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Abstract—Serverless computing relieves developers from the
burden of allocating and managing resources for their cloud ap-
plications, providing ease-of-use to the users and the opportunity
to optimize resource utilization to the providers. However, the
lack of visibility into user functions limits providers’ ability to
right-size the functions. Thus, providers resort to simplifying
assumptions, ignoring input variability, and coupling different
resource types (CPU, memory, network), resulting in widely
varying function performance and resource efficiency. To provide
users with predictable performance and costs for their function
executions, we need to understand how these factors contribute
to function performance and resource usage.

In this paper, we first conduct a deep study of commonly
deployed serverless functions on an open-source serverless com-
puting framework. Our analysis provides key insights to guide the
design of a resource allocation framework for serverless systems,
including the need to provision resources per invocation, account
for function semantics, and decouple resources. We then present
Lachesis, a resource allocation framework that builds on the
insights we found and leverages online learning to right-size a
function invocation. Our experiments show that Lachesis can
increase speedup by 2.6x while decreasing idle cores by 82%
compared to static allocation decisions made by users.

I. INTRODUCTION

A key benefit of serverless computing for users is that they
get to focus on their application logic and leave the details of
resource provisioning and management to the cloud providers.
However, this results in an opaque interface between users
and providers that adversely impacts both. For users with
performance-critical applications, such as timely detection
of videos with indecent content uploaded to YouTube, or
cost-minded applications, such as personal photo organiza-
tion, unknown resource management policies that they cannot
control are a problem [12], [19]. Meanwhile, providers lack
visibility into user-functions limiting their ability to make cost-
performance trade-offs on behalf of the users.

Existing serverless systems either completely hide the re-
source allocation policies they use [16], or provide a single
knob, the memory size of the container, that the user can
set [5], [10]. This parameter is intended to give users control
over resource management and providers visibility into the re-
source requirements of user functions. However, even with this
additional input, serverless systems are incapable of providing
performance- and cost-aware function execution to users. We
argue that, to fix this issue, we need to first understand
which factors impact function performance and how. We then
need to study how the current resource allocation frameworks

(a) Slowdown w.r.t. the best
runtime across mem sizes
for 100 invocations of a
video transcoding function.

(b) Maximum mem utilized
vs. allocated across 100 runs
of the video transcoding
function (from Fig. 1a).

Fig. 1: Characterizing functions with respect to the resources allo-
cated, utilized, and performance observed.

take these factors into account. Finally, we need to see the
combined impact of existing policies and these factors on
function performance and resource efficiency. We review the
following policies and assumptions made by existing resource
allocation frameworks for serverless systems and motivate the
need for our characterization work.
1. Static and input-agnostic allocation by providers:
Providers statically allocate resources to functions using the
user-specified memory size. However, this approach ignores
the fact that different inputs submitted to the same function
might have different resource needs (as demonstrated by the
spread in duration in Figure 1a). This precludes optimizations
such as using smaller containers for smaller inputs, which
might bring significant cost benefits. For instance, if the static
function-level allocator sized a container with 3GB memory,
and most of the invocations used only 1GB, the costs incurred
are 2x higher for allocated but unused resources. Hence, we
need to understand the impact of inputs and function semantics
on function performance and resource utilization.
2. Coupled allocation of different resource types by
providers: The specified memory size for a function dictates
the number of CPU cores, thus, tightly coupling the two types
of resources together. There are two main limitations with
this approach: (a) Although users now need to only tune the
memory knob, setting this knob correctly might be difficult for
workloads that are not memory-intensive but limited by other
resources. For instance, video transcoding or compression
are CPU intensive workloads. Users might have to profile
their functions carefully, adding significant cost. (b) The tight
coupling of resources might lead to suboptimal resource allo-
cation decisions for certain kinds of workloads. For example,
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Function Input Type # Runs # Sizes Size Range
matmult square matrix 540 9 500 - 80000
linpack square matrix 660 11 500 - 8000
image-process image 840 14 12K - 4.6M
video-process video 645 5 2.2M - 6.1M
encrypt string 420 7 500 - 50000
mobilenet image 840 14 12K - 4.6M
sentiment batch of strings 716 12 50 - 3000
speech2text audio 471 8 48K - 12M
qr url 660 11 25 - 480
lr-train training set 160 4 10M - 100M
compress file 434 7 64M - 2G
resnet-50 (inf) image 574 9 184K - 4.6M

TABLE I: Summary of 12 serverless functions studied.

