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Abstract

Data quality and its effective selection are fun-
damental to improving the performance of ma-
chine translation models, serving as corner-
stones for achieving robust and reliable trans-
lation systems. This paper presents a data se-
lection methodology specifically designed for
fine-tuning machine translation systems, which
leverages the synergy between a learner model
and a pre-trained reference model to enhance
overall training effectiveness. By defining a
learnability score, our approach systematically
evaluates the utility of data points for training,
ensuring that only the most relevant and im-
pactful examples contribute to the fine-tuning
process. Furthermore, our method employs
a batch selection strategy which considers in-
terdependencies among data points, optimiz-
ing the efficiency of the training process while
maintaining a focus on data relevance. Experi-
ments on English-to-Persian translation using
an mBART model fine-tuned on the CCMatrix
dataset demonstrate that our method achieves
a fivefold improvement in data efficiency com-
pared to an iid baseline. Experimental results
indicate that our approach improves computa-
tional efficiency by 24% when utilizing cached
embeddings, as it requires fewer training data
points. Additionally, it enhances generalization,
resulting in superior translation performance
compared to iid methods.

1 Introduction

Machine translation is a fundamental task in natural
language processing. As with any data-driven learn-
ing task, the effectiveness of training heavily de-
pends on the quality of the data. (Fenza et al., 2021;
Gupta et al., 2021; Chen et al., 2021) In particular,
parallel datasets may contain irrelevant sentence
pairs or poorly translated documents, which nega-
tively impact the performance of the final model.
Beyond the quality of data, the state of the
learner model itself plays a crucial role in select-
ing beneficial training data. For instance, studies

have shown that data points associated with high
loss on the learner model are typically those the
model struggles to learn. (Bucher et al., 2016; Ku-
mar et al., 2017) Allocating more computational
resources to such data points, rather than to those
the model has already mastered, can lead to more
effective training.

Training can be made more data-efficient by em-
ploying selection methods during the training pro-
cess, such as those based on the loss of data points
on the learner model, a pre-trained model, or a
combination of both.

Furthermore, we demonstrate that the batch-
selection method is more effective than the individ-
ual sample-selection method. More specifically, se-
lecting data points within a batch, where the points
are interdependent, is more effective than indepen-
dently selecting high-scoring data points. Similar
findings have also been reported in previous studies
for multimodal learning. Our experiments focus
on English-to-Persian translation, leveraging an
mBART fine-tuned on the CCMatrix dataset.

An mBART model (Liu, 2020) is used as the
learner and a pre-trained LaBSE model (Feng et al.,
2020) as the reference model. The pre-trained
model is referred to as the reference model, while
the model undergoing fine-tuning is called the
learner model.

We use features extracted from both the learner
model and a pre-trained model for selecting the
data during the training. We employ the learnabil-
ity (Mindermann et al., 2022) score to select data
points for fine-tuning.

As demonstrated in our experiments, the use of
the learnability score as a selection metric enables
the model to generalize more effectively to the data,
rather than overfitting.

The paper is organized as follows: Section 2 re-
views related work, Section 3 presents our method-
ology, Section 4 details results, and Section 5 con-
cludes. Section 6 discusses limitations, with supple-
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Figure 1: Diagram illustrating our proposed method for data selection in machine translation

mentary materials in Appendix A and Appendix B.

2 Related Work

Offline data selection: Traditional methods focus
on selecting parallel data subsets to enhance trans-
lation quality and reduce resource consumption.
Several studies highlight the role of data filtering in
improving NMT, such as using influence functions
to remove harmful examples (Lam et al., 2022) and
filtering low-quality synthetic data to boost accu-
racy (Xu et al., 2019).

Online Data Selection: Fixed curation strate-
gies may not adapt to evolving training needs. On-
line methods dynamically identify challenging ex-
amples, improving NMT by varying selected data
across training epochs (Van Der Wees et al., 2017).

Hard Negative Mining: This technique en-
hances learning by focusing on difficult negative
examples, widely used in computer vision and con-
trastive learning (Bucher et al., 2016; Kumar et al.,
2017; Mishchuk et al., 2017; Simo-Serra et al.,
2015; Wu et al., 2017; Xuan et al., 2020; Robinson
et al., 2020; Tian et al., 2021). However, its applica-
tion in machine translation remains underexplored.

Batch selection. Unlike sample selection, batch
selection considers inter-data relationships. Evans
et al. (2024) proposed an iterative batch selection
method using learnability scores in multimodal
datasets. Our work extends this concept to machine
translation.

3 Methodology

3.1 Selection criteria

Our primary selection criterion is the learnability
metric proposed by Mindermann et al. (2022), con-
sisting of a hard learner score and an easy reference
score. The hard learner score is assigned by the
learner model, while the easy reference score is
assigned by the reference model. We first sam-
ple a super-batch of data, ensuring equal selection
probability, then choose a sub-batch based on the
learnability metric and perform backpropagation.

