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Abstract

We explore estimating the uncertainty of closed-source LLMs via multiple rephras-1

ings of an original base query. Specifically, we ask the model, multiple rephrased2

questions, and use the similarity of the answers as an estimate of uncertainty. We3

diverge from previous work in i) providing rules for rephrasing that are simple4

to memorize and use in practice ii) proposing a theoretical framework for why5

multiple rephrased queries obtain calibrated uncertainty estimates. Our method6

demonstrates significant improvements in the calibration of uncertainty estimates7

compared to the baseline and provides intuition as to how query strategies should8

be designed for optimal test calibration.9
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Figure 1: Multiple rephrased queries for uncertainty estimation. Querying a closed-source LLM
only once with a base query may yield an incorrect top-1 prediction with 100% confidence to this
singular prediction. Querying the model multiple times with rephrased versions of the base query
produces different answers equivalent to 66.6% confidence.

1 Introduction10

Closed-source LLMs are prone to generating highly convincing but false information, a problem11

known as ”hallucinating” (Huang et al., 2023; Ji et al., 2023). It is folk wisdom that one approach12

for estimating LLM uncertainty, even with such limited access to the model, is to query it multiple13

times (Wang et al., 2022; Xiong et al., 2023). This approach is based on the premise that LLM-14

generated text is frequently stochastic by design, as the next generated token is chosen through15

nucleus sampling (Holtzman et al., 2019) or top-k decoding (Fan et al., 2018; Radford et al., 2019).16

Wang et al. (2022) and Xiong et al. (2023) proposed to use the consistency of multiple answers as an17

estimate of uncertainty. Xiong et al. (2023) furthermore proposed to add ”noise” to the base query at18

each repetition, through misleading hints.19

In this work, we delve deeply in, refine, and theoretically analyze multiple queries for uncertainty20

estimation. Given a base query, we restrict ourselves to submitting rephrased versions of the base21
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(a) ARC-Challenge (b) ARC-Easy (c) OpenBookQA

Figure 2: We plot the AUROC averaged over all models for each dataset and for each uncertainty
estimation method. We observe that top-k improves over the naive top-1 decoding. Furthermore, the
best rephrasing method (denoted as rephrase*) improves the AUROC significantly in all cases.

query to an LLM, checking the consistency of the answers, and using the result as an estimate of22

uncertainty. Concretely our contributions are the following:23

• We test four simple strategies for creating multiple rephrased queries, and find that they24

result in significant calibration gains over baselines.25

• We propose a theoretical model for multiple rephrased queries on a simplified top-1 and top-26

k (Holtzman et al., 2019) decoding setting. Given multiple rephrased queries, our analysis27

shows that i) it is possible to recover the probability of the answer under the inaccessible28

categorical distribution of the LLM ii) top-k decoding then simply tempers our uncertainty.29

Crucially we show empirically that our uncertainty estimates are close to what could be30

obtained when having access to the last layer logits.31

2 Rephrasing drastically improves calibration for top-1 decoding32

Let f : X → Y be an LLM which takes x an input query in the form of a multiple choice33

question, and outputs y, an answer. We first consider top-1 decoding such that the answers of the34

LLM are deterministic. We consider randomized transformations of the base query T (x) ∼ τ35

in the form of rephrasings of the query, and the most probable answer under the transformations36

A = argmaxiP (f(T (x)) = i). In a multiple choice question setting (which can be seen as a37

multi-class classification problem), we will use A as the predicted class and38

pA(x) = P (f(T (x)) = A) ,

as our confidence about this prediction (here the predicted class coincides with a predicted token39

denoting this class). We consider four types of rephrasings, with an increasing level of modification to40

the original query: (1) reword: replacing words with synonyms; (2) rephrase: modifies the structure of41

the original query; (3) paraphrase: reconstructs the original query; (4) expansion: elaborate the query.42

In general, we perform the rephrasings with a separate instance of the same model that responds43

to the queries. We estimate pA(x) using Monte Carlo sampling with 10 draws from T (x) ∼ τ to44

estimate uncertainty with our method unless stated otherwise.45

We used three different models, the Llama-2 7B model, the Llama-2 13B model (Touvron et al., 2023)46

and the Mistral 7B model (Jiang et al., 2023). We tested our framework on three multiple choice47

tasks: ARC-Challenge, ARC-Easy (Clark et al., 2018), and Openbookqa (Mihaylov et al., 2018).48

Following Kojima et al. (2022), we extract the answer from LLM-generated texts by looking at the49

first appearance of A/B/C/D. To test for calibration we used standard calibration metrics, including50

the ECE and TACE (Naeini et al., 2015), Brier score (Murphy, 1973) and AUROC (Murphy, 2012).51

We plot the AUROC results of all methods averaged over all models for each dataset in Figure 2. We52

see that the best rephrasing method outperforms top-1 (naive) and top-k decoding as well as the hint53

based rephrasing approach. In Appendices E and D we show that we also match or outperform Chain54

of Thought (CoT) prompting and Temperature Sampling Wei et al. (2022).55

3 Rephrasing works as well as having access to the last layer logits56

We now derive a proposition that elucidates why pA(x) results in calibrated estimates of uncertainty.57
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Table 1: Comparisons between our rephrasing methods and white-box logit uncertainty estimation.
We see that our rephrasing methods achieve similar calibration to what would be achieved if we had
access to last layer logits. This is evident both in the AUROC and TACE as well as the Brier score,
which also accounts for accuracy.