CPU intensive workloads might end up being allocated large
amounts of memory that are not used (Figure 1b).
3. Over-provisioning by users: The importance of the mem-
ory size parameter [6] and its opaque coupling to other
resources forces users to profile their function to find the
right setting. But, as the performance and resource usage of a
function can depend significantly on inputs, users must profile
on diverse inputs to ensure adequate resource availability in
all cases. The cost of doing so is prohibitive. Prior work on
reducing this profiling cost either assumes knowledge of the
workload which is unavailable [4], [18], or ignores the input
itself, which can have a large impact on many functions [20].
Thus, users often overprovision and choose the largest memory
size available (10GB for AWS Lambda, for instance), raising
their costs significantly and leading to underutilized resources
for the provider [2]. Hence, we need to understand how inputs
affect a function’s resource demands.

In this paper we extensively study the impact of function
inputs and resource coupling on several serverless functions
covering a wide range of application types. Building on the
insights we found, we introduce Lachesis, an online learn-
ing based resource allocation framework that (1) allocates
resources to each function invocation based on characteristics
of the input and function semantics, and (2) decouples different
resource types. Lachesis employs an online learning agent
that uses cost-sensitive multi-class classification to predict
the minimum number of cores required to satisfy a given
invocation’s service level objective (SLO). It removes the need
for users to specify memory limits, and in doing so, Lachesis
achieves betters resource utilization while simplifying the
serverless user interface.

II. EXISTING RESOURCE ALLOCATION MECHANISMS

Several cloud providers, such as AWS Lambda [5] and
Google Cloud Functions [10], and open-source communi-
ties [17] expose a common interface to their serverless plat-
forms: users specify a memory limit for their functions at cre-
ation time. The platforms then allocate a proportional amount
of CPU based on the memory limit. Thus, all invocations of a
function have the same container size, regardless of their actual
resource needs. Apache OpenWhisk’s [17] CPU allocation is a
soft limit, as invocations can burst if there are available CPUs
in the server. Microsoft Azure [16] claims to automatically
scale the resources allocated to functions, but its resource

Fig. 2: Execution time as a function of data size for three serverless
functions. The CPU and memory limit is fixed across sizes.

Fig. 3: video-process’s (a) CPU and (b) memory utilization as a
function of video size. The CPU limit is fixed at 80 cores.

allocation policies are unknown, making it difficult to reason
about function performance. Cypress [7] creates containers
with high CPU count and memory capacity per function to
consolidate multiple concurrent function invocations within
one container to avoid wasting resources. Bilal et al., [8]
propose to decouple memory and CPU to create a trade-off
between performance and cost. ReSC [11] divides functions
into resource components (i.e., compute or memory) and
allocates resources per component.

III. WHAT AFFECTS FUNCTION PERFORMANCE?

We study the impact of input properties (i.e., size, type),
resource availability, and coupling of resource types, on the
performance and resource utilization of serverless functions.
Experimental Setup: Our study observes functions on Open-
Whisk [17]. We make two changes to OpenWhisk. (1) We
force all CPU limits to be hard limits. (2) We decouple CPU
and memory to explore different configurations than the fixed
pairings provided by OpenWhisk. We deploy OpenWhisk on
two bare-metal nodes in TACC’s Chameleon cluster [14].
Each node contains 2 AMD EPYC 7763 CPUs, operating
at 2.45 GHz [1], and 251GB of memory. For performance
predictability, we disable hyperthreading, as done in [13],
resulting in 128 online cores per machine. We install Ubuntu
LTS 18.04. One machine hosts the OpenWhisk Controller and
CouchDB while the other hosts the Invoker to run functions.
Workloads: We study 12 functions (see Table I) from liter-
ature and benchmark suites [7], [9], [15] covering scientific
applications, data processing, and machine learning (ML) in-
ference serving and training. We collect the execution time and
memory/CPU utilization for several combinations of functions,
input sizes, and CPU limits. We run each combination 8-10
times, for a total of ∼8K runs.

A. Impact of Function Inputs

We study two questions: (1) What impact does input size
have on function performance? (2) Do input properties, other
than size, affect function performance and resource utilization?
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Fig. 4: Execution time as a function of CPU limit for three of our
serverless functions. The input size is fixed at max value.

Fig. 5: CPU utilization compared to allocation for three of our
serverless functions. The input size is fixed at max value.

Observations: Figure 2 presents input size vs. execution time
for three functions (we omit the others due to space con-
straints). We note that regardless of input type (matrix, files,
text) or function semantics (i.e., single- vs. multi-threaded),
function performance is correlated with input size and depends
on whether the function is single or multi-threaded.

Figure 3a compares the number of cores used by video-
process on two input sets of different videos. We see that two
inputs of the same size may vastly differ in the number of cores
used. We also notice that while set-1 has an unpredictable
relationship between input size and cores used, set-2 exhibits
constant utilization regardless of video size.

To understand these differences, we compare video proper-
ties beyond just size: frame rate per second, video length, bit
rate, and video resolution. We find that the resolution is the key
property affecting resource utilization. While the resolution is
constant in set-2 (1280 × 720), it widely varies between the
different video sizes in set-1. Inputs with higher resolutions
(1280× 720) have lower CPU and higher memory utilization,
whereas the inverse is seen for lower resolution inputs.
Insights: Function semantics and input properties (not just
limited to size) affect performance and resource utilization.
Existing resource allocators that ignore input properties be-
yond size are thus suboptimal. Instead, functions can benefit
from allocators that account for inputs and function semantics.

B. Impact of Added Resources

We now evaluate the effect of adding resources to a function.
Observations: Figures 4a and 4c show that lr-train and
resnet-50 can benefit from more cores (execution time de-
creases). matmult, compress, and linpack also exhibit these
trends. However, lr-train shows that the gains of increasing
CPU saturate: execution time does not improve beyond 8
cores. In fact, Figure 5a shows that utilization never surpasses
5 cores. lr-train uses scikit-learn’s LogisticRegressionCV()
with n jobs=-1 to implement training. This setting specifies to
use as many cores as possible. Since lr-train does not specify
the number of cross-validation folds, 5 folds (the default) are
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in the loop for training, and thus at most 5 cores are fully
utilized.

Meanwhile, Figure 4b shows that image-process does not
benefit from more cores, even though its performance is input-
dependent as explained in § III-A. Figure 5b shows that
regardless of CPU allocation, utilization is always hovering
around 1 core. In fact, several of our functions are single-
threaded: mobilenet, sentiment, encrypt, and speech2text.
Insights: Serverless platforms see a mix of single- and
multi-threaded functions with potentially bounded parallelism.
Adding resources may not always help. Hence, resource allo-
cators should tailor their policies to suit the type of function.

C. Impact of Coupled Resource Types

Existing allocation policies scale CPU in proportion to
the user-specified memory size [5]. However, this assumes
functions are both CPU- and memory-intensive. Here, we
evaluate the accuracy of this assumption.
Observations: Figure 3 shows that video-process uses up
to 50 cores, but its memory utilization is at most 41%
(0.8GB). Thus, video-process (also matmult, linpack, and lr-
train) is compute-intensive. Conversely, we found sentiment
to be memory-bound (100% memory utilization while it uses
at most 1 core). Thus, different functions may utilize resource
types in different proportions. Cloud providers can experience
severe underutilization due to resource coupling. For example,
providing enough memory to sentiment would lead to 50%
underutilization of allocated vCPUs. Meanwhile, to allocate
50 vCPUs to video-process would require a 88GB memory
allocation, resulting in ∼99% memory underutilization.
Insights: It is imperative that allocators decouple resources to
improve utilization while meeting resource demands.

IV. LACHESIS DESIGN AND IMPLEMENTATION

We now present Lachesis, a system that makes fine-grained
and decoupled resource allocations per invocation using an on-
line learning agent. Figure 6a shows a simplified architecture
of existing serverless systems. Figure 6b shows the changes
we make to the existing workflow of serverless frameworks:
Lachesis simplifies the user interface by removing the need
for users to specify a static memory limit during function
submission. Instead, users can simply provide an SLO per
invocation. Given a function, input, and SLO, Lachesis aims to
right-size invocations by dynamically allocating the minimum
amount of resources to meet the SLO.
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Algorithm 1 Lachesis’ logic using online learning
Input fxn, in, slo

