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Abstract

One unexpected technique that emerged in recent years consists in training a Deep Network
(DN) with a Self-Supervised Learning (SSL) method, and using this network on downstream
tasks but with its last few layers entirely removed. This usually skimmed-over trick is
actually critical for SSL methods to display competitive performances. For example, on
ImageNet classification, more than 30 points of percentage can be gained that way. This is
a little vexing, as one would hope that the network layer at which invariance is explicitly
enforced by the SSL criterion during training (the last layer) should be the one to use
for best generalization performance downstream. But it seems not to be, and this study
sheds some light on why. This trick, which we name Guillotine Regularization (GR), is
in fact a generically applicable form of regularization that has also been used to improve
generalization performance in transfer learning scenarios. In this work, through theory and
experiments, we formalize GR and identify the underlying reasons behind its success in SSL
methods. Our study shows that the use of this trick is essential to SSL performance for
two main reasons: (i) improper data-augmentations to define the positive pairs used during
training, and/or (ii) suboptimal selection of the hyper-parameters of the SSL loss.

1 Introduction

Many recent self-supervised learning (SSL) methods consist in learning invariances to specific chosen relations
between samples – implemented through data-augmentations – while using a regularization strategy to avoid
collapse of the representations (Chen et al., 2020a;b; Grill et al., 2020; Lee et al., 2021b; Caron et al., 2020;
Zbontar et al., 2021; Bardes et al., 2022; Tomasev et al., 2022; Caron et al., 2021; Chen et al., 2021; Li
et al., 2022; Zhou et al., 2022a;b). Incidentally SSL learning frameworks also heavily rely on a simple
trick to improve downstream task performances: removing the last few layers of the trained deep network.
From a practical viewpoint, this technique emerged naturally (Chen et al., 2020a) through the search of
ever increasing SSL performances. In fact, on ImageNet (Deng et al., 2009), such technique can improve
classification performances by around 30 points of percentage (Figure 8b).

Although it improves performances in practice, not using the layer on which the SSL training was applied
is unfortunate. It means throwing away the representation that was explicitly trained to be invariant to the
chosen set of data augmentations, thus breaking the implied promise of using a more structured, controlled,
invariant representation. By picking instead a representation that was produced an arbitrary number of layers
above, SSL practitioners end up relying on a representation that likely contains much more information about
the input (Bordes et al., 2021) than should be necessary to robustly solve downstream tasks.

Although the use of this technique emerged independently in SSL, using intermediate layers –instead of the
deepest layer where the initial training criterion was applied– of a neural networks has long been known
to be useful in transfer learning scenarios (Yosinski et al., 2014). Features in upstream layers often appear
more general and transferable to various downstream tasks than the ones at the deepest layers that are too
specialized towards the initial training objective. This strongly suggests a related explanation for its success
in SSL: does removing the last layers of a trained SSL model improve performances because of a misalignment
between the SSL training task (source domain) and downstream task (target domain)?
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Figure 1: a) An illustration of Guillotine Regularization. During training, a small neural network named the
Head (also coined as projector in the SSL literature (Chen et al., 2020a)) is added on top of another deep
network refereed as the Trunk. This Head can be viewed as a buffer between the training loss and the Trunk
that can absorb any bias related to a ill optimisation. When using such network on downstream tasks, we
throw away the Head. b) We measure with linear probes the accuracy at different layers on a resnet50 (as
Trunk) (see Figure 8 for vision transformers) on which we added a small 3 layers MLP (as Head) for various
supervised and self-supervised methods. For each method, we show the mean and standard deviation across
3 runs (The std between different runs is low). With traditional supervised learning, at a first glance there
doesn’t seem to be much gain in using the representation at the higher layer of the Head in comparison with
the last layer of the Trunk. However, when looking at self-supervised methods, the gap in performances
between the linear probe trained at different levels can be as high as 30 points of percentage.

In this paper, we examine that question thoroughly. We first reframe and formalize the trick of removing
layers post-training as a generically applicable regularization strategy that we call Guillotine Regular-
ization (Figure 8a). We then study its impact on generalization in various supervised and self-supervised
scenarios. Our findings demonstrate that when the training and downstream tasks are identical, Guillotine
Regularization has nearly no benefit i.e. performances with or without the last few layers are close. Through
controlled experiments, we validate that Guillotine Regularization ’s benefit grows with the misalignment be-
tween the training objective and downstream task. Beyond the standard distribution shifts in input/output,
we also surprisingly notice that Guillotine Regularization proves useful when the choice of hyper-parameters
are sub-optimal i.e. the benefits of Guillotine Regularization occur in much more general cases than solely
from data distribution shifts.

To summarize, this paper’s main contributions are the following:

• To formalize and motivate theoretically the common trick of using a projector in Self-Supervised-
Learning as a general regularization method under the name Guillotine Regularization.

