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Abstract
Reinforcement Learning (RL) agents can solve di-
verse tasks but often exhibit unsafe behavior. Con-
strained Markov Decision Processes (CMDPs)
address this by enforcing safety constraints, yet
existing methods either sacrifice reward maxi-
mization or allow unsafe training. We introduce
Constrained Trust Region Policy Optimization (C-
TRPO), which reshapes the policy space geometry
to ensure trust regions contain only safe policies,
guaranteeing constraint satisfaction throughout
training. We analyze its theoretical properties
and connections to TRPO, Natural Policy Gradi-
ents, and Constrained Policy Optimization. Ex-
periments show that C-TRPO reduces constraint
violations while maintaining competitive returns.

1. Introduction
Reinforcement Learning (RL) has emerged as a highly suc-
cessful paradigm in machine learning for solving sequential
decision and control problems, with policy gradient (PG)
algorithms as a popular approach (Williams, 1992; Sutton
et al., 1999; Konda & Tsitsiklis, 1999). Policy gradients are
especially appealing for high-dimensional continuous con-
trol because they can be easily extended to function approxi-
mation. Due to their flexibility and generality, there has been
significant progress in enhancing PGs to work robustly with
deep neural network-based approaches. PG-based policy
optimization methods such as Trust Region Policy Optimiza-
tion (TRPO) and Proximal Policy Optimization (PPO) are
among the most widely used general-purpose reinforcement
learning algorithms (Schulman et al., 2017a;b).

While flexibility makes PGs popular among practitioners, it
comes at a cost: the policy can explore any behavior during
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training, posing significant risks in real-world applications.
Many methods have been proposed to improve the safety
of policy gradients, often based on the Constrained Markov
Decision Process (CMDP) framework. However, existing
methods either struggle to minimize constraint violations
during training or severely limit the agent’s performance.

This work introduces a simple strategy to enhance constraint
satisfaction in trust region-based safe policy optimization
methods without compromising performance. We propose a
novel family of policy divergences, inspired by barrier func-
tion methods in optimization and safe control, that modify
the policy geometry to ensure that trust regions consist only
of safe policies. Our approach is motivated by the observa-
tion that TRPO and related methods base their trust region
on the state-average Kullback-Leibler (KL) divergence. It
can be derived as the Bregman divergence induced by the
negative conditional entropy on the space of state-action
occupancies (Neu et al., 2017).

The key insight of this work is that safer trust regions can
be obtained by modifying this function to account for cost
constraints. This leads to a provably safe trust region-based
policy optimization algorithm that preserves TRPO’s guar-
antees, while simplifying existing methods and reducing
constraint violations during training, without sacrificing re-
ward performance.

Related Work Classic solution methods for CMDPs rely
on linear programming techniques, see (Altman, 1999).
However, they struggle to scale, making them unsuitable for
high-dimensional or continuous control problems. While
there are numerous scalable approaches to solving CMDPs,
we focus on model-free, direct policy optimization methods.
Model-based approaches (Berkenkamp et al., 2017; As et al.,
2025), are attractive due to their stability and safety guar-
antees, but require learning a model, which is not always
feasible, or imposes additional assumptions on the model
space.

Lagrangian methods are a widely adopted approach, where
the optimization problem is reformulated as a weighted ob-
jective that balances rewards and penalties for constraint
violations. This is often motivated by Lagrangian dual-
ity, where the penalty coefficient is interpreted as the dual
variable. Learning the coefficient with stochastic gradient
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descent presents a popular baseline (Achiam et al., 2017;
Ray et al., 2019; Chow et al., 2019; Stooke et al., 2020).
However, a naively tuned Lagrange multiplier may not work
well in practice due to oscillations and overshoot. To address
this issue, (Stooke et al., 2020) uses PID control to tune the
dual variable during training, which achieves less oscillation
around the constraint and faster convergence to a feasible
policy. While Lagrangian approaches are becoming increas-
ingly popular, it is not entirely clear how to update the dual
variables during training, which has attracted significant
research interest, see e.g. (Sohrabi et al., 2024).

Penalty methods such as IPO (Liu et al., 2020) and
P3O (Zhang et al., 2022) propose weighted penalty-based
policy optimization objectives, where the penalties are
weighted against the reward objective using a weighting
hyper-parameter instead of a learnable one. This simpli-
fies the Lagrangian approach since the penalty coefficients
don’t have to be optimized during training, which results
in improved stability. More recently, the approach to use
(smoothed) log-barriers (Usmanova et al., 2024; Zhang et al.,
2024a; Dey et al., 2024) became more popular, which keeps
the algorithm simple due to the penalty approach, but can
offer certain constraint satisfaction guarantees, see e.g. (Ni
& Kamgarpour, 2024). However, working with an explicit
penalty produces suboptimal policies w.r.t the original con-
strained MDP and thus introduces an additional error, which
has to be controlled; see for example (Geist et al., 2019;
Müller & Cayci, 2024) for treatments of the regularization
error in the unconstrained case, and (Liu et al., 2020) for
an example of an optimization gap in safe policy optimiza-
tion. In contrast, combining trust region-based updates as in
TRPO (Schulman et al., 2017a) with constrained optimiza-
tion techniques does not change the objective function and
the set of optimizers, and therefore does not introduce an
additional error.

Trust region methods are closely related to our approach, in
particular Constrained Policy Optimization (CPO; (Achiam
et al., 2017)), which extends TRPO by restricting updates
to the intersection of the trust region and the safe policy
set, ensuring safety during training. While CPO guarantees
constraint satisfaction in the infinite sample limit, in prac-
tice it tends to oscillate around the constraint boundary with
high overshoot, because it relies on noisy cost advantage
estimates, and because the constraint only enters the opti-
mization problem when the iterate is close to the boundary
of the safe policy set. To address constraint satisfaction,
projection-based CPO (PCPO; (Yang et al., 2020)) projects
updates into the safe policy space between updates, im-
proving stability but further hindering reward maximization.
Building on PCPO, (Zhang et al., 2020) and (Yang et al.,
2022) also introduce projection-based approaches based on
first-order updates.

Rethinking Safe Trust Region Methods We adopt a trust
region approach that constructs trust regions exclusively
within the safe policy set, eliminating the need for projec-
tions or constrained optimization in the inner loop. Trust
region methods retain TRPO’s update guarantees for both
reward and constraints but often underperform compared to
barrier penalty methods in terms of constraint satisfaction.
To address this, we replace the state-average KL-divergence
with policy divergences that act as barrier functions, see Fig-
ure 1. This modification encourages updates of the resulting
trust region method to move more parallel to the constraint
surfaces rather than directly toward and thereby improves
constraint satisfaction, simplifies optimization, and achieves
competitive returns by maintaining policies within the safe
set for longer, see also Figures 5 and 7 in the Appendix.

π*safe

Safe Trust Region

Penalty

Trust Region

π*safe

π0

Figure 1: On the left, vanilla trust regions (dotted) and safe
trust regions (dashed) are shown; on the right, a schematic
visualization of common failure modes in CMDPs is shown
based on optimization trajectories; here, vanilla trust re-
gions can suffer from oscillations around the constraint, and
penalty methods might introduce a bias. Lagrangian meth-
ods (not shown) can exhibit both issues.

Contributions We summarize our contributions:

• In Section 3, we introduce a modified policy divergence
such that every trust region consists of only safe poli-
cies. We introduce an idealized TRPO update based
on the modified divergence, a tractable optimization
algorithm for deep function approximation (C-TRPO),
and a corresponding natural gradient method (C-NPG).

• We provide an efficient implementation of the pro-
posed approximate C-TRPO method, see Section 3.2,
which comes with a minimal overhead compared to
TRPO (up to the estimation of the expected cost) and
no overhead compared to CPO. We demonstrate exper-
imentally that C-TRPO yields competitive returns with
smaller constraint violations compared to common safe
policy optimization algorithms, see Section 5.

• In Section 4, we introduce C-TRPO’s improvement
guarantees and contrast to TRPO and CPO. Further,
we show that C-NPG is the continuous time limit of
C-TRPO and provides global convergence guarantees
towards the optimal safe policy; this is in contrast to
penalization or barrier methods, which introduce a bias.
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2. Background
We consider the infinite-horizon discounted constrained
Markov decision process (CMDP) and refer the reader to
(Altman, 1999) for a general treatment. The CMDP is given
by the tuple (S,A, P, r, µ, γ, C), where S and A are the
finite state-space and action-space respectively and we refer
to Appendix B.3 for a discussion of continuous state and
action spaces. Further, P : S × A → ∆S is the transition
kernel, r : S × A → R is the reward function, µ ∈ ∆S is
the initial state distribution at time t = 0, and γ ∈ [0, 1)
is the discount factor. The space ∆S is the set of categori-
cal distributions over S. Further, define the constraint set
C = {(ci, bi)}mi=1, where ci : S × A → R are the cost
functions and bi ∈ R are the cost thresholds.