Effective parallel sentences exhibit closer embed-
dings in latent space, making similarity between
embeddings a key selection factor. A low similar-
ity on the learner model indicates unlearned data
points, which should be prioritized. We define the
hard learner score as:

s B,0) = —M(Hg(Bsrc), Ho(Birg)) (1)

where 0 denotes learner model parameters, B is
the batch, M represents matrix multiplication, and
Hy(.) is the embedding matrix from the learner
model. While effective for clean datasets (Paul
et al., 2021), this heuristic can amplify noise in less
curated datasets (Evans et al., 2025).

Data points with high similarity on a pre-trained
model are typically learnable and high quality (Hes-
sel et al., 2021; Schuhmann et al., 2022). Leverag-
ing this, we filter noisy samples to mitigate overfit-
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Figure 2: Comparison between our approach and independent and identically distributed (iid) training on BLEU

and COMET-22 metrics on the filtered dataset.

Algorithm 1 Joint example selection

Input: learnability_matrix, ncrunks, filter_ratio, M (a large
constant)
Output: sampled indices inds
1: superb_s <— NUM_ROWS(learnability_matrix)
2! Ndraws < | superb_sx (1— filter_ratio) /nchunks |
3: pos_ii < DIAGONAL(learnability_matrix)
4: inds <— RANDOM_SAMPLE(POS_it, Ndraws)
5: fori = 1 to nepunks — 1 do
6: is_sampled <— LEARNABILITY_EYE(inds)
7. pos_ij <— SUM_ROWS(is_sampled)
8 POS_jt < SUM_COLUMNS(is_sampled)
9 POS +— POS_it + pos_ij + pos_ji

10: pos < pos — is_sampled x M
11: new_inds < SAMPLE_WITH_PROBS(poS, Ndraws)
12: inds < CONCATENATE(inds, new_inds)

ting. The easy reference score is defined as:
Seasy(B, 6*) = M(HH* (Bsrc)7 HO* (Btrg)) (2)

where 6* represents the reference model parame-
ters. Combining both scores, learnability is defined
as:

Slearn(B‘g’ 0*) = Shard(B, 0)+s°*Y(B,0%) (3)

This formulation prioritizes unlearned data (high
shardy while filtering noise (i.e. high s°@5Y).

Similarity is computed as the dot product of sen-
tence embedding from the learner and the reference
model, forming matrices. Assuming a super-batch
size of 2048 and embedding dimension of 1024,
this results in [2048, 1024] matrices for both source
and target languages. The final similarity matrix,
obtained by multiplying these matrices, has dimen-
sions [2048, 2048]. Using this matrix, we compute
similarities and derive the learnability matrix via
Equation (3).

After computing the learnability matrix, we em-
ploy the iterative batch selection algorithm (Algo-
rithm 1) for obtaining sub-batch. The algorithm
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Figure 3: Batch-selection using learnability score has a
smoother learning loss and better generalization.

takes the learnability matrix, ncpunks (Number of
data points appended to final mini-batch in each
iteration), and a filter ratio as input, outputting se-
lected indices from the super-batch. This approach
samples batches that are both learnable and pre-
viously unlearned by the model, improving data
efficiency compared to individual sample selection,
as demonstrated in our experiments.

4 Experiments

To evaluate our method, we fine-tuned an mBART
model on the English-Persian subset of the noisy
CCMatrix dataset (Nikolova-Stoupak et al., 2022).
We considered two settings: (1) raw dataset fine-
tuning, where mBART was trained on the unpro-
cessed dataset, and (2) curated dataset fine-tuning,
where CCMatrix was first filtered using LaBSE
before applying our method.

Our evaluation used the Persian-English subset
of FLORES-200 (Guzman et al., 2019), with all
experiments conducted on its test set. As shown in
Figure 2, our approach achieves comparable BLEU
and COMET-22 scores to that of the iid training
while using five times less data, demonstrating its
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Figure 4: Comparison of our approach with independent and identically distributed (iid) and individual sample
training methods based on BLEU and COMET-22 metrics on the unfiltered dataset.

data efficiency.

Method/Metric BLEU COMET-22
Batch Selection 20.86 0.84
iid 19.26 0.78

Table 1: Final metric for iid and batch selection after
training on 518000 data points.

For Figure 2, we set a filtering ratio of 0.9 and
set the number of chunks to 4, used a super-batch
size of 4000 with a sub-batch size of 400. From
these, 400 samples were selected for model updates.
The learnability score was computed by assigning
a weight of 0.2 to the learner model’s similarity ma-
trix and 0.8 to the reference model’s similarity ma-
trix. We observed reduced effectiveness for smaller
super-batches, with performance approaching that
of the iid training. The final results after training
on 0.5M data points are depicted in Table 1.

As depicted in Figure 3, our batch selection
method ensures smoother training loss and im-
proved generalization. By dynamically selecting
batches based on learnability, the model avoids
overfitting noisy data while maintaining a balanced
dataset representation.