Dataset Model Method Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑

ARC-C

Mistral-7B logits 0.742 0.252 0.075 0.503 0.741
expansion 0.602 0.133 0.099 0.509 0.847

Llama-2-7B logits 0.483 0.362 0.168 0.853 0.621
expansion 0.373 0.112 0.153 0.778 0.687

Llama-2-13B logits 0.508 0.132 0.141 0.704 0.669
reword 0.445 0.084 0.119 0.714 0.721

ARC-E

Mistral-7B logits 0.866 0.128 0.037 0.264 0.818
reword 0.753 0.045 0.062 0.297 0.931

Llama-2-7B logits 0.672 0.190 0.098 0.493 0.779
rephrase 0.535 0.131 0.117 0.603 0.830

Llama-2-13B logits 0.617 0.060 0.094 0.498 0.763
expansion 0.524 0.078 0.12 0.552 0.893

OBQA

Mistral-7B logits 0.655 0.298 0.085 0.602 0.705
reword 0.552 0.105 0.102 0.592 0.796

Llama-2-7B logits 0.478 0.277 0.147 0.758 0.642
expansion 0.362 0.083 0.138 0.775 0.678

Llama-2-13B logits 0.418 0.168 0.135 0.723 0.650
rephrase 0.428 0.095 0.14 0.729 0.73

Proposition 3.1. Let f : X → Y be an LLM, x is a base query and T (x) ∼ τ is some randomized58

transformation of the base query. Let59

pA(x) = P (f(T (x)) = A) , (1)

be the probability of sampling the most probable answer A ∈ Y under transformations T (x) ∼ τ .60

Let zmean + ϵrephrase be the latent representation of x under T (x) at the final LLM layer, where61

zmean is the mean representation and ϵrephrase is some additive noise. Let w be the separating62

hyperplane between the most probable answer A and the second most probable answer B. Assuming63

that w⊤ϵrephrase ∼ ρ follows a logistic distribution with µ = 0 and s = 1 then64

pA(x) = p(A|zmean, f) (2)

where p(A|zmean, f) is the probability of A given zmean under the categorical distribution of the65

final layer.66

We prove the above for the binary case of two classes A and B in Appendix C, but expect that it should67

be sufficiently informative in multi-class settings when A,B are much more probable than other68

classes. A crucial assumption for recovering well-calibrated predictions is that w⊤ϵrephrase ∼ ρ69

follows a logistic distribution with µ = 0 and s = 1. We test this assumption by computing the70

cumulative of ρ for our different experimental setups. In Figure 3c we find and plot the empirical71

cumulative using a Kolmogorov-Smirnov test (Smirnov, 1948) and S = 100 MC samples of ρ for72

Mistral-7B, ARC-Challenge, and the “expansion” rephrasing method. We see that the indeed the73

cumulative is approximately logistical validating our prediction (the confidence bands cover different74

queries x). In Table 1 we use the logits of the answers as an oracle white-box uncertainty estimate.75

Specifically, we apply the softmax function and use the probability of the most probable class as our76

estimate of uncertainty. We compare the results of this method with the best rephrasing method (in77

terms of Brier). We observe that our uncertainty estimates that are similar to what we would get if we78

had access to the last layer logits.79

4 For top-k decoding, rephrasing tempers predictive uncertainty80

In practice, the assumptions of the above proposition are too restrictive. In particular, decoding in81

LLMs is performed with top-k decoding or nucleus sampling instead of top-1 decoding. Furthermore82
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(a) pA(x) for top-k without
rephrasing

(b) pA(x) for top-k with
rephrasing

(c) Logistic (blue), and em-
pirical cdf (red)

Figure 3: We plot the distribution of pA(x) for the case of top-k decoding with and without rephrasing,
for all datasets, models, and rephrasing methods. We see that rephrasing primarily acts to temper
the probability of the most probable class A, thus making the model less confident and possibly
better calibrated. We also plot the logistic (blue), and empirical cdf (red) for w⊤ϵrephrase ∼ ρ for
Mistral-7B, ARC-Challenge, and the “expansion” rephrasing method for top-1 decoding. ρ is often
close to a logistic distribution.

while for an oracle choice of the rephrasing intensity the modeling assumption that w⊤ϵη ∼ ρ follows83

a logistic distribution with µ = 0 and s = 1 might be correct, in general, the variance of the noise84

in latent space is unknown. It is thus illustrative to consider an extension of our toy model. The85

following proposition explores these extensions.86

Proposition 4.1. Let g : Rdη → Y be the final encoder layer of an LLM, x is a base query and87

