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Abstract
Data quality and its effective selection are fun-001
damental to improving the performance of ma-002
chine translation models, serving as corner-003
stones for achieving robust and reliable trans-004
lation systems. This paper presents a data se-005
lection methodology specifically designed for006
fine-tuning machine translation systems, which007
leverages the synergy between a learner model008
and a pre-trained reference model to enhance009
overall training effectiveness. By defining a010
learnability score, our approach systematically011
evaluates the utility of data points for training,012
ensuring that only the most relevant and im-013
pactful examples contribute to the fine-tuning014
process. Furthermore, our method employs015
a batch selection strategy which considers in-016
terdependencies among data points, optimiz-017
ing the efficiency of the training process while018
maintaining a focus on data relevance. Experi-019
ments on English-to-Persian translation using020
an mBART model fine-tuned on the CCMatrix021
dataset demonstrate that our method achieves022
a fivefold improvement in data efficiency com-023
pared to an iid baseline. Experimental results024
indicate that our approach improves computa-025
tional efficiency by 24% when utilizing cached026
embeddings, as it requires fewer training data027
points. Additionally, it enhances generalization,028
resulting in superior translation performance029
compared to iid methods.030

1 Introduction031

Machine translation is a fundamental task in natural032

language processing. As with any data-driven learn-033

ing task, the effectiveness of training heavily de-034

pends on the quality of the data. (Fenza et al., 2021;035

Gupta et al., 2021; Chen et al., 2021) In particular,036

parallel datasets may contain irrelevant sentence037

pairs or poorly translated documents, which nega-038

tively impact the performance of the final model.039

Beyond the quality of data, the state of the040

learner model itself plays a crucial role in select-041

ing beneficial training data. For instance, studies042

have shown that data points associated with high 043

loss on the learner model are typically those the 044

model struggles to learn. (Bucher et al., 2016; Ku- 045

mar et al., 2017) Allocating more computational 046

resources to such data points, rather than to those 047

the model has already mastered, can lead to more 048

effective training. 049

Training can be made more data-efficient by em- 050

ploying selection methods during the training pro- 051

cess, such as those based on the loss of data points 052

on the learner model, a pre-trained model, or a 053

combination of both. 054

Furthermore, we demonstrate that the batch- 055

selection method is more effective than the individ- 056

ual sample-selection method. More specifically, se- 057

lecting data points within a batch, where the points 058

are interdependent, is more effective than indepen- 059

dently selecting high-scoring data points. Similar 060

findings have also been reported in previous studies 061

for multimodal learning. Our experiments focus 062

on English-to-Persian translation, leveraging an 063

mBART fine-tuned on the CCMatrix dataset. 064

An mBART model (Liu, 2020) is used as the 065

learner and a pre-trained LaBSE model (Feng et al., 066

2020) as the reference model. The pre-trained 067

model is referred to as the reference model, while 068

the model undergoing fine-tuning is called the 069

learner model. 070

We use features extracted from both the learner 071

model and a pre-trained model for selecting the 072

data during the training. We employ the learnabil- 073

ity (Mindermann et al., 2022) score to select data 074

points for fine-tuning. 075

As demonstrated in our experiments, the use of 076

the learnability score as a selection metric enables 077

the model to generalize more effectively to the data, 078

rather than overfitting. 079

The paper is organized as follows: Section 2 re- 080

views related work, Section 3 presents our method- 081

ology, Section 4 details results, and Section 5 con- 082

cludes. Section 6 discusses limitations, with supple- 083

1



Super Batch of
Parallel sentences

En
co

de
r D

ecoder

Source Target

z1 z2T

MatMul

Learner
Matrix

Learner model

Pr
e-

tra
in

ed
 E

nc
od

er
(r

ef
er

en
ce

 m
od

el
)

z1 z2T

Reference
Matrix

MatMul

× - 1

Learnability Matrix+
Batch

selection
algorithm

Selected
Sub-batch

Figure 1: Diagram illustrating our proposed method for data selection in machine translation