We further evaluated our approach on unfiltered
datasets to assess its robustness. As seen in Fig-
ure 4, joint batch selection outperforms iid and
individual sample selection in stability and data
efficiency, emphasizing the advantage of using
learnability-based batch selection.

Although our method requires more computation
than iid training due to additional forward passes,
fewer samples are needed to achieve comparable
performance, leading to overall efficiency gains
when caching the reference model embeddings in-
stead of recalculating them (Table 2). Experiments

were conducted on an NVIDIA RTX 3090 GPU
with 24GB VRAM. Due to memory constraints,
we processed sub-batches in chunks of 32 samples,
though processing the full sub-batch at once could
yield further improvements.

Method/Metric Samples Relative FLOPS
Batch Selection 360,000 29.86
Batch Selection (Cached) 360,000 0.76
iid 1,159,200 1

Table 2: Relative floating-point operations with respect
to iid training and the number of training samples re-
quired to achieve a BLEU score of 21 on the test set.

5 Conclusion

We proposed a method for online data selection
for fine-tuning machine translation, employing a
batch selection algorithm to identify learnable data
points—data points that the model has not yet
learned but are not noise. Using an mBART model,
we fine-tuned it on the English-to-Persian section
of CCMatrix, demonstrating improved data effi-
ciency compared to traditional iid training and in-
dividual sample selection methods. Our approach
proved effective on both uncurated and curated
datasets, showcasing its versatility.

Our learnability-based batch selection approach
improved robustness against overfitting, especially
in early training, and produced a smoother loss
curve. This demonstrates its potential to enhance
data and computation efficiency in machine transla-
tion fine-tuning while ensuring robust performance
across diverse datasets.

6 Limitations

A key limitation of any data selection method, in-
cluding ours, is the additional computational over-



head required to calculate the utility of individual
data points. Our method requires greater computa-
tional resources compared to iid when training the
model on an equivalent number of data points, par-
ticularly when embeddings are not cached. How-
ever, the key advantage of our approach lies in
its data efficiency; it enables the learner model to
achieve comparable performance with fewer data
points than the iid training.

Nonetheless, our method may not be optimal
in scenarios where a fixed, small, and carefully
curated dataset is available. In such cases, iid train-
ing could be a more practical choice, as it elimi-
nates the need for utility calculations and avoids
the associated computational costs. This trade-off
highlights the context-dependent applicability of
our method, emphasizing its strengths in situations
where data efficiency outweighs computational con-
cerns.

Additionally, we need to conduct experiments
on more language pairs to verify the effectiveness
of our method across different languages.
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A Appendix A: Using smaller models as
reference model

To explore computational efficiency, we replaced
LaBSE with Distiluse (Reimers and Gurevych,
2019) as the reference model. Although Distiluse is
significantly smaller, it remained effective for data
selection, as shown in Figure 5. Furthermore, we
applied 4-bit quantization to this model to reduce
inference resource requirements. These modifica-
tions enabled us to maintain performance while
significantly lowering the computational overhead.

This experiment demonstrates that small models
are capable of effectively selecting data points for
training larger models, as shown in Mekala et al.
(2024). This finding highlights the potential of
lightweight models in reducing computational costs
while maintaining the quality of data selection.

Although smaller models exhibit slight instabil-
ity at the beginning of training, this issue may be
mitigated by adjusting the weights assigned to the
learner and reference matrices.

B Appendix B: Examining learner and
reference scores

As stated in the earlier sections, we use dot prod-
ucts between embeddings of the source and target
languages as a measure of similarity, where values
range between -1 and 1. These scores are then uti-
lized for data selection. For instance, suppose a par-
allel sentence receives a score of -1 from the learner
model. According to Section 3, we multiply this
value by -1, yielding a score of 1. This implies that
such a sentence is assigned high priority, despite
having an opposite meaning to its counterpart. This
scenario could arise if the dataset contained a sig-
nificant number of parallel sentences with reversed
meanings. However, in our case, an analysis of
the score distribution demonstrates that this is not
the case. Specifically, by measuring and plotting
the distribution of dot product values, we observe
that very few data points fall below 0, while the
majority of dot product values exceed 0.8 for both
models, as illustrated in Figure 6.

Furthermore, as depicted in Figure 6, the distri-
bution of dot product values for the learner model
exhibits a lower mean and higher variance com-
pared to the reference model. This suggests that the
learner model remains weaker in its ability to gen-
erate aligned embeddings. Ideally, a perfect dataset,
when evaluated with a perfect model, would pro-
duce a sharp peak at 1, representing an impulse
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Figure 5: We utilize a smaller model as a reference
model, apply quantization to it, and demonstrate supe-
rior performance compared to iid.

Distribution Comparison

T T
8| Pretrained
Learner

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Values

Figure 6: Distribution of dot products between the em-
beddings of source and target sentences.

function, indicating that all parallel sentences align
perfectly.
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