T (x) ∼ τ is some randomized transformation of the base query. Let88

pA(x) = P (f(T (x)) = A) , (3)
be the probability of sampling the most probable answer f(x) = A ∈ Y under transformations89

T (x) ∼ τ . Let zmean + ϵtopk + ϵrephrase be the latent representation of x under T (x) at the90

final LLM layer, where zmean is the mean representation and ϵtopk is additive noise resulting from91

the top-k decoding and ϵrephrase is additive noise resulting from the rephrasings T (x). Assuming92

that w⊤(ϵtopk + ϵrephrase) ∼ ρ approximately follows a logistic distribution with µ = 0 and93

s =
√

s2topk + s2rephrase then94

pA(x) ≈ 0.5 +
1√

s2topk + s2rephrase

(p(A|zmean, f)− 0.5) (4)

where p(A|zmean, f) is the probability of A given zmean under the categorical distribution of g.95

The approximation relies on linearizing the involved functions, however, it is illustrative of the96

effect of both s2topk and s2rephrase. In particular, we see that both s2topk and s2rephrase act to temper97

the probability p(A|zmean, f) under the categorical distribution of g. This highlights why using98

rephrasings with an appropriate temperature might improve the calibration in downstream tasks. In99

previous works, tempering of the categorical distribution has been found to significantly improve the100

calibration of deep neural networks (Guo et al., 2017).101

Figure 3 shows that in accordance with proposition 4.1 rephrasing acts primarily to temper the102

probability of the top class. In out detailed results in Appendix E, this often improves calibration103

significantly in terms of ECE, and AUROC especially for smaller models.104

5 Discussion105

We conducted a thorough analysis of rephrased queries as a method for obtaining calibrated predic-106

tions from closed-source LLM models. Notably, we found that two simple methods; making the107

query more verbose, and substituting words with their synonyms, provide a straightforward means of108

identifying false positives. The appeal of our approach lies in its practicality, as it requires only basic109

language and arithmetic skills by the end user to obtain meaningful uncertainty estimates. Exciting110

future directions include learning optimal rephrasing rules in a data-driven manner, to be used in111

conjunction with a rephrasing LLM. While we tested on the multiple choice question setting for ease112

of evaluation, we expect our results to also hold for open-ended text generation.113
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Table 3: Different Prompts to Induce Consistency Confidence

Consistency Confidence Inducing Prompts
Hint1 I think the answer should be
Hint2 I read online the answer is
Hint3 I vaguely remember the answer is

A Prompt template163

We present our prompt template for initiating rephrases with a one-shot example in Table 2. Note164

that we only present and rephrase questions without revealing choices, to reduce unnecessary bias to165

rephrases when presented with answer choices.166

Method Prompt
reword [INST]Reword the following question:

George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat?
Respond with the reworded question only: [\INST]
George seeks to heat his hands swiftly by rubbing them. Which skin area will
generate the maximum heat?
[INST]Reword the following question: {question}
Respond with the reworded question only: [\INST]

rephrase [INST]Rephrase the following question:
George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat?
Respond with the rephrased question only: [\INST]
What type of skin texture on George’s hands would generate the most heat through
rapid rubbing to warm them effectively?
[INST]Rephrase the following question: {question}
Respond with the rephrased question only: [\INST]

paraphrase [INST]Semantically paraphrase the following question:
George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat?
Respond with the semantically paraphrased question only: [\INST]
How can George induce the highest thermal output by briskly rubbing his hands,
and which part of the skin would be most effective?
[INST]Semantically paraphrase the following question: {question}
Respond with the semantically paraphrased question only: [\INST]

expansion [INST] Expand the following question with additional context:
George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat?
Respond with the expanded question only: [\INST]
In the context of seeking immediate relief from the biting cold and understanding
the mechanisms behind heat generation through friction, what type of skin texture
on George’s hands would most effectively generate heat by rapid rubbing?
[INST]Expand the following question with additional context: {question}
Respond with the expanded question only: [\INST]

Table 2: Prompt templates for one-shot rephrasing, with rephrasing methods listed on the left and
corresponding prompt on the right. The user instructions are colored in blue and surrounded by the
instruction token, whereas model response demonstrations are colored in orange.

We followed the instructions in Xiong et al. (2023) to generate ”hint” based rephrasings. Specifically,167

to generate a rephrased query given a base query, we appended one of the following three weak168

claims (as they found weak claims outperform other types of hints) together with a random class169

from the available ones.170
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Method Question
original What part of the digestive system first causes chemical changes to food? A. Teeth in

the mouth. B. Saliva in the mouth. C. Enzymes in the stomach. D. Enzymes in the
small intestine.

reword Which region of the gastrointestinal tract initiates the initial chemical modifications
to food intake? A. Teeth in the mouth. B. Saliva in the mouth. C. Enzymes in the
stomach. D. Enzymes in the small intestine.

rephrase In what region of the digestive system does the food undergo its initial chemical
transformations? A. Teeth in the mouth. B. Saliva in the mouth. C. Enzymes in the
stomach. D. Enzymes in the small intestine.

paraphrase At what point in the digestive process do initial chemical transformations of food
occur and which section of the system carries out this function? A. Teeth in the
mouth. B. Saliva in the mouth. C. Enzymes in the stomach. D. Enzymes in the
small intestine.

expansion Considering the intricate process by which our bodies break down and absorb
nutrients from food, which specific organ or region within the digestive system
initiates the essential biochemical transformations through enzyme secretion and the
beginning of the digestion process? A. Teeth in the mouth. B. Saliva in the mouth.
C. Enzymes in the stomach. D. Enzymes in the small intestine.