mentary materials in Appendix A and Appendix B.084

2 Related Work085

Offline data selection: Traditional methods focus086

on selecting parallel data subsets to enhance trans-087

lation quality and reduce resource consumption.088

Several studies highlight the role of data filtering in089

improving NMT, such as using influence functions090

to remove harmful examples (Lam et al., 2022) and091

filtering low-quality synthetic data to boost accu-092

racy (Xu et al., 2019).093

Online Data Selection: Fixed curation strate-094

gies may not adapt to evolving training needs. On-095

line methods dynamically identify challenging ex-096

amples, improving NMT by varying selected data097

across training epochs (Van Der Wees et al., 2017).098

Hard Negative Mining: This technique en-099

hances learning by focusing on difficult negative100

examples, widely used in computer vision and con-101

trastive learning (Bucher et al., 2016; Kumar et al.,102

2017; Mishchuk et al., 2017; Simo-Serra et al.,103

2015; Wu et al., 2017; Xuan et al., 2020; Robinson104

et al., 2020; Tian et al., 2021). However, its applica-105

tion in machine translation remains underexplored.106

Batch selection. Unlike sample selection, batch107

selection considers inter-data relationships. Evans108

et al. (2024) proposed an iterative batch selection109

method using learnability scores in multimodal110

datasets. Our work extends this concept to machine111

translation.112

3 Methodology 113

3.1 Selection criteria 114

Our primary selection criterion is the learnability 115

metric proposed by Mindermann et al. (2022), con- 116

sisting of a hard learner score and an easy reference 117

score. The hard learner score is assigned by the 118

learner model, while the easy reference score is 119

assigned by the reference model. We first sam- 120

ple a super-batch of data, ensuring equal selection 121

probability, then choose a sub-batch based on the 122

learnability metric and perform backpropagation. 123

Effective parallel sentences exhibit closer embed- 124

dings in latent space, making similarity between 125

embeddings a key selection factor. A low similar- 126

ity on the learner model indicates unlearned data 127

points, which should be prioritized. We define the 128

hard learner score as: 129

shard(B, θ) = −M(Hθ(Bsrc), Hθ(Btrg)) (1) 130

where θ denotes learner model parameters, B is 131

the batch, M represents matrix multiplication, and 132

Hθ(.) is the embedding matrix from the learner 133

model. While effective for clean datasets (Paul 134

et al., 2021), this heuristic can amplify noise in less 135

curated datasets (Evans et al., 2025). 136

Data points with high similarity on a pre-trained 137

model are typically learnable and high quality (Hes- 138

sel et al., 2021; Schuhmann et al., 2022). Leverag- 139

ing this, we filter noisy samples to mitigate overfit- 140
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Figure 2: Comparison between our approach and independent and identically distributed (iid) training on BLEU
and COMET-22 metrics on the filtered dataset.

Algorithm 1 Joint example selection
Input: learnability_matrix, nchunks, filter_ratio, M (a large

constant)
Output: sampled indices inds
1: superb_s← NUM_ROWS(learnability_matrix)
2: ndraws ← ⌊superb_s×(1−filter_ratio)/nchunks⌋
3: pos_ii← DIAGONAL(learnability_matrix)
4: inds← RANDOM_SAMPLE(pos_ii, ndraws)
5: for i = 1 to nchunks − 1 do
6: is_sampled← LEARNABILITY_EYE(inds)
7: pos_ij ← SUM_ROWS(is_sampled)
8: pos_ji← SUM_COLUMNS(is_sampled)
9: pos← pos_ii+ pos_ij + pos_ji