An agent interacts with the CMDP by selecting a policy π ∈
Π from the set of all Markov policies, i.e. an element from
the Cartesian product of |S| probability simplicies on A.
Given such a policy π, the value functions V π

r , V π
ci : S → R,

action-value functions Qπ
r , Q

π
ci : S×A → R, and advantage

functions Aπ
r , A

π
c : S ×A → R associated with the reward

r and the i-th cost ci are defined as

V π
f (s) := (1− γ)Eπ

[ ∞∑
t=0

γtf(st, at)
∣∣∣s0 = s

]
,

where the function f is either r or ci, and the expectations
are taken over trajectories of the Markov process, meaning
with respect to the initial distribution s0 ∼ µ, the policy
at ∼ π(·|st) and the state transition st+1 ∼ P (·|st, at).
Analogously, we set

Qπ
f (s, a) := (1− γ)Eπ

[ ∞∑
t=0

γtf(st, at)
∣∣∣s0 = s, a0 = a

]
and Aπ

f (s, a) := Qπ
f (s, a) − V π

f (s). Constrained Markov
decision processes address the optimization problem

maximizeπ∈Π V π
r (µ) subject to V π

ci (µ) ≤ bi (1)

for all i = 1, . . . ,m, where V π
f (µ) are the expected values

under the initial state distribution V π
f (µ) := Es∼µ[V

π
f (s)].

We will also write V π
f = V π

f (µ), and omit the explicit
dependence on µ for convenience, and we write Vf (π) when
we want to emphasize its dependence on π. We denote the
set of safe policies by Πsafe =

⋂m
i=1{π : Vci(π) ≤ bi} and

always assume that it is nontrivial.

Cost Regret Depending on the task at hand, it is manda-
tory to solve the constrained optimization problem Equa-
tion 1 in a safe way, meaning with a method that respects
the constraints during optimization. This motivates the use
of the cost regret

COSTREG+(π,K, C) :=
m∑
i=0

K−1∑
k=0

[
V πk
ci − bi

]
+
, (2)

where [x]+ = max{0, x}, π = (π0, π1, ...πK), and K is
the number of training iterations. The cost regret represents
the cumulative sum of the expected constraint violations
throughout training. A similar metric has been used in
related online optimization settings, see (Efroni et al., 2020;
Müller et al., 2024). It is our goal to design a method that
produces solutions of (1) of similar quality compared to
existing method, while achieving minimal cost regret.

The Dual Linear Program for CMDPs Any stationary
policy π induces a discounted state-action (occupancy) mea-
sure dπ ∈ ∆S×A, indicating the relative frequencies of
visiting a state-action pair, discounted by how far the event
lies in the future. This probability measure is defined as

dπ(s, a) := (1− γ)

∞∑
t=0

γtPπ(st = s)π(a|s), (3)

where Pπ(st = s) is the probability of observing the envi-
ronment in state s at time t given the agent follows policy
π. For finite MDPs, it is well-known that maximizing the
expected discounted return can be expressed as the linear
program

maximized r⊤d subject to d ∈ D ,

where D is the set of feasible state-action measures, which
form a polytope (Kallenberg, 1994). Analogously to an
MDP, the discounted cost CMDP can be expressed as the
linear program

maximized r⊤d subject to d ∈ Dsafe, (4)

where Dsafe =
⋂m

i=1

{
d : c⊤i d ≤ bi

}
∩D is the safe occu-

pancy set, see Figure 4 in Appendix A.

Information Geometry of Policy Optimization Among
the most successful policy optimization schemes are natural
policy gradient (NPG) methods or variants thereof, such as
trust-region and proximal policy optimization (TRPO and
PPO, respectively). These methods assume a convex geom-
etry and corresponding Bregman divergences in the state-
action polytope, see (Neu et al., 2017; Müller & Montúfar,
2023) for more detailed discussions. A general trust region
update is defined as

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DΦ(dπk

||dπ) ≤ δ, (5)

where DΦ : D×D → R is the Bregman divergence induced
by a convex Φ: int(D)→ R, and

Aπk
r (π) = Es,a∼dπk

[
π(a|s)
πk(a|s)

Aπk
r (s, a)

]
, (6)

is called the policy advantage or surrogate advantage. We
can interpret A as a surrogate optimization objective for the
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expected return. In particular, for a parameterized policy πθ,
it holds that ∇θAr,πθk

(πθ)|θ=θk = ∇θVr(θk), see (Kakade
& Langford, 2002; Schulman et al., 2017a).

TRPO and the original NPG assume the same policy ge-
ometry (Kakade, 2001; Schulman et al., 2017a), since they
employ an identical Bregman divergence

DK(dπ1
||dπ2

) :=
∑
s

dπ1
(s)DKL(π1(·|s)||π2(·|s)).

We refer to Appendix A for details on Bregman divergences.
We call DK the Kakade divergence and informally write
DK(π1, π2) := DK(dπ1 , dπ2). This divergence can be
shown to be the Bregman divergence induced by the nega-
tive conditional entropy

ΦK(dπ) :=
∑
s,a

dπ(s, a) log π(a|s), (7)

see (Neu et al., 2017). It is well known that with a parameter-
ized policy πθ, a linear approximation of A and a quadratic
approximation of the Bregman divergence DK at θk, one
obtains the natural policy gradient step given by

θk+1 = θk + ϵkGK(θk)
+∇θVr(πθk), (8)

where GK(θ)
+ denotes a pseudo-inverse of the generalized

Fisher-information matrix of the policy with entries given
by GK(θ)ij = ∂θidθ∇2ΦK(dθ)∂θjdθ, see (Schulman et al.,
2017a; Müller & Montúfar, 2023) and Appendix A for more
detailed discussions.

3. A Safe Geometry for Constrained MDPs
To prevent the policy iterates from violating the constraints
during optimization, we construct policy divergences for
which the trust regions are contained in the safe policy set.

3.1. Safe Trust Regions

A Bregman divergence is induced by a mirror function that
dictates the behavior of the divergence, see Appendix A.
Take for example the mirror function for TRPO and NPG in
Equation (7). The divergence is defined when both policies
are in the interior of D , and as either one of the policies
approaches the boundary of the state-action polytope, the di-
vergence approaches infinity. Hence, TRPO and NPG don’t
allow their policy iterates to become entirely deterministic
during optimization.

Since the behavior of a Bregman divergences is dictated by
the shape of its mirror function, we first construct a family
of safe mirror functions, that induce policy divergences that
are finite only in the safe occupancy set Dsafe instead of
the entire state-action polytope D . Safe policy divergences,
in turn, let us derive safe trust region and natural policy
gradient methods.

To this end, we consider mirror functions of the form

ΦC(d) := ΦK(d) +

m∑
i=1

βiϕ(bi − c⊤i d), (9)

where ΦK is the conditional entropy defined in Equation (7),
and ϕ : R>0 → R is a convex function with ϕ′(x)→ +∞
for x ↘ 0. This ensures that ΦC : int(Dsafe) → R is
strictly convex and has infinite curvature at the cost surface
bi−c⊤i d = 0, which means ∥∇ΦC(dk)∥ → +∞, when bi−
c⊤i dk ↘ 0. Possible candidates for ϕ are ϕ(x) = − log(x)
and ϕ(x) = x log(x) corresponding to a logarithmic barrier
and entropy, respectively.

The mirror function ΦC induces the Constrained KL-
Divergence given by

DC(d1||d2) = DK(d1||d2) +
m∑
i=1

βiDϕi(d1||d2), (10)

where

Dϕi
(d1||d2) =ϕ(bi − Vci(π1))− ϕ(bi − Vci(π2))

+ ϕ′(bi − Vci(π2))(Vci(π1)− Vci(π2)).

(11)

The corresponding trust-region scheme is

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DC(dπk

||dπ) ≤ δ,

(12)

where Ar is defined in Equation (6). Note the constraint
is only satisfied if d1, d2 ∈ int(Dsafe) and the divergence
approaches +∞ as d2 approaches the boundary of the safe
set. Thus, the trust region {d ∈ D : DC(dk||d) ≤ δ} is
contained in the set of safe occupancy measures for any
finite δ. Analogously to the case of unconstrained TRPO
the corresponding natural policy gradient scheme is

θk+1 = θk + ϵkGC(θk)
+∇Vr(θk), (13)

where GC(θ)
+ denotes an arbitrary pseudo-inverse and

GC(θ)ij = ∂θid
⊤
θ ∇2ΦC(dθ)∂θjdθ.

3.2. Constrained Trust Region Policy Optimization

If we could solve the optimization problem in Equation (12)
exactly, we would obtain a provably safe trust region policy
optimization method with zero constraint violations, as long
as we start with a safe policy. However, the exact trust re-
gion update Equation (12) cannot be computed. Firstly, the
divergence depends on expected cost values, which we can
only estimate. The resulting estimation errors of the diver-
gence might cause the policy iterates to leave the safe set, in
which case the divergence becomes ill-defined. Further, the
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divergence also depends on the expected cost value of the
proposal policy, which is not available during the updates.
To address these issues, we propose an update based on a
surrogate divergence, similar to how surrogate objectives
are used in policy optimization. We propose the following
update, which we call Constrained TRPO (C-TRPO).

πk+1 = argmax
π∈Π

Aπk
r (π) sbj. to D̄C(π||πk) ≤ δ. (14)

Here, D̄C is a surrogate for DC, which we define in Equa-
tion 16 and Equation 17. Algorithm 1 shows the imple-
mentation of C-TRPO, which performs a constrained trust
region update if the current policy is safe or a recovery step
that minimizes the cost if the policy is unsafe. For the trust
region update, we follow a similar implementation to the
original TRPO, estimating the divergence, using a linear
approximation of the surrogate objective, and a quadratic
approximation of the trust region.