Table 4: Rephrasing examples generated by Mistral-7B, with rephrasing methods listed on the left
and corresponding rephrases on the right.

Method Question
original What part of the digestive system first causes chemical changes to food? A. Teeth in

the mouth. B. Saliva in the mouth. C. Enzymes in the stomach. D. Enzymes in the
small intestine.

reword What section of the digestive system initiates chemical alterations to sustenance? A.
Teeth in the mouth. B. Saliva in the mouth. C. Enzymes in the stomach. D. Enzymes
in the small intestine.

rephrase Which portion of the digestive system initially catalyzes the biochemical transfor-
mation of ingested sustenance? A. Teeth in the mouth. B. Saliva in the mouth. C.
Enzymes in the stomach. D. Enzymes in the small intestine.

paraphrase Which digestive organ releases enzymes that initiate chemical breakdown within
ingested sustenences, leading to nutrient extraction and energy release? A. Teeth in
the mouth. B. Saliva in the mouth. C. Enzymes in the stomach. D. Enzymes in the
small intestine.

expansion In the context of the digestive process and the breakdown of nutrients, which portion
of the digestive system initiates the chemical transformations that result in the
nutrient absorption and energy production? A. Teeth in the mouth. B. Saliva in the
mouth. C. Enzymes in the stomach. D. Enzymes in the small intestine.

Table 5: Rephrasing examples generated by Llama2-7B, with rephrasing methods listed on the left
and corresponding rephrases on the right.

B Rephrase generations171

Here, we present additional generated rephrasings by Mistral-7B, Llama2-7B and Llama2-13B in172

Table 4, Table 5 and Table 6.173

C Additional Proofs174

Proposition C.1. Let f : X → Y be an LLM, x is a base query and T (x) ∼ τ is some randomized175

transformation of the base query. Let176

pA(x) = P (f(T (x)) = A) , (5)
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Method Question
original What part of the digestive system first causes chemical changes to food? A. Teeth in

the mouth. B. Saliva in the mouth. C. Enzymes in the stomach. D. Enzymes in the
small intestine.

reword Which section of the gastrointestinal tract initiates the chemical transformation of
sustenance? A. Teeth in the mouth. B. Saliva in the mouth. C. Enzymes in the
stomach. D. Enzymes in the small intestine.

rephrase In which section of the digestive system does the initial chemical breakdown of food
occur? A. Teeth in the mouth. B. Saliva in the mouth. C. Enzymes in the stomach.
D. Enzymes in the small intestine.

paraphrase In the digestive process, where do crucial transformations initially occur to break
down nutrients? A. Teeth in the mouth. B. Saliva in the mouth. C. Enzymes in the
stomach. D. Enzymes in the small intestine.

expansion Taking into account that human digestive system’s several organs coordinate to
breakdown, absorb, and expel waste, which part of the gastrointestinal system would
have the most significant logic-based influence on the breakdown of food into usable
components, prior to the nutrient absorption? A. Teeth in the mouth. B. Saliva in
the mouth. C. Enzymes in the stomach. D. Enzymes in the small intestine.

Table 6: Rephrasing examples generated by Llama2-13B, with rephrasing methods listed on the left
and corresponding rephrases on the right.

be the probability of sampling the most probable answer A ∈ Y under transformations T (x) ∼ τ .177

Let zmean + ϵrephrase be the latent representation of x under T (x) at the final LLM layer, where178

zmean is the mean representation and ϵrephrase is some additive noise. Let w be the separating179

hyperplane between the most probable answer A and the second most probable answer B. Assuming180

that w⊤ϵrephrase ∼ ρ follows a logistic distribution with µ = 0 and s = 1 then181

pA(x) = p(A|zmean, f) (6)

where p(A|zmean, f) is the probability of A given zmean under the categorical distribution of the182

final layer.183

Proof. We first analyze the categorical distribution, resulting from applying the softmax on the final184

layer logits. In the binary classification case given a top-1 class prediction A, the softmax probability185

of this class is186

p(A|x, f) = ew
⊤
Az+bA

ew
⊤
Az+bA + ew

⊤
Bz+bB

=
1

1 + e−(wA+bA−wB−bB)⊤z
=

1

1 + e−(w⊤z+b)
. (7)

The above simply corresponds to the folk knowledge that a softmax layer with two classes is
equivalent to a single separating hyperplane that assigns classes based on the rule sign

(
w⊤z + b

)
,

specifically

g(z) =

{
A if

(
w⊤z + b

)
> 0,

B otherwise.

