
STITCH-OPE: Trajectory Stitching with Guided
Diffusion for Off-Policy Evaluation

Hossein Goli1,2,4 Michael Gimelfarb1,2,4 Nathan De Lara1,2,4 Haruki Nishimura3

Masha Itkina3 Florian Shkurti1,2,4
1Department of Computer Science, University of Toronto
2University of Toronto Robotics Institute, Toronto, Canada

3Toyota Research Institute, Los Altos, California
4Vector Institute, Toronto, Canada

{hossein.goli,mike.gimelfarb,nathan.delara}@mail.utoronto.ca

Abstract—Off-policy evaluation (OPE) estimates the perfor-
mance of a target policy using offline data collected from a
behavior policy, and is crucial in domains such as robotics
or healthcare where direct interaction with the environment
is costly or unsafe. Existing OPE methods are ineffective for high-
dimensional, long-horizon problems, due to exponential blow-ups
in variance from importance weighting or compounding errors
from learned dynamics models. To address these challenges, we
propose STITCH-OPE, a model-based generative framework
that leverages denoising diffusion for long-horizon OPE in high-
dimensional state and action spaces. Starting with a diffusion
model pre-trained on the behavior data, STITCH-OPE generates
synthetic trajectories from the target policy by guiding the denois-
ing process using the score function of the target policy. STITCH-
OPE proposes two technical innovations that make it advantageous
for OPE: (1) prevents over-regularization by subtracting the
score of the behavior policy during guidance, and (2) generates
long-horizon trajectories by stitching partial trajectories together
end-to-end. We provide a theoretical guarantee that, under mild
assumptions, these modifications result in an exponential reduction
in variance versus long-horizon trajectory diffusion. Experiments
on the D4RL and OpenAI Gym benchmarks show substantial
improvement in mean squared error, correlation, and regret
metrics compared to state-of-the-art OPE methods.

I. INTRODUCTION

Given the slow and risky nature of online data collection,
real-world applications of reinforcement learning and robot
evaluation often require offline data for policy learning and
evaluation [27, 51]. An important problem of working with
offline data is off-policy evaluation (OPE), which aims to
evaluate the performance of a target policy π using offline
data collected from another behavior policy β. One practical
advantage of OPE is that it saves the cost of evaluation on
hardware in embodied applications in the real world [32].
However, a central challenge of OPE is the presence of
distribution shift induced by differences in behavior and target
policies [27, 4]. This can lead to inaccurate estimates of policy
values, making it difficult to trust or select between multiple
target policies before they are deployed [55, 31].

Numerous approaches have attempted to address the distri-
bution shift in offline policy evaluation by reducing either the
variance of the policy value or its bias, but they are typically
ineffective in high-dimensional long-horizon problems. For

example, Importance Sampling (IS) [43] estimates the value
of the target policy by weighing the behavior policy rollouts
according to the ratio of their likelihoods. However, it suffers
from the so-called curse of horizon where the variance of the
estimate increases exponentially in the evaluation horizon [30].
More recent model-free OPE estimators reduce or eliminate the
explosion in variance by estimating the long-run state-action
density ratio dπ(s, a)/dβ(s, a) between the target and behavior
policy [30, 39, 54], yet they have demonstrated poor empirical
performance on high-dimensional tasks where the behavior and
target policies are different (i.e. the behavior policy is not a
noisy version of the target policy) [16].

As an alternative approach, model-based OPE estimators
typically learn an empirical autoregressive model of the
environment and reward function from the behavior data,
which is used to generate synthetic rollouts from the target
policy for offline evaluation [21, 50, 57]. Some advantages
of the model-based paradigm include sample efficiency [28],
exploitation of prior knowledge about the dynamics [14], and
better generalization to unseen states [56]. Although model-
based OPE methods often scale well to high-dimensional
short-horizon problems – owing to the scalability of the deep
model-based RL paradigm – their robustness diminishes in
long-horizon tasks due to the compounding of errors in the
approximated dynamics model [16, 19, 20].

Driven by the recent successes of generative diffu-
sion in RL [36, 60, 1, 18, 37, 45], we propose Sub-
Trajectory Importance-Weighted Trajectory Composition for
Long-Horizon OPE for model-based off-policy evaluation in
long-horizon high-dimensional problems. STITCH-OPE first
trains a diffusion model on behavior data, allowing it to gener-
ate dynamically feasible behavior trajectories [20]. STITCH-
OPE differs from prior work [1, 20, 18, 45] by training the
diffusion model on short sub-trajectories instead of full rollouts,
where sub-trajectory generation is conditioned on the final
state of the previous generated sub-trajectory. This enables
accurate trajectory “stitching” using short-horizon rollouts,
while minimizing compounding error of full-trajectory rollouts,
thus bridging the gap between model-based OPE and full-
trajectory offline diffusion.

I. Behavior Data II. Target Policy III. PGD IV. Ours

A: Conditional diffusion
improves composition. X

Y

X

Y

X

Y

X

Y

B: Conditional diffusion
improves state generalization. X

Y

X

Y

X

Y

X

Y

C: Behavior policy guidance
addresses distribution shift. X

Y

X

Y

X

Y

X

Y

TABLE I
A 2D TOY PROBLEM WITH GAUSSIAN DYNAMICS ILLUSTRATES THE ADVANTAGES OF STITCH-OPE. ROW A: BEHAVIOR DATA FROM TWO POLICIES;

TARGET IS PIECEWISE. STITCH-OPE CORRECTLY STITCHES TRAJECTORIES, WHILE PGD [18] STRUGGLES WITH COMPOSITIONALITY. ROW B:
STITCH-OPE IS TRAINED ON SUB-TRAJECTORIES FROM ARBITRARY STATES AND THUS GENERALIZES BETTER. ROW C: NEGATIVE BEHAVIOR GUIDANCE

PREVENTS OVER-REGULARIZATION IN THE PRESENCE OF SEVERE DISTRIBUTION SHIFT, REDUCING BIAS.

STITCH-OPE explicitly accounts for distribution shift in
OPE by guiding the diffusion denoising process [10, 20] during
inference. This can be achieved by selecting the guidance
function to be the difference between the score functions of the
target and behavior policies. A significant advantage of guided
diffusion is that it eliminates the need to retrain the diffusion
model for each new target policy. By pretraining the model on
a variety of behavior datasets, generalization can be achieved
during guided sampling to produce feasible trajectories under
the target policy, leading to robust off-policy estimates for
target policies that lack offline data.

II. PROPOSED METHODOLOGY

The direct method for off-policy evaluation [13] estimates
the single-step autoregressive model P̂ (st|st−1, at−1) and
the reward function R̂(st, at) from the behavior data. Then,
it draws target policy trajectories τ ∼ pπ(τ) by forward
sampling. That is, drawing initial state s0 from the initial state
distribution d0, i.e. s0 ∼ d0, we simulate a0 ∼ π(·|s0), s1 ∼
P̂ (·|s0, a0), . . . sT ∼ P̂ (·|sT−1, aT−1). However, even small
errors in P̂ can lead to significant bias in the value estimate,
J(π), due to the compounding of errors over long horizon
T [22, 19]. STITCH-OPE avoids the compounding problem
by generating the trajectory in short chunks, leading to more
accurate OPE estimates over a long horizon.

A. Guided Diffusion for Off-Policy Evaluation

It is possible to approximate pπ using guided diffusion
by interpreting each input/output to the diffusion model as a
full trajectory τ . Given a behavior policy β and corresponding

length-T trajectory distribution pβ(τ), the corresponding length-
T trajectory distribution of target policy π can be written as:

pπ(τ) = pβ(τ) ρ0:T (τ), (1)

where ρu:v(τ) =
∏v−1

t=u
π(at|st)
β(at|st) is the standard importance sam-

pling correction [43]. We address the question of tractably learn-
ing pβ(τ) by training a diffusion model p̂β(τ) on the offline
behavior data set Dβ [20], thus approximating p̂β(τ) ≈ pβ(τ).
Specifically, the diffusion model learns to map a trajectory
consisting of Gaussian noise, τk = (sk0 , a

k
0 , . . . s

k
T) ∼ N (0, I),

to a noiseless behavior trajectory τ0 = (s00, a
0
0, . . . s

0
T).

A key observation is that we can bypass importance sampling
in (1) by guiding the generation process p̂β(τ) towards pπ(τ)
using diffusion guidance [20]. Specifically, let τk denote a
noisy behavior trajectory at step k of the forward diffusion
process, and let y ∈ {0, 1} be a binary outcome with p(y =
1|τ) ∝ ρ0:T (τ). Intuitively, y indicates whether the trajectory
τ is generated by the target policy π (y = 1) or the behavior
policy β (y = 0), and the likelihood ratio determines the odds
that y = 1 given τ . By (1), pπ(τ) ∝ pβ(τ) p(y = 1|τ), and
thus the backward diffusion process for generating target policy
trajectories for OPE can be approximated with guidance:

log pπ(τ
k|τk+1)

∝ log(pβ(τ
k|τk+1)p(y = 1|τk+1))

≈ logN (τk+1;µk +Σk∇τ log p(y = 1|τ)|τk+1 ,Σk), (2)

where pβ(τ
k|τk+1) = N (µk,Σk) is the backward diffusion

process. Therefore, we can obtain feasible target policy

Behavior Data Partial Rollouts

A

Pre-Trained Diffusion

τk . . . τ0

(st, ϵ
k)

State + Noise

(st, . . . st+w)

Partial Rollout

B

Target Rollouts

E

∇τ

∑
t log π(at|st) ∇τ

∑
t log β(at|st)

−

−
Policy Guidance

D

st

at
R̂(st, at) rt

Reward Predictor

C
Ĵ(π) = Epw

π
[
∑

t γ
tR̂(st, at)]

Off-Policy Evaluation

Fig. 1. A conceptual illustration of STITCH-OPE, with novel contributions highlighted in orange. A: Behavior data is sliced into partial trajectories of length
w. B: Denoising diffusion process to generate partial behavior trajectories starting from the initial state st. C: A reward function R̂(s, a) is estimated from
behavior transitions. D: Policy guidance with the negative behavior score function guides the diffusion process towards partial target trajectories. E: Estimation
of the return by stitching generated partial trajectories end-to-end and evaluating their empirical cumulative returns.

trajectories using the guidance function:

g(τ) = ∇τ log p(y = 1|τ) = ∇τ log ρ0:T (τ)

= ∇τ

T−1∑

t=0

log π(at|st)−∇τ

T−1∑

t=0

log β(at|st). (3)

In our empirical evaluation, we employ the following
generalization of (3) to allow fine-grained control over the
relative importance of the target and behavior policy guidance

g(τ) = α∇τ

T−1∑

t=0

log π(at|st)− λ∇τ

T−1∑

t=0

log β(at|st), (4)

where α and λ are hyper-parameters. Ignoring the normalizing
constant which does not dependent on τ , (4) is equivalent to
sampling from a tempered posterior [2, 6] distribution over τ ,

qπ(τ) ∝ pβ(τ)

T−1∏

t=0

π(at|st)α
β(at|st)λ

. (5)

Given a set of denoised trajectories τ0 from the guided
diffusion process, and an empirical reward function R̂(s, a), it
is straightforward to estimate the expected return (or a statistic
such as variance or quantile) given any target policy, i.e. Ĵ(π) =
Eτ=τ0∼p̂π

[∑
t γ

tR̂(st, at)
]
.