Surrogate Divergence For the sake of clarity, we first
focus on the case with a single constraint, but the results are
easily extended to multiple constraints by summation of the
individual constraint terms, as discussed in the respective
paragraph below. In practice, the exact constrained KL-
Divergence DC cannot be evaluated, because it depends
on the cost-return of the optimized policy Vc(π). However,
we can approximate it locally around the policy of the k-th
iteration, πk, using a surrogate divergence. This surrogate
can be expressed as a function of the policy cost advantage

Aπk
c (π) = Edπk

[
π(a|s)
πk(a|s)

Aπk
c (s, a)

]
, (15)

which approximates Vc(π) − V πk
c up to first order in the

policy parameters (Kakade & Langford, 2002; Schulman
et al., 2017a; Achiam et al., 2017). Assume πk ∈ Πsafe and
define the constraint margin δb = b−V πk

c , which is positive
if πk ∈ ΠSAFE. Further, define the surrogate divergence
D̄C(π||πk) = D̄KL(π||πk) + βD̄ϕ(π||πk), where

D̄KL(π||πk) =
∑
s∈S

dπk
(s)DKL(π||πk) (16)

and

D̄ϕ(πθ||πθk) =

{
Ψ(Aπk

c ), if δb − Aπk
c ∈ dom(ϕ)

+∞ otherwise
(17)

where

Ψ(Aπk
c ) = ϕ(δb−Aπk

c (π))−ϕ(δb)+ϕ′(δb)Aπk
c (π). (18)

The surrogate D̄ϕ is closely related to the Bregman di-
vergence Dϕ. They are equivalent up to the substitution
Vc(π)− Vc(πk)→ Aπk

c (π), see Appendix B.1. The surro-
gate can be estimated from samples of the CMDP, where

in the practical implementation, δb and the policy cost ad-
vantage are estimated from trajectory samples using GAE-
λ (Schulman et al., 2018). The consequences of the substi-
tution in the surrogate will be discussed in Section 4.

Comparison with CPO This approach is similar to the
update in CPO (Achiam et al., 2017), but incorporates the
constraint into the design of the trust region, with an in-
fluence controlled by the parameter β. This yields more
conservative updates within the safe set without introducing
bias in the optimal solution. Additionally, it simplifies the
inner-loop constrained optimization: C-TRPO approximates
a single quadratic constraint, rather than solving for the in-
tersection of a quadratic and a linear constraint as in CPO,
see also Appendix C.4.

Multiple Constraints C-TRPO naturally extents to
multiple constraints, by introducing the divergence
D̄mult

C (π||πk) = D̄KL(π||πk) +
∑

i βiD̄ϕi
(π||πk), where

each D̄ϕi is defined according to Eq. 17 but with the re-
spective ci. In section 3, we discuss that this divergence
approximates a natural policy gradient (C-NPG) on the safe
state-action occupancy set, where Theorem 4.5 implies that
the optimal feasible solution π⋆

safe satisfies as few constraints
with equality as required to be optimal.

Recovery with Hysteresis The iterate may still leave the
safe policy set Πsafe, either due to approximation errors
of the divergence, or because we started outside the safe
set. In this case, we perform a recovery step, where we
only minimize the cost with TRPO as by (Achiam et al.,
2017). In tasks where the policy starts in the unsafe set, C-
TRPO can get stuck at the constraint surface. This is easily
mitigated by including a hysteresis condition for returning to
the safe set. If πk−1 is the previous policy, then πk ∈ ΠH

safe
with ΠH

safe = {πθ ∈ Πθ and Vc(πθ) ≤ bH} where bH = b if
πk−1 ∈ ΠH

safe and a user-specified fraction of b otherwise.

Computational Complexity The C-TRPO implementa-
tion adds no computational overhead compared to CPO,
since D̄ϕ is a function of the cost advantage estimate, and is
added to the divergence of TRPO. Compared to TRPO, the
cost value function must be approximated.

3.3. Constrained Natural Policy Gradient

Practically, the C-TRPO optimization problem in Equa-
tion (14) is solved like traditional TRPO: the objective is
approximated linearly, and the constraint is approximated
quadratically in the policy parameters using automatic dif-
ferentiation and the conjugate gradient method. This leads
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Algorithm 1 Constrained TRPO (C-TRPO); differences
from TRPO in blue

1: Input: Initial policy π0 ∈ Πθ, safety parameter β > 0,
recovery parameter 0 < bH ≤ b

2: for k = 0, 1, 2, . . . do
3: Sample a set of trajectories following πk = πθk

4: if πk ∈ ΠH
safe then

5: A← Ar; D ← D̄C = D̄KL+βD̄ϕ {Constrained
trust region update}

6: else
7: A← −Ac; D ← D̄KL {Recovery}
8: end if
9: Compute πk+1 using TRPO with A as advantage

estimate and with D as policy divergence.
10: end for

to the policy parameter update

θk+1 = θk + αi

√
2δ

g⊤k H
−1
k gk

·H−1
k gk, (19)

where

gk = ∇θAθk
c (πθ)|θ=θk (20)

and

Hk = H̄C(θk) = ∇2
θD̄C(πθ||πθk)|θ=θk (21)

are finite sample estimates, and H−1g is approximated us-
ing conjugate gradients. The αi ∈ [0, 1] are the coefficients
for backtracking line search, which ensures D̄C(πθ||πθk) ≤
δ.

We show in Appendix B.2.3 that the Hessian

H̄C(θk) = GK(θk) + βϕ′′(b− V θ̂
c (θ))∇θV

θ̂
c (θ)∇θV

θ̂
c (θ)

⊤,

is equivalent to the Gramian GC(θk) of the natural gradi-
ent update in Equation (13). We call the resulting policy
gradient

θk+1 = θk + ϵkH̄C(θk)
+∇Vr(θk), (22)

the Constrained NPG (C-NPG). In particular, this shows that
the C-TRPO update can be interpreted as a natural policy
gradient step with an adaptive step size, see Appendix A.
We emphasize that the idealized safe trust region update
in Equation (12) and the C-TRPO update of Equation (14)
agree up to second order in the policy parameters. This
justifies the surrogate divergence in C-TRPO and motivates
the discussion of the C-NPG flow in Section 4.2. We show in
Theorem 4.4 that int(Dsafe) is invariant under the dynamics
of the C-NPG. This implies that if the trust region radius δ
is small, and the advantage estimation is accurate enough,
the iterates under C-TRPO never leave the safe set.

4. Analysis
Here, we provide a theoretical analysis of the updates of
C-TRPO and study the convergence properties of the time-
continuous version of C-NPG. All proofs are deferred to the
Appendix C.

4.1. Properties of the C-TRPO Update

The practical C-TRPO algorithm is implemented using the
surrogate divergence introduced in Equation (14), which
is identical to the theoretical divergence DC introduced in
Equation (12) up to a mismatch between the policy advan-
tage and the performance difference. The motivation for
substituting the policy cost advantage for the performance
difference is their equivalence up to first order and that we
can estimate the advantage from samples of dπ. Similar
to CPO, we can guarantee an almost improvement of the
return (Achiam et al., 2017), despite the new divergence.

Proposition 4.1 (C-TRPO reward update). Set ϵr =
maxs |Ea∼πk+1

Aπk
r (s, a)|. The expected reward of a policy

updated with C-TRPO is bounded from below by

Vr(πk+1) ≥ Vr(πk)−
√
2δγϵr
1− γ

. (23)

Constraint violation, however, behaves slightly differently
for the two algorithms. To see this, we establish a more
concrete relation between C-TRPO and CPO. As β ↘ 0, the
solution to Equation (14) approaches the constraint surface
in the worst case, and we recover CPO, see Figure 5.

Proposition 4.2. The approximate C-TRPO update ap-
proaches the CPO update in the limit as β ↘ 0.

Intuitively, solving the C-TRPO problem with successively
smaller values of β, would be similar to CPO with the
interior point method using D̄ϕ(·||πk) as the barrier function.
However, C-TRPO is more conservative than CPO for any
β > 0 and as β → +∞ the update is maximally constrained
in the cost-increasing direction.

Proposition 4.3 (C-TRPO worst-case constraint viola-
tion). Let DC(πk+1||πk) ≤ δ with δ > 0 and set ϵc =
maxs |Ea∼πk+1

Aπk
c (s, a)|. It holds that

Vc(πk+1) ≤ Vc(πk) + Aπk
c (πk+1) +

√
2δ(β)γϵc
1− γ

, (24)

where δ(β) = δ − βDϕ(πk+1, πk) ≤ δ is decreasing
in β > 0, limβ→0 δ(β) = δ, and δ(β) → 0 for β →
δDC(πk+1||πk)/Dϕ(πk+1, πk).

This result is analogous to the worst-case constraint viola-
tion for CPO (Achiam et al., 2017, Proposition 2), where
the term δ(β) is replaced by δ. As δ(β) ≤ δ for all β > 0,
the bound for C-TRPO is higher than the corresponding

6
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guarantee for CPO. For β → 0, the bound converges to
the CPO bound, where for β → +∞, the bound becomes
Vc(πk+1) ≤ Vc(πk), see Appendix C.1.

4.2. Invariance and Convergence of Constrained
Natural Policy Gradients

It is well known that TRPO is equivalent to a natural policy
gradient method with an adaptive step size, see also Ap-
pendix A. We study the time-continuous limit of C-TRPO
and guarantee safety during training and global convergence.
In the context of constrained TRPO in Equation (12), we
study the natural policy gradient flow

∂tθt = GC(θt)
+∇Vr(θt), (25)

where GC(θ)
+ denotes a pseudo-inverse of GC(θ)ij =

∂θid
⊤
θ ∇2ΦC(dθ)∂θjdθ and θ 7→ πθ is a differentiable pol-

icy parametrization. Moreover, we assume that θ 7→ πθ is
regular, that it is surjective and the Jacobian is of maximal
rank everywhere. This assumption implies overparametriza-
tion but is satisfied for common models like tabular softmax,
tabular escort, or expressive log-linear policy parameteriza-
tions (Agarwal et al., 2021a; Mei et al., 2020a; Müller &
Montúfar, 2023).