• To provide empirical insights that clarify in which situations this method should be expected to be
beneficial.

• To show that the usefulness of Guillotine Regularization in Self-Supervised learning comes not only
from the inherent misalignment between the SSL training task – with its data augmentations –
and the downstream task, but also because it allows to be more robust to suboptimal choices of
hyper-parameters in the objective.

2 Related work

Self-supervised learning Many recent works on self-supervised learning (Chen et al., 2020a;b; Grill et al.,
2020; Lee et al., 2021b; Caron et al., 2020; Zbontar et al., 2021; Bardes et al., 2022; Tomasev et al., 2022;
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Caron et al., 2021; Chen et al., 2021; Li et al., 2022; Zhou et al., 2022a;b) rely on the addition of few non
linear layers (MLP) – termed projection head – on top of a well established neural network – termed backbone
– during training. This addition is done regardless of the neural network used as backbone, it could be a
ResNet50 (He et al., 2016) or a Vision Transformer (Dosovitskiy et al., 2021). Some works already tried to
understand why a projection head is needed for self-supervised learning. Appalaraju et al. (2020) argue that
the nonlinear projection head acts as filter that can separate the information used for the downstream task
from the information useful for the contrastive loss. In order to support this claim, they used deep image
prior (Ulyanov et al., 2018) to perform features inversion to visualize the features at the backbone level and
also at the projector level. They observe that features at the backbone level seem more suitable visually for
a downstream classification task than the ones at the projector level. Another related work (Bordes et al.,
2021) similarly tries to map back the representations to the input space, this time by using a conditional
diffusion generative model. The authors present visual evidence confirming that much of the information
about a given input is lost at the projector level while most of it is still present at the backbone level. Another
line of work tries to train self-supervised models without the use of a projector. Jing et al. (2022) shows that
by removing the projector and cutting the representation vector in two parts, such that a SSL criteria is
applied on the first part of the vector while no criterion is applied on the second part, improves considerably
the performances compared to applying the SSL criteria directly on the entire representation vector. This
however works mostly thanks to the residual connection of the resnet. In contrast with these approaches,
our work focus on identifying which components of traditional SSL training pipelines can explain why the
performances when using the final layers of the network are so much worse than the ones at the backbone
level. This identification will be key for designing future SSL setups in which the generalisation performance
doesn’t drop drastically when using the embedding that the SSL criterion actually learns.

Transfer learning The idea of using the intermediate layers of a neural network is very well known in
the transfer learning community. Work like Deep Adaptation Network (Long et al., 2015) freeze the first
layers of a neural network, fine-tune the last layers while adding a head which is specific for each target
domain. The justification behind this strategy is that deep networks learn general features (Caruana, 1994;
Bengio, 2012; Bengio et al., 2011), especially the ones at the first layers, that may be reused across different
domain (Yosinski et al., 2014). Oquab et al. (2014) demonstrate that when limited amount of training data
are available for the target tasks, using the frozen features extracted from the intermediate layers of a deep
network trained on classification can help solve object and action classification tasks on other datasets. SSL
methods can be viewed as devising unsupervised training tasks (source tasks) that will yield representations
that transfer well to typically supervised downstream tasks (target task). Modern SSL methods define a
training objective that relies on data-augmentation based views of different inputs, without access to their
associated targets/classes, it is direct to see that considering a classification task from a SSL trained models
falls under the realm of transfer learning. That being said, the question that remains unanswered is to
understand which specific aspects of the SSL techniques affect the transferability, and the usefulness of the
guillotine trick. Is it to what degree the distribution resulting from data augmentations commonly used
to train SSL models differs from the true input distribution of the downstream tasks? Is it a possible
overfiting on the SSL training task? Or is it other inherent differences between the SSL training task and
the downstream task?

Out of distribution (OOD) generalization Kirichenko et al. (2022) demonstrates that retraining only
the last layer with a specific reweighting helps to "forget" the spurious correlations that were learned during
the training. Such work emphasizes that most of the spurious correlation due to the training objective is
contained in the last layers of the network. Thus, retraining them is essential to remove such bias and
generalize better on downstream tasks. Similarly Rosenfeld et al. (2022) show that retraining only the last
layers is most of the time as good as retraining the entire network over a subset of downstream tasks. Lastly,
Evci et al. (2022) demonstrates the usefulness of using intermediate layers for OOD. Our study also confirms
that Guillotine Regularization show important properties with respect to OOD generalization.
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3 Guillotine Regularization: A regularization scheme to improve generalization of
deep networks

In this section we formalize Guillotine Regularization along with a theoretical motivation which helps to
highlight scenarios for which this technique is well-suited.

