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Efficiency of Non-Truthful Auctions in Auto-bidding with
Budget Constraints

Anonymous Author(s)

ABSTRACT
We study the efficiency of non-truthful auctions for auto-

bidders with both return on spend (ROS) and budget con-

straints. The efficiency of a mechanism is measured by the

price of anarchy (PoA), which is the worst case ratio between

the liquid welfare of any equilibrium and the optimal (possi-

bly randomized) allocation. Our first main result is that the

first-price auction (FPA) is optimal, among deterministic mech-

anisms, in this setting. Without any assumptions, the PoA of

FPA is 𝑛 which we prove is tight for any deterministic mecha-

nism. However, under a mild assumption that a bidder’s value

for any query does not exceed their total budget, we show that

the PoA is at most 2. This bound is also tight as it matches

the optimal PoA without a budget constraint. We next ana-

lyze two randomized mechanisms: randomized FPA (rFPA)

and “quasi-proportional” FPA. We prove two results that high-

light the efficacy of randomization in this setting. First, we

show that the PoA of rFPA for two bidders is at most 1.8

without requiring any assumptions. This extends prior work

which focused only on an ROS constraint. Second, we show

that quasi-proportional FPA has a PoA of 2 for any number

of bidders, without any assumptions. Both of these bypass

lower bounds in the deterministic setting. Finally, we study

the setting where bidders are assumed to bid uniformly. We

show that uniform bidding can be detrimental for efficiency in

deterministic mechanisms while being beneficial for random-

ized mechanisms, which is in stark contