Language Models (SELM; Theoretical Version)
Input: Reference model πref, preference dataset D0 = ∅, prompt distribution ν, online iterations

T , optimism coefficient α, π0 = πref.
1: for iteration t = 1, 2, . . . , T do
2: Sample xt ∼ ν, y1t ∼ πt−1(· | x), y2t ∼ πref(· | x).
3: Update the preference data Dt = Dt−1 ∪ {(xt, y

1
t , y

2
t )}

4: Train the LLM πt = argmaxπ{−LDPO(π;Dt) − α · Ex∼νEy∼πref (·|x)[log π(y | x)]}, let
πref = πt.

5: end for
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Definition C.1 (Preference-based GEC). For the function class Π, we define the preference-based
GEC (PGEC) as the smallest dGPEC as

T∑
t=1

E(x,y,y′)∼(ν,πref ,πt)

[
log

π∗(y |x)
πref(y |x)

− log
πt(y |x)
πref(y |x)

− log
π∗(y′ |x)
πref(y′ |x) + log

πt(y
′ | x)

πref(y′ | x)

]

≤

√√√√dPGEC

T∑
t=1

t−1∑
τ=1

E(x,y,y′)∼(ν,πref ,π
τ )

[
log

π∗(y |x)
πref(y |x)

− log
πτ (y |x)
πref(y |x)

− log
π∗(y′ |x)
πref(y′ |x) + log

πτ (y′ | x)
πref(y′ | x)

]2

+ 4
√
dPGECT .

The definition of PGEC is a preference-based version of Generalized Eluder Coefficient (GEC)
proposed by (Zhong et al., 2022). Intuitively, both PGEC and GEC establish a crucial connection
between prediction error and in-sample estimation error, effectively transforming regret minimiza-
tion into an online estimation problem. For a comprehensive explanation and in-depth discussion,
readers are directed to Zhong et al. (2022). A slight difference is that the PGEC here is defined
with respect to the policy class, while the GEC in Zhong et al. (2022) is defined with respect to the
model or value class. These can be connected if we regard the implicit reward class log(π/πref)
as the model or value class. As an important example, if we consider the log-linear function class
Π = {πθ : πθ(y | x) ∝ exp(⟨ϕ(x, y), θ⟩/β)}, we can show that dPGEC = Õ(d) by the elliptical
potential lemma (Abbasi-Yadkori et al., 2011; Zhong et al., 2022). Another remark is that here the
PGEC is defined in the bandit formulation, and it can be naturally extended to the token-wise MDP
formulation (Zhong et al., 2024; Rafailov et al., 2024a; Xie et al., 2024) and further connects to the
eluder dimension in the context of preference-based MDPs (Chen et al., 2022; Wang et al., 2023).
Specifically, if we regard the generation process of LLMs as token-level MDPs where the generation
of each token serves as one step, the learning objective is maximizing

J (π) = Ex∼ν,τ∼π

[
r(τ)− β log

π(τ |x)
πref(τ |x)

]
.

Here τ is the full trajectory starting from x. We can similarly define the PGEC (Definition C.1) for
token-wise MDPs by replacing the response y, y′ in the bandit formulation with the trajectories τ, τ ′
in the token-wise MDP formulation. We have the following informal theorem:

Theorem C.2 (Regret for MDP Formulation (informal)). With proper parameter choice, it holds
with probability at least 1− δ that

R(T ) ≲
√
dPGEC · exp(2Vmax) · T · log(|Π|/δ),

where Vmax is a bounded coefficient for toekn-wise MDPs, similar to the one described in Assump-
tion 4.2.

C.1 PROOF OF THEOREM 4.3

Proof of Theorem 4.3. We first decompose the regret as

R(T ) =

T∑
t=1

[J (π∗)− J (πt)]

=

T∑
t=1

(
Ex∼ν,y∼π∗(·|x)

[
r(x, y)− β log

π∗(y | x)
πref(y | x)

]
− Ex∼ν,y∼πt(·|x)

[
r(x, y)− β log

πt(y | x)
πref(y | x)

])

=

T∑
t=1

(
Ex∼ν,y∼πref (·|x)

[
r(x, y)− β log

π∗(y | x)
πref(y | x)

]
− Ex∼ν,y∼πt(·|x)

[
r(x, y)− β log

πt(y | x)
πref(y | x)

])
,

where the last line uses the fact that

r(x, y)− β log
π∗(y | x)
πref(y | x)

= β · logZr(x), (C.1)
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which is independent of the response y. Rearranging the above regret decomposition, we have

R(T ) =

T∑
t=1

(
Ex∼ν,y∼πref (·|x)

[
r(x, y)− β log

π∗(y | x)
πref(y | x)

]
− Ex∼ν,y∼πt(·|x)

[
r(x, y)− β log

πt(y | x)
πref(y | x)

])

=

T∑
t=1

Ex∼ν,y∼πref (·|x)

[
β log

πt(y | x)
π∗(y | x)

]

+

T∑
t=1

Ex∼ν,y∼πref (·|x),y′∼πt(·|x)

[
r(x, y)− β log

πt(y |x)
πref(y |x)

− r(x, y′) + β log
πt(y

′ | x)
πref(y′ | x)

]

=

T∑
t=1

Ex∼ν,y∼πref (·|x)

[
β log

πt(y | x)
π∗(y | x)

]

+ β

T∑
t=1

E(x,y,y′)∼(ν,πref ,πt)

[
log

π∗(y |x)
πref(y |x)

− log
πt(y |x)
πref(y |x)

− log
π∗(y′ |x)
πref(y′ |x) + log

πt(y
′ | x)

πref(y′ | x)

]
,

(C.2)
where the last line uses (C.1). By the definition of PGEC in Definition C.1, we have
T∑

t=1

E(x,y,y′)∼(ν,πref ,πt)

[
log

π∗(y |x)
πref(y |x)

− log
πt(y |x)
πref(y |x)

− log
π∗(y′ |x)
πref(y′ |x) + log

πt(y
′ | x)

πref(y′ | x)

]

≤

√√√√dPGEC

T∑
t=1

t−1∑
τ=1

E(x,y,y′)∼(ν,πref ,π
τ )

[
log

π∗(y |x)
πref(y |x)

− log
πτ (y |x)
πref(y |x)

− log
π∗(y′ |x)
πref(y′ |x) + log

πτ (y′ | x)
πref(y′ | x)

]2

+ 4
√
dPGECT

≤ dPGEC

4η
+ η

T∑
t=1

t−1∑
τ=1

E(x,y,y′)∼(ν,πref ,π
τ )

[
log

π∗(y |x)
πref(y |x)

− log
πτ (y |x)
πref(y |x)

− log
π∗(y′ |x)
πref(y′ |x) + log

πτ (y′ | x)
πref(y′ | x)

]2

,

+ 4
√
dPGECT , (C.3)

where the last inequality follows from the fact that
√
xy ≤ x/(4η) + ηy for any x, y, η > 0.

By the updating rule of πt+1 = argmaxπ{−LDPO(π;Dt)−α ·Ex∼νEy∼πref (·|x)[log π(y | x)]}, we
have

− LDPO(πt;Dt−1)− α · Ex∼ν,y∼πref (·|x)[log πt(y | x)]
≥ −LDPO(π

∗;Dt−1)− α · Ex∼ν,y∼πref (·|x)[log π
∗(y | x)],

which equivalents to that

Ex∼ν,y∼πref (·|x)

[
β log

πt(y | x)
π∗(y | x)

]
≤ β

α
· (LDPO(π

∗;Dt−1)− LDPO(πt;Dt−1)) . (C.4)

We upper bound the right handsise of (C.4) via the following lemma.
Lemma C.3 (Concentration). For any t ∈ [T ] and 0 < δ < 1, it holds with probability 1− δ that
LDPO(π

∗;Dt−1)− LDPO(πt;Dt−1)

≲ − 2

exp(4Rmax)
·
t−1∑
τ=1

E(x,y,y′)∼(ν,πref ,π
τ )

[
log

π∗(y |x)
πref(y |x)

− log
πτ (y |x)
πref(y |x)

− log
π∗(y′ |x)
πref(y′ |x) + log

πτ (y′ | x)
πref(y′ | x)

]2

+ log(|Π|/δ).