3.1 (Re)Introducing Guillotine Regularization From First Principles

We distinguish between a source training task with its associated training set, and a target downstream task
with its associated dataset1. It is the performance on the downstream task that is ultimately of interest.
In the simplest of cases both tasks could be the same, with their datasets sampled i.i.d. from the same
distribution. But more generally they may differ, as in SSL or transfer learning scenarios. In SSL we
typically have an unsupervised training task, that uses a training set with no labels, while the downstream
task can be a supervised classification task. Also note that while the bulk of training the model’s parameters
happens with the training task, transferring to a different downstream task will require some additional,
typically lighter, training, at least of a final layer specific for that task. In our study we will focus on the
use of a representation computed by the network trained on the training task and then frozen, which gets
fed to a simple linear layer that will be tuned for the downstream task. This "linear evaluation" procedure
is typical in SSL and aims to evaluate the quality/usefulness of an unsupervised-trained representation. Our
focus is to ensure good generalization to the downstream task. Note that training and downstream tasks
may be misaligned in several different ways.

Informally, Guillotine Regularization consists in the following: for the downstream task, rather than using the
last layer (layer L) representation from the network trained on the training task, instead use the representation
from a few layers above (layer t, with t < L). We thus remove a small multilayer "head" (layers t + 1 to L)
of the initially trained network, hence the name of the technique. We call the remaining part (layers 1 to t)
the trunk2. The method is illustrated in Figure 8a.

Formally, we consider a deep network that takes an input X and computes a sequence of intermediate
representations H1, . . . , HL through layer functions f (1), . . . f (L) such that Hℓ = f (ℓ)(Hℓ−1), starting from
H0 = X. The entire computation from input X to last layer representation HL is thus a composition of
layer functions3:

HL = fθ,ϕ(X) = (f (L) ◦ · · · ◦ f (t+1)︸ ︷︷ ︸
head ft+1:L

ϕ

◦ f (t) ◦ · · · ◦ f (1)︸ ︷︷ ︸
trunk f1:t

θ

)(X)

The parameters θ and ϕ of trunk f1:t
θ and head f t+1:L

ϕ are then trained on the entire training set of examples
Xsource of the training task (optionally with associated targets Ysource that we may have in transfer scenarios,
but will typically be absent in SSL), to minimize the training task objective Lsource:

θ̂, ϕ̂ = arg min
θ,ϕ

Lsource(f t+1:L
ϕ (f1:t

θ (Xsource)), Ysource)

Then the multilayer head f t+1:L
ϕ is discarded, we add to the trunk a (usually shallow) new head sw and

we train its parameters w, using the training set of examples for the downstream task (Xtarget, Ytarget), to
minimize the downstream task objective Ltarget:

ŵ = arg min
w

Ltarget(sw( f1:t
θ̂

(Xtarget)︸ ︷︷ ︸
representation Htarget

), Ytarget)

The final network, whose performance we can evaluate on separate downstream task validation or test sets,
is defined as: f target = sŵ ◦ f1:t

θ̂
.

1Terminology pretext-training / downstream comes from SSL, while source / target is used in transfer learning
2head / trunk are also known as projection head / backbone in the SSL literature
3Precisely, a "layer function" f (ℓ) can correspond to a standard neural network layer (fully-connected, convolutional) with

no residual or shortcut connections between them, or to entire blocks (as in densenet, or transformers) which may have internal
shortcut connections, but none between them.
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Information Theoretic Motivation. Consider that we have as input a random variable X and that we
produce feature maps in a Markov Chain fashion X → H1 → H2 → · · · → HL, i.e. Hℓ+1 is conditionally
independent of all the previous feature maps given Hℓ.

Using the data processing inequality (Beaudry & Renner, 2011) we directly have the following inequality in
terms of mutual information:

I(X, Hℓ) ≥ I(X, Hℓ+1), ∀ℓ ∈ {1, . . . , L − 1}

i.e. no processing of Hℓ by layer ℓ can increase the amount of information that Hℓ+1 encodes about X (this
led to the famous "garbage in, garbage out" adage). Furthermore, the only way for this inequality to be tight,
is for the Hℓ → Hℓ+1’s layer/block processing to be one-to-one (homeomorphism) which is almost surely
never the case in most current Deep Network architectures, due amongst other things to the ubiquitous use
of ReLU activations4 Hence, without loss of generality, the above inequality will be strict for most current
models.

When cross-validating, e.g. a model’s architecture, optimizer, data-augmentation pipelines, one directly aims
at maximizing the generalization performance of the model estimated from the validation set. One direct
consequence of this process is that the best performing model will have a representation HL that disregards
as much information as possible about X, only maintaining the sufficient amount to predict Y source (Xu &
Raginsky, 2017; Steinke & Zakynthinou, 2020). In fact, this argument is at the origin of the Information
Bottleneck principle that optimizes minθ,ϕ I(X, HL) − βI(HL, Y source) (Tishby & Zaslavsky, 2015). Hence,
whenever one leverages a well calibrated model to solve a different task, it is clear that the information
contained within HL will be insufficient unless Y target is predictable from Y source. This means that too much
compression, although beneficial for the source task will generally be detrimental to the target task. This
can occur whenever the source and target distributions or tasks differ.

3.2 Experimental insights showing the usefulness of GR

Misalignment between the training (source) and downstream (target) task while using the
same input data distribution. The theoretical effectiveness of GR for transfer is not surprising since
this technique has been used for years in the transfer learning research literature to improve generalization
across different tasks. As a simple illustration, we present Figure 2 which show how much performances on a
given task can vary depending on which layer has been chosen as features extractor. In this figure, we used
an artificially created object dataset in which we are able to play with different factors of variations. The
dataset consists of renderings of 3D models from 3D warehouse (Trimble Inc). Each scene is built from a 3D
object, a floor and a spot placed on top of the object to add lighting. This allows us to control every factor
of variation and produce complex transformations in the scene. We vary the rotation of the object defined
as a quaternion, the hue of the floor, and the spot hue as well as it position on a sphere using spherical
coordinates. We provide more details on the dataset and rendering samples in the appendix. We observe
in Figure 2 that when training a supervised model on the object rotation prediction task and evaluating
the linear probe on the same task across different layers, the best results are obtained on the last layer.
However, when using the same frozen neural network to predict other attributes like the Spot θ, the best
performances are obtained few layers before the last one. Similarly, when training with a self-supervised
objective (SimCLR), we can see that the different factors of variation are most easily retrievable before the
projector. This means that representations before the projector will be more versatile as they will contain
information that was removed by the pretraining task. For example if our downstream task is to predict the
rotation the representation at the block4 will be optimal. Such results highlight the need to use Guillotine
Regularization when there is a shift in the prediction task.

Misalignment between the training and downstream tasks (different labels) and input distri-
butions. Such shift occurs naturally in transfer learning. When using a pretrained model to predict new
classes that weren’t present in the original dataset, there is a bias in the data distribution as well as in the
fine-tuning objective (with respect to the training settings). We did a first experiment in Figure 3a in which

4A notable exception are generative Normalizing Flow models (Rezende & Mohamed, 2015) which are explicitly constructed
to provide one-to-one invertible mappings.
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Figure 2: Training a linear regression to predict latent variables from pooled intermediate representations of a
network trained with a self-supervised objective (using SimCLR) or a supervised objective (trained to predict
3D rotations of an object). The data used consists of renderings of 3d objects from 3D Warehouse (Trimble
Inc) where we control the floor, lighting and object pose with latent variables, see samples on the right. In
the supervised setting, when looking at the Validation Mean Squared Error for object rotations prediction,
the lowest error is obtained with the linear probe at the last layer of the neural networks. In contrast, the
lowest error for other attributes like the Spot θ prediction are obtained with the linear probes localized 3,4
or 5 layers before the output of the networks. In the self-supervised setting, we also see that the predictor is
responsible for a lot of the invariance to augmentation, and that the information is most easily retrievable
before it. These results highlight the need to use Guillotine Regularization i.e removing the last layers of
the neural network to generalize better on other tasks.

we train a supervised Resnet50 over ImageNet. Then, we froze the weights of the model and train a linear
probe over ImageNet (Deng et al., 2009), Place205 (Zhou et al., 2014) and Inaturalist18 (Horn et al., 2018)
at different layers. We observe that the performances on ImageNet are fairly close in each layers whereas
for Place205 and Inaturalist18, there is an important gap in performances between the last layer in the
Head and the Trunk. In addition of this experiment, we train another Resnet50 but this time only on a
random set of 250 classes of ImageNet with the objective to evaluate how much GR can help with respect
to overfitting. We trained linear probes at each layers of the neural network over different 250 classes subset
of the ImageNet classes. In Figure 3b, the subset S0 correspond to the original split used during training
whereas the subset Split 1-5 are different 250 classes subsets. We observe an important drop in performances
on the linear probe trained at the projector level for every 250 classes random split that is different from the
250 classes used during training. This last result shed light on how much Guillotine Regularization is useful
to absorb bias during training. Another benefit from GR is that even on the original split of the data, we
can observe a better accuracy at the trunk level than at the last Head level. This can easily be explained by
the capacity of the neural network to overfit on this small training set. By using higher layer, GR might be
able to partially remove the over-fitting bias.

Misalignment between the training input data distribution and testing input data distribution
while using the same training and downstream task. Another type of bias can arise when using a
wrongful data distribution after training of the model. This scenario is often refer as Out Of Distribution
(OOD) since the distribution of the data used by the model become different from the one used during
training. In our experiment, we used a trained Resnet50 model (on which we added a small 3 layers MLP
as head) over a classification task on ImageNet (Deng et al., 2009). We trained a linear probe on each layers
of this network (while keeping the weights frozen) on the same classification task as the ones that was used
during training of the full network. Then, we use ImageNet-C (Hendrycks & Dietterich, 2019) which is a
modified version of the validation set of ImageNet on which different data transformations were applied.
This setup allow us to test the performances of each linear probe at different level inside the neural network.
Our experiment in Figure 3c demonstrates that for many transformations that are applied on the data the
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Figure 3: Empirical benefits of GR For each experiments, we trained a headed supervised Resnet50 over
ImageNet (For a) and c), we trained this network over the full training set whereas for b) we use a random
subset of 250 classes). Then, we froze the headed Resnet50 parameters and trained linears probes over
representation at different layers. a) Validation accuracy given by linear probes trained on ImageNet (Deng
et al., 2009), Place205 (Zhou et al., 2014) and Inaturalist18 (Horn et al., 2018). This experiment highlight
that GR plays an important role when doing transfer on other datasets. b) Validation accuracy given by
linear probes on different random subset of 250 ImageNet’s classes for each layers. Split 0 corresponds to
the same subset of classes that was used for training whereas Split 1-5 corresponds to different random
split. This result highlight how much the task’s overfitting bias is largely absorb at the head level. c)
Validation accuracy given by linear probes trained on ImageNet-C (Hendrycks & Dietterich, 2019). We plot
the accuracy on ImageNet-C for each transformations at different layers. Even in an OOD setting, GR is
useful to improve robustness.

performances at the backbone (trunk) level are still better than the ones obtained at the head level. Such
results highlight the need to use Guillotine Regularization when there is a shift in the data distribution.

4 Demystifying the Role of the Projection Head in Self-Supervised Learning

Self-Supervised Learning is often considered a distinct learning paradigm in between supervised and unsu-
pervised learning. In reality, the distinction is not as sharp, and much of SSL can be understood as solving a
pretext-tasks akin to a supervised task, merely with pseudo-labels obtained in another way than by human
annotation. In this section we first highlight that SSL methods such as SimCLR can be seen as solving a
specific supervised learning task. If most SSL methods can be formulated as supervised problems, it implies
that the properties observed in the previous section should also apply to SSL. In the second part, we discuss
some techniques that reduce the need for GR in SSL. Finally, we highlight how GR is not only useful in
transfer but is an essential tool in SSL to gain robustness with respect to the choice of hyper-parameters.

4.1 On the relationship between Supervised and Self-Supervised learning

We closely follow the notation from Chen et al. (2020a) who define the SimCLR loss function

ℓi,j = − log exp(Zi,j/τ)∑2N
k=1,k ̸=i exp(Zi,k/τ)

, (1)

for all positive pairs (i, j), with τ the temperature parameter, and with Z the similarity matrix such that
Zi,j = sim(zi, zj) = z⊤

i zj/∥zi∥∥zj∥ the cosine similarity. Now, notice that if we use only one of the
mini-batch to compute the negative examples, we get

ℓi,j = − log exp(Zi[j])∑N
k=1 exp(Zi[k])

, (2)
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which is the traditional cross entropy loss used in a classification setting when using N classes. To summarize,
instead of using a fixed set of labels, SimCLR defines N pseudo-labels which correspond to the size of the
mini batch. This setting can be viewed as a supervised classification setup in which the distribution of the
labels change at each iteration.

Now let’s imagine a setting in which instead of using mini batch, we use the entire dataset for each update
(Full batch setting). In this instance, M will be equal to the number of images in the dataset. Without the
randomness caused by the mini batch sampling, the order on which the similarity matrix will be computed
will always be the same. Meaning that every augmented transformation of the image at index 0 will always
match the index 0 in the embedding space. When such order is fixed, the SimCLR criteria is equivalent to
a negative crossentropy loss over the output of a classifier which predict the index of a given image with
respect to a random transformation. Under such view, contrastive methods approaches like SimCLR can be
seen as replacing the traditional supervised label classification task by an image index classification task. In
such instance, we recognize a traditional transfer learning setting: where too few labels are available for a
given downstream task, the model is trained on a (related) index prediction task with the hope that it will
be able to generalize well on this downstream task.

However SimCLR is not bound to image index prediction. We could e.g. instead predict, from a given image,
the index of the video from which this image has been extracted. There are many different possible pseudo-
labels we could use to then train a model in a supervised way. These labels can be easy to obtain (like the
index of an image) or costly to get (like classes or specific segmentation mask). However an ideal SSL method
should be able to adapt for any given set of pseudo labels. In fact, Lee et al. (2021a); HaoChen et al. (2021);
Balestriero & LeCun (2022) demonstrates how many SSL methods, s.a. SimCLR, VICReg and similar, can
learn essentially (up to rotation) the same representations as those obtained with supervised learning, if we
employ the true labels to define the positive pairs and use the same data-augmentation pipeline.