B. Sub-Trajectory Stitching with Conditional Diffusion

Recent work has shown that full-length diffusion models
do not provide sufficient compositionality for accurate long-
horizon sequence generation [7]. In addition, full-length
prediction requires the generation of sequences of length
T × (dim(A) + dim(S)); this may be infeasible or inefficient
on resource-constrained systems, when T is large or when A
or S is high-dimensional.

To tackle these limitations, STITCH-OPE trains a conditional
diffusion model to generate behavior sub-trajectories of length
w ≪ T . To allow for a more flexible composition of behavior
trajectories during guidance, generation in STITCH-OPE is
performed in a semi-autoregressive manner from the diffusion
model, which is conditioned on the last state of the previously
generated sub-trajectory.

Writing pβ(τt:t+w|s0t) to denote the sampling distribution
over fully denoised sub-trajectories τ0t:t+w conditioned on s0t ,
the sampling process of STITCH-OPE can be written as:

pwπ (τ) =

T/w−1∏

t=0

(
pβ(τwt:w(t+1)|s0wt) ρwt:w(t+1)(τ)

)
, (6)

and thus each sub-trajectory can be generated by guiding the
conditional diffusion with

g(τwt:w(t+1)) = ∇τwt:w(t+1)
log ρwt:w(t+1)(τ).

A complete algorithm description of STITCH-OPE is provided
in Appendix D.

To understand the intuition that the conditional diffusion
model offers better compositionality than the full-horizon
prediction, we decompose the behavior trajectory distribution
as a mixture over the trajectories τj in Dβ :

pβ(st, at, . . . sT−1|s0, a0, . . . st)
≈
∑

τj∈Dβ

pβ(st, at, . . . sT−1|st, τj)p(τj |s0, a0, . . . st).

Meanwhile, the conditional diffusion model ignores the full
history of past states, i.e.:

pβ(st, at, . . . sT−1|s0, a0, . . . st)
≈
∑

τj∈Dβ

pβ(st, at, . . . sT−1|st, τj)p(τj |st).

FQ
E DR IS DRE

MBR
PG

D

ST
ITC

H

1.5
1.0
0.5
0.0

Lo
g

RM
SE

FQ
E DR IS DRE

MBR
PG

D

ST
ITC

H0.0
0.2
0.4
0.6
0.8

Ra
nk

 C
or

re
la

tio
n

FQ
E DR IS DRE

MBR
PG

D

ST
ITC

H0.0
0.1
0.2
0.3

Re
gr

et
@

1

Fig. 2. Mean overall performance of all baselines, averaged across environments. Error bars represent +/- one standard error.

p(τj |st) has higher entropy than p(τj |s0, a0, . . . st) since it is
conditioned on less information (see Appendix B for a proof),
and thus provides a broader coverage of the diverse modes
in the behavior dataset. This improves the compositionality
of guided long-horizon trajectory generation. Row A of Table
I illustrates this claim empirically using the GaussianWorld
problem. A further claim is that the STITCH-OPE model
can generalize better across initial states with low, or even
zero, probability under d0 (see row B of Table I). This
occurs because pwβ is trained on sub-trajectories starting in
arbitrary states in Dβ , as opposed to states sampled only
from d0. We also provide a formal bias-variance tradeoff
analysis in Appendix C, showing that STITCH-OPE achieves
an exponential reduction in variance while maintaining bounded
bias under mild assumptions (see Theorems C.8,C.11).

III. EMPIRICAL EVALUATION

A. Experiment Details

a) Experimental Setup: We assess STITCH-OPE on high-
dimensional, long-horizon tasks from the D4RL benchmark
[15] (halfcheetah-medium, hopper-medium, walker2d-medium)
with 10 target policies of varying proficiency [16], as well
as Pendulum and Acrobot from OpenAI Gym [5]. Domain
specifics (horizons, γ, policy training) and full training hyper-
parameters are detailed in Appendices E and I.

b) Comparisons and Metrics: We compare against four
model-free OPE estimators—FQE [26], DR [49], IS [43],
DRE [39]—and two model-based methods—MB [21, 52]
and PGD [18] (implementation details in Appendix G). Each
method is run over 5 seeds per dataset–policy pair; true returns
are obtained by executing each policy in the simulator. We
report LogRMSE, Spearman Correlation, and Regret@1
(difference between the estimated-best and true-best policy;
further details in Appendix H). Results are plotted in Figure 2;
per-environment breakdowns and additional experiments are
provided in Appendix K. We see that STITCH-OPE provides
state-of-the-art results on OPE across all metrics.

B. Off-Policy Evaluation with Diffusion Policies

To demonstrate the ability of STITCH-OPE to evaluate
more complex policy classes, we replace target policies with
diffusion policies, which have led to significant advances
in robotics [8, 53] (see Appendix J for details). Since
STITCH-OPE only requires the score of the target policy, it is

computationally straightforward to perform OPE with diffusion
policies, which is not the case for other estimators that require
an explicit probability distribution πi(a|s) over actions (i.e. IS,
DR). D4RL results are provided in Appendix J Table X. We
see that STITCH-OPE outperforms all other baselines in 6 out
of 9 instances, demonstrating robust OPE performance across
multiple target policy classes.

IV. REAL-WORLD DEPLOYABILITY AND GENERALIZATION
DISCUSSION

By training a conditional diffusion model on sub-trajectories
(Section II-B), our approach improves compositionality and
generalization to out-of-distribution (OOD) states. As shown
in Table I, this enables generalization to low-probability or
entirely unseen initial states, a prerequisite for robustness in
real-world settings.

Furthermore, our use of guided diffusion with negative
behavior guidance (Section II-B) mitigates over-regularization,
allowing effective correction for distribution shift without
retraining the generative model for each target policy. This
is particularly important for real-world deployability, where
behavior data could be collected from a variety of past policies,
and new target policies could differ substantially.

Finally, we demonstrate in Appendix J that STITCH-
OPE generalizes not only across tasks but also across pol-
icy classes, achieving strong performance when evaluating
diffusion-based policies—a class of policies that are becoming
increasingly prevalent in real-world robotics. Compatibility
with diverse policy formats further supports the practical
deployability of STITCH-OPE.

V. CONCLUSION

We presented STITCH-OPE for off-policy evaluation in
high-dimensional, long-horizon environments. We showed that
STITCH-OPE outperforms state-of-the-art OPE methods across
MSE, correlation and regret metrics. Future work could investi-
gate online data collection to address severe distribution shift, or
explore ways to adapt the guidance coefficients or incorporate
prior knowledge (e.g. about dynamics or policies) into guidance.
It also remains an open question whether the advantages of
STITCH-OPE apply to offline policy optimization.

REFERENCES

[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenen-
baum, Tommi S. Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision
making? In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.
net/forum?id=sP1fo2K9DFG.

[2] Pierre Alquier and James Ridgway. Concentration of tem-
pered posteriors and of their variational approximations.
The Annals of Statistics, 48(3):1475–1497, 2020.

[3] Christopher M Bishop and Nasser M Nasrabadi. Pattern
recognition and machine learning, volume 4. Springer,
2006.

[4] David Brandfonbrener, Will Whitney, Rajesh Ranganath,
and Joan Bruna. Offline rl without off-policy evaluation.
Advances in neural information processing systems, 34:
4933–4946, 2021.

[5] G Brockman. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[6] Frédéric Cérou, Patrick Héas, and Mathias Rousset. Adap-
tive reduced tempering for bayesian inverse problems and
rare event simulation. arXiv preprint arXiv:2410.18833,
2024.

[7] Boyuan Chen, Diego Martı́ Monsó, Yilun Du, Max
Simchowitz, Russ Tedrake, and Vincent Sitzmann. Diffu-
sion forcing: Next-token prediction meets full-sequence
diffusion. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

[8] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[9] Stephen Dankwa and Wenfeng Zheng. Twin-delayed
ddpg: A deep reinforcement learning technique to model
a continuous movement of an intelligent robot agent. In
Proceedings of the 3rd international conference on vision,
image and signal processing, pages 1–5, 2019.

[10] Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

[11] Zibin Dong, Yifu Yuan, Jianye Hao, Fei Ni, Yi Ma,
Pengyi Li, and Yan Zheng. Cleandiffuser: An easy-to-
use modularized library for diffusion models in decision
making. arXiv preprint arXiv:2406.09509, 2024. URL
https://arxiv.org/abs/2406.09509.

[12] Miroslav Dudık, Dumitru Erhan, John Langford, and Li-
hong Li. Doubly robust policy evaluation and optimization.
Statistical Science, 29(4):485–511, 2014.

[13] Mehrdad Farajtabar, Yinlam Chow, and Mohammad
Ghavamzadeh. More robust doubly robust off-policy
evaluation. In International Conference on Machine
Learning, pages 1447–1456. PMLR, 2018.

[14] M Fard and Joelle Pineau. Pac-bayesian model selection
for reinforcement learning. Advances in Neural Informa-

tion Processing Systems, 23, 2010.
[15] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker,

and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219,
2020.

[16] Justin Fu, Mohammad Norouzi, Ofir Nachum, George
Tucker, ziyu wang, Alexander Novikov, Mengjiao Yang,
Michael R Zhang, Yutian Chen, Aviral Kumar, Cosmin
Paduraru, Sergey Levine, and Thomas Paine. Bench-
marks for deep off-policy evaluation. In International
Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=kWSeGEeHvF8.

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[18] Matthew Thomas Jackson, Michael Matthews, Cong Lu,
Benjamin Ellis, Shimon Whiteson, and Jakob Nicolaus
Foerster. Policy-guided diffusion. In Reinforcement
Learning Conference, 2024.

[19] Michael Janner, Qiyang Li, and Sergey Levine. Offline
reinforcement learning as one big sequence modeling
problem. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34,
pages 1273–1286. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paper files/paper/2021/
file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf.

[20] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior
synthesis. In International Conference on Machine
Learning, pages 9902–9915. PMLR, 2022.

[21] Nan Jiang and Lihong Li. Doubly robust off-policy value
evaluation for reinforcement learning. In International
conference on machine learning, pages 652–661. PMLR,
2016.

[22] Nan Jiang, Alex Kulesza, Satinder Singh, and Richard
Lewis. The dependence of effective planning horizon on
model accuracy. In Proceedings of the 2015 international
conference on autonomous agents and multiagent systems,
pages 1181–1189, 2015.

[23] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz,
Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan
Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and
Sergey Levine. Scalable deep reinforcement learning
for vision-based robotic manipulation. In Conference on
robot learning, pages 651–673. PMLR, 2018.