We denote the set of safe parameters by Θsafe := {θ ∈ Rp :
πθ ∈ Πsafe}, which is non-convex in general and say that
Θsafe is invariant under Equation (25) if θ0 ∈ Θsafe implies
θt ∈ Θsafe for all t. Invariance is associated with safe
control during optimization and is typically achieved via
control barrier function methods (Ames et al., 2017; Cheng
et al., 2019). We study the evolution of the state-action
distributions dt = dπθt as this allows us to employ the
linear programming formulation of CMDPs and we obtain
the following convergence guarantees.
Theorem 4.4 (Safety during training). Assume that
ϕ : R>0 → R satisfies ϕ′(x) → +∞ for x ↘ 0 and con-
sider a regular policy parameterization. Then the set Θsafe

is invariant under Equation (25).

A visualization of policies obtained by C-NPG for different
safe initializations and varying choices of β is shown in
Figure 2 for a toy MDP. We see that for even small choices
of β the trajectories don’t cross the constraint surface and
the updates become more conservative for larger choices of
β.
Theorem 4.5. Assume that ϕ′(x) → +∞ for x ↘ 0, set
V ⋆
r,C := maxπ∈Πsafe

Vr(π) and denote the set of optimal
constrained policies by Π⋆

safe = {π ∈ Πsafe : Vr(π) =
V ⋆
r,C}, consider a regular policy parametrization and let

(θt)t≥0 solve Equation (25). It holds that Vr(πθt)→ V ⋆
r,C

and

lim
t→+∞

πt = π⋆
safe = argmin{DC(π

⋆, π0) : π
⋆ ∈ Π⋆

safe}.
(26)

C-NPG (β = 10−2) C-NPG (β = 1)

π(a1|s1)π(a1|s1)

π
(a

1
|s

2
)

Figure 2: Shown is the policy set Π ∼= [0, 1]2 for an MDP
with two states and two actions with a heatmap of the ex-
pected reward Vr; the constraint surface is shown in black
with the safe policies below; optimization trajectories are
shown for 10 safe initialization and for β = 10−2, 1.

In case of multiple optimal policies, Equation (26) identi-
fies the optimal policy of the CMDP that the natural policy
gradient method converges to as the projection of the ini-
tial policy π0 to the set of optimal safe policies Π⋆

safe with
respect to the constrained divergence DC. In particular,
this implies that the limiting policy π⋆

safe satisfies as few
constraints with equality as required to be optimal. To see
this, note that Π⋆

safe forms a face of Dsafe and that Bregman
projections lie at the interior of faces (Müller et al., 2024,
Lemma A.2) and hence satisfy as few linear constraints as
required.

5. Computational Experiments
Setup and main results We benchmark C-TRPO against
9 common safe policy optimization algorithms (CPO
(Achiam et al., 2017), PCPO (Yang et al., 2020), CPPO-PID
(Stooke et al., 2020), PPO-Lag and TRPO-Lag (Achiam
et al., 2017; Ray et al., 2019), FOCOPS (Zhang et al., 2020),
CUP (Yang et al., 2022), IPO (Liu et al., 2020) and P3O
(Zhang et al., 2022)) on 8 tasks (4 Navigation and 4 Lo-
comotion) from the Safety Gymnasium (Ji et al., 2023)
benchmark.1 The locomotion tasks reward distance traveled,
while penalizing high velocities, and the navigation tasks
reward goal reaching and penalize certain unsafe states. For
the C-TRPO implementation we fix the convex generator
ϕ(x) = x log(x), motivated by its superior performance in
our experiments, see Appendix B.2.1, and bH = 0.8b and
β = 1 across all experiments. Each algorithm is evaluated
by training for 10 million environment steps with 5 seeds
each, and the cost regret is monitored throughout training
for every run. To get a better sense of the safety of the
algorithms during training, we take an online learning per-
spective and include as a metric the cost regret introduced
in Equation 2 (Efroni et al., 2020; Müller et al., 2024) For

1Code: https://github.com/milosen/ctrpo
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Figure 3: Comparison of safe policy optimization algorithms based on the 25% Inter Quartile Mean (IQM) across 5 seeds
and 8 tasks. From left to right, the following metrics are shown measured at 10 million training steps: the final cost, i.e.
the mean return of the cost at the last iterate (threshold-normalized and centered at zero), the mean return of the reward
(normalized with the performance of unconstrained PPO), and the mean cost regret (normalized by CPO’s cost regret). The
algorithms are sorted into probably safe and probably unsafe, based on their final constraint violation (negative is probably
safe), and by expected reward within each group. Note that cost regret is different from the final cost, since it sums up all
constraint violations throughout training.

completeness, we also report environment-wise sample effi-
ciency curves and the results of Figure 3 in a tabular format
in Appendix D.4.

Discussion In Figure 3 the interquartile mean (IQM) of
normalized expected reward, cost, and cost regret, includ-
ing their stratified bootstrap confidence intervals (Agarwal
et al., 2021b) is shown. It can be observed that C-TRPO is
competitive with the leading algorithms of the benchmark in
terms of expected return, while being safe on the last iterate
as opposed to CPO and CUP, see Figure 3. Furthermore,
it achieves notably lower cost regret throughout training
than the high-return algorithms. TRPO-Lag., which is also
safe at convergence, has notably higher cost regret than
the other safe methods, meaning it oscillates more around
the threshold during training, see also Figures 13 and 12
in the appendix. In general, methods that, in practice, rely
on Lagrangian-inspired optimization routines (TRPO-Lag.,
FOCOPS, and CUP) perform well in terms of reward, but
poorly in terms of cost regret. C-TRPO’s regret performance
is comparable to the more conservative PCPO algorithm,
but is not as low as that of P3O. The low cost regret achieved
by P3O comes at the price of expected reward, which is due
to it’s wide margin to the threshold at the last iterate.

Our experiments reveal that C-TRPO’s performance is
closely tied to the accuracy of divergence estimation, which
hinges on the precise estimation of the cost advantage and
value functions. C-TRPO’s behavior w.r.t noisy cost func-
tion estimates is analyzed in Appendix D.3. The safety
parameter β modulates the stringency with which C-TRPO
satisfies the constraint, and can do so without limiting the
expected return on most environments at least for β ≤ 1, see

Figure 8 in the appendix. For higher values, the expected
return starts to degrade, partly due to D̄ϕ being relatively
noisy compared to D̄KL and thus we recommend the choice
β = 1.

Further, we observe that in most environments constraint vi-
olations seem to reduce as the algorithm converges, meaning
that the regret flattens over time. This behavior suggests that
the divergence estimation becomes increasingly accurate
over time, potentially allowing C-TRPO to achieve sublin-
ear regret. However, we leave regret analysis of the finite
sample regime for future research.

We attribute the improved constraint satisfaction compared
to CPO to a slowdown and reduction in the frequency of
oscillations around the cost threshold, which mitigates over-
shoot behaviors that could otherwise violate constraints.
The modified gradient preconditioner appears to deflect the
parameter trajectory away from the constraint, see Figure 2.
This effect may also be partially attributed to the hysteresis-
based recovery mechanism, which helps smooth updates by
leading the iterate away from the boundary of the safe set.
Employing a hysteresis fraction 0 < bH < b might also be
beneficial because C-TRPO’s divergence estimates tend to
be more reliable for strictly safe policies. The effect of the
choice of bH is shown in Figure 9 in the appendix. Finally,
we present ablations in Appendix D.2, which support our
claims that both components—the modified trust region and
hysteresis—are effective in reducing safety violations.

6. Conclusion and outlook
We introduced C-TRPO and C-NPG, two novel methods
for solving CMDPs. C-TRPO extends Trust Region Policy
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Optimization (TRPO) by embedding constraint handling
into the policy space geometry, while C-NPG provides a
provably safe natural policy gradient method for CMDPs.
Our experiments showed that C-TRPO reduces constraint
violations while maintaining competitive returns compared
to state-of-the-art constrained RL algorithms. Despite these
advances, challenges remain. Estimating the proposed diver-
gence is difficult, and we did not analyze its finite-sample
properties. Additionally, CMDPs constrain average cost re-
turn, making trajectory-wise or state-wise safety constraints
harder to model. Future work includes integrating C-TRPO
with model-based methods (As et al., 2025), leveraging
mirror descent (Tomar et al., 2022), and considering alter-
native formalisms for risk-sensitive RL like distributional
RL (Dabney et al., 2018) or Sauté RL (Sootla et al., 2022).

Overall, the proposed algorithms, C-TRPO and C-NPG,
present a step forward in general-purpose CMDP algorithms
and move us closer to deploying RL in high-stakes, real-
world applications.

Impact Statement
This paper presents work whose goal is to advance the field
of constrained Markov decision processes and safe rein-
forcement learning. There are many potential societal con-
sequences of our work, none of which we feel must be
specifically highlighted here.
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Embedding Safety into RL

A. Extended Background
We consider the infinite-horizon discounted Markov decision process (MDP), given by the tuple (S,A, P, r, µ, γ). Here,
S and A are the finite state-space and action-space respectively. Here, we make the restriction to finite MDPs as this
simplifies the presentation. For a discussion of continuous state and action spaces, we refer to Appendix B.3. Further,
P : S ×A → ∆S is the transition kernel, r : S ×A → R is the reward function, µ ∈ ∆S is the initial state distribution at
time t = 0, and γ ∈ [0, 1) is the discount factor. The space ∆S is the set of categorical distributions over S.