After establishing that the softmax layer is equivalent to this single separating hyperplane, let us187

relate pA(x) to w⊤z + b. We have188

pA(x) = P (f(T (x)) = A)

= P
(
w⊤(zmean + ϵrephrase) + b > 0

)
= P

(
w⊤zmean +w⊤ϵrephrase + b > 0

)
= P

(
Z > −w⊤zmean − b

)
= 1− P

(
Z < −w⊤zmean − b

)
= 1− F

(
−w⊤zmean − b

)
(8)
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Then F (−w⊤zmean − b) = 1 − pA ⇐⇒ w⊤zmean + b = −F−1(1 − pA). We substitute this189

result to 7, assume that F is the cumulative of the logistic distribution with µ = 0 and s = 1 and get190

p(A|zmean, f) =
1

1 + eF−1(1−pA)
(9)

=
1

1 + e−F−1(pA(x))
(10)

= pA(x) (11)

In the second line we used the fact that the inverse cumulative F−1 of the logistic distribution is191

symmetric around 0.5. In the third line we use the fact that 1
1+e−x is the cumulative of the logistic192

with µ = 0 and s = 1. Thus p(A|zmean, f) = F (F−1(pA(x))) ⇐⇒ p(A|zmean, f) = pA(x)193

A technical point remains. Even though in the previous we can assume that g(zmean) =194

A (that zmean results in the most probable class) by definition, we still need to show that195

A = argmaxiP (f(T (x)) = i) ⇐⇒ g(zmean) = A. This means that for a closed-196

source LLM we can identify the (unknown) top-1 class A through Monte Carlo sampling (A =197

argmaxiP (f(T (x)) = i)).198

A = argmaxiP (f(T (x)) = i) ⇐⇒ P (f(T (x)) = A) >
1

2

⇐⇒ P
(
w⊤(zmean + ϵrephrase) + b ≥ 0

)
>

1

2

⇐⇒ P
(
w⊤zmean +w⊤ϵrephrase + b ≥ 0

)
>

1

2

⇐⇒ P
(
Z ≥ −w⊤zmean − b

)
>

1

2

⇐⇒ P
(
Z ≤ w⊤zmean + b

)
>

1

2

⇐⇒ w⊤zmean + b > 0

⇐⇒ g(zmean) = A

(12)

where we use the assumption that Z follows a logistic distribution with µ = 0 and s = 1.199

Proposition C.2. Let g : Rdη → Y be the final encoder layer of an LLM, x is a base query and200

T (x) ∼ τ is some randomized transformation of the base query. Let201

pA(x) = P (f(T (x)) = A) , (13)

be the probability of sampling the most probable answer f(x) = A ∈ Y under transformations202

T (x) ∼ τ . Let zmean + ϵtopk + ϵrephrase be the latent representation of x under T (x) at the203

final LLM layer, where zmean is the mean representation and ϵtopk is additive noise resulting from204

the top-k decoding and ϵrephrase is additive noise resulting from the rephrasings T (x). Assuming205

that w⊤(ϵtopk + ϵrephrase) ∼ ρ approximately follows a logistic distribution with µ = 0 and206

s =
√

s2topk + s2rephrase then207

pA(x) ≈ 0.5 +
1√

s2topk + s2rephrase

(p(A|zmean, f)− 0.5) (14)

where p(A|zmean, f) is the probability of A given zmean under the categorical distribution of g.208

Proof. We first claim that the sum of two logistic distributions (µ1, s1) and (µ1, s1) is approximately209

logistic with (µ1 + µ2,
√
s21 + s22) by claiming that logistic distributions are approximately Gaussian.210

Then considering that p(A|zmean, f) =
1

1+eF
−1(1−pA(x))

we can write211

p(A|zmean, f) =
1

1 + eF−1(1−pA(x))
=

1

1 + e−F−1(pA(x))

= 0.5 +
1

4
F−1(pA(x)) = 0.5 +

1

4
4
√

s2topk + s2rephrase(pA(x)− 0.5)

(15)
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Table 7: Comparisons between our best rephrasing method and CoT. Our rephrasing method obtains
comparable results to CoT in terms of Brier score and other calibration metrics.

Dataset Model Method Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑

ARC-C

Mistral-7B CoT 0.725 0.173 0.071 0.439 0.719
expansion 0.602 0.133 0.099 0.509 0.847

Llama-2-7B CoT 0.407 0.205 0.151 0.783 0.696
expansion 0.373 0.112 0.153 0.778 0.687

Llama-2-13B CoT 0.369 0.137 0.148 0.782 0.729
reword 0.445 0.084 0.119 0.714 0.721

ARC-E

Mistral-7B CoT 0.857 0.07 0.037 0.211 0.829
reword 0.753 0.045 0.062 0.297 0.931

Llama-2-7B CoT 0.482 0.104 0.116 0.624 0.842
rephrase 0.535 0.131 0.117 0.603 0.830

Llama-2-13B CoT 0.463 0.097 0.124 0.61 0.884
expansion 0.524 0.078 0.12 0.552 0.893