[24] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli,
and Thorsten Joachims. Morel: Model-based offline
reinforcement learning. Advances in neural information
processing systems, 33:21810–21823, 2020.

[25] Ilya Kostrikov and Ofir Nachum. Statistical bootstrapping
for uncertainty estimation in off-policy evaluation. arXiv
preprint arXiv:2007.13609, 2020.

[26] Hoang Le, Cameron Voloshin, and Yisong Yue. Batch
policy learning under constraints. In International Con-
ference on Machine Learning, pages 3703–3712. PMLR,

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://arxiv.org/abs/2406.09509
https://openreview.net/forum?id=kWSeGEeHvF8
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf

2019.
[27] Sergey Levine, Aviral Kumar, George Tucker, and Justin

Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

[28] Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting
Wei. Settling the sample complexity of model-based
offline reinforcement learning. The Annals of Statistics,
52(1):233–260, 2024.

[29] Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long,
and Weinan Zhang. Diffstitch: Boosting offline reinforce-
ment learning with diffusion-based trajectory stitching.
In International Conference on Machine Learning, pages
28597–28609. PMLR, 2024.

[30] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou.
Breaking the curse of horizon: Infinite-horizon off-policy
estimation. Advances in neural information processing
systems, 31, 2018.

[31] Vincent Liu, Prabhat Nagarajan, Andrew Patterson, and
Martha White. When is offline policy selection sample
efficient for reinforcement learning? arXiv preprint
arXiv:2312.02355, 2023.

[32] Yang Liu, Weixing Chen, Yongjie Bai, Guanbin Li, Wen
Gao, and Liang Lin. Aligning cyber space with physical
world: A comprehensive survey on embodied ai. CoRR,
2024.

[33] Yao Liu, Pierre Luc Bacon, and Emma Brunskill. Un-
derstanding the curse of horizon in off-policy evaluation
via conditional importance sampling. In International
Conference on Machine Learning, pages 6184–6193.
PMLR, 2020.

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.
net/forum?id=Bkg6RiCqY7.

[35] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic
gradient descent with warm restarts. In International
Conference on Learning Representations, 2022.

[36] Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack
Parker-Holder. Synthetic experience replay. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=
6jNQ1AY1Uf.

[37] Liyuan Mao, Haoran Xu, Xianyuan Zhan, Weinan Zhang,
and Amy Zhang. Diffusion-DICE: In-sample diffusion
guidance for offline reinforcement learning. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/
forum?id=EIl9qmMmvy.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. nature, 518(7540):529–533, 2015.

[39] Ali Mousavi, Lihong Li, Qiang Liu, and Denny Zhou.
Black-box off-policy estimation for infinite-horizon re-

inforcement learning. In International Conference on
Learning Representations, 2020.

[40] S. A. Murphy, M. J. van der Laan, J. M. Robins, and
Conduct Problems Prevention Research Group. Marginal
mean models for dynamic regimes. Journal of the
American Statistical Association, 96(456):1410–1423,
2001. ISSN 01621459. URL http://www.jstor.org/stable/
3085909.

[41] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li.
Dualdice: Behavior-agnostic estimation of discounted
stationary distribution corrections. Advances in neural
information processing systems, 32, 2019.

[42] Xinkun Nie, Emma Brunskill, and Stefan Wager. Learning
when-to-treat policies. Journal of the American Statistical
Association, 116(533):392–409, 2021.

[43] Doina Precup, Richard S Sutton, and Satinder P Singh.
Eligibility traces for off-policy policy evaluation. In
Proceedings of the Seventeenth International Conference
on Machine Learning, pages 759–766, 2000.

[44] Aniruddh Raghu, Omer Gottesman, Yao Liu, Matthieu
Komorowski, Aldo Faisal, Finale Doshi-Velez, and Emma
Brunskill. Behaviour policy estimation in off-policy policy
evaluation: Calibration matters. International Conference
on Machine Learning: workshop on Causal Machine
Learning, 2018.

[45] Marc Rigter, Jun Yamada, and Ingmar Posner. World mod-
els via policy-guided trajectory diffusion. Transactions
on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=9CcgO0LhKG.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part
III 18, pages 234–241. Springer, 2015.

[47] C Spearman. The proof and measurement of association
between two things. The American Journal of Psychology,
15(1):72–101, 1904.

[48] Georgios Theocharous, Philip S. Thomas, and Mohammad
Ghavamzadeh. Personalized ad recommendation systems
for life-time value optimization with guarantees. In Inter-
national Joint Conference on Artificial Intelligence, 2015.
URL https://api.semanticscholar.org/CorpusID:8081523.

[49] Philip Thomas and Emma Brunskill. Data-efficient off-
policy policy evaluation for reinforcement learning. In
International Conference on Machine Learning, pages
2139–2148. PMLR, 2016.

[50] Masatoshi Uehara and Wen Sun. Pessimistic model-based
offline rl: Pac bounds and posterior sampling under partial
coverage. CoRR, 2021.

[51] Masatoshi Uehara, Chengchun Shi, and Nathan Kallus. A
review of off-policy evaluation in reinforcement learning.
arXiv preprint arXiv:2212.06355, 2022.

[52] Cameron Voloshin, Hoang Minh Le, Nan Jiang, and
Yisong Yue. Empirical study of off-policy policy evalua-
tion for reinforcement learning. In Thirty-fifth Conference

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=6jNQ1AY1Uf
https://openreview.net/forum?id=6jNQ1AY1Uf
https://openreview.net/forum?id=EIl9qmMmvy
https://openreview.net/forum?id=EIl9qmMmvy
http://www.jstor.org/stable/3085909
http://www.jstor.org/stable/3085909
https://openreview.net/forum?id=9CcgO0LhKG
https://api.semanticscholar.org/CorpusID:8081523

on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1), 2021.

[53] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou.
Diffusion policies as an expressive policy class for offline
reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=AHvFDPi-FA.

[54] Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, and
Dale Schuurmans. Off-policy evaluation via the reg-
ularized lagrangian. Advances in Neural Information
Processing Systems, 33:6551–6561, 2020.

[55] Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker,
and Dale Schuurmans. Offline policy selection under
uncertainty. In International Conference on Artificial
Intelligence and Statistics, pages 4376–4396. PMLR,
2022.

[56] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon,
James Y Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. Mopo: Model-based offline policy optimization.
Advances in Neural Information Processing Systems, 33:
14129–14142, 2020.

[57] Michael R Zhang, Thomas Paine, Ofir Nachum, Cosmin
Paduraru, George Tucker, ziyu wang, and Mohammad
Norouzi. Autoregressive dynamics models for offline
policy evaluation and optimization. In International
Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=kmqjgSNXby.

[58] Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans.
Gendice: Generalized offline estimation of stationary
values. In International Conference on Learning Repre-
sentations, 2020.

[59] Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang,
Shengbo Eben Li, Xianyuan Zhan, and Jingjing Liu.
Safe offline reinforcement learning with feasibility-guided
diffusion model. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=j5JvZCaDM0.

[60] Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong,
Shenyu Zhang, Haoquan Guo, Tingting Chen, and Weinan
Zhang. Diffusion models for reinforcement learning: A
survey. arXiv preprint arXiv:2311.01223, 2023.

https://openreview.net/forum?id=AHvFDPi-FA
https://openreview.net/forum?id=kmqjgSNXby
https://openreview.net/forum?id=j5JvZCaDM0
https://openreview.net/forum?id=j5JvZCaDM0

APPENDIX A
GAUSSIANWORLD DOMAIN

The GaussianWorld domain is a toy 2-dimensional Markov decision process defined designed to illustrate and compare
generalization and compositionality of diffusion models (Table I). It is defined as follows:

a) State Space: S = R2 describes all positions (xt, yt) of a particle in space at every decision epoch t. It is assumed that
xt is the x-coordinate and yt is the y-coordinate.

b) Action Space: A = R describes the (counterclockwise) angle of the movement vector of the particle at every decision
epoch, relative to the horizontal.

c) Transitions: Letting at be the angle of movement of the particle at time t, the transitions of xt and yt are defined as
follows:

xt+1 = xt + 0.02 cos(at + εt), yt+1 = yt + 0.02 sin(at + εt), εt ∼ N (0, 0.22).

Here, εt is an i.i.d. Gaussian noise added to the actions before they are applied by the controller.
d) Reward Function: The problem is not solved so we leave the reward unspecified. We also leave the discount factor

unspecified.

APPENDIX B
PROOF THAT CONDITIONAL DIFFUSION INCREASES ENTROPY

We begin with the following definitions.

Definition B.1 (Entropy). Let p(x) be a density function of a random variable X with support X . The entropy of X is defined
as

H(X) =

∫

X
p(x) log

(
1

p(x)

)
dx.

Definition B.2 (Conditional Entropy). The conditional entropy of X given Y on support Y is defined as

H(X|Y) = Ey∈Y [H(X|Y = y)].

Our goal is to prove

Theorem B.3. Let St be the random state at time t sampled according to the conditional distribution p(St+1 = s|St = x,At = u),
and let At be a random action following some conditional distribution p(At = a|St = x). Then H(τ |St) ≥ H(τ |S0, A0 . . . St),
where τ is a (random) sub-trajectory beginning in state St.

Proof: First, letting U = (S0, A0, . . . St−1, At−1), observe that:

H(U, τ |St = s) =

∫∫
p(U = u, τ |St = s) log

(
1

p(U = u, τ |St = s)

)
dudτ

=

∫∫
p(U = u, τ |St = s) log

(
1

p(U = u|St = s)p(τ |U = u, St = s)

)
dudτ

=

∫
p(U = u|St = s) log

(
1

p(U = u|St = s)

)
du

+

∫
p(U = u|St = s)

∫
p(τ |U = u, St = s) log

(
1

p(τ |U = u, St = s)

)
dudτ

= H(U |St = s) + Eu∈U|St=s[H(τ |U = u, St = s)].

Next, using the additivity property of expectation and law of total expectation:

H(U, τ |St) = Es∈St [H(U |St = s)] + Es∈St,u∈U [H(τ |U = u, St = s)] = H(U |St) +H(τ |U, St).

Next, we prove sub-additivity of conditional entropy:

H(U, τ |St = s)−H(U |St = s)−H(τ |St = s)

=

∫∫
p(U = u, τ |St = s) log

(
1

p(U = u, τ |St = s)

)
dudτ

−
∫

p(U = u|St = s) log

(
1

p(U = u|St = s)

)
du−

∫
p(τ |St = s) log

(
1

p(τ |St = s)

)
dτ

=

∫∫
p(U = u, τ |St = s) log

(
p(τ |St = s)p(U = u|St = s)

p(U = u, τ |St = s)

)
dudτ

≤ log

∫∫
p(U = u, τ |St = s)

(
p(τ |St = s)p(U = u|st = s)

p(U = u, τ |St = s)

)
dudτ

= log 1 = 0,

where the inequality in the derivation follows by Jensen’s inequality. This implies that

H(U, τ |St = s) ≤ H(U |St = s) +H(τ |St = s).

Taking expectation of both sides with respect to St, and using the monotonicity and additivity properties of expectation:

H(U, τ |St) = Es∈St [H(U, τ |St = s)]

≤ Es∈St [H(U |St = s) +H(τ |St = s)] = H(U |St) +H(τ |St).

Finally, putting it all together:

H(τ |U, St) = H(U, τ |St)−H(U |St) ≤ H(U |St) +H(τ |St)−H(U |St) = H(τ |St),

which completes the proof.

APPENDIX C
THEORETICAL ANALYSIS

A. Assumptions and Definitions

We decompose a full trajectory of length T into N = T/w non-overlapping sub-trajectories (or chunks), each of length w.
Each chunk Si ∈ T (w) is defined as

Si := (siw, aiw, siw+1, aiw+1, . . . , s(i+1)w).

Let the full trajectory be defined as
S = (S0, S1, . . . , SN−1).

We define the boundary state Xi as the initial state of chunk Si:

Xi := siw, i = 0, 1 . . . N,

which form the backbone of the generative process.
We assume the following factored generative process for trajectories

p(S0, S1, . . . , SN−1) = p(X0)

N−1∏

i=0

p(Si | Xi) p(Xi+1 | Si).

This implies that the boundary state sequence X = (X0, X1, . . . , XN) forms a first-order Markov chain

p(Xi+1 | Si) = p(Xi+1 | Xi).

Each chunk Si produces a scalar discounted return Yi, defined as

Yi := f(Si) =

w−1∑

j=0

γjR̂(siw+j , aiw+j),

where R̂ is a learned reward model, and γ ∈ [0, 1] is the discount factor.
Given a bound Rmax <∞ on the absolute reward, we define the maximum per-chunk return bound as:

Bw :=

w−1∑

j=0

γjRmax =
Rmax(1− γw)

1− γ
⇒ |Yi| ≤ Bw.

The cumulative return over the full trajectory is approximated by

Ĵ =

N−1∑

i=0

γiwYi,

and the expected return under the target policy π is:

J(π) := Epπ [Ĵ] = Epπ

[
N−1∑

i=0

γiwYi

]
.

Definition C.1 (Chunked Behavior Distributions). Let p(w)
β denote the true distribution over behavior chunks Si, and let p̂(w)

β

be the learned conditional distribution modeled by the diffusion process. These distributions describe how chunks are generated
given boundary states:

p
(w)
β (Si | Xi), p̂

(w)
β (Si | Xi).

Definition C.2 (Total Variation Distance). The total variation distance between two probability distributions P and Q over the
same measurable space X is defined as

TV(P,Q) := sup
A⊆X

|P (A)−Q(A)|.

We require the following assumptions.

Assumption C.3 (Bounded Likelihood Ratio). There is a constant κ such that π(a|s)
β(a|s) ≤ κ for all s ∈ S and a ∈ A.

Note that this assumption can be easily verified in our experimental setting. Since the action spaces are closed intervals
and the behavior and target policy distributions are both represented as truncated Gaussian distributions, the ratio of the two
policies is bounded over the action space.

Assumption C.4 (Chunk-wise Model Fit). The total variation distance between the true chunk distribution p
(w)
β and the learned

conditional distribution p̂
(w)
β is bounded by some constant δβ > 0,

TV
(
p
(w)
β , p̂

(w)
β

)
≤ δβ .

This assumption is stated in terms of pβ rather than pπ , and is thus easier to validate in practice.

B. Analysis of the Bias

We begin by bounding the total variation distance between the true target distribution p
(w)
π and the guided model p̂(w)

π .

Lemma C.5. The total variation distance between the guided model p̂(w)
π and the true target distribution p

(w)
π satisfies

TV
(
p(w)
π , p̂(w)

π

)
≤ κ2 · δβ

Proof: By the definition of total variation distance

TV(p(w)
π , p̂(w)

π) =
1

2

∫ ∣∣∣p(w)
π (τ)− p̂(w)

π (τ)
∣∣∣dτ.

Using the reweighted form of each distribution

TV(p(w)
π , p̂(w)

π) =
1

2

∫ ∣∣∣∣∣∣

(
p
(w)
β (τ)− p̂

(w)
β (τ)

)
·
w−1∏

j=0

π(aj | sj)
β(aj | sj)

∣∣∣∣∣∣
dτ,

and applying the bound on the likelihood ratio (Assumption C.3):

TV(p(w)
π , p̂(w)

π) ≤ κw

2

∫ ∣∣∣p(w)
β (τ)− p̂

(w)
β (τ)

∣∣∣dτ = κw · TV(p
(w)
β , p̂

(w)
β) ≤ κw · δβ .

This completes the proof.
Let the total variation distance between the true target distribution and the guided diffusion model be denoted by

δπ := TV
(
p(w)
π , p̂(w)

π

)
.

By Lemma C.5, we have the bound
δπ ≤ κw · δβ .

We now derive a bound on the absolute bias of the estimated return when sampling chunks from the guided model p̂(w)
π

instead of the true target distribution p
(w)
π .

Lemma C.6 (Expectation Difference Bound via Total Variation). Let p and q be two probability densities on a probability
space X . Let

∥f∥∞ = sup
x∈X

∣∣f(x)
∣∣

be the supremum norm of a bounded function f : X → R, and let:

∥p− q∥1 =

∫

X

∣∣p(x)− q(x)
∣∣dx, TV(p, q) = 1

2 ∥p− q∥1.

Then ∣∣Ex∼p[f(x)] − Ex∼q[f(x)]
∣∣ ≤ 2 ∥f∥∞ TV(p, q).

Proof: ∣∣Ep[f]− Eq[f]
∣∣ =

∣∣∣
∫

X
f(x) p(x) dx −

∫

X
f(x) q(x) dx

∣∣∣

=
∣∣∣
∫

X
f(x)

(
p(x)− q(x)

)
dx
∣∣∣ ≤

∫

X

∣∣f(x)
∣∣ ∣∣p(x)− q(x)

∣∣dx

≤ ∥f∥∞
∫

X

∣∣p(x)− q(x)
∣∣dx = 2 ∥f∥∞ TV(p, q).

This completes the proof.

Lemma C.7 (Marginal TV Bound via Conditional TV). Let p(x | s) and p̂(x | s) be conditional densities over chunk x ∈ T (w),
given state s ∈ S, and let µ(s) denote the marginal distribution over s. Then

TV

(∫
p(x | s)µ(s)ds,

∫
p̂(x | s)µ(s)ds

)
≤
∫

TV (p(· | s), p̂(· | s))µ(s)ds.

In particular, if TV(p(· | s), p̂(· | s)) ≤ ϵ for all s, then TV(p, p̂) ≤ ϵ.

Proof: Let p(x) =
∫
p(x | s)µ(s)ds, p̂(x) =

∫
p̂(x | s)µ(s)ds. Then:

TV(p, p̂) =
1

2

∫
|p(x)− p̂(x)|dx =

1

2

∫ ∣∣∣∣
∫

µ(s) [p(x | s)− p̂(x | s)] ds
∣∣∣∣ dx

≤ 1

2

∫∫
µ(s) |p(x | s)− p̂(x | s)|dsdx (by Jensen’s inequality)

=

∫
µ(s)

[
1

2

∫
|p(x | s)− p̂(x | s)|dx

]
ds =

∫
µ(s) · TV(p(· | s), p̂(· | s))ds.

If TV(p(· | s), p̂(· | s)) ≤ ϵ uniformly, the integral is bounded by ϵ.

Theorem C.8 (Bias Bound for STITCH-OPE). The bias of the return estimate under the guided diffusion model satisfies
∣∣∣Ep̂π

[Ĵ]− J(π)
∣∣∣ ≤ 2Bw

1− γw
· δπ.

Proof: The return estimator is:

Ĵ =

N−1∑

i=0

γiwYi, where Yi = f(Si) =

w−1∑

j=0

γjR̂(siw+j , aiw+j).

Thus, the bias is:

∣∣∣Ep̂π
[Ĵ]− Epπ

[Ĵ]
∣∣∣ =

∣∣∣∣∣
N−1∑

i=0

γiw (Ep̂π
[Yi]− Epπ

[Yi])

∣∣∣∣∣ ≤
N−1∑

i=0

γiw |Ep̂π
[Yi]− Epπ

[Yi]| .

For each chunk i, Yi depends only on Si, with marginal distributions p̂
(w,i)
π and p

(w,i)
π under p̂π and pπ, respectively. By

Lemma C.6 and Lemma C.7
|Ep̂π

[Yi]− Epπ
[Yi]| ≤ 2 · sup |Yi| · TV(p(w,i)

π , p̂(w,i)
π).

Since |R̂(s, a)| ≤ Rmax, the per-chunk return is bounded:

|Yi| ≤
w−1∑

j=0

γjRmax = Rmax ·
1− γw

1− γ
.

Using Lemma C.5, we know that TV(p
(w,i)
π , p̂

(w,i)
π) ≤ δπ , Thus we have

|Ep̂π
[Yi]− Epπ

[Yi]| ≤ 2 · Rmax(1− γw)

1− γ
· δπ.

Summing over chunks:

∣∣∣Ep̂π
[Ĵ]− Epπ

[Ĵ]
∣∣∣ ≤

N−1∑

i=0

γiw · 2 · Rmax(1− γw)

1− γ
· δπ = 2 · Rmax(1− γw)

1− γ
· δπ ·

N−1∑

i=0

γiw.

The geometric sum is:
N−1∑

i=0

γiw ≤
∞∑

i=0

γiw =
1

1− γw
.

Thus: ∣∣∣Ep̂π
[Ĵ]− Epπ

[Ĵ]
∣∣∣ ≤ 2 · Rmax(1− γw)

1− γ
· δπ ·

1

1− γw
=

2Bw

1− γw
· δπ.

This completes the proof.

Corollary C.9 (Bias Bound in Terms of Model Fit δβ). Under the assumptions supi TV(p
(w,i)
π , p̂

(w,i)
π) ≤ δπ ≤ κw · δβ and

supτ |Ĵ(τ)| ≤ Rmax

1−γ , the bias satisfies ∣∣∣Ep̂π
[Ĵ]− J(π)

∣∣∣ ≤ 2Bw

1− γw
· κw · δβ .

C. Analysis of the Variance

X0 X1 X2 XN

S0 S1 S2 SN−1

Y0 Y1 Y2 YN−1

Fig. 3. Illustration of the sub-trajectory decomposition. Each chunk Si generates a reward sequence Yi and leads to a boundary state Xi+1.

Lemma C.10 (Conditional Independence of Chunk Rewards). Let Xi := siw be the boundary state at the start of chunk Si,
and define:

Yi := f(Si) =

w−1∑

j=0

γj R̂(siw+j , aiw+j).

Assume the generative process satisfies the following properties:
• Each chunk Si is generated independently given Xi

• The return Yi is a deterministic function of Si.
Then for all i ̸= j, the returns Yi and Yj are conditionally independent given the full boundary state chain X0, X1, . . . , XN ,

Yi ⊥⊥ Yj

∣∣ X0, . . . , XN .

Proof: Refer to the graphical model in Figure 3. The nodes X0, X1, . . . , XN form a Markov chain. Each chunk Si is a
child of Xi, and each return Yi is a child of Si.

Now consider any path from Yi to Yj . Such a path must go through:

Yi ← Si ← Xi ⇝ Xi+1 ⇝ · · ·⇝ Xj → Sj → Yj .

All such paths must traverse through at least one boundary node Xk. Since we are conditioning on all X0, . . . , XN , and these
nodes are non-colliders on every path from Yi to Yj , all such paths are blocked. By the criterion of d-separation (see, e.g.
Chapter 8 in [3]), this implies Yi ⊥⊥ Yj | X0, . . . , XN .

Theorem C.11 (Variance Bound). Let p̂π denote the trajectory distribution induced by the guided diffusion model, and pπ the
true trajectory distribution under the target policy. Let Ĵ be the return estimator using a learned reward model. Then

Varp̂π (Ĵ) ≤ Varpπ (J) + 10

(
T

w

)2

B2
wκ

wδβ +
2B2

w

1− γ2w
κwδβ ,

where Bw denotes the maximum per-chunk discounted return.

Proof: We begin by applying the law of total variance under the guided model distribution p̂π

Varp̂π (Ĵ) = Ep̂π

[
Varp̂π (Ĵ | X)

]
+Varp̂π

(
Ep̂π [Ĵ | X]

)
.

Using Lemma C.10 we have that the chunk-level rewards Yi and Yj are conditionally independent given the boundary states
X0, X1, . . . , XN :

Yi ⊥⊥ Yj | X0, X1, . . . , XN for all i ̸= j.

Using this conditional independence, the variance of the total return under p̂π factorizes:

Varp̂π [Ĵ | X] = Varp̂π

[
N−1∑

i=0

γiwYi

∣∣∣∣∣ X
]
=

N−1∑

i=0

γ2iw ·Varp̂π (Yi | Xi).

To bound the difference in conditional variances, we apply the law of variance

Var(Yi | Xi) = E[Y 2
i | Xi]− (E[Yi | Xi])

2
.

Let us define a bound on the per-chunk return magnitude:

Bw :=
Rmax(1− γw)

1− γ
⇒ |Yi| ≤ Bw, Y 2

i ≤ B2
w.

Using Lemma C.6 (Expectation Difference Bound via Total Variation), we have

|Epπ
[f]− Ep̂π

[f]| ≤ 2δπ · ∥f∥∞.

Applying this with f = Yi and f = Y 2
i , and using the bound |Yi| ≤ Bw, we obtain:

|Epπ [Yi]− Ep̂π [Yi]| ≤ 2δπBw,
∣∣Epπ [Y

2
i]− Ep̂π [Y

2
i]
∣∣ ≤ 2δπB

2
w.

We analyze the difference in conditional variances:

|Varp̂π (Yi | Xi)−Varpπ (Yi | Xi)|
=
∣∣Ep̂π

[Y 2
i]− Epπ

[Y 2
i]−

(
Ep̂π

[Yi]
2 − Epπ

[Yi]
2
)∣∣

≤
∣∣Ep̂π

[Y 2
i]− Epπ

[Y 2
i]
∣∣+
∣∣Ep̂π

[Yi]
2 − Epπ

[Yi]
2
∣∣

=
∣∣Ep̂π

[Y 2
i]− Epπ

[Y 2
i]
∣∣+ |Ep̂π

[Yi]− Epπ
[Yi]| · |Ep̂π

[Yi] + Epπ
[Yi]|

≤ 2δπB
2
w + (2δπBw)(2Bw) = 6δπB

2
w.

This uses the triangle inequality and the identity |a2 − b2| = |a− b||a+ b|, along with the bounds |Yi| ≤ Bw, ∥Yi∥2∞ ≤ B2
w,

and total variation guarantees from Lemma C.6. Then

|Varp̂π
(Yi | Xi)−Varpπ

(Yi | Xi)| ≤ 6δπB
2
w.

We now return to bounding the first term in the law of total variance

Ep̂π

[
Varp̂π (Ĵ | X)

]
= Ep̂π

[
N−1∑

i=0

γ2iw ·Varp̂π (Yi | Xi)

]
.

Using the bound from the previous step

Varp̂π (Yi | Xi) ≤ Varpπ (Yi | Xi) + 6δπB
2
w.

Taking expectation over p̂π on both sides

Ep̂π [Varp̂π (Yi | Xi)] ≤ Ep̂π [Varpπ (Yi | Xi)] + 6δπB
2
w.

Now, using the expectation difference bound from Lemma C.6 again:

|Ep̂π
[f]− Epπ

[f]| ≤ 2δπ∥f∥∞, where f(Xi) := Varpπ
(Yi | Xi) ≤ B2

w.

So
Ep̂π

[Varpπ
(Yi | Xi)] ≤ Epπ

[Varpπ
(Yi | Xi)] + 2δπB

2
w.

Combining both components
Ep̂π [Varp̂π (Yi | Xi)] ≤ Epπ [Varpπ (Yi | Xi)] + 8δπB

2
w.

Summing across all chunks:

Ep̂π

[
Varp̂π

(Ĵ | X)
]
=

N−1∑

i=0

γ2iw · Ep̂π
[Varp̂π

(Yi | Xi)] ≤
N−1∑

i=0

γ2iw
(
Epπ

[Varpπ
(Yi | Xi)] + 8δπB

2
w

)
.

We can split the sum and factor out constants:

Ep̂π

[
Varp̂π

(Ĵ | X)
]
=

N−1∑

i=0

γ2iw · Epπ
[Varpπ

(Yi | Xi)] + 8δπB
2
w

N−1∑

i=0

γ2iw.

Let us define the chunk-level return variance

Epπ

[
Varpπ

(Ĵ | X)
]
:=

N−1∑

i=0

γ2iw · Epπ
[Varpπ

(Yi | Xi)] .

Therefore

Ep̂π

[
Varp̂π

(Ĵ | X)
]
≤ Epπ

[
Varpπ

(Ĵ | X)
]
+

8δπB
2
w

1− γ2w
.

To complete the law of total variance, we now analyze the second term:

Varp̂π

(
Ep̂π

[Ĵ | X]
)
= Varp̂π

(Zp̂), where Zp̂ :=

N−1∑

k=0

gk(Xk), gk(x) := Ep̂π
[Yk | Xk = x].

We define the corresponding ideal (true model) version:

Zp :=

N−1∑

k=0

g̃k(Xk), g̃k(x) := Epπ [Yk | Xk = x].

Our goal is to bound the variance difference:

∆mean := Varp̂π
(Zp̂)−Varpπ

(Zp) = (Mp̂ −Mp)− (mp̂ −mp)(mp̂ +mp),

where Mp̂ := Ep̂π
[Z2

p̂], mp̂ := Ep̂π
[Zp̂], and similarly for Mp, mp.

Insert and subtract a common term:

mp̂ −mp =

N−1∑

k=0

(Ep̂π
[gk(Xk)]− Ep̂π

[g̃k(Xk)]) +

N−1∑

k=0

(Ep̂π
[g̃k(Xk)]− Epπ

[g̃k(Xk)]) .

Each term is bounded by 2δπBw, so |mp̂ −mp| ≤ 4NδπBw.
Expand both squares:

Z2
p̂ =

N−1∑

k=0

g2k(Xk) + 2
∑

0≤k<ℓ≤N−1

gk(Xk)gℓ(Xℓ),

Z2
p =

N−1∑

k=0

g̃2k(Xk) + 2
∑

0≤k<ℓ≤N−1

g̃k(Xk)g̃ℓ(Xℓ).

Each term (both diagonal and cross terms) is bounded in total variation with sup-norm B2
w, yielding

|Mp̂ −Mp| ≤ 2N2δπB
2
w.

From the bound on the means:
|mp̂|, |mp| ≤ NBw ⇒ |mp̂ +mp| ≤ 2NBw.

So, the product term:
|(mp̂ −mp)(mp̂ +mp)| ≤ (4NδπBw)(2NBw) = 8N2δπB

2
w.

Combining both:
|∆mean| = |Varp̂π

(Zp̂)−Varpπ
(Zp)| ≤ 2N2δπB

2
w + 8N2δπB

2
w = 10N2δπB

2
w,

which yields
∣∣∣Varp̂π

(
Ep̂π

[Ĵ | X]
)
−Varpπ

(Epπ
[J | X])

∣∣∣ ≤ 10 · T
2

w2
· δπB2

w.

Combining the two components from the law of total variance, we conclude:

Varp̂π
(Ĵ) = Ep̂π

[
Varp̂π

(Ĵ | X)
]
+Varp̂π

(
Ep̂π

[Ĵ | X]
)

≤ Epπ

[
Varpπ (Ĵ | X)

]
+

8δπB
2
w

1− γ2w
+Varpπ

(Epπ
[J | X]) + 10

(
T

w

)2

δπB
2
w

= Varpπ
(J) + 10

(
T

w

)2

δπB
2
w +

8δπB
2
w

1− γ2w
.

By Lemma C.5,

Varp̂π
(Ĵ) ≤ Varpπ

(J) + 10

(
T

w

)2

B2
wκ

wδβ +
8B2

w

1− γ2w
κwδβ ,

and the proof is complete.

D. Proof of the Bias-Variance Decomposition

Finally, we can bound the mean squared error of STITCH-OPE.

Theorem C.12. Under Assumption C.3 and C.4, and using the notation of Theorem C.8 and Theorem C.11, the mean squared
error of STITCH-OPE is bounded by

Ep̂π

[
(Ĵ − J(π))2

]
≤
(

2Bw

1− γw
κwδβ

)2

+ 10

(
T

w

)2

B2
wκ

wδβ +
8B2

w

1− γ2w
κwδβ +Varpπ

(J).

Proof: We start by adapting the standard bias-variance decomposition to our setting:

Ep̂π

[
(Ĵ − J(π))2

]
= Ep̂π

[
(Ĵ − Ep̂π [Ĵ] + Ep̂π [Ĵ]− J(π))2

]

= Ep̂π

[
(Ĵ − Ep̂π [Ĵ])

2
]
+ Ep̂π

[
(Ep̂π [Ĵ]− J(π))2

]

+ Ep̂π

[
(Ĵ − Ep̂π

[Ĵ])(Ep̂π
[Ĵ]− J(π))

]

= Varp̂π (Ĵ) + Biasp̂π (Ĵ)
2 + (Ep̂π [Ĵ]− J(π))(Ep̂π [Ĵ − Ep̂π [Ĵ]])

= Varp̂π
(Ĵ) + Biasp̂π

(Ĵ)2,

since the last term is zero. Plugging in the bounds of Theorems C.8 and C.11 completes the proof.

APPENDIX D
PSEUDOCODE

A high-level pseudocode of conditional diffusion model training in STITCH-OPE is provided as Algorithm 1. A pseudocode
of the off-policy evaluation subroutine for a single rollout is provided as Algorithm 2. Empirically, we have found that per-term
normalization of the guidance function (line 9) resulted in more consistent performance, and allowed the guidance coefficients
α and λ to be more easily tuned.

Algorithm 1 Conditional Diffusion Model Training in STITCH-OPE
Require: diffusion model ϵθ(τ, k|s), behavior data Dβ , w ≥ 0, learning rate η > 0, {σk}Kk=1 and {αk}Kk=1 positive

1: ᾱk ←
∏k

t=1 αt for k = 1 . . .K
2: initialize θ randomly
3: repeat
4: sample length-w sub-trajectory τ0 = (s0, a0, s1, . . . sw) from Dβ

5: sample k ∼ Uniform({1, . . .K}) ▷ Sample denoising time step k
6: sample ϵ ∼ N (0, I) ▷ Sample pure noise sub-trajectory
7: ∇θL(θ)← ∇θ∥ϵ− ϵθ(

√
ᾱkτ

0 + σkϵ, k|s0)∥2 ▷ Gradient descent step on θ
8: θ ← θ − η∇θL(θ)
9: until converged

10: return ϵθ

Algorithm 2 Off-Policy Evaluation in STITCH-OPE

Require: diffusion model ϵθ(τ, k|s) (Algorithm 1), empirical reward function R̂(s, a), behavior policy β(a|s), target policy
π(a|s), α ≥ 0, λ ≥ 0, w ≥ 0 (divides T), {σk}Kk=1 and {αk}Kk=1 positive

1: Ĵ ← 0
2: sample s00 ∼ d0 ▷ Sample initial state
3: for t = 0 to T/w − 1 do ▷ Generation for decision epochs wt to w(t+ 1)
4: sample τKwt:w(t+1) ∼ N (0, I) ▷ Sample pure noise sub-trajectory
5: for k = K to 1 do ▷ Denoising step k

6: µk−1 ← 1√
αk

(
τkwt:w(t+1) − 1−αk

σk
ϵθ(τ

k
wt:w(t+1), k | s0wt)

)
▷ Mean of diffusion

7: gπk ←
∑w(t+1)−1

u=wt ∇τ log π(a
k
u|sku) ▷ Compute π guidance term

8: gβk ←
∑w(t+1)−1

u=wt ∇τ log β(a
k
u|sku) ▷ Compute β guidance term

9: gk ← α(gπk /∥gπk ∥2)− λ(gβk /∥g
β
k ∥2) ▷ Compute normalized guidance

10: sample τk−1
wt:w(t+1) ∼ N

(
µk + σ2

kgk, σ
2
kI
)

▷ Apply guided diffusion step
11: end for
12: Ĵ ← Ĵ +

∑w(t+1)−1
u=wt γuR̂(s0u, a

0
u) ▷ Update π return using denoised τ0wt:w(t+1)

13: end for
14: return Ĵ

APPENDIX E
DOMAINS

We include experiments on the medium datasets from the D4RL offline suite [15], and Pendulum and Acrobot domains
from the OpenAI Gym suite [5]. We set the evaluation horizon to T = 768 for D4RL, T = 256 for Acrobot and T = 196 for
Pendulum, and we use γ = 0.99 in all experiments. Furthermore, Acrobot uses a discrete action space and is incompatible with
our method, so we modified the domain to take continuous actions. Table II summarizes the key properties of each domain.

Description Hopper Walker HalfCheetah Pendulum Acrobot

state dimension 11 17 17 3 6
action dimension 3 6 6 1 3
range of action [−1, 1] [−1, 1] [−1, 1] [−2, 2] [−1, 1]
rollout length T 768 768 768 196 256
discount factor γ 0.99 0.99 0.99 0.99 0.99

TABLE II
PROPERTIES OF D4RL [15] AND OPENAI GYM [5] BENCHMARK PROBLEMS.

APPENDIX F
POLICIES

a) D4RL Offline Suite: Behavior and target policies and their trained procedures are described in [16], and the policy
parameters are borrowed from the official repository at https://github.com/google-research/deep ope (Apache 2.0 licensed).
The 10 target policies of varying ability, πθ1 , πθ2 , . . . πθ10 , are obtained by checkpointing the policy parameters θ1, θ2 . . . θ10

https://github.com/google-research/deep_ope

at various points during training. Each target policy network models the action probability distribution πi(a|s) using a set of
independent Gaussian distributions, predicting the mean and variance (µi, σ

2
i) of each action component ai independently. This

allows the score function of the target policy to be easily computed. As discussed in the main text, all policies are derived from
the medium datasets in all experiments.

b) OpenAI Gym: We model target policies π1, π2 . . . π5 as MLPs and train them in each environment following the
Twin-Delayed DDPG (TD3) [9] algorithm. The total training time is set to 50000 steps, and we checkpoint policies every 5000
steps. The behavior policy is set to the target policy π3. The complete list of hyper-parameters is provided in Table III.

Description Value

number of hidden layers in actor and critic 2
number of neurons per layer in actor and critic 256

hidden activation function ReLU
output activation function tanh

Gaussian noise for exploration 0.1
noise added to target policy during critic update 0.2

target noise clipping 0.5
frequency of delayed policy updates 2

moving average of target θ′ 0.005
learning rate of Adam optimizer 0.0003

batch size 256
replay buffer size 1000000

TABLE III
HYPER-PARAMETERS FOR TRAINING TARGET POLICIES ON OPENAI GYM DOMAINS.

c) Bounded Action Space: Since the action spaces for all domains are compact bounded intervals, we need to restrict
the action space of the policy networks during evaluation. We accomplish this by applying the tanh transformation to each
Gaussian action distribution and then scaling the result to the required range. Note that this transformation constrains the action
probability distribution of all policies to a bounded range, and thus satisfies the requirement of Assumption C.3.

APPENDIX G
BASELINES

The following model-free baseline methods were chosen for empirical comparison with STITCH-OPE:
a) Fitted Q-Evaluation (FQE): [26] evaluates a target policy π by estimating its Q-value function Qθ(s, a) using a neural

network. The loss function for θ is

LFQE(θ) = E(s,a,r,s′)∼Dβ ,

a′∼π(·|s′)

[
(Qθ(s, a)− r − γQθ(s

′, a′))
2
]
.

We follow [38, 25] and learn a target Q-network Qθ′(s, a) in parallel for added stability. We use the AdamW algorithm [34]
for optimizing the loss function in a minibatched setting, with gradient clipping applied to limit the norm of each gradient
update to 1. The complete list of hyper-parameters used is provided in Table IV.

Description Hopper Walker HalfCheetah Pendulum Acrobot

number of hidden layers 2 2 2 2 2
number of neurons per layer 500 500 500 256 100

hidden activation function sigmoid sigmoid sigmoid sigmoid sigmoid
learning rate of AdamW optimizer 0.001 0.003 0.00003 0.003 0.001

moving average of target θ′ 0.05 0.05 0.001 0.005 0.05
training epochs (passes over data set) 100 50 70 100 200

batch size 512 256 256 128 512

TABLE IV
HYPER-PARAMETERS FOR FITTED Q-EVALUATION (FQE).

b) Doubly Robust (DR): [21, 49] leverages both importance sampling and value function estimation to construct a
combined estimate that is accurate when either one of the individual estimates is correct. First, we define an estimate Q̂(s, a)
of the Q-value function of policy π, and let V̂ (s) = Ea∼π(·|s)[Q̂(s, a)] be the corresponding value estimate. We also define
ρt =

π(at|st)
β(at|st) as the policy ratio at step t. Then, the DR estimator is defined recursively as

V t+1
DR = V̂ (st) + ρt

(
rt + γV t

DR − Q̂(st, at)
)
,

such that the policy value estimate ĴDR(π) = V 0
DR. We parameterize both Q̂(s, a) and V̂ (s) as MLPs and train them using

AdamW in a mini-batched setting. Similar to FQE, we also update a target value network to improve convergence. The full list
of hyper-parameters is provided in Table V.

Description Hopper Walker HalfCheetah Pendulum Acrobot

number of hidden layers 2 2 2 2 2
number of neurons per layer 500 500 500 256 100

hidden activation function sigmoid sigmoid sigmoid sigmoid sigmoid
learning rate of AdamW optimizer 0.0003 0.003 0.003 0.003 0.00003

moving average of target θ′ 0.05 0.05 0.05 0.05 0.001
training epochs (passes over data set) 50 50 50 100 100

batch size 32 256 512 256 128

TABLE V
HYPER-PARAMETERS FOR DOUBLY ROBUST (DR) ESTIMATION.

c) Importance Sampling (IS): [43] evaluates the target policy by importance weighting the full trajectory returns in the
behavior dataset, i.e.

ĴIS(π) = Eτ∼pβ

[(
T−1∏

t=0

π(at|st)
β(at|st)

)
T−1∑

t=0

γtR(st, at)

]
.

It requires access to the target and behavior policy probabilities in order to compute the weighting. Specifically, we use the
per-decision variant of IS (PDIS), i.e.

ĴPDIS(π) = Eτ∼pβ

[
T−1∑

t=0

γt

(
t∏

u=0

π(au|su)
β(au|su)

)
R(st, at)

]
,

which has lower variance than IS.
d) Density Ratio Estimation (DRE): [39] estimates the ratio w(s, a) = dπ(s, a)/dβ(s, a) of the discounted state-action

occupancies of the target policy π relative to the behavior policy β. The discounted state-action occupancy of a policy µ ∈ {β, π}
is defined as

dµ(s, a) = lim
T→∞

∑T
t=0 γ

tp(st = s, at = a |µ)
∑T

t=0 γ
t

,

where p(st = s, at = a |µ) indicates the probability of sampling state-action pair (s, a) from µ at time step t. We also tested
the variants of DICE [54] but found their performance to be unsatisfactory, so they have been omitted from the study. The
target policy value is estimated as

Ĵ(π) =
1

1− γ
E(s,a,r)∼Dβ

[w(s, a) · r].

w(s, a) is parameterized as a feedforward neural network and its parameters are trained using Adam in a mini-batched setting.
Fixed hyper-parameters necessary to reproduce the experiment are listed in Table VI. Additionally, since the method requires a
kernel function to be specified, we use a Gaussian kernel k(x, x′) = exp (−η∥x− x′∥2), where x and x′ are concatenations
of the (standardized) state and action vectors. Since this requires setting a kernel bandwidth η > 0 which affects the overall
performance significantly, we run this baseline for different values η ∈ {0.01, 0.1, 1, 10, 100} and report the best performing
result (according to log-RMSE).

Description Value

number of hidden layers of w(s, a) 2
number of neurons per layer of w(s, a) 256

hidden activation function Leaky ReLU
output activation function SoftPlus

learning rate of Adam optimizer 0.001
training epochs (passes over the data set) 20 (D4RL), 200 (Gym)

batch size 512

TABLE VI
HYPER-PARAMETERS FOR DENSITY RATIO ESTIMATION (DRE) [39].

The following model-based baseline methods were also chosen for empirical comparison with STITCH-OPE. They were
chosen to determine the benefits of STITCH-OPE compared to fully autoregressive sampling, i.e. w = 1, and non-autoregressive
sampling, i.e. w = T .

e) Model-Based (MB): [21, 52] consists of learning dynamics P̂ (s′|s, a), reward function R̂(s, a) and termination function
D̂(s) trained on the behavior dataset to directly approximate the data-generating distribution of the target policy, pπ(τ). P̂
directly predicts the next state s′ given the current state s and action a. Both P̂ and R̂ can be found by solving a standard
nonlinear regression problem, and D̂ can be found by solving a binary classification problem trained on termination flags
in the behavior dataset. We parameterize all functions as nonlinear MLPs and obtain their optimal parameters using Adam
in a mini-batched setting. Once we obtain their optimal parameters, we estimate the target policy return by generating 50
length-T rollouts from the estimated model, and average their empirical cumulative returns. The necessary hyper-parameters are
described in Table VII.

Description Value

number of hidden layers 3
number of neurons per layer 500

hidden activation function ReLU
learning rate of Adam optimizer 0.0003

training epochs (passes over data set) 100
batch size 1024

TABLE VII
HYPER-PARAMETERS FOR MODEL-BASED (MB) ESTIMATION.

f) Policy-Guided Diffusion (PGD): [18] takes a generative approach by simulating target policy trajectories using a
guided diffusion model. We follow the original implementation by training a diffusion model on the behavior data, using the
official implementation located at https://github.com/EmptyJackson/policy-guided-diffusion (MIT licensed). We then generate 50
full-length trajectories from the model using guided diffusion [20] with the guidance function gsimple(τ) = ∇τ

∑
t log π(at|st),

using which we estimate the empirical return of the target policy. All hyper-parameters for training the diffusion models are
fixed as per the original paper and codebase (see Appendix A therein for details). However, we found that the policy guidance
coefficient α and guidance normalization both have significant effects on performance, thus we ran PGD for different choices
of α ∈ {0.001, 0.01, 0.1, 1.0, 10, 100, 1000} with and without guidance normalization, and report the best performing result
(according to log-RMSE).

APPENDIX H
METRICS

Let π1, . . . π10 be the target policies, Ĵ1(πi), Ĵ2(πi), . . . Ĵ5(πi) be the estimates of the target policy values across the 5 seeds,
and J(π1), . . . J(π10) be the target policy values estimated using 300 rollouts collected by running the target policies in the
environments.

The following metrics were used to quantify and compare the performance of STITCH-OPE and all metrics:
a) Log Root Mean Squared Error (LogRMSE): This is defined as the log root mean squared error using the estimates

Ĵj(π1), . . . Ĵj(π10) and the ground truth returns J(π1), J(π10), averaged across seeds j = 1 . . . 5. Mathematically,

1

5

5∑

j=1

log

√√√√ 1

10

10∑

i=1

(Ĵj(πi)− J(πi))2.

b) Spearman (Rank) Correlation: This is defined as the Spearman correlation [47] between the estimates Ĵj(π1), . . . Ĵj(π10)
and the ground truth returns J(π1), J(π10), averaged across seeds j = 1 . . . 5.

c) Regret@1: This is defined as the absolute difference in return between the best policy selected using the baseline policy
returns Ĵj(πi) and the policy selected according to the ground truth estimates J(πi), averaged across seeds j = 1 . . . 5, i.e:

1

5

5∑

j=1

∣∣∣J(πimax
j

)− max
i=1...10

J(πi)
∣∣∣ , where imax

j = argmaxi=1...10 Ĵj(πi).

d) Normalization: In order to compare metrics consistently across environments, we follow [16] and use the normalized
policy values:

Ĵj(πi)− Vmin

Vmax − Vmin
, where Vmin = min

i
J(πi), Vmax = max

i
J(πi),

where Vmin and Vmax are the minimum and maximum target policy values, respectively.
e) Error Bars: All tables and figures report error bars defined as +/- one standard error, i.e. σ̂/

√
n where σ̂ is the empirical

standard deviation of each metric value across seeds and n is the number of seeds (fixed to 5 for all experiments).

https://github.com/EmptyJackson/policy-guided-diffusion

APPENDIX I
STITCH-OPE TRAINING AND HYPER-PARAMETER DETAILS

We follow the configuration used in [20] for training the diffusion model, including architecture, optimizer, and noise schedule.
Specifically, we parameterize the diffusion process ϵ as a UNet architecture with residual connections [46], trained with a
cosine learning rate schedule [35]. The list of training hyper-parameters is provided in Table VIII. The reward predictor R̂(s, a)
is a two-layer MLP with ReLU activations and 32 neurons per hidden layer, and is trained using Adam with a learning rate of
0.001 and batch size of 64.

Description Value

diffusion architecture UNet
learning rate of Adam optimizer 0.0003

training epochs (passes over the data set) 150
batch size 128

training steps per epoch 5000 (D4RL), 2000 (Gym)
guidance coefficient for π, i.e. α 0.5 (D4RL), 0.1 (Gym)

guidance coefficient ratio for β , i.e. λ
α

0.5 (D4RL), 1 (Gym)
window size of sub-trajectories, i.e. w 8 (D4RL), 16 (Gym)

TABLE VIII
HYPER-PARAMETERS FOR STITCH-OPE.

a) Guidance Coefficients: For Gym domains, we use α = λ = 1, corresponding to the theoretically justified guidance
function in Equation 6, assuming low distribution shift. For D4RL tasks, we use tempered values α = 0.5 and λ = 0.25 to
improve sample stability and regularization, which we found empirically helpful in higher-dimensional settings.

b) Sub-Trajectory Length: We use w = 16 for Gym domains and w = 8 for most D4RL tasks. For HalfCheetah, we reduce
to w = 4 due to the environment’s fast dynamics, which caused degradation in stitching fidelity with longer sub-trajectories.

APPENDIX J
DIFFUSION POLICY TRAINING AND EVALUATION

We follow [53] and parameterize each target policy π′
i, i = 1 . . . 10 as a conditional diffusion model ϵϕi(a

k, k|s), whose
parameters ϕi are learned by optimizing the behavior cloning objective.

L(ϕi) = Ek, ϵ∼N (0,I), s∼Dβ , a∼πi(·|s)
[
∥ϵ− ϵϕi

(ak, k|s)∥2
]
.

In order to use the fine-tuned ϵϕi
(ak, k|s) as a guidance function for off-policy evaluation in STITCH-OPE, we use the

following equivalence between score-based models and denoising diffusion [10] (extended trivially to the conditional setting)

∇a log π
′
i(a|s)|a=ak = −ϵϕi(a

k, k|s)
σk

.

Specifically, this expression cannot be calculated at k = 0 since σ0 = 0 using the standard parameterization of diffusion models,
so we approximate it at k = 1 and use the resulting gradient in STITCH-OPE.

We implement the diffusion model using the CleanDiffuser package [11] with official repository at https://github.com/
CleanDiffuserTeam/CleanDiffuser (Apache 2.0 licensed). To train the diffusion policies, we first generate rollouts from each
of the pre-trained target policies in D4RL [16], and then minimize the behavior cloning objective L(ϕi) above to obtain the
diffusion policy parameters. The list of relevant hyper-parameters is provided in Table IX.

Description Value

embedding dimension 64
hidden layer dimension 256

learning rate 0.0003
diffusion time steps 32

EMA rate 0.9999
total training steps 10000

number of transitions to generate for each dataset 1000000
training batch size 256

TABLE IX
HYPER-PARAMETERS FOR TRAINING DIFFUSION POLICIES.

https://github.com/CleanDiffuserTeam/CleanDiffuser
https://github.com/CleanDiffuserTeam/CleanDiffuser

FQE DRE MBR PGD Ours

Log RMSE ↓
Hopper -0.21 ± 0.01 -0.38 ± 0.00 -1.56 ± 0.02 -0.89 ± 0.00 -1.65 ± 0.01
Walker2d -0.59 ± 0.01 -0.49 ± 0.00 -0.81 ± 0.01 -0.50 ± 0.00 -1.20 ± 0.01
HalfCheetah -0.19 ± 0.00 -1.19 ± 0.00 -0.24 ± 0.01 -0.96 ± 0.00 -0.50 ± 0.00

Rank Corr. ↑
Hopper 0.35 ± 0.06 0.35 ± 0.04 0.68 ± 0.02 0.45 ± 0.00 0.81 ± 0.01
Walker2d 0.03 ± 0.04 0.45 ± 0.03 0.47 ± 0.02 0.52 ± 0.01 0.46 ± 0.09
HalfCheetah 0.59 ± 0.01 0.80 ± 0.03 0.75 ± 0.05 0.46 ± 0.06 0.81 ± 0.02

Regret@1 ↓
Hopper 0.06 ± 0.03 0.41 ± 0.22 0.18 ± 0.00 ¡0.01 ± 0.00 ¡0.01 ± 0.00
Walker2d 0.24 ± 0.02 0.59 ± 0.13 0.17 ± 0.02 0.23 ± 0.00 0.03 ± 0.00
HalfCheetah ¡0.01 ± 0.00 ¡0.01 ± 0.00 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

TABLE X
COMPARISON OF OPE METHODS ACROSS ENVIRONMENTS WHEN THE TARGET POLICY IS A DIFFUSION POLICY; ANY REGRET SHOWN AS ¡0.01 IS NONZERO

BUT ROUNDS TO ZERO AT TWO DECIMALS.

APPENDIX K
ADDITIONAL EXPERIMENTS

The complete breakdown of performance across each environment is provided in Table XI. This includes separate evaluations
for HalfCheetah, Hopper, Walker2d, Pendulum, and Acrobot across all evaluated metrics (LogRMSE, Spearman Correlation,
and Regret@1). These results support the claim that STITCH-OPE consistently outperforms existing baselines across tasks of
varying complexity and dynamics.

FQE DR IS DRE MB PGD Ours

L
og

R
M

SE
↓ Hopper -0.42 ± 0.03 -0.57 ± 0.02 -0.48 ± 0.01 -0.42 ± 0.00 -1.70 ± 0.04 -1.22 ± 0.02 -2.33 ± 0.02

Walker2d -0.48 ± 0.01 -1.25 ± 0.08 -0.71 ± 0.01 -0.45 ± 0.00 -0.88 ± 0.01 -0.32 ± 0.01 -1.33 ± 0.01
HalfCheetah -0.05 ± 0.00 0.01 ± 0.01 -0.84 ± 0.02 -1.19 ± 0.00 -0.37 ± 0.00 -1.47 ± 0.00 -0.85 ± 0.01
Pendulum -0.58 ± 0.00 -1.02 ± 0.04 -0.15 ± 0.00 -0.58 ± 0.00 -0.43 ± 0.01 -0.91 ± 0.01 -2.34 ± 0.07
Acrobot -0.14 ± 0.00 -0.49 ± 0.06 -1.00 ± 0.01 0.20 ± 0.01 -1.54 ± 0.02 -0.13 ± 0.01 -2.02 ± 0.05

R
an

k
C

or
r.