The Reinforcement Learning (RL) protocol is usually described as follows: At time t = 0, an initial state s0 is drawn from
µ. At each integer time-step t, the agent chooses an action according to it’s (stochastic) behavior policy at ∼ π(·|st). A
reward rt = r(st, at) is given to the agent, and a new state st+1 ∼ P (·|st, at) is sampled from the environment. Given a
policy π, the value function V π

r : S → R, action-value function Qπ
r : S ×A → R, and advantage function Aπ

r : S ×A → R
associated with the reward r are defined as

V π
r (s) := (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s

]
,

Qπ
r (s, a) := (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s, a0 = a

]
and Aπ

r (s, a) := Qπ
r (s, a)− V π

r (s).

where and the expectations are taken over trajectories of the Markov process resulting from starting at s and following policy
π. The goal is to

maximizeπ∈Π V π
r (µ) (27)

where V π
r (µ) is the expected value under the initial state distribution V π

r (µ) := Es∼µ[V
π
r (s)]. We will also write V π

r =
V π
r (µ), and omit the explicit dependence on µ for convenience, and we write Vr(π) when we want to emphasize its

dependence on π.

The Dual Linear Program for MDPs Any stationary policy π induces a discounted state-action (occupancy) measure
dπ ∈ ∆S×A, indicating the relative frequencies of visiting a state-action pair, discounted by how far the visitation lies in the
future. It is a probability measure defined as

dπ(s, a) := (1− γ)

∞∑
t=0

γtPπ(st = s)π(a|s), (28)

where Pπ(st = s) is the probability of observing the environment in state s at time t given the agent follows policy π. For
finite MDPs, it is well-known that maximizing the expected discounted return can be expressed as the linear program

max
d

r⊤d subject to d ∈ D , (29)

where D is the set of feasible state-action measures (Feinberg & Shwartz, 2012). This set is also known as the state-action
polytope, defined by

D =
{
d ∈ RS×A

≥0 : ℓs(d) = 0 for all s ∈ S
}
,

where the linear constraints ℓs(d) are given by the Bellman flow equations

ℓs(d) = d(s)− γ
∑
s′,a′

d(s′, a′)P (s|s′, a′)− (1− γ)µ(s),

where d(s) =
∑

a d(s, a) denotes the state-marginal of d. For any state-action measure d we obtain the associated policy
via conditioning, meaning

π(a|s) := d(s, a)∑
a′ d(s, a′)

(30)

in case this is well-defined. This provides a one-to-one correspondence between policies and the state-action distributions
under the following assumption.
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r(s, a)

c(s, a)
𝒟safe

d*safe

Figure 4: The dual linear program for a CMDP of two states and two actions.

Assumption A.1 (Exploration). For any policy π ∈ ∆S
A we have dπ(s) > 0 for all s ∈ S.

This assumption is standard in linear programming approaches and policy gradient methods where it is necessary for global
convergence (Kallenberg, 1994; Mei et al., 2020b). Note that d ∈ ∂D if and only if d(s, a) = 0 for some s, a and hence the
boundary of D is given by

∂D =
{
dπ : π(a|s) = 0 for some s ∈ S, a ∈ A

}
.

Constrained Markov Decision Processes Where MDPs aim to maximize the return, constrained MDPs (CMDPs) aim to
maximize the return subject to a number of costs not exceeding certain thresholds. For a general treatment of CMDPs, we
refer the reader to (Altman, 1999). An important application of CMDPs is in safety-critical reinforcement learning where
the costs incorporate safety constraints. An infinite-horizon discounted CMDP is defined by the tuple (S,A, P, r, µ, γ, C),
consisting of the standard elements of an MDP and an additional constraint set C = {(ci, bi)}mi=1, where ci : S ×A → R
are the cost functions and bi ∈ R are the cost thresholds.

In addition to the value functions and the advantage functions of the reward that are defined for the MDP, we define the same
quantities Vci , Qci , and Aci w.r.t the ith cost ci, simply by replacing r with ci. The objective is to maximize the discounted
return, as before, but we restrict the space of policies to the safe policy set

Πsafe =

m⋂
i=1

{
π : Vci(π) ≤ bi

}
, (31)

where

V π
ci (µ) := Es∼µ[V

π
ci (s)]. (32)

is the expected discounted cumulative cost associated with the cost function ci. Like the MDP, the discounted cost CMPD
can be expressed as the linear program

max
d

r⊤d sbj. to d ∈ Dsafe, (33)

where

Dsafe =

m⋂
i=1

{
d ∈ RS×A : c⊤i d ≤ bi

}
∩D (34)

is the safe occupancy set, see Figure 4.
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Bregman divergences Here, we give a short introduction to the concept of Bregman divergences, which is required for the
formulation of trust region methods. For this, we consider a convex subset of Euclidean space C ⊆ Rd with a non-empty
interior int(C) and a strictly convex function ϕ : C → R which we assume to be differentiable on the interior int(C). Then,
the Bregman divergence induced by ϕ is given by

Dϕ(x||y) := ϕ(x)− ϕ(y)−∇ϕ(y)⊤(x− y), (35)

which is well defined for x ∈ C, y ∈ int(C). Intuitively, the Bregman divergence measures the difference between ϕ and its
linearization at y. The strict convexity of ϕ ensures that Dϕ(x||y) ≥ 0 and Dϕ(x||y) = 0 if and only if x = y. Therefore,
Bregman divergences are commonly interpreted as a generalized measure for the distance between points, however, it is
important to notice that it is not generally symmetric. An important example is the Euclidean distance Dϕ(x||y) = ∥x− y∥22
which arises from the choice ϕ(x) := ∥x∥22. Another important Bregman divergence is the Kullback-Leibler (KL) divergence

DKL(p||q) :=
d∑

i=1

pi log
pi
qi
−

d∑
i=1

pi +

d∑
i=1

qi, (36)

where we use the common convention 0 log 0
0
:= 0. Then, the KL divergence is defined for p ∈ Rd

≥0 and q ∈ Rd
≥0 which

is absolutely continuous with respect to p, meaning that pi = 0 implies qi = 0. Note that if both p and q are probability
vectors, meaning that

∑
i pi =

∑
i qi = 1, we obtain

DKL(p||q) :=
d∑

i=1

pi log
pi
qi
. (37)

Information Geometry of Policy Optimization Among the most successful policy optimization schemes are natural
policy gradient (NPG) methods or variants thereof like trust-region and proximal policy optimization (TRPO and PPO,
respectively). These methods assume a convex geometry and corresponding Bregman divergences in the state-action
polytope, where we refer to (Neu et al., 2017; Müller & Montúfar, 2023) for a more detailed discussion.

In general, a trust region update is defined as

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DΦ(dπk

||dπ) ≤ δ, (38)

where DΦ : D ×D → R is a Bregman divergence induced by a suitably convex function Φ: int(D)→ R. The functional

Aπk
r (π) = Es∼dπk

,a∼πθ(·|s)
[
Aπk

r (s, a)
]
, (39)

as introduced in (Kakade & Langford, 2002), is called the policy advantage. As a loss function, it is also known as the
surrogate advantage (Schulman et al., 2017a), since we can interpret A as a surrogate optimization objective of the return.
In particular, it holds for a parameterized policy πθ, that∇θA

πθk
r (πθ)|θ=θk = ∇θVr(θk), see (Kakade & Langford, 2002;

Schulman et al., 2017a). TRPO and the original NPG assume the same geometry (Kakade, 2001; Schulman et al., 2017a),
since they employ an identical Bregman divergence

DK(dπ1 ||dπ2) :=
∑
s,a

dπ1(s, a) log
π1(a|s)
π2(a|s)

=
∑
s

dπ1(s)DKL(π1(·|s)||π2(·|s)).

We refer to DK as the Kakade divergence and informally write DK(π1, π2) := DK(dπ1
, dπ2

). This divergence can be shown
to be the Bregman divergence induced by the negative conditional entropy

ΦK(dπ) :=
∑
s,a

dπ(s, a) log π(a|s), (40)

see (Neu et al., 2017). It is well known that with a parameterized policy πθ, a linear approximation of A and a quadratic
approximation of the Bregman divergence DK at θ, one obtains the natural policy gradient step given by

θk+1 = θk + ϵkGK(θk)
+∇R(θk), (41)
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where GK(θ)
+ denotes a pseudo-inverse of the Gramian matrix with entries equal to the state-averaged Fisher-information

matrix of the policy

GK(θ)ij := Es∼dπθ

[∑
a

∂θiπθ(a|s)∂θjπθ(a|s)
πθ(a|s)

]
(42)

= Edπθ
[∂θi log πθ(a|s)∂θj log πθ(a|s)], (43)

where we refer to (Schulman et al., 2017a) for a more detailed discussion.

Consider a convex potential Φ: D → R or Φ: Dsafe → R and the TRPO update

θk+1 ∈ argmaxAπθk
r (πθ) sbj. to DΦ(dθk ||dθ) ≤ ϵ. (44)

In practice, one uses a linear approximation of Aπθk
r (πθ) and a quadratic approximation of DΦ to compute the TRPO update.

This gives the following approximation of TRPO

θk+1 ∈ argmax
θ

∇θAθk
r (θ)|θ=θk · (θ − θk) sbj. to ∥θ − θk∥2G(θk)

≤ ϵ, (45)

where

G(θ)ij = ∂θid
⊤
θ ∇2Φ(dθ)∂θjdθ. (46)

Note that by the policy gradient theorem, it holds that

∇θAθk
r (θ)|θ=θk = ∇Vr(θk). (47)

Thus, the approximate TRPO update is equivalent to

θk+1 = θk + ϵkG(θk)
+∇Vr(θ), (48)

where

ϵk =

√
ϵ

∥G(θk)+∇Vr(θk)∥G(θk)
. (49)

Hence, the approximation TRPO update corresponds to a natural policy gradient update with an adaptively chosen step size.

B. Details on the Safe Geometry for CMDPs
B.1. Safe Trust Regions

The safe mirror function for a single constraint is given by

ΦC(d) := ΦK(d) +

m∑
i=1

β ϕ(b− c⊤d), (50)

and the resulting Bregman divergence

DC(d1||d2) = ΦC(d1)− ΦC(d2)− ⟨∇ΦC(d2), d1 − d2⟩. (51)

is a linear operator in Φ, hence

DΦ(d)+βϕ(b−c⊤d)(d1||d2) = DΦK
(d1||d2) + βDϕ(d1||d2), (52)

where

Dϕ(d1||d2) = ϕ(b− c⊤d1)− ϕ(b− c⊤d2)− ⟨∇ϕ(b− c⊤d2), d1 − d2⟩ (53)

= ϕ(b− c⊤d1)− ϕ(b− c⊤d2)− ϕ′(b− c⊤d2)(c
⊤d1 − c⊤d2). (54)

= ϕ(b− Vc(π1))− ϕ(b− Vc(π2)) + ϕ′(b− Vc(π2))(Vc(π1)− Vc(π2)). (55)

The last expression can be interpreted as the one-dimensional Bregman divergence Dϕ(b− Vc(π)||b− Vc(πk)), which is a
(strictly) convex function in Vc(π) for fixed πk if ϕ is (strictly) convex.
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Figure 5: Illustration of policy divergences (dashed) close to the constraint (red). a) TRPO (dotted for reference) and CPO. b)
C-TRPO’s divergence depends on the hyper-parameter β, which modulates the strength of the barrier towards the constraint
surface. For β ↘ 0 we obtain an update equivalent to CPO, and more conservative updates for larger values (β = 2).
The plots were generated with the toy MDP in Figure 2. c) Shown are the quadratic approximations of the divergence
in parameter space, which is obtained by mapping the policy onto its occupancy measure, where a safe geometry can be
defined using standard tools from convex optimization (safe region in white).

B.2. Details on C-TRPO

B.2.1. SURROGATE DIVERGENCE

In practice, the exact constrained KL-Divergence DC cannot be evaluated, because it depends on the cost-return of the
optimized policy Vc(π). Therefore, we use the surrogate divergence

D̄ϕ(πθ||πθk) = ϕ(b− V πk
c − Aπk

c (π))− ϕ(b− V πk
c ) + ϕ′(b− V πk

c )Aπk
c (π) (56)

which is obtained by the substitution Vc(π)− V πk
c → Aπk

c (π) in Dϕ.

When we center this divergence around policy πk and keep this policy fixed, it becomes a function of the policy cost
advantage.

D̄ϕ(πθ||πθk) = ϕ(b− V πk
c − Aπk

c (π))− ϕ(b− V πk
c ) + ϕ′(b− V πk

c )Aπk
c (π)

= ϕ(δb − Aπk
c (π))− ϕ(δb) + ϕ′(δb)Aπk

c (π)

= Ψ(Aπk
c ).

Note that D̄ϕ(πθ||πθk) = Ψ(Aπk
c (π)), where Ψ(x) = ϕ(δb − x) − ϕ(δb) − ϕ′(δb) · x is a (strictly) convex function if ϕ

is (strictly) convex, since it is equivalent to the one-dimensional Bregman divergence Dϕ(δb − x||δb) on the domain of
ϕ(b− x), see Figure 6.

Example B.1. The function ϕ(x) = x log(x) induces the divergence

D̄ϕ(πθ||πθk) = Aπk
c (πθ)− (δb − Aπk

c (πθ)) log

(
δb

δb − Aπk
c (πθ))

)
. (57)
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Figure 6: The surrogate Constrained KL-Divergence as a function of the policy cost advantage.

B.2.2. ESTIMATION

In the practical implementation, the expected KL-divergence between the policy of the previous iteration, πk, and the
proposal policy π is estimated from state samples si by running πk in the environment

∑
s

dπk
(s)DKL(π(·|s)||πk(·|s)) ≈ 1/N

N−1∑
i=0

DKL(π(·|si)||πk(·|si)) (58)

where DKL can be computed in closed form for Gaussian policies, where N is the batch size.

For the constraint term, we estimate δb from trajectory samples, as well as the policy cost advantage

Aπk
c (π) ≈ Â =

1

N

N−1∑
i=0

π(ai|si)
πk(ai|si)

Âπk
i (59)

where Âπk
i is the GAE-λ estimate (Schulman et al., 2018) of the advantage function of the cost. For any suitable ϕ, the

resulting divergence estimate is

D̂ϕ = ϕ(δb − Â)− ϕ(δb)− ϕ′(δb)Â (60)

and for the specific choice ϕ(x) = x log(x)

D̂ϕ = Â− (δb − Â) log
(

δb

δb − Â

)
. (61)

B.2.3. DETAILS ON C-NPG

In showing that TRPO with quadratic approximation agrees with a natural gradient step, see Appendix A, we have used that
∇θAθk

r (θ)|θ=θk = ∇Vr(θk), which holds although Ar is only a proxy of Vr. We now provide a similar property for the
quadratic approximation of the surrogate divergences D̄C.

Proposition B.2. For any parameter θ with πθ ∈ Πsafe it holds that

∇2
θD̄ϕ(θ||θ̂)|θ=θ̂ = ∇2

θDϕ(θ||θ̂)|θ=θ̂ (62)

and hence

∇2
θD̄KL(θ||θ̂)|θ=θ̂ + β∇2

θD̄ϕ(θ||θ̂)|θ=θ̂ = GC(θ̂) (63)

where GC(θ) denotes the Gramian matrix of C-NPG with entries

GC(θ)ij = ∂θid
⊤
θ ∇2ΦC(θ)∂θjdθ. (64)
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Proof. Let H̄KL(θ) = ∇2
θD̄KL(θ||θ̂)|θ=θ̂ and H̄ϕ(θ) = ∇2

θD̄ϕ(θ||θ̂)|θ=θ̂. One can show that H̄KL = GK(θ) (Schulman
et al., 2017a). Further, we have

H̄ϕ(θ) = ∇θAπk
c (θ)Ψ′′(Aπk

c (θ))∇θAπk
c (θ)⊤ +Ψ′(Aπk

c (θ))∇2
θAπk

c (θ)

a)
= ∇θAπk

c (θ)Ψ′′(Aπk
c (θ))∇θAπk

c (θ)⊤

b)
= ∇θAπk

c (θ)ϕ′′(b− V πk
c (θ))∇θAπk

c (θ)⊤

= ∇θV
πk
c (θ)ϕ′′(b− V πk

c (θ))∇θV
πk
c (θ)⊤,

where a) follows from Ψ′(Aπk
c (θ)) = 0 since Ψ(0) = 0, Ψ ≥ 0 and Aθ̂

c(θ)|θ=θ̂ = 0. Further, b) follows because
Ψ′′(x)|x=0 = ϕ′′(δb). Thus, H̄ϕ is equivalent to the Gramian

GC(θ)ij := ∂θid
⊤
θ ∇2ΦC(θ)∂θjdθ (65)

= GK(θ)ij + βϕ′′(b− c⊤k dθ)∂θid
⊤
θ cc

⊤∂θidθ (66)

= H̄KL + β∇θVc(θ)ϕ
′′(b− Vc(θ))∇θVc(θ)

⊤, (67)
= H̄KL + βH̄ϕ. (68)

Again, for multiple constraints, the statement follows analogously.

In particular, this shows that the C-TRPO update can be interpreted as a natural policy gradient step with an adaptive step
size and that the updates with DC and D̄C are equivalent if we use a quadratic approximation for both, justifying D̄C as a
surrogate for DC.