OBQA

Mistral-7B CoT 0.662 0.153 0.083 0.501 0.762
reword 0.552 0.105 0.102 0.592 0.796

Llama-2-7B CoT 0.39 0.185 0.145 0.805 0.713
expansion 0.362 0.083 0.138 0.775 0.678

Llama-2-13B CoT 0.37 0.166 0.153 0.801 0.683
rephrase 0.428 0.095 0.14 0.729 0.73

In the first line we first considered that F−1 for the logistic is symmetric thus F−1(1− pA(x)) =212

−F−1(pA(x)). In the second line we first do a first order Taylor expansion around 0 on 1
1+e−x and213

then a first order Taylor expansion around 0.5 on F−1.214

D Additional comparisons with CoT215

We compare with Chain-of-Thought Wei et al. (2022) for uncertainty estimation and plot the results216

in Table 7. We find that we get competitive results with CoT. At the same time our method is217

significantly easier and more natural to implement for humans interacting via text with an LLM. In218

CoT one needs to first obtain a sequence of reasoning steps. These should then be used as additional219

context when asking an LLM to answer again the base question. By contrast we propose a simple220

one step process of rephrasing the base question.221

E Additional results222

We used three different models, the Llama-2 7B model, the Llama-2 13B model (Touvron et al.,223

2023) and the Mistral 7B model (Jiang et al., 2023). We tested our framework on three multiple224

choice tasks of different difficulty namely ARC-Challenge, ARC-Easy (Clark et al., 2018), and225

Openbookqa (Mihaylov et al., 2018). Following Kojima et al. (2022), we extract the answer from226

LLM-generated texts by looking at the first appearance of A/B/C/D. To test for calibration we used227

standard calibration metrics, including the ECE and TACE (Naeini et al., 2015), Brier score (Murphy,228

1973) and AUROC (Murphy, 2012). We note that for a fair comparison when the accuracy drops229

significantly, we must consult the Brier score which is a proper scoring rule. This is because, the ECE,230

TACE and AUROC are not proper scoring rules and can in general trade-off accuracy for calibration.231

For a baseline, we assumed 100% confidence for each deterministic prediction. We also tested the232

”hint” based approach of Xiong et al. (2023), which we describe in detail in Appendix A.233

We present the results in Tables 11, 12 and 13. In the majority of cases rephrasing outperforms the234

naive baseline by 10 − 40% in AUROC, 10 − 30% in ECE, and 0 − 0.4 in Brier. Our approach235

also typically outperforms the “hint” base approach of Xiong et al. (2023) by 10− 20% in AUROC,236

5 − 10% in ECE, and 0.1 in Brier. In particular, the ”hint” based approach which more inflexible237

than our approach and typically hurts accuracy significantly 10− 20% compared to 5− 10% for our238

10



Table 8: Evaluation results on ARC-Challenge with various rephrasing methods applied to three
LLMs. In the majority of cases, the rephrasing approach outperforms the naive baseline by 10− 40%
in AUROC, 10− 30% in ECE and 0− 0.4 in Brier.

Model Rephrasing Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑ temp

Mistral-7B

top-1 0.742 0.258 0.065 0.517 0.5 -
hint 0.593, 0.201, 0.108, 0.614, 0.695, -

reword 0.619 0.12 0.103 0.512 0.846 1.0
rephrase 0.555 0.125 0.103 0.571 0.817 1.5

paraphrase 0.525 0.102 0.115 0.592 0.827 1.5
expansion 0.602 0.133 0.099 0.509 0.847 1.0

Llama-2-7B

top-1 0.483 0.517 - 1.034 0.5 -
hint 0.258, 0.071, 0.144, 0.839, 0.562, -

reword 0.352 0.193 0.176 0.853 0.626 1.5
rephrase 0.381 0.263 0.173 0.871 0.656 1.5

paraphrase 0.39 0.287 0.162 0.883 0.67 1.0
expansion 0.373 0.112 0.153 0.778 0.687 1.5

Llama-2-13B

top-1 0.508 0.492 - 0.983 0.5 -
hint 0.331, 0.147, 0.134, 0.813, 0.57, -

reword 0.445 0.084 0.119 0.714 0.721 1.5
rephrase 0.441 0.128 0.134 0.727 0.713 1.5

paraphrase 0.453 0.092 0.129 0.717 0.697 1.5
expansion 0.441 0.154 0.142 0.715 0.784 1.2

approach. For our method, these accuracy drops are more prevalent in the smaller 7B models, while239

the larger 13B model often shows a much smaller drop.240

Crucially, the different rephrasing methods exhibit different calibration gains. On average, in terms241

of all calibration metrics the best methods are the ”expansion” and ”reword” methods, which make242

the queries more verbose, and substitute words with synonyms respectively. In terms of AUROC243

”expansion” outperforms the alternatives by 1− 5%. In terms of the Brier score it outperforms by244

≈ 0.05. To instantiate our rephrasings we used a prompt with a one-shot example and a temperature245

parameter resulting in greater or smaller varieties of rephrasings. We include this temperature246

parameter in the Tables. Generally, we choose this temperature that balances accuracy and calibration.247