10: pos← pos− is_sampled×M
11: new_inds← SAMPLE_WITH_PROBS(pos, ndraws)
12: inds← CONCATENATE(inds, new_inds)

ting. The easy reference score is defined as:141

seasy(B, θ∗) = M(Hθ∗(Bsrc), Hθ∗(Btrg)) (2)142

where θ∗ represents the reference model parame-143

ters. Combining both scores, learnability is defined144

as:145

slearn(B|θ, θ∗) = shard(B, θ)+seasy(B, θ∗) (3)146

This formulation prioritizes unlearned data (high147

shard) while filtering noise (i.e. high seasy).148

Similarity is computed as the dot product of sen-149

tence embedding from the learner and the reference150

model, forming matrices. Assuming a super-batch151

size of 2048 and embedding dimension of 1024,152

this results in [2048, 1024] matrices for both source153

and target languages. The final similarity matrix,154

obtained by multiplying these matrices, has dimen-155

sions [2048, 2048]. Using this matrix, we compute156

similarities and derive the learnability matrix via157

Equation (3).158

After computing the learnability matrix, we em-159

ploy the iterative batch selection algorithm (Algo-160

rithm 1) for obtaining sub-batch. The algorithm161
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Figure 3: Batch-selection using learnability score has a
smoother learning loss and better generalization.

takes the learnability matrix, nchunks (number of 162

data points appended to final mini-batch in each 163

iteration), and a filter ratio as input, outputting se- 164

lected indices from the super-batch. This approach 165

samples batches that are both learnable and pre- 166

viously unlearned by the model, improving data 167

efficiency compared to individual sample selection, 168

as demonstrated in our experiments. 169

4 Experiments 170

To evaluate our method, we fine-tuned an mBART 171

model on the English-Persian subset of the noisy 172

CCMatrix dataset (Nikolova-Stoupak et al., 2022). 173

We considered two settings: (1) raw dataset fine- 174

tuning, where mBART was trained on the unpro- 175

cessed dataset, and (2) curated dataset fine-tuning, 176

where CCMatrix was first filtered using LaBSE 177

before applying our method. 178

Our evaluation used the Persian-English subset 179

of FLORES-200 (Guzmán et al., 2019), with all 180

experiments conducted on its test set. As shown in 181

Figure 2, our approach achieves comparable BLEU 182

and COMET-22 scores to that of the iid training 183

while using five times less data, demonstrating its 184
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Figure 4: Comparison of our approach with independent and identically distributed (iid) and individual sample
training methods based on BLEU and COMET-22 metrics on the unfiltered dataset.

data efficiency.185

Method/Metric BLEU COMET-22

Batch Selection 20.86 0.84
iid 19.26 0.78

Table 1: Final metric for iid and batch selection after
training on 518000 data points.

For Figure 2, we set a filtering ratio of 0.9 and186

set the number of chunks to 4, used a super-batch187

size of 4000 with a sub-batch size of 400. From188

these, 400 samples were selected for model updates.189

The learnability score was computed by assigning190

a weight of 0.2 to the learner model’s similarity ma-191

trix and 0.8 to the reference model’s similarity ma-192

trix. We observed reduced effectiveness for smaller193

super-batches, with performance approaching that194

of the iid training. The final results after training195

on 0.5M data points are depicted in Table 1.196

As depicted in Figure 3, our batch selection197

method ensures smoother training loss and im-198

proved generalization. By dynamically selecting199

batches based on learnability, the model avoids200

overfitting noisy data while maintaining a balanced201

dataset representation.202

We further evaluated our approach on unfiltered203

datasets to assess its robustness. As seen in Fig-204

ure 4, joint batch selection outperforms iid and205

individual sample selection in stability and data206

efficiency, emphasizing the advantage of using207

learnability-based batch selection.208

Although our method requires more computation209

than iid training due to additional forward passes,210

fewer samples are needed to achieve comparable211

performance, leading to overall efficiency gains212

when caching the reference model embeddings in-213

stead of recalculating them (Table 2). Experiments214

were conducted on an NVIDIA RTX 3090 GPU 215

with 24GB VRAM. Due to memory constraints, 216

we processed sub-batches in chunks of 32 samples, 217

though processing the full sub-batch at once could 218

yield further improvements. 219

Method/Metric Samples Relative FLOPS

Batch Selection 360,000 29.86
Batch Selection (Cached) 360,000 0.76
iid 1,159,200 1

Table 2: Relative floating-point operations with respect
to iid training and the number of training samples re-
quired to achieve a BLEU score of 21 on the test set.