B.3. Beyond finite MDPs

For the sake of simplicity and as this is required for our theoretical analysis, we have introduced C-TRPO only for finite
MDPs. However, C-TRPO can also be used for problems with continuous state and action spaces as we discuss here. In this
case, the state-action and state distributions are defined as

dπ(S ×A) := (1− γ)

∞∑
t=0

γtPπ(st ∈ S, at ∈ A) and

dπ(S) := (1− γ)

∞∑
t=0

γtPπ(st ∈ S)

for any measurable subsets A ⊆ A and S ⊆ S. Further, the Kakade divergence is then given by

DK(d
π1 ||dπ2) := Es∼dπ1

[
DKL(π1(·|s)||π2(·|s))

]
, (69)

which is well defined if π1(·|s) is absolutely continuous with respect to π2(·|s) for dπ1 almost all s ∈ S. The Bregman
divergence that C-TRPO builds on is – just as in the finite case – given by

DC(d1||d2) = DK(d1||d2) +
m∑
i=1

βiDϕi
(d1||d2), (70)

where

Dϕi
(d1||d2) =ϕ(bi − Vci(π1))− ϕ(bi − Vci(π2)) + ϕ′(bi − Vci(π2))(Vci(π1)− Vci(π2)). (71)

Like in the finite case, the policy advantage is defined as

Aπk
r (π) = Es,a∼dπk

[
π(a|s)
πk(a|s)

Aπk
r (s, a)

]
, (72)
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where Aπ
r (s, a) = Qπ(s, a)− V π(s) denotes the advantage function, which is defined analoguously to the finite case. Now,

the plain trust region update is given by

θk+1 ∈ argmax
θ

Aπk
r (π) sbj. to DC(dπk

||dπ) ≤ δ. (73)

Just like in the finite case, we use a surrogate divergence D̄C and obtain the formulation of C-TRPO

πk+1 = argmax
π∈Π

Aπk
r (π) sbj. to D̄C(π||πk) ≤ δ. (74)

Here, the differences to DC are that we use samples from the state distribution dπk and use a surrogate for the cost advantage
to estimate the divergence Dϕi

as described in Section 3.2. Further, we use a parametric policy model πθ and a linear
approximation of Aπk as well as quadratic approximation of D̄C(π||πk) for our practical implementation.

Expression for Gaussian policies We test C-TRPO in various control tasks where we use Gaussian policies. More
precisely, the state and action space consist of Euclidean spaces S = Rds and A = Rda . Then, we consider a policy network
µθ : S → A, which predicts the mean action and assume parameterized but state independent diagonal Gaussian noise,
meaning that πθ(·|s) = N (µθ(s),Σθ), where Σθ is diagonal. Consequently, we can use a closed-form expression for the
KL divergence as

DKL(πθ1(·|s)||πθ2(·|s)) =
1

2

(
tr
(
Σ−1

θ2
Σθ1

)
− da + ∥µθ1(s)− µθ2(s)∥2Σ−1

θ2

+ ln

(
detΣθ2

detΣθ1

))
,

see (Zhang et al., 2024b).

C. Proofs of Section 4
C.1. Proofs of Section 4.1

Our theoretical analysis of C-TRPO is built on the following bounds on the performance difference of two policies.

Theorem C.1 (Performance Difference, (Achiam et al., 2017)). For any function f(s, a), the following bounds hold

Vf (π1)− Vf (π2) ⋚ Aπ2

f (π1)±
2γϵf

(1− γ)

√
1

2
Es∼dπ2

DKL(π1(·|s)||π2(·|s)) (75)

where ϵf = maxs |Ea∼π1A
π2

f (s, a)|.

Theorem C.1 can be interpreted as a bound on the error incurred by replacing the difference in returns Vf (π1)− Vf (π) of
any state-action function by its policy advantage Aπ2

f (π1).

Proposition 4.1 (C-TRPO reward update). Set ϵr = maxs |Ea∼πk+1
Aπk

r (s, a)|. The expected reward of a policy updated
with C-TRPO is bounded from below by

Vr(πk+1) ≥ Vr(πk)−
√
2δγϵr
1− γ

. (23)

Proof. It follows from the lower bound in Theorem C.1 that

Vr(πk+1)− Vr(πk) ≥ Aπk
r (πk+1)−

γϵr
(1− γ)

√
2D̄C(πk+1||πk) (76)

where we choose f = r. The bound holds because D̄ϕ ≥ 0, and thus D̄C ≥ EDKL. Further, δ ≥ DC and Aπk
r (πk+1) ≥ 0

by the update equation, which concludes the proof. See Appendix C.3 for a more detailed discussion.

Proposition 4.2. The approximate C-TRPO update approaches the CPO update in the limit as β ↘ 0.
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Proof. Let us fix a strictly safe policy π0 ∈ int(Πsafe). In both cases, we approximate the expected cost of a policy using
Vc(π) ≈ Vc(π0) + Aπ0

c (π), which is off by the advantage mismatch term in Proposition 4.1. Hence, we maximize the
surrogate of the expected value Aπ0

r (π) over the regions

PCPO := {π ∈ Π : D̄K(π, π0) ≤ δ, Vc(π0) + Aπ0
c (π) ≤ b}

in the case of CPO, and

Pβ := {π ∈ Π : D̄C(π, π0) ≤ δ},

with C-TRPO for some β > 0. Note that

D̄C(π, π0) = D̄K(π, π0) + βΨ(Aπ0
c (π)), (77)

and Ψ: (−∞, δb)→ (0,+∞) and Ψ(t)→ +∞ for t↗ δb, where δb = b− Vc(π0). Denote the corresponding updates by
π̂CPO and the C-TRPO update by π̂β . Note that we have Pβ ⊆ Pβ′ ⊆ PCPO for β ≥ β′. Further, we have⋃

β>0

Pβ = {π ∈ P : DK(π, π0) < δ, Vc(π0) + Aπ0
c (π) < b}.

Hence, the trust regions Pβ grow for β ↘ 0 and fill the interior of the trust region PCPO.

Remark C.2. Intuitively, one could repeatedly solve the C-TRPO problem with successively smaller values of β, which
would be similar to solving CPO with the interior point method using Ψ as the barrier function.

Proposition 4.3 (C-TRPO worst-case constraint violation). Let DC(πk+1||πk) ≤ δ with δ > 0 and set ϵc =
maxs |Ea∼πk+1

Aπk
c (s, a)|. It holds that

Vc(πk+1) ≤ Vc(πk) + Aπk
c (πk+1) +

√
2δ(β)γϵc
1− γ

, (24)

where δ(β) = δ − βDϕ(πk+1, πk) ≤ δ is decreasing in β > 0, limβ→0 δ(β) = δ, and δ(β) → 0 for β →
δDC(πk+1||πk)/Dϕ(πk+1, πk).

Proof. Setting f = c in the upper bound from Theorem C.1 we obtain

Vc(πk+1) ≤ Vc(πk) + Aπk
c (πk+1)±

2γϵc
(1− γ)

√
1

2
Es∼dπk

DKL(πk+1(·|s)||πk(·|s))

Note now that we have

Es∼dπk
DKL(πk+1(·|s)||πk(·|s)) = DC(πk+1||πk)− βDϕ(πk+1, πk) ≤ δ − βDϕ(πk+1, πk) = δ(β).

C.2. Details on the results in Section 4.2

Recall that we study the natural policy gradient flow

∂tθt = GC(θt)
+∇Vr(θt), (78)

where GC(θ)
+ denotes a pseudo-inverse of GC(θ) with entries

GC(θ)ij := ∂θid
⊤
θ ∇2ΦC(dθ)∂θjdθ = GK(θ)ij +

∑
k

βkϕ
′′(bk − c⊤k dθ)∂θid

⊤
θ ckc

⊤
k ∂θidθ. (79)

and θ 7→ πθ is a differentiable policy parametrization.

Moreover, we assume that θ 7→ πθ is regular, that it is surjective and the Jacobian is of maximal rank everywhere. This
assumption implies overparametrization but is satisfied for common models like tabular softmax, tabular escort, or expressive
log-linear policy parameterizations (Agarwal et al., 2021a; Mei et al., 2020a; Müller & Montúfar, 2023).
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We denote the set of safe parameters by Θsafe := {θ ∈ Rp : πθ ∈ Πsafe}, which is non-convex in general and say that Θsafe

is invariant under Equation (25) if θ0 ∈ Θsafe implies θt ∈ Θsafe for all t. Invariance is associated with safe control during
optimization and is typically achieved via control barrier function methods (Ames et al., 2017; Cheng et al., 2019). We study
the evolution of the state-action distributions dt = dπθt as this allows us to employ the linear programming formulation of
CMPDs and we obtain the following convergence guarantees.

Theorem 4.4 (Safety during training). Assume that ϕ : R>0 → R satisfies ϕ′(x)→ +∞ for x↘ 0 and consider a regular
policy parameterization. Then the set Θsafe is invariant under Equation (25).

Proof. Consider a solution (θt)t>0 of Equation (78). As the mapping π 7→ dπ is a diffeomorphism (Müller & Montúfar,
2023) the parameterization Θsafe → Dsafe, θ 7→ dπθ is surjective and has a Jacobian of maximal rank everywhere. As
GC(θ)ij = ∂θidθ∇ΦC∂θidθ this implies that the state-action distributions dt = dπθt solve the Hessian gradient flow
with Legendre-type function ΦC and the linear objective d 7→ r⊤d, see (Amari, 2016; van Oostrum et al., 2023; Müller
& Montúfar, 2023) for a more detailed discussion. It suffices to study the gradient flow in the space of state-action
distributions dt. It is easily checked that ΦC is a Legendre-type function for the convex domain DC, meaning that it satisfies
∥∇Φ(dn)∥ → +∞ for dn → d ∈ ∂Dsafe. Since the objective is linear, it follows from the general theory of Hessian
gradient flows of convex programs that the flow is well posed, see (Alvarez et al., 2004; Müller & Montúfar, 2023).

Theorem 4.5. Assume that ϕ′(x) → +∞ for x ↘ 0, set V ⋆
r,C := maxπ∈Πsafe

Vr(π) and denote the set of optimal
constrained policies by Π⋆

safe = {π ∈ Πsafe : Vr(π) = V ⋆
r,C}, consider a regular policy parametrization and let (θt)t≥0

solve Equation (25). It holds that Vr(πθt)→ V ⋆
r,C and

lim
t→+∞

πt = π⋆
safe = argmin{DC(π

⋆, π0) : π
⋆ ∈ Π⋆

safe}. (26)

Proof. Just like in the proof of Theorem 4.4 we see that dt = dπθt solves the Hessian gradient flow with respect to the
Legendre type function ΦC. Now the claims regarding convergence and the identification of the limit limt→+∞ πθt follows
from the general theory of Hessian gradient flows, see (Alvarez et al., 2004; Müller et al., 2024).