1: Determine cpu lim: default or ModelPredict(in, slo)
2: Launch fxn with given in and determined cpu lim
3: Observe fxn’s max cpu and exec time during runtime
4: Use max cpu and exec time to ComputeCosts()
5: Update online model: ModelUpdate(fxn, in, slo, costs)

Algorithm 1 summarizes Lachesis’ logic. We focus on
CPU allocation in this paper and leave memory allocation
as future work. For an invocation, the online learner predicts
the minimum number of cores to allocate. Lachesis defaults
this value if the learner has not seen enough invocations for
the given function. It then launches the invocation with the
determined CPU limit and collects utilization and duration
metrics for feedback. Finally, it uses the observed data to
compute costs and updates the online learner after every
invocation. Next, we describe the formulation of our online
learning agent.
Prediction Target: As our goal is to meet user-specified SLOs
with efficient use of resources, a natural prediction target is
the minimum number of cores a function invocation needs for
a target execution time.
Model Inputs: Our model’s inputs are the serverless function,
user inputs, and an SLO. We built a function and input
featurizer that automatically extracts features from functions
and inputs. We extract function features that can potentially
impact its performance, such as the number of function calls,
libraries used, and loop sizes. Unlike functions, we extract
different features for different input types. For example, for
images we extract the image’s file size and resolution, whereas
for a matrix we extract its size and density. We combine all this
data to construct a vector for model updating and prediction.
Feedback: On each worker machine, we deploy a daemon that
captures the maximum CPU utilization over the invocation’s
runtime. This data is used by our cost function to update our
model’s weights online.
Learning Algorithm: We approach predicting core count as
a supervised learning problem, which can be solved with
regression or classification. We opt to not use regressors
because of the difficulty in formulating a cost function to dif-
ferentiate between underpredictions and overpredictions upon
an SLO violation. Instead, we use cost-sensitive multi-class
classification to make predictions. Each class (core count) has
its own linear regressor that predicts the class’s cost for an
invocation. We select the class with the lowest cost as the
allocation. Now, we can differentiate costs for different classes
without worrying about the relationship between them.
Cost Function: Our cost function is rather intuitive. First,
we determine the class to assign the lowest cost of one to.
There are three cases. (1) If an invocation’s SLO is met, the
max cpu (i.e., the maximum number of cores used by the
invocation) class is given the lowest cost. Hence, if allocated
resources are not efficiently utilized, our agent can learn to
make smaller allocations for similar future invocations. (2) If

an invocation’s SLO is met and all assigned cores are used, we
may assign a class lower than max cpu the lowest cost. This
class is determined based on the slack between the invocation’s
execution time and SLO. In doing so, we inform our online
learner that fewer cores may also satisfy this invocation’s SLO.
(3) Upon an SLO violation, we assign a class greater than
max cpu (at most +10) the lowest cost in an attempt to
meet the SLO in the next invocation. Similar to case (2), the
slack determines this class. After determining the lowest cost
class, the costs of the remaining classes grow linearly, with
underpredictions being penalized further by a hyperparameter.
Implementation: We implement Algorithm 1 as a shim layer
that can run on top of any serverless platform. This layer runs
on the same node as our dispatcher. We use Apache Open-
Whisk [17] as our base serverless platform and implement our
online learning agent using Vowpal Wabbit [3], a library with
an efficient online implementation of the cost-sensitive multi-
class classification algorithm. On each Invoker, we launch a
metric aggregation daemon that collects utilization and runtime
metrics per invocation and persists the data in a Metadata
store for the shim layer to use when updating its models.
Why Online Learning: The fundamental limitation of existing
public serverless platforms [5], [10] is their inability to right-
size containers dynamically based on inputs. Meanwhile, for
Cypress to achieve high utilization, arrival patterns need to be
frequent enough to pack invocations in one container within
the window of an SLO [7]. Hence, Cypress is susceptible to
severe resource underutilization with sparse resource arrival
patterns. Finally, as shown in § III, it is infeasible to use heuris-
tics to predict optimal resource allocation because of variation
in function behaviors depending on function semantics and
input types/properties. This prompts our use of online learning,
enabling Lachesis to dynamically right-size containers and
adapt to changes in function and input distribution over time.

V. EVALUATION

We aim to show Lachesis’ efficacy in allocating resources
per invocation. Specifically, we evaluate the impact of per-
invocation allocations on the number of SLO violations, re-
source utilization, and user cost.

A. Methodology

Baselines: We compare Lachesis to three baselines, on Open-
Whisk (ow), users might choose when providing resource
needs to existing serverless platforms. Users may ask for the
maximum, median, or minimum amount of resources for all
their invocations. These correspond to our ow-large (64 cores),
ow-medium (32 cores), and ow-small (1 core) baselines.
Workloads: We evaluate Lachesis with three serverless func-
tions from Table I: image-process, matmult, and resnet-50.
While image-process is single-threaded, both matmult and
resnet-50 are multi-threaded, showing the robustness of our
system to both types of functions. For each function, we run
over 100 invocations with over 60 different inputs for image-
process and 20 for both resnet-50 and matmult. The trace of
invocations is the same on Lachesis and our three baselines.
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Fig. 7: Difference in (a) SLO violation percentage and (b) idle cores
between Lachesis and our baselines for three functions.

Evaluation Metrics: Lachesis aims to meet an invocation’s
SLO using the minimum number of cores it can. Hence, we
are interested in two metrics: a function’s SLO violation ratio
and CPU utilization. (1) Each function input has its own SLO
(max execution time). We determined this value by profiling
each input with different allocations and extracting the best
execution time we could achieve. We then increased this value
by 10% and considered this the input’s SLO. A function’s SLO
violation ratio is the number of SLO violations to the number
of invocations. (2) We report CPU utilization as the number
of idle allocated cores. This is because a 50% underutilization
using 1

2 cores is not as severe as using only 16
32 .

B. Results

We compare the SLO violations (Figure 7a) and CPU uti-
lization (Figure 7b) between Lachesis and the three baselines.
Our baselines display an inherent tradeoff between meeting
invocation SLOs and achieving optimal CPU utilization. While
ow-large meets all SLOs, resource utilization is poor, as most
inputs do not require an allocation of 64 cores. Meanwhile,
ow-small is unable to meet any of the SLOs (100% viola-
tion) for our multithreaded-functions (matmult, resnet-50), but
achieves perfect CPU utilization because every function uses at
least 1 core. The ow-medium baseline allocates 32 cores to all
invocations. While 32 cores are enough for many invocations,
there are still plenty of inputs that require more than 32 cores
to meet the SLO. Lachesis dynamically learns the minimum
core count required to meet the SLO, thereby reducing the
number of idle allocated cores while decreasing the number
of SLO violations compared to ow-medium. This translates
into a significant impact on user cost, as for resnet-50 alone
Lachesis reduces cost by 63% for 100 invocations.

Figure 8 shows Lachesis’ number of idle cores and SLO
violations over the course of 100 invocations of resnet-50
with various inputs. It takes 28 invocations for Lachesis to
stabilize and learn the minimum number of cores required for
different inputs. For the remaining invocations, the number of
idle cores is less than 8, except for one spike at invocation 47.
Interestingly, throughout the course of the 100 invocations,
there continues to be periodic SLO violations. We noticed
that these violations are for the same input, which had an
unrealistic SLO. For each invocation of this input, Lachesis
would allocate more cores in an attempt to meet the SLO,
however even with the max 64 cores, the SLO was never met.

Fig. 8: A timeline view of Lachesis’ number of unused cores (blue)
and SLO violations (green) over 100 invocations of resnet-50.

VI. CONCLUSION

For ease-of-use and resource efficiency of serverless plat-
forms, our analysis motivates that resource allocation should
be fine-grained per invocation and per resource type, to
account for various input properties. We present Lachesis
that uses an online learner to predict the number of cores
required to meet an invocation’s SLO and show its efficacy in
improving performance, resource utilization, and user cost.
Future Work: Lachesis paves the path for the following next
steps: (1) Currently, Lachesis creates one online agent per
function due to the variable number of features extracted from
different input types (e.g., video, audio). We plan to standard-
ize features to enable a single agent to allocate resources for all
functions. (2) Lachesis decouples resource types, but currently
focuses on only making CPU allocations. We will augment
Lachesis by allocating memory per invocation as well. (3)
While per-invocation allocations help as we demonstrated in
this paper, customized allocations per invocation also increase
the number of containers used per function, thereby increasing
the number of cold-starts. Cold-starts often worsen function
performance. We will design a scheduler that closely inter-
acts with our resource allocator to strike the right trade-off
between improved utilization due to fine-grained allocations
and resulting cold-starts.
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