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Abstract

Tokenization is an important text preprocess-001
ing step to prepare input tokens for language002
models. WordPiece and BPE are de-facto meth-003
ods employed by large language models, such004
as BERT and GPT. However, the impact of005
tokenization can be different for the aggluti-006
native languages having words with prefixes007
and suffixes, such as Turkic languages. We008
compare five tokenization methods, including a009
morphological-level tokenization that takes ag-010
glutinative language structure into account. We011
train tokenizers, and pre-train mini language012
models using RoBERTa pre-training procedure013
on Turkish OSCAR corpus. We then fine-tune014
our models on six downstream tasks. There015
are two main outcomes: (i) Morphological and016
word-level tokenizers outperform de-facto tok-017
enizers in particular cases. (ii) Mini models can018
be competitive to larger state-of-the-art models,019
such that a 14-times smaller model can recover020
94% of the performance of a larger model.021

1 Introduction022

Tokenization is an important text preprocessing023

step for deep language models. Input text is split024

into smaller pieces so that out-of-vocabulary words025

can still be processed by language models. More-026

over, language models can benefit from sub-word027

tokens to better comprehend text semantics.028

Transformer-based language models generally029

employ two de-facto tokenization algorithms,030

namely WordPiece (Schuster and Nakajima, 2012)031

and Byte Pair Encoding (BPE) (Sennrich et al.,032

2016). BERT (Devlin et al., 2019) uses WordPiece,033

whereas GPT-2 (Radford et al., 2019) uses BPE.034

There are other efforts for tokenization, such as035

SentencePiece (Kudo and Richardson, 2018) to fix036

input text without space between words.037

Large language models are first pre-trained for038

English; successor pre-trained models in low-039

resource languages thereby employ the same to-040

kenizers. However, the impact of tokenization can041

be different for agglutinative languages, such as 042

Turkic and Uralic languages, where words can have 043

prefixes and suffixes. For instance, in Turkish, pars- 044

ing the word "veremedim" (translated as "I could 045

not give") results in "ver-e-me-di-m" including four 046

suffixes in a single word. A morphological-level 047

tokenizer can output five tokens in this case, pro- 048

viding model with a better understanding of word 049

semantics. An example benefit is that language 050

model would relate that the suffix "-me" provides 051

negation, similar to the word "not" in English. 052

In this study, we compare the performance of 053

different tokenization methods for Turkish. We 054

select five tokenizers such that their outputs vary 055

from smallest pieces (characters) to whole words. 056

These tokenization methods are character-level, 057

BPE, WordPiece, morphological-level, and word- 058

level. In order to evaluate the performance of the to- 059

kenizers, we train a tokenizer for each method, and 060

pre-train small language models using RoBERTa 061

pre-training procedure, called RoBERTa-TR-mini, 062

on Turkish OSCAR corpus. We then fine-tune 063

our models on six downstream tasks; namely Text 064

Classification, Sentiment Analysis, Named Entity 065

Recognition, Question Answering, Semantic Text 066

Similarity, and Natural Language Inference. 067

Our main contributions are two-fold. First, we 068

compare the impact of tokenizers for Turkish lan- 069

guage models. We find that morphological and 070

word-level tokenizers outperform de-facto tokeniz- 071

ers (BPE and WordPiece) in some cases. Second, 072

we compare our mini models with a large state-of- 073

the-art one similar to BERT-base, and show that 074

a 14-times smaller model can recover 94% of the 075

performance of the larger one. 076

2 Related Work 077

The prevalent tokenization algorithms in the litera- 078

ture, Byte Pair Encoding (BPE) (Sennrich et al., 079

2016) and WordPiece (Schuster and Nakajima, 080

2012), are of recent interest in language model 081
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pre-training research. BPE is found to be sub-082