In Figure 4 we plot the behaviour as the number of MC draws increases.248

In Appendix D, we also compare with Chain-of-Thought Wei et al. (2022) for uncertainty estimation.249

We find that we get competitive results with CoT. At the same time our method is significantly easier250

and more natural to implement for humans interacting via text with an LLM.251

In Tables 11, 12 and 13 and Figure 3, we present the results for the top-k experiments with and252

without rephrasing, with k = 40. We also present the relaxed temperature sampling variant Wei et al.253

(2022). We see that the stochasticity of top-40 compared to top-1 decoding from Tables 8, 9 and 10254

results in an improvement in calibration but a drop in accuracy. The Brier score often improves at the255

cost of accuracy. Further stochasticity in answers caused by rephrasings has a similar effect. These256

observations are consistent with the fact that top-k and nucleus sampling (Holtzman et al., 2019)257

make text more human-like but not necessarily more “accurate”.258
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Table 9: Evaluation results on ARC-Easy with various rephrasing methods applied to three LLMs.
In the majority of cases, the rephrasing approach outperforms the naive baseline by 10 − 40% in
AUROC, 10− 30% in ECE, and 0− 0.4 in Brier.

Model Rephrasing Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑ temp

Mistral-7B

top-1 0.866 0.134 0.034 0.269 0.5 -
hint 0.773, 0.17, 0.076, 0.386, 0.795, -

reword 0.753 0.045 0.062 0.297 0.931 1.0
rephrase 0.678 0.035 0.076 0.357 0.953 1.5

paraphrase 0.663 0.036 0.08 0.381 0.943 1.5
expansion 0.742 0.034 0.067 0.31 0.936 1.0

Llama-2-7B

top-1 0.672 0.328 0.082 0.656 0.5 -
hint 0.231, 0.041, 0.149, 0.827, 0.663, -

reword 0.43 0.084 0.119 0.672 0.818 1.5
rephrase 0.535 0.131 0.117 0.603 0.830 1.5

paraphrase 0.526 0.184 0.125 0.626 0.831 1.0
expansion 0.405 0.045 0.119 0.692 0.818 1.5

Llama-2-13B

top-1 0.617 0.383 0.096 0.767 0.5 -
hint 0.346, 0.089, 0.128, 0.77, 0.673, -

reword 0.546 0.07 0.11 0.58 0.814 1.5
rephrase 0.526 0.07 0.112 0.579 0.842 1.5

paraphrase 0.518 0.104 0.119 0.604 0.815 1.5
expansion 0.524 0.078 0.12 0.552 0.893 1.2

Table 10: Evaluation results on OpenBookQA with various rephrasing methods applied to three
LLMs. In the majority of cases, the rephrasing approach outperforms the naive baseline by 10− 40%
in AUROC, 10− 30% in ECE, and 0− 0.4 in Brier.

Model Rephrasing Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑ temp

Mistral-7B

top-1 0.655 0.345 0.086 0.69 0.5 -
hint 0.56, 0.265, 0.119, 0.71, 0.606, -

reword 0.552 0.105 0.102 0.592 0.796 1.0
rephrase 0.482 0.107 0.122 0.641 0.809 1.5

paraphrase 0.49 0.076 0.116 0.622 0.826 1.5
expansion 0.518 0.087 0.117 0.596 0.837 1.0

Llama-2-7B

top-1 0.478 0.522 0.131 1.045 0.5 -
hint 0.275, 0.08, 0.142, 0.832, 0.556, -

reword 0.388 0.137 0.143 0.786 0.689 1.5
rephrase 0.39 0.196 0.156 0.806 0.721 1.5

paraphrase 0.398 0.227 0.159 0.834 0.712 1.0
expansion 0.362 0.083 0.138 0.775 0.678 1.5

Llama-2-13B

top-1 0.418 0.582 - 1.165 0.5 -
hint 0.295, 0.069, 0.138, 0.809, 0.613, -

reword 0.428 0.117 0.142 0.75 0.676 1.5
rephrase 0.428 0.095 0.14 0.729 0.73 1.5

paraphrase 0.41 0.116 0.141 0.759 0.682 1.5
expansion 0.41 0.143 0.147 0.772 0.702 1.2
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Table 11: Evaluation results on ARC-Challenge with various rephrasing methods applied to three
LLMs using top-k decoding. In the majority of cases rephrasing + top-k outperforms simple top-k in
terms of calibration.