4.2 Reducing the Need for a Projector in Self-Supervised Learning by increasing the alignment with
the downstream task

Since SSL methods rely on a pretext training task that differs from the downstream task, Guillotine Regular-
ization seems to be perfectly adapted to absorb the bias towards the training task. As showed in the previous
section, there can be a strong relationship between traditional supervised learning and self-supervised learn-
ing with the main differences being how "labels" are defined and the use of hyper-parameters associated to
a specific SSL loss. To confirm the hypotheses that GR has better performances at the trunk level than at
the head level because of a bias absorption, we need to verify that reducing the bias between the pretext
and downstream task, results in reducing the performance gap between the Trunk and Head representations.
Ideally, we would like to get close to the supervised scenario in Figure 1 that has no major performance gap
between the different layers of the projector. To do so, we devise two experimental setups in which we replace
the traditional data augmentation pipeline used in SSL, which consists of using handcrafted augmentation
on each image to create a set of pairwise positive samples.

In the first setup, while using the exact same SSL criterion (SimCLR), we use as positive
examples pairs of images that belong to the same class, and as negative examples images that
don’t belong to the same class. Note that the SSL training criteria will push towards a collapse in the
representation space of all the images belonging to the same class, while pushing further apart the different
class clusters. By doing so the training SSL objective becomes perfectly aligned with the downstream
classification task, despite using a SSL training criteria instead of a traditional Cross Entropy Loss.

In the second setup, we use as positive pairs the closest neighbors found by a pretrained SSL
model trained with the traditional data augmentation pipeline. The reasoning is that if instead of
considering each image of the dataset as its own specific class, we use clusters of many images to define the
positive pairs, we might be able to close the gap with respect to a supervised baseline without the need of
labels.

In Figure 4, we show the differences in accuracy between the backbone and the projector with respect to these
two new data augmentation scenarios. The baseline, using the traditional SimCLR positive pairs based on
data augmentations is in blue, the nearest neighbors setup in orange and the class based setup in green. We
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Figure 4: Difference in accuracy with linear probing between the projector and backbone representation with
different alignments with respect to the classification downstream task. In this experiment we used SimCLR
and we change how the positive pair are defined to better aligned with a classification downstream task. In
blue, our baseline, we trained SimCLR with the traditional SSL data augmentations which defines the positive
view as two augmentations of a same image. In orange, we use the embedding of a pretrained model to define
the positive pair as two nearest neighbors under a pretrained model (while using the same data augmentation
as the baseline). In green, we use a supervised class label selection to define the positive examples. In this
scenario, SimCLR should learn to produces similar embedding to all images belonging to a given class. All
three models are trained on ImageNet (IN1K), then we evaluate them with a linear probe across a wide range
of downstream tasks at the backbone and projector level and show the difference in accuracy between both.
When the difference is positive, the accuracy at the backbone level is higher than the one at
the projector level, highlighting the benefits of Guillotine Regularization. In contrast when the
difference is negative, the accuracy at the projector level is higher than the one at the backbone
level. In this instance, Guillotine Regularization is not needed. When positives pairs are defined as
belonging to a given class, there is no misalignment with the imagenet classification downstream task. Thus
on ImageNet-1K, ImageNet1k-10P (10% of the training set to train the linear probe) and ImageNet1k-1P
(1% of the training set to train the linear probe), we observe that the performances at the projector level are
much higher than the ones at the backbone level. Interestingly, the nearest neighbors heuristic also reduce
considerably the impact of Guillotine Regularization across several downstream tasks.

observe for SimCLR that using the nearest neighbors based heuristic is helping in reducing the gap between
the pretext and downstream task while having a purely supervised heuristic to define the positive pair is
removing the need for Guillotine Regularization across several downstream tasks. Hence confirming the
hypothesis that the effectiveness of Guillotine Regularization depends of the alignment between the pretext
and downstream task in self-supervised learning.

4.3 An important bonus given by Guillotine Regularization: Robustness to Incorrect
Hyper-Parameters

In the previous section, we explained how, under certain conditions, SimCLR could be equivalent to a
supervised model trained on an index prediction task. Thus, it is not surprising that GR help transfer
learning generalization. However, in the specific context of SSL, GR is not only essential for transfer but
also confers robustness in regards to a suboptimally defined objective. In Figure 5 we study the effect of
GR with respect to an hyper-parameter grid search for various SSL methods (VICReg, SimCLR, Barlow
Twins and Byol). When looking at the performances on the backbone level, one can observe an almost
stable classification task performance for whatever value was chosen as hyper-parameter. However, when
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Figure 5.1: Robustness with respect to the loss hyper-parameters.
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Figure 5.2: Robustness with respect to the learning rate.
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Figure 5.3: Robustness with respect to the batch size.