optimal for language pre-training (Bostrom and083

Durrett, 2020) as it does not effectively utilize the084

vocabulary space. Nayak et al. (2020) compare085

the activations of attention layers of BERT with086

WordPiece and word-level tokenization to assess087

the effect of including subword tokens. They find088

out that the vocabulary with frequency-based char-089

acter combinations hinders the ability of modeling090

semantically meaningful relations between words.091

Alternative tokenization algorithms using mor-092

phological analysis are promising candidates for093

subword tokenization that increase modeling effi-094

ciency and downstream performance (Park et al.,095

2020; Vasiu and Potolea, 2020). Joint and hybrid096

tokenization approaches combine coarse and fine-097

grained representations to incorporate word-level098

and subword representations (Hiraoka et al., 2021;099

Zhang et al., 2021b).100

Effects of SentencePiece, word-level, and101

syllable-level tokenization strategies are investi-102

gated for low-resource languages, such as Thai103

(Lowphansirikul et al., 2021). Morphological anal-104

ysis is used to propose a tokenization system (Ah-105

madi, 2020) for Kurdish. Exploiting pre-trained106

models with parameter freezing and additional in-107

termediate layers is beneficial for Uyghur-Chinese108

machine translation (Zhang et al., 2021a). Al-109

though there are some efforts for Turkish pre-110

training1, such as BERTurk (Schweter, 2020),111

the effect of tokenization algorithms including a112

morphological-level one is yet to be studied. To the113

best of our knowledge, this is the first study that114

investigates the impact of tokenization on Turkish.115

3 Impact of Tokenization116

We develop a pipeline that consists of choosing a to-117

kenization method, pre-training a language model118

by using the selected tokenizer, and then fine-119

tuning the model on different downstream tasks120

to evaluate the performance of the tokenizer.121

3.1 Tokenization Methods122

• Character-level: Unlike the tokenization meth-123

ods performing on word or sub-word units, byte124

or character level models split words into the125

smallest parts. They can be utilized in any lan-126

guage. Since character-level tokenizer requires127

no training to learn a vocabulary, we employ the128

ByT5 tokenization (Xue et al., 2021).129

1https://github.com/Loodos/turkish-language-models

• BPE: Byte Pair Encoding (BPE) is a frequently 130

used method for pre-trained language models 131

(Sennrich et al., 2016). In this method, all unique 132

words are first extracted. Then, a base vocabulary 133

is constituted from all symbols occurring in the 134

unique words. The final vocabulary is built by 135

merging the symbols according to the frequencies 136

of consecutive symbols or sub-words. 137

• WordPiece: Similar to BPE, WordPiece is also 138

based on merging characters in the documents 139

(Schuster and Nakajima, 2012). Main difference 140

from BPE is that, WordPiece merges symbols 141

towards maximizing the language model likeli- 142

hood, i.e., when the probability of the merged 143

symbol divided by individual probabilities of the 144

symbols is greater than any other symbol pair. 145

• Morphological-level: Since Turkish is an ag- 146

glutinative language, morphological analysis can 147

provide suffixes and word stems that are seman- 148

tically more meaningful and valuable than the 149

tokens obtained with overlapping frequency or 150

likelihood. Therefore, we propose to use the 151

parsing output (without tags) of morphological 152

analysis as input tokens. We use Zemberek mor- 153

phological analysis tool (Akın and Akın, 2007) 154

before training the tokenizer. 155

• Word-level: This is a basic method that splits 156

text with spaces between words, i.e. considers 157

whole words as tokens. One explicit disadvan- 158

tage is that this model requires more vocabulary 159

size compared to other methods. We therefore set 160

vocabulary size of this model higher than others. 161

3.2 Pre-train: RoBERTa-TR-mini 162

The OSCAR Turkish deduplicated corpus2 consti- 163

tutes the main pre-training data of our model (Ortiz 164

Suárez et al., 2019). We filter out 95,152 instances 165

that are not in Turkish with an automated language 166

detector3. The tokenization process is conducted in 167

three steps: Applying normalization, training the to- 168

kenizer (except char-level), mapping the tokenizer 169

to obtain tokenized data. We apply lowercase con- 170

version and NFC normalization4. We train BPE and 171

WordPiece with vocabulary size of 50k, and word- 172

level and morph-level with vocabulary size of 100k 173

to decrease unknown (out-of-vocabulary) tokens 174

due to conjugations in agglutinative languages. 175

2https://huggingface.co/datasets/oscar
3https://pypi.org/project/langdetect
4Unicode normalization is important for Turkish, since

there are special characters (ç, ğ, ı, ö, ş, ü) in the Turkish
alphabet that are not observed in English. We note that NFC
Unicode normalization provides all letters in Turkish.
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BERTurk-base RoBERTa-TR-mini
Parameters 110.62 M 7.79 M
Train data 35 GB 27 GB
Layers 12 4
Heads 12 4
Hidden size 768 256
Batch size n/a 264
Max length 512 tokens 514 tokens
Train time 9.63 days 1.04 days*
Hardware TPU v3-8 2x Nvidia RTX2080 Ti

Table 1: Pre-training configurations. (*) Train time
and hardware are given for BPE and WordPiece. Time
can differ for other tokenizers, e.g. morph-level tok-
enizer outputs more tokens, and its train time is 1.58d.