↑ Hopper 0.17 ± 0.05 0.69 ± 0.06 -0.06 ± 0.13 -0.09 ± 0.14 0.52 ± 0.03 0.36 ± 0.09 0.76 ± 0.02
Walker2d 0.41 ± 0.05 0.50 ± 0.02 0.51 ± 0.11 0.42 ± 0.05 0.65 ± 0.04 -0.07 ± 0.10 0.63 ± 0.03
HalfCheetah -0.03 ± 0.06 -0.48 ± 0.07 0.57 ± 0.06 0.80 ± 0.02 0.32 ± 0.03 0.50 ± 0.00 0.87 ± 0.01
Pendulum 0.89 ± 0.03 0.72 ± 0.07 -0.60 ± 0.00 -0.40 ± 0.15 0.84 ± 0.06 0.54 ± 0.02 0.96 ± 0.02
Acrobot 0.75 ± 0.02 0.63 ± 0.08 0.52 ± 0.01 0.01 ± 0.12 0.53 ± 0.11 0.43 ± 0.14 0.82 ± 0.04

R
eg

re
t@

1
↓ Hopper 0.13 ± 0.03 0.05 ± 0.02 0.13 ± 0.02 0.27 ± 0.17 0.04 ± 0.03 0.04 ± 0.01 0.11 ± 0.04

Walker2d 0.23 ± 0.04 0.12 ± 0.00 0.09 ± 0.06 0.11 ± 0.00 0.05 ± 0.04 0.32 ± 0.16 ¡0.01 ± 0.00
HalfCheetah 0.36 ± 0.00 0.37 ± 0.00 0.03 ± 0.01 ¡0.01 ± 0.00 0.32 ± 0.03 0.10 ± 0.00 0.08 ± 0.01
Pendulum 0.03 ± 0.03 0.08 ± 0.03 0.98 ± 0.00 0.85 ± 0.13 0.07 ± 0.03 0.13 ± 0.00 ¡0.01 ± 0.01
Acrobot 0.04 ± 0.01 ¡0.01 ± 0.00 ¡0.01 ± 0.00 0.28 ±0.06 0.10 ± 0.06 0.22 ± 0.06 0.01 ± 0.01

TABLE XI
COMPARISON OF OPE METHODS ACROSS ENVIRONMENTS. ERROR BARS REPRESENT ± ONE STANDARD ERROR ACROSS 5 SEEDS; ANY REGRET SHOWN AS

¡0.01 IS NONZERO BUT ROUNDS TO ZERO AT TWO DECIMALS.

A. Sensitivity to Guidance Coefficients

We evaluate STITCH-OPE across different choices of the guidance coefficients α and λ, and plot the resulting trends in
Figure 4 for Hopper and Figure 5 for Walker2D. Each plot is generated by applying bicubic interpolation to the grid evaluations
of the Spearman correlation and LogRMSE. The optimal coefficient values of α and λ remain consistent across environments.
The optimal balance for off-policy evaluation is attained by assigning a moderate coefficient for the target policy score α (i.e.
α < 1) and a smaller but positive coefficient to the behavior policy score, i.e. 0 < λ < α.

B. Trajectory Visualizations

We visualize and compare trajectories generated by the guided and unguided versions of STITCH-OPE and Policy-Guided
Diffusion (PGD) [18] against both random and optimal policies. These visualizations highlight differences in the quality of
generated trajectories, alignment with target policies, and generalization capabilities across various environments. As shown in
Figures 6 and 8, STITCH-OPE closely mimics the target policy behavior. On the other hand, PGD performs poorly, significantly
overestimating the performance of the random policy. Figure 7 further demonstrates that STITCH-OPE maintains consistent
and robust behavior across policy settings.

0 0.25 0.5 0.75 1
/

0.01

0.1

0.5

1
Spearman Correlation ()

0 0.25 0.5 0.75 1
/

0.01

0.1

0.5

1
Log RMSE ()

0.2

0.4

0.6

0.8

C
or

re
la

tio
n

St
re

ng
th

2.2

2.0

1.8

1.6

1.4

E
rr

or
 M

ag
ni

tu
de

Fig. 4. Smoothed performance landscape for Hopper. Left: Spearman correlation is largest around α ∈ [0.1, 0.5], λ ≤ 0.5α. Right: The LogRMSE is
smallest around α ∈ [0.01, 0.5], λ ∈ [0.25α, 0.75α]. These results confirm the optimal range of λ is 0 < λ < α.

0 0.25 0.5 0.75 1
/

0.01

0.1

0.5

1
Spearman Correlation ()

0 0.25 0.5 0.75 1
/

0.01

0.1

0.5

1
Log RMSE ()

0.0

0.2

0.4

0.6
C

or
re

la
tio

n
St

re
ng

th

1.3

1.2

1.1

1.0

E
rr

or
 M

ag
ni

tu
de

Fig. 5. Smoothed performance landscape for Walker2d. Results are generally consistent with Hopper. Left: Spearman correlation is largest around
α ∈ [0.1, 0.5], λ ≈ 0.25α. Right: The LogRMSE is smallest around α ∈ [0.1, 0.5], λ ≈ 0.75α. These results confirm the optimal range of λ is 0 < λ < α.

APPENDIX L
COMPUTING RESOURCES

a) Hardware and Software: All experiments were conducted on a local workstation running Ubuntu 20.04 LTS and Python
3.9, with the following hardware:

• 2× NVIDIA RTX 3090 GPUs (24 GB each)
• Intel(R) Core(TM) i9-9820X CPU @ 3.30GHz (10 cores / 20 threads)
• 128 GB RAM.

b) Runtime: Each full training of a diffusion model for a D4RL task took approximately 20 hours to complete, depending
on environment complexity and rollout length. Each OpenAI Gym task took approximately 5 hours. Each evaluation for a
D4RL environment took around 18 hours in total (across all 5 seeds) to complete, and each OpenAI Gym environment took
around 6 hours to complete.

APPENDIX M
RELATED WORK

Off-policy evaluation plays a critical role in offline reinforcement learning, enabling the evaluation of policies without
directly interacting with the environment. OPE has been studied across a wide range of different domains including robotics
[23], healthcare [40, 44, 42] and recommender systems [12, 48]. Relevant work includes model-free and model-based OPE
approaches, including recent generative methods in offline RL.

a) Model-Free Methods: Model-free methods, such as Importance Sampling (IS) and per-decision Importance Sampling
(PDIS) [43] reweight trajectories (or single-step transitions) from the behavior policy to approximate returns under a target
policy. However, this class of methods suffers from the so-called “curse of horizon”, in which the variance grows exponentially
in the length of the trajectory [30, 33]. Doubly Robust (DR) methods [21, 49, 13] further combine estimation of value functions

Behavior Policy

STITCH Unguided

PGD Unguided

Random Policy

STITCH Guided

PGD Guided

Optimal Policy

STITCH Guided

PGD Guided

Fig. 6. Trajectory visualizations in the Hopper environment. Both STITCH-OPE and PGD track the optimal policy. PGD significantly overestimates the
performance of the random policy, while STITCH-OPE correctly models both the state trajectory and the termination.

with importance weights, reducing the overall variance. Distribution-correction methods (DICE) [41, 54, 58] and their variants
[30, 39] try to mitigate the curse-of-horizon by performing importance sampling from the stationary distribution of the underlying
MDP. However, these methods perform relatively poorly on high-dimensional long-horizon tasks [16].

b) Model-Based Methods: Model-based OPE methods estimate the target policy value by learning approximate transition
and reward models from offline data and simulating trajectories under the target policy [21, 24]. These methods have shown
strong empirical performance, especially in continuous control domains [50, 57], but they often suffer from compounding errors
during rollouts, which can lead to biased estimates in high-dimensional or long-horizon settings [22, 19].

c) Offline Diffusion: Inspired by the recent performance of diffusion models across many areas of machine learning
[17, 10], a new stream of reinforcement learning has emerged which leverages diffusion models trained on behavior data

Behavior Policy

STITCH Unguided

PGD Unguided

Random Policy

STITCH Guided

PGD Guided

Optimal Policy

STITCH Guided

PGD Guided

Fig. 7. Trajectory visualizations in the HalfCheetah environment. STITCH-OPE and PGD both demonstrate consistent behavior across all policy types,
highlighting their robust generalization on this task.

[36, 60]. [20, 1] train diffusion models on behavior data that can be guided to achieve new goals. [18, 45] apply guided diffusion
to offline policy optimization by setting the guidance function to be the score of the learned policy, while [59] applies guided
diffusion to satisfy added safety constraints. Unlike STITCH-OPE, these works do not use negative guidance nor stitching,
which we found leads to unstable policy values when applied directly for offline policy evaluation over a long-horizon. [37]
applies DICE to estimate the stationary distribution of the underlying MDP, which is used as a guidance function to correct the
policy distribution shift for offline policy optimization. Unlike STITCH-OPE, this work is not directly applicable to offline
policy evaluation. Finally, [29] introduces a variant of trajectory stitching for augmenting behavior, but does not apply it for
offline policy evaluation. To the best of our knowledge, STITCH-OPE is the first work to apply diffusion models to evaluate
policies on offline data.

Behavior Policy

STITCH Unguided

PGD Unguided

Random Policy

STITCH Guided

PGD Guided

Optimal Policy

STITCH Guided

PGD Guided

Fig. 8. Trajectory visualizations in the Walker2d environment. STITCH-OPE effectively imitates both random and optimal policies. As for the Hopper
environment, PGD struggles to correctly imitate the random policy, significantly overestimating its performance.

	Introduction
	Proposed Methodology
	Guided Diffusion for Off-Policy Evaluation
	Sub-Trajectory Stitching with Conditional Diffusion

	Empirical Evaluation
	Experiment Details
	Off-Policy Evaluation with Diffusion Policies

	Real-World Deployability and Generalization Discussion
	Conclusion
	Appendix A: GaussianWorld Domain
	Appendix B: Proof that Conditional Diffusion Increases Entropy
	Appendix C: Theoretical Analysis
	Assumptions and Definitions
	Analysis of the Bias
	Analysis of the Variance
	Proof of the Bias-Variance Decomposition

	Appendix D: Pseudocode
	Appendix E: Domains
	Appendix F: Policies
	Appendix G: Baselines
	Appendix H: Metrics
	Appendix I: STITCH-OPE Training and Hyper-Parameter Details
	Appendix J: Diffusion Policy Training and Evaluation
	Appendix K: Additional Experiments
	Sensitivity to Guidance Coefficients
	Trajectory Visualizations

	Appendix L: Computing Resources
	Appendix M: Related Work