C.3. Performance improvement bounds and choice of divergence

In a series of works (Kakade & Langford, 2002; Pirotta et al., 2013; Schulman et al., 2017a; Achiam et al., 2017), the
following bound on policy performance difference between two policies has been established.

Vf (π
′)− Vf (π) ⋚ Aπ′

f (π)± 2γϵf
(1− γ)

Es∼dπDTV(π
′||π)(s) (80)

where DTV is the Total Variation Distance. Furthermore, by Pinsker’s inequality, we have that

DTV(π
′||π) ≤

√
1

2
DKL(π′||π), (81)

and by Jensen’s inequality

Es∼dπ
DTV(π

′||π)(s) ≤
√

1

2
Es∼dπ

DKL(π′||π)(s), (82)

It follows that we can not only substitute the KL-divergence into the bound but any divergence

DΦ(d
′
π||dπ) ≥ Es∼dπ

DKL(π
′||π)(s) (83)

can be substituted, and still retains TRPO’s and CPO’s update guarantees.

C.4. Comparison with CPO

In the approximate case of C-TRPO and CPO, where the reward is approximated linearly, and the trust region quadratically,
the constraints differ in that C-TRPO’s constraint is

(θ − θk)(H̄KL(θ) + βH̄ϕ(θ))(θ − θk) < δ
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Figure 7: Pictorial illustration of conceptual and practical differences between CPO and C-TRPO. The local approximation
of C-TRPO’s trust region results in a single quadratic constraint, which is compressed in the direction of the closest cost
surface, depending on the hyper-parameter β (blue dashed lines on the right). This is in contrast to CPO, where the local
approximation of the update results in a quadratic constraint which is not affected by the cost, and a linear constraint which
only takes effect upon contact with the cost surface. Intuitively, this results in a smoother optimization path for C-TRPO that
remains on the interior of the safe policy space for longer.

whereas CPO’s is
(θ − θk)H̄KL(θ)(θ − θk) < δ and V θk

c + (∇θAθk
c (θ))⊤(θ − θk) ≤ b.

Figure 7 illustrates the differences between CPO and C-TRPO.
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D. Additional Experiments
D.1. Effect of hyper-parameters

To better understand the effects of the two hyperparameters β and bH, we observe how they change the training dynamics
through the example of the AntVelocity environment.

The safety parameter β modulates the stringency with which C-TRPO satisfies the constraint, without limiting the expected
return for values up to β = 1, see Figure 8. For higher values, the expected return starts to degrade, partly due to D̄ϕ being
relatively noisy compared to D̄KL and thus we recommend the choice β = 1.
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Figure 8: Influence of β on C-TRPO’s performance.

Finally, employing a hysteresis fraction 0 < bH < b seems beneficial, possibly because it leads the iterate away from the
boundary of the safe set, and because divergence estimates tend to be more reliable for strictly safe policies. The effect of
the choice of bH is visualized in Figure 9.
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Figure 9: Influence of the hysteresis fraction bH on C-TRPO’s performance.
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D.2. Ablation Study: CPO vs. C-TRPO

We conduct an ablation study to rule out that our improvements of C-TRPO over CPO are only due to hysteresis. For this,
we run both CPO and C-TRPO with and without hysteresis with the same hysteresis parameter as in our other experiments.
We see that the hysteresis improves safety for both algorithm. Further, we find that the hysteresis slightly reduces the return
of C-TRPO. Overall, we clearly see that C-TRPO itself is much safer compared to CPO as even C-TRPO without hysteresis
achieves lower cost regret compared to CPO with hysteresis.
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Figure 10: Ablation study on the core components of C-TRPO: Safe trust region (C-TRPO no hyst.) and recovery with
hysteresis (CPO hyst.). Evaluation is based on the Inter Quartile Mean (IQM) normalized scores across 5 seeds and 8 tasks.
From left to right: episode return of the reward (PPO normalized), episode return of the cost (threshold normalized), and
cumulative cost violation (CPO normalized).

D.3. Noisy Cost Estimates

To evaluate the sensitivity of C-TRPO to noisy or inaccurate estimates of the cost value function Vc, we train multiple
policies with C-TRPO on the AntVelocity task and corrupt each policy’s value estimate by varying levels of noise, i.e. white
noise with varying standard deviations σ, see Figure 11.
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Figure 11: Performance of C-TRPO on the AntVelocity task as a function of cost value noise. The final reward decreases
slightly for noise with σ = 0.5 and the cost regret increases with the amount of noise added to the value estimates.
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D.4. Performance on individual environments

Here, we compare C-TRPO to relevant baseline algorithms on all individual environments in terms of their sample efficiency
curves. To improve readability of the plots, only the algorithms that are, on average, safe in the last iterate are included.
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Figure 12: Benchmark on the locomotion environments.
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Figure 13: Benchmark on the navigation environments.
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Table 1: Final performance per task for 5 seeds each, where expected reward Vr, expected cost Vc, and cost regret Reg+ are
shown, including lower and upper confidence intervals. We highlight the best performance with respect to the IQM of the
return Vr in bold, and box the lowest cost regret Reg+.
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±
-546.1/977.0

2532.2
±

-276.8/206.1
2247.0

±
-415.5/615.1

2701.4
±

-388.8/1840.8

C
U

P
V
r

3092.0
±

-53.8/170.7
2916.7

±
-346.9/116.8

5677.9
±

-173.1/40.2
1639.8

±
-88.2/63.1

2.3
±

-1.8/3.9
22.4

±
-7.7/1.2

27.6
±

-3.2/2.3
0.5

±
-0.3/1.1

V
c

25.1
±

-1.9/2.7
40.7

±
-27.7/34.1

24.0
±

-7.0/10.5
23.9

±
-8.6/14.7

71.5
±

-28.2/57.0
45.2

±
-5.4/4.1

21.6
±

-5.9/6.3
35.6

±
-11.0/14.8

R
eg

+
3160.9

±
-377.1/641.8

4719.9
±

-915.0/3503.3
509.0

±
-276.6/306.5

4849.7
±

-1176.6/984.8
23726.4

±
-10827.1/20476.7

11715.5
±

-2047.7/1636.0
4774.5

±
-484.2/2431.3

3209.9
±

-1255.9/1967.1

FO
C

O
PS

V
r

2942.2
±

-96.3/45.6
2997.8

±
-380.0/17.8

5420.0
±

-262.0/183.0
1670.6

±
-19.4/8.3

1.9
±

-0.7/1.1
17.6

±
-3.1/3.6

24.7
±

-4.8/4.1
0.7

±
-0.5/2.1

V
c

28.1
±

-8.1/1.4
36.9

±
-7.5/3.2

10.9
±

-4.1/8.5
25.9

±
-2.4/5.5

33.0
±

-10.0/30.4
33.7

±
-10.8/20.4

21.4
±

-8.1/4.7
24.7

±
-8.4/4.8

R
eg

+
2257.8

±
-437.4/248.0

3472.8
±

-1021.9/664.2
872.7

±
-766.6/684.7

3647.8
±

-307.0/383.5
11359.2

±
-750.1/3436.6

5917.6
±

-1987.9/7276.3
6031.9

±
-1427.1/1075.8

2684.0
±

-451.8/484.2

PPO
-L

A
G

V
r

3210.7
±

-126.6/85.8
3033.6

±
-27.6/1.5

5814.9
±

-102.9/122.0
240.1

±
-92.7/159.0

0.3
±

-1.0/0.8
9.4

±
-1.3/1.8

30.9
±

-16.5/1.8
0.6

±
-0.2/0.0

V
c

28.9
±

-8.6/8.7
23.2

±
-2.8/1.9

12.7
±

-7.6/31.0
38.8

±
-24.4/36.4

39.2
±

-12.7/41.1
22.5

±
-4.3/10.1

31.7
±

-9.2/2.7
18.2

±
-11.4/9.5

R
eg

+
1767.5

±
-224.5/194.1

3339.6
±

-486.9/512.1
1299.1

±
-320.5/455.9

5909.8
±

-3420.8/2790.5
22554.4

±
-6386.9/10174.9

5135.6
±

-729.3/1539.8
6322.2

±
-419.5/722.3

3464.7
±

-453.1/743.8

IPO
V
r

2962.4
±

-39.2/31.6
2810.9

±
-143.1/124.8

5886.8
±

-205.5/149.3
1535.2

±
-857.1/167.6

-0.5
±

-0.2/0.5
6.6

±
-3.3/3.0

1.5
±

-0.3/0.4
0.6

±
-0.2/0.3

V
c

28.3
±

-6.1/4.8
27.4

±
-3.5/7.9

18.1
±

-6.9/8.2
24.9

±
-10.3/2.0

38.5
±

-6.7/3.9
25.6

±
-2.0/6.5

24.6
±

-4.2/9.9
23.7

±
-9.0/3.9

R
eg

+
1548.1

±
-469.7/459.5

2351.2
±

-1385.0/1098.6
580.3

±
-319.9/167.0

3958.3
±

-2464.1/2771.1
6570.8

±
-871.6/1370.8

3496.1
±

-717.2/1900.7
5926.5

±
-938.8/1361.4

2464.2
±

-711.4/1688.5
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