We pre-train a language model using Turkish176

(TR) text, using RoBERTa pre-training procedure177

and configuration, but smaller in terms of layers,178

attention heads, and hidden size (similar to BERT-179

mini (Devlin et al., 2019)). We thereby call the180

model as RoBERTa-TR-mini.181

The pre-training details of our mini model is182

given in Table 1. We compare the results of our183

model with the current state-of-the-art performance184

for sanity check, i.e. the rationality of our re-185

sults. To do so, we employ the BERTurk model186

(Schweter, 2020), which is a Turkish pre-trained187

version of BERT-base. Since we examine the ef-188

fect of different tokenization strategies in Turkish,189

we keep the pre-training procedure computation-190

ally simpler because extensive pre-training might191

overshadow possible advantages of tokenization al-192

gorithms. When a model is extensively pre-trained,193

the performance can converge to high scores, even194

with character-level encoding (Xue et al., 2021).195

3.3 Fine-tuning Tasks196

We evaluate the performance of our models by fine-197

tuning six downstream tasks.198

• Text Classification (TC): We use a Turkish news199

classification dataset (Toraman et al., 2011) that200

has approximately 7.5k news articles over eight201

news categories, such as economy and sports.202

• Sentiment Analysis (SA): The task is binary203

classification of text sequences as positive or neg-204

ative. We use a Turkish dataset including movie205

reviews (Demirtas and Pechenizkiy, 2013).206

• Named Entity Recognition (NER): We use207

a Turkish dataset including news articles with208

named entity tags (Tür et al., 2003). For morph-209

level tokenization, ground truth labels are reorga-210

nized according to new tokens after morphologi-211

cal analysis.212

TC SA NER QA STS NLI

m
in

i Epochs 10 10 10 50 25 3
Length 514 514 514 514 514 514
BS 32 32 32 32 32 32

B
E

R
T Epochs 3 3 3 3 25 3

Length 256 256 256 256 256 256
BS 32 32 32 16 32 16
LR 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
Size 7.5k 10.7k 23.2k 1.2k 8.6k 569.0k

Table 2: Fine-tuning configurations. mini refers to
RoBERTa-TR-mini, and BERT refers to BERTurk. We
modify configurations for BERTurk due to its space
complexity. BS refers to Batch Size, LR to Learning
Rate, Length to max sequence length, Size to the number
of instances in the dataset. We apply constant learning
rate for all tasks, except linear decay learning rate in
NLI. For char-level models, max length is set to 1024,
and batch size to 16.

• Question Answering (QA): Given a context in- 213

formation or passage, the task is to find the cor- 214

rect part of the context representing the answer. 215

Text span is extracted by predicting where the 216

answer starts and ends in the passage. We use 217

the Turkish split of the XQuaD dataset (Artetxe 218

et al., 2020). 219

• Semantic Text Similarity (STS): In this task, 220

semantic similarity of two text sequences are 221

measured. Sentences are annotated from 1 to 222

5 indicating their similarity degree. Different 223

from classification tasks, this problem is handled 224

as a regression problem. We use a Turkish STS 225

dataset (Beken Fikri et al., 2021). 226

• Natural Language Inference (NLI): Given two 227

sentences, the task is to predict the semantic rela- 228

tion of the latter to the former, in terms of entail- 229

ment, neutral, contradiction. We use a Turkish 230

NLI dataset (Budur et al., 2020). 231

Note that we select two tasks (TC and SA) for 232

single sequence classification, two tasks (NER and 233

QA) for token classification, and two tasks (STS 234

and NLI) for semantic similarity. 235

4 Experiments 236

4.1 Experimental Setup 237

For fine-tuning our models, the configurations 238

along with dataset sizes are given in Table 2. For 239

pre-training, we use AdamW optimizer (β1 is 240

0.90, β2 is 0.98, ϵ is 1e-6), linear scheduling with 241

warmup ratio of 1e-2 and peak learning rate of 5e- 242

5, and gradient accumulation with 22 steps. Other 243

hyperparameters are set to the RoBERTa configu- 244

ration. 245
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TC SA NER QA STS NLI
P R F1 P R F1 P R F1 P R F1 corr p-value P R F1

BERT 0.918 0.917 0.917 0.927 0.927 0.927 0.926 0.941 0.933 0.582 0.666 0.484 0.862 <1e-178 0.852 0.852 0.852

R
-T

R
-m

in
i Char 0.501 0.539 0.513 0.640 0.637 0.636 0.350 0.380 0.362 0.155 0.531 0.150 0.196 <1e-1 0.468 0.469 0.467