Figure 5: Robustness with respect to the learning rate. We train SimCLR, VicReg, Barlow Twins and Byol
with different hyper-parameters and evaluate with a linear prob, the performances at the backbone but also
at the projector level on ImageNet classification task. For each model, we observe that the accuracy given
by the linear probe at the backbone level is fairly stable across the grid search of hyper-parameters while
the linear probe at the projector level can reach very low accuracy.

looking at the results at the Projector level, the performance accuracy might drop significantly depending
on the hyper-parameters values. This Figure show how much GR can absorb the bias of an ill-defined task
or objective. What is more impressive is that for a specific accuracy at the backbone level, the accuracy at
the projector level can be arbitrary high or low. This indicates that even if the projector doesn’t learn any
feature that could be useful for a classification task, it doesn’t matter as long as we use GR.

4.4 Experimental details

We use Pytorch (Paszke et al., 2019) and FFCV (Leclerc et al., 2022) as data loader. All the experiments
were performed with a Resnet50 (He et al., 2016) (except if mentioned otherwise) as backbone. For each

10



Under review as submission to TMLR

model, we use a batch of size 2048 and AdamW (Loshchilov & Hutter, 2019) as optimizer with an adaptive
learning rate schedule. We run the training for 100 epochs. For each model, we add as head a small MLP
of 3 layers of size 2048 (same dimension as the backbone) with ReLU (Glorot et al., 2011) as activation and
batch normalization (Ioffe & Szegedy, 2015). When training different SSL methods, we always used the same
set of data augmentations (with cropping, color-jitter, random grayscale, gaussian blur and solarization).

5 Conclusion

We re-framed the much used self-supervised learning trick of removing the top layers of a neural network
before using it for a downstream task as a regularization strategy coined Guillotine Regularization . We
demonstrated how this regularization is needed in SSL due to an inherent misalignment (at least given
our current SSL setups) between the SSL training task and the downstream task. We also highlighted the
fact that Guillotine Regularization induces increased robustness to suboptimal hyper-parameter selection.
Despite, its usefulness, having to rely on a trick like Guillotine Regularization to increase performances reveals
an important shortcoming of current self-supervised learning methods: the inability to design experimental
setups and training criteria that learn structured and truly invariant representations with respect to an
appropriate set of factors of variation. As future work, in order to escape from Guillotine Regularization, we
should focus on finding new training schemes and criteria that are more aligned with the downstream tasks
of interest.
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A Datasets

In this work, we use ImageNet (Deng et al., 2009) (Term of license on https://www.image-
net.org/download.php) as well as Co3D (https://github.com/facebookresearch/co3d BSD License) for our
experiments (Reizenstein et al., 2021). We also used a synthetic 3D dataset that will be described in the
next subsection.

A.1 3D models dataset

We will now discuss the dataset used for figure 2. As previously mentioned, this dataset consists of 3D
models from 3D Warehouse (Trimble Inc), freely available under a General Model License, and rendered
with Blender’s Python API. We alter the scene by uniformly varying the latent variables described in table 1

Table 1: Latent variables used to generate views of 3D objects. All variables are sampled from a uniform
distribution.

Latent variable Min. value Max. value
Object yaw −π/2 π/2
Object pitch −π/2 π/2
Object roll −π/2 π/2
Floor hue 0 1
Spot θ 0 π/4
Spot ϕ 0 2π
Spot hue 0 1

The variety in the scenes that can be generated is illustrated in figure 6. We can see that each latent variables
can significantly impact the scene, giving a significant variety in the rendered images.
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Figure 6: Rendered views of a skateboard generated by randomly sampling latent variables. The influence
of each parameter is easily visible, which is expected to make their prediction easier.

B Reproducibility

Our work does not introduce a novel algorithm nor a significant modification over already existing algo-
rithm. Thus, to reproduce our results, one can simply use the public github repository of the following
models: SimCLR, Barlow Twins, VicReg or the PyTorch Imagenet example (for supervised learning) with
the following twist: adding a linear probe at each layer of the projector (and backbone) when evaluating the
model. However, since many of these models can have different hyper-parameters, or data-augmentations,
especially for the SSL models, we recommend to use a single code base with a given optimizer, a given set
of data augmentations so that comparisons between models are fair and focus on the effect of Guillotine
Regularization. In this paper, except if mentioned otherwise, we use as Head, a MLP with 3 layers of di-
mensions 2048 each (which match the number of dimensions at the trunk of a Resnet50) along with batch
normalizaton and ReLU activations.

C Additional experimental results

In this section, we present additional experimental results. The first one in Figure 7 is an extended version
of Figure 1 with additional results on the training set. Figure 8 is a similar setup to the one in Figure 7
where we compared the performances at different layers for SSL methods and a supervised one except that
we use a VIT-B instead of a Resnet50. We observe an important gap on the classification performances
reached with a linear probe on different layers with the VIT-B when using SSL methods.

In Figure 9 we show the accuracy computed with linear probes trained using projector’s representations.
This Figure is similar to Figure 4 except that we present the absolute accuracy value instead of the difference
in accuracy with respect to the backbone.
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Figure 7: a) An illustration of Guillotine Regularization. During training, a small neural network named the
Head (also coined as projector in the SSL literature (Chen et al., 2020a)) is added on top of another deep
network refereed as the Trunk. This Head can be viewed as a buffer between the training loss and the Trunk
that can absorb any bias related to a ill optimisation. When using such network on downstream tasks, we
throw away the Head. b) We measure with linear probes the accuracy at different layers on a resnet50 (as
Trunk) on which we added a small 3 layers MLP (as Head) for various supervised and self-supervised methods
on the training and validation set. For each method, we show the mean and standard deviation across 3 runs
(The std between different runs is low). With traditional supervised learning, at a first glance there is a clear
overfitting happening which might explain why the performances at the trunk are a slightly bit better than
the ones at the projector level. When looking at self-supervised methods, the gap in performances between
the linear probe trained at different levels can be as high as 30 points of percentage.

D Limitations

In this work we focused mostly on analyzing the use of Guillotine Regularization in the context of Self-
Supervised Learning. However, this kind of regularization might be useful for a variety of other types of
training methods which we don’t investigate in this paper. We also mostly focus on generalization for
classification tasks, but other tasks could also been worth exploring. Finally, it is unclear whether Guillotine
Regularization will still be beneficial for very large models (more than 1B parameters) trained on very large
dataset.

16



Under review as submission to TMLR

Trunk Head 1 Head 2 Head 3
Layer

45

50

55

60

65

70

75

80

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

SSL: Barlow Twins
SSL: VICReg
SSL: SimCLR
Supervised

(a) Accuracy on the training set

Trunk Head 1 Head 2 Head 3
Layer

45

50

55

60

65

70

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

SSL: Barlow Twins
SSL: VICReg
SSL: SimCLR
Supervised

(b) Accuracy on the validation set

Figure 8: Same experiment as in Figure 7 but this time, we measure with linear probes the accuracy at
different layers on a VIT-B (as Trunk) on which we added a small 3 layers MLP (as Head) for various
supervised and self-supervised methods. Since the outputs of the VIT-B has a lower number of dimensions
than a Resnet, we added at the trunk of the VIT-B a linear layer with ReLU activation to project into a
2048 dimensional vector. In the supervised learning setting, the best performances are obtained when using
the last layers of the model. But, when looking at self-supervised methods, the gap in performances between
the linear probe trained at different levels can be as high as 20 points of percentage. Interesting, it seems
for the VIT-B that we got the best performances at Head 1 for SimCLR whereas for the ResNet, the best
performances were obtained at the Trunk. It is likely that for different architectures, the optimal number of
layers on which to apply Guillotine Regularization will vary.
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Figure 9: Projector accuracy with linear probing with different alignment with respect to the
classification downstream task. In this experiment we used SimCLR and we change how the positive
pair are defined to better aligned with a classification downstream task. In blue, our baseline, we trained
SimCLR with the traditional SSL data augmentations which defines the positive view as two augmentations
of a same image. In orange, we use the embedding of a pretrained model to define the positive pair as two
nearest neighbor under this pretrained model (while using the same data augmentation as the baseline). In
green, we use a supervised class label selection to define the positive example. In this scenario, SimCLR
should learn to produces similar embedding to all images belonging to a given class. All three models are
trained on ImageNet (IN1K), then we evaluate them with a linear probe across a wide range of downstream
tasks at the projector level. When positives pairs are defined as belonging to a given class, there is no
misalignment with the imagenet classification downstream task. Thus on ImageNet-1K, ImageNet1k-10P
(10% of the training set to train the linear probe) and ImageNet1k-1P (1% of the training set to train the
linear probe), we observe that the performances at the projector level are much higher than the ones using
the traditional SSL augmentations. Interestingly, the nearest neighbors heuristic also reduce considerably
the impact of Guillotine Regularization across several downstream tasks.

18


	Introduction
	Related work
	Guillotine Regularization: A regularization scheme to improve generalization of deep networks
	(Re)Introducing Guillotine Regularization From First Principles
	Experimental insights showing the usefulness of GR

	Demystifying the Role of the Projection Head in Self-Supervised Learning
	On the relationship between Supervised and Self-Supervised learning
	Reducing the Need for a Projector in Self-Supervised Learning by increasing the alignment with the downstream task
	An important bonus given by Guillotine Regularization: Robustness to Incorrect Hyper-Parameters
	Experimental details

	Conclusion
	Datasets
	3D models dataset

	Reproducibility
	Additional experimental results
	Limitations