Proof. The proof of this lemma follows the standard MLE analysis (Zhang, 2006) and its application
for standard reward-based RL (Agarwal et al., 2020; Liu et al., 2024b). Recent works (Liu et al.,
2024c; Xie et al., 2024; Cen et al., 2024) also applies this result for RLHF. For brevity, we omit the
detailed proof here and direct readers to these related works for the proof.

Combining (C.2), (C.3), (C.4), and Lemma C.3, together with the parameter choice α =
2/(η exp(4Rmax)), we obtain

R(T ) ≲
βTdPGEC

η
+ βη · exp(4Rmax) log(|Π|/δ) + 4

√
dPGECT

≲
√
dPGEC · exp(2Rmax) · T · log(|Π|/δ),
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where the last line follows from the fact that η =
√

TdPGEC/(exp(4Rmax) log(|Π|/δ)). Therefore,
we finish the proof of Theorem 4.3.

D EXPERIMENT SETUP

In experiments, we use the Alignment Handbook (Tunstall et al., 2023a) framework as our codebase.
We find the best hyperparameter settings for the strong iterative DPO baseline by conducting a grid
search over the iteration number, batch size, learning rate, and label update rule. The results for the
Zephyr-based models are shown in Figure 6. Specifically, we find that using the same amount of
data, updating the model too many iterations can lead to instability. So we set the iteration number
to 3 for Llama3-It-based and Zephyr-based models (excluding the first iteration of DPO training).
Besides, we observe that choosing different batch sizes has a large effect on the models’ performance
and the optimal batch size heavily depends on the model architecture. In experiments, we set the
batch size to 256 and 128 for the Zephyr-based and Llama3-It-based models, respectively. For the
learning rate, we consider three design choices: cyclic learning rate with constant cycle amplitude,
linearly decayed cycle amplitude, and decayed cycle amplitude at the last iteration. We find that a
decaying cycle amplitude performs better than constant amplitudes in general. Thus, for Zephyr-
based models, we set the learning to 5e − 7 for the first three iterations and 1e − 7 for the last
iteration. In each iteration, the warmup ratio is 0.1. For Llama3-It-based models, we use a linearly
decayed learning rate from 5e − 7 to 1e − 7 within 3 iterations with the same warmup ratio. We
also test two update ways for the preference data. One is to rank yw, yl, yref and keep the best and
worst responses in the updated dataset, which is the setting that is described in the main paper. The
other is to compare yw and yref and replace the chosen or rejected response by yref based on the
comparison result. We find that the former design performs better than the latter. We also compared
with stepwise DPO (Kim et al., 2024), which updates the reference model at each iteration but uses
the original dataset instead of the updated one. This demonstrates that exploring and collecting new
data is necessary.

Figure 6: Ablation of the iterative DPO baseline. We conduct a grid search over the iteration number,
batch size, learning rate, and designs of the dataset update rule.

For the proposed SELM method, we follow the above hyperparameter settings for a fair compari-
son. The optimism coefficient α is searched over 0.005, 0.001, 0.0005, and 0.0001 and is selected
based on the average external reward on the holdout test set of UltraFeedback. We set α = 0.001
for Zephyr-based SELM and α = 0.0001 for Llama3-It-based SELM. For training SELM based
on other models, we recommend setting α = 0.005 or 0.001 as it shows minimal sensitivity to
variations.
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