5 Conclusion 220

We proposed a method for online data selection 221

for fine-tuning machine translation, employing a 222

batch selection algorithm to identify learnable data 223

points—data points that the model has not yet 224

learned but are not noise. Using an mBART model, 225

we fine-tuned it on the English-to-Persian section 226

of CCMatrix, demonstrating improved data effi- 227

ciency compared to traditional iid training and in- 228

dividual sample selection methods. Our approach 229

proved effective on both uncurated and curated 230

datasets, showcasing its versatility. 231

Our learnability-based batch selection approach 232

improved robustness against overfitting, especially 233

in early training, and produced a smoother loss 234

curve. This demonstrates its potential to enhance 235

data and computation efficiency in machine transla- 236

tion fine-tuning while ensuring robust performance 237

across diverse datasets. 238

6 Limitations 239

A key limitation of any data selection method, in- 240

cluding ours, is the additional computational over- 241
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head required to calculate the utility of individual242

data points. Our method requires greater computa-243

tional resources compared to iid when training the244

model on an equivalent number of data points, par-245

ticularly when embeddings are not cached. How-246

ever, the key advantage of our approach lies in247

its data efficiency; it enables the learner model to248

achieve comparable performance with fewer data249

points than the iid training.250

Nonetheless, our method may not be optimal251

in scenarios where a fixed, small, and carefully252

curated dataset is available. In such cases, iid train-253

ing could be a more practical choice, as it elimi-254

nates the need for utility calculations and avoids255

the associated computational costs. This trade-off256

highlights the context-dependent applicability of257

our method, emphasizing its strengths in situations258

where data efficiency outweighs computational con-259

cerns.260

Additionally, we need to conduct experiments261

on more language pairs to verify the effectiveness262

of our method across different languages.263
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A Appendix A: Using smaller models as399

reference model400

To explore computational efficiency, we replaced401

LaBSE with Distiluse (Reimers and Gurevych,402

2019) as the reference model. Although Distiluse is403

significantly smaller, it remained effective for data404

selection, as shown in Figure 5. Furthermore, we405

applied 4-bit quantization to this model to reduce406

inference resource requirements. These modifica-407

tions enabled us to maintain performance while408

significantly lowering the computational overhead.409

This experiment demonstrates that small models410

are capable of effectively selecting data points for411

training larger models, as shown in Mekala et al.412

(2024). This finding highlights the potential of413

lightweight models in reducing computational costs414

while maintaining the quality of data selection.415

Although smaller models exhibit slight instabil-416

ity at the beginning of training, this issue may be417

mitigated by adjusting the weights assigned to the418

learner and reference matrices.419

B Appendix B: Examining learner and420

reference scores421

As stated in the earlier sections, we use dot prod-422

ucts between embeddings of the source and target423

languages as a measure of similarity, where values424

range between -1 and 1. These scores are then uti-425

lized for data selection. For instance, suppose a par-426

allel sentence receives a score of -1 from the learner427

model. According to Section 3, we multiply this428

value by -1, yielding a score of 1. This implies that429

such a sentence is assigned high priority, despite430

having an opposite meaning to its counterpart. This431

scenario could arise if the dataset contained a sig-432

nificant number of parallel sentences with reversed433

meanings. However, in our case, an analysis of434

the score distribution demonstrates that this is not435

the case. Specifically, by measuring and plotting436

the distribution of dot product values, we observe437

that very few data points fall below 0, while the438

majority of dot product values exceed 0.8 for both439

models, as illustrated in Figure 6.440

Furthermore, as depicted in Figure 6, the distri-441

bution of dot product values for the learner model442

exhibits a lower mean and higher variance com-443

pared to the reference model. This suggests that the444

learner model remains weaker in its ability to gen-445

erate aligned embeddings. Ideally, a perfect dataset,446

when evaluated with a perfect model, would pro-447

duce a sharp peak at 1, representing an impulse448
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Figure 5: We utilize a smaller model as a reference
model, apply quantization to it, and demonstrate supe-
rior performance compared to iid.
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Figure 6: Distribution of dot products between the em-
beddings of source and target sentences.

function, indicating that all parallel sentences align 449

perfectly. 450
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