Model Rephrasing Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑ temp

Mistral-7B

top-k 0.746, 0.272, 0.091, 0.511, 0.6, -
temp-sampling 0.742 0.272 0.089 0.513 0.605 -

reword 0.547, 0.05, 0.093, 0.543, 0.864, 1.5
rephrase 0.64, 0.106, 0.086, 0.485, 0.82, 1.0

paraphrase 0.631, 0.11, 0.098, 0.495, 0.83, 1.0
expansion 0.517, 0.061, 0.114, 0.573, 0.859, 1.5

Llama-2-7B

top-k 0.436, 0.201, 0.139, 0.761, 0.602, -
temp-sampling 0.441 0.211 0.132 0.757 0.621 -

reword 0.335, 0.187, 0.166, 0.858, 0.62, 1.5
rephrase 0.356, 0.314, 0.17, 0.944, 0.627, 1.0

paraphrase 0.309, 0.185, 0.162, 0.851, 0.69, 1.5
expansion 0.322, 0.144, 0.155, 0.828, 0.622, 1.5

Llama-2-13B

top-k 0.462, 0.125, 0.115, 0.679, 0.753, -
temp-sampling 0.47, 0.122 0.115 0.662 0.766 -

reword 0.352, 0.087, 0.136, 0.771, 0.687, 1.5
rephrase 0.398, 0.068, 0.136, 0.725, 0.743, 1.0

paraphrase 0.364, 0.109, 0.137, 0.738, 0.719, 1.2
expansion 0.373, 0.124, 0.143, 0.76, 0.669, 1.5

Table 12: Evaluation results on ARC-Easy with various rephrasing methods applied to three LLMs
using top-k decoding. In the majority of cases rephrasing + top-k outperforms simple top-k in terms
of calibration.

Model Rephrasing Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑ temp

Mistral-7B

top-k 0.868, 0.133, 0.042, 0.255, 0.695, -
temp-sampling 0.859 0.131 0.046 0.266 0.677 -

reword 0.694, 0.054, 0.076, 0.344, 0.941, 1.5
rephrase 0.789, 0.047, 0.049, 0.274, 0.911, 1.0

paraphrase 0.753, 0.036, 0.056, 0.3, 0.922, 1.0
expansion 0.63, 0.042, 0.086, 0.403, 0.942, 1.5

Llama-2-7B

top-k 0.612, 0.25, 0.115, 0.612, 0.73, -
temp-sampling 0.619 0.261 0.114 0.617 0.717 -

reword 0.401, 0.074, 0.121, 0.681, 0.825, 1.5
rephrase 0.564, 0.145, 0.108, 0.584, 0.819, 1.0

paraphrase 0.425, 0.08, 0.117, 0.665, 0.835, 1.5
expansion 0.335, 0.054, 0.138, 0.742, 0.791, 1.5

Llama-2-13B

top-k 0.557, 0.06, 0.098, 0.528, 0.865, -
temp-sampling 0.544 0.087 0.107 0.532 0.866 -

reword 0.412, 0.106, 0.129, 0.72, 0.741, 1.5
rephrase 0.458, 0.05, 0.12, 0.643, 0.817, 1.0

paraphrase 0.427, 0.066, 0.126, 0.652, 0.845, 1.2
expansion 0.366, 0.087, 0.13, 0.74, 0.75, 1.5
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Table 13: Evaluation results on OpenBookQA with various rephrasing methods applied to three
LLMs using top-k decoding. In the majority of cases rephrasing + top-k outperforms simple top-k in
terms of calibration.

Model Rephrasing Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑ temp

Mistral-7B

top-k 0.638, 0.289, 0.101, 0.636, 0.636, -
temp-sampling 0.668 0.289 0.098 0.607 0.624 -

reword 0.528, 0.103, 0.105, 0.606, 0.794, 1.5
rephrase 0.582, 0.109, 0.093, 0.542, 0.821, 1.0

paraphrase 0.552, 0.078, 0.101, 0.57, 0.817, 1.0
expansion 0.445, 0.061, 0.128, 0.653, 0.818, 1.5

Llama-2-7B

top-k 0.412, 0.208, 0.129, 0.776, 0.617, -
temp-sampling 0.442 0.235 0.13 0.772 0.599 -

reword 0.34, 0.14, 0.153, 0.807, 0.696, 1.5
rephrase 0.408, 0.239, 0.154, 0.815, 0.704, 1.0

paraphrase 0.355, 0.127, 0.145, 0.783, 0.721, 1.5
expansion 0.308, 0.098, 0.151, 0.807, 0.711, 1.5

Llama-2-13B

top-k 0.43, 0.114, 0.13, 0.708, 0.72, -
temp-sampling 0.43, 0.099 0.121 0.702 0.733 -

reword 0.345, 0.111, 0.144, 0.794, 0.618, 1.5
rephrase 0.345, 0.062, 0.141, 0.767, 0.706, 1.0

paraphrase 0.37, 0.092, 0.141, 0.763, 0.67, 1.2
expansion 0.36, 0.138, 0.138, 0.799, 0.574, 1.5

(a) Accuracy (b) ECE (c) TACE (d) Brier (e) AUROC

Figure 4: The behavior of the Accuracy, ECE, TACE, Brier, and AUROC for all datasets, architectures,
and expansion methods, as we increase the number of samples. We plot the average value as well as
confidence intervals ±2σ. We see that the ECE and the AUROC improve with more samples while the
accuracy drops slightly. This might be because the meaning of some queries is completely destroyed
by our rephrasings. The Brier score captures this tradeoff by having a minimum at approximately 5
samples. The TACE remains relatively stable with respect to the number of samples.
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