BPE 0.851 0.851 0.846 0.869 0.869 0.869 0.338 0.194 0.242 0.128 0.399 0.111 0.310 <1e-8 0.701 0.702 0.701
WP 0.852 0.850 0.843 0.872 0.872 0.872 0.602 0.689 0.641 0.035 0.184 0.037 0.262 <1e-3 0.656 0.656 0.656
Morph 0.818 0.815 0.800 0.825 0.825 0.825 0.643 0.739 0.687 0.177 0.617 0.176 0.246 <1e-1 0.610 0.610 0.610
Word 0.858 0.856 0.850 0.862 0.862 0.862 0.638 0.707 0.670 0.044 0.247 0.048 0.263 <1e-6 0.643 0.643 0.642

Table 3: Fine-tuning results on six NLP tasks using Turkish datasets. The average of 10-fold cross validation is
reported in terms of precision (P), recall (R), and weighted F1. For STS, Pearson correlation (corr) is reported with
p-value. R-TR-mini refers to our pre-trained model for Turkish text, RoBERTa-TR-mini, along with each tokenization
method. Char refers to character-level tokenizer, BPE refers to Byte Pair Encoding, WP refers to WordPiece, Morph
refers to morphological-level tokenizer, Word refers to world-level tokenizer. Highest score among tokenizers is
given as bold. BERT refers to BERTurk, which is structurally similar to BERT-base, but pre-trained for Turkish text.

We measure weighted precision, recall, and F1246

score for all tasks, except STS where Pearson cor-247

relation is reported with p-value. We apply 10-fold248

cross-validation and report the average scores.249

4.2 Experimental Results250

We report the fine-tuning results in Table 3. There251

are two main aspects in this experiment. First, we252

compare the performance of tokenizers (rows) us-253

ing RoBERTa-TR-mini for Turkish downstream254

tasks (columns). Second, we analyze the perfor-255

mance of our mini model, compared to a larger256

state-of-the-art model. To do so, we report the per-257

formance of BERTurk, a Turkish model with the258

similar size of BERT-base, in the first row.259

Characters are not for our mini models.260

Character-level tokenization achieves the worst per-261

formance for Turkish in most tasks. We argue that262

our mini models are inadequate to comprehend the263

relations among characters, which could be better264

modeled by larger language models (Xue et al.,265

2021).266

Word-level tokenizer performs better with267

less unknown tokens. Word-level tokenization268

provides a head start to the model by exploiting269

word semantics. This high-level modeling can ben-270

efit sequence classification, rather than token classi-271

fication. Indeed, word-level tokenizer outperforms272

others in Text Classification (TC). However, this273

observation is not valid for another sequence clas-274

sification task, Sentiment Analysis (SA). The rea-275

son would be that the ratio of unknown tokens is276

approximately 5% for TC, and 15% for SA. Word-277

level tokenization would perform better as the num-278

ber of unknown tokens decreases.279

Morph-level tokenizer is better for token clas-280

sification. When tokenizers are compared among281

each other, we observe that morphological-level to-282

kenizer outperforms others in Named Entity Recog- 283

nition and Question Answering. We argue that suf- 284

fixes provide useful information for such tasks that 285

employ token classification in Turkish. 286

De-facto tokenizers are better for semantic 287

similarity. BPE works better than others in Seman- 288

tic Text Similarity and Natural Language Inference. 289

We observe that the sub-words that BPE outputs 290

work better than others for such semantic tasks in 291

Turkish. 292

Mini models can be competitive to larger ones. 293

We expect that the performance of our mini models 294

is worse than larger models, i.e. BERTurk, due 295

to the computational advantages of larger mod- 296

els. However, we find that the performance gap 297

is narrow for particular tasks. Our 14-times smaller 298

model recovers 93% of BERTurk’s performance in 299

TC, 94% in SA, and 83% in NLI. 300

5 Conclusion 301

We analyze the impact of five tokenization algo- 302

rithms on language models for Turkish. The results 303

are interesting such that word-level and morph- 304

level tokenizers outperform de-facto tokenizers in 305

particular tasks, showing that agglutinative lan- 306

guages can benefit from such tokenizers. More- 307

over, our mini language models are competitive to 308

a larger state-of-the-art model in particular tasks, 309

showing a trade-off between size and performance. 310

In future work, we plan to extend our experi- 311

ments to other agglutinative languages, such as 312

Finnish and Hungarian, and other tokenizers such 313

as SentencePiece (Kudo and Richardson, 2018). 314

Morphological disambiguation (Hakkani-Tür et al., 315

2018) can be used to improve the quality of mor- 316

phological analysis. We also plan to compare our 317

results with those of larger models trained with the 318

same tokenization methods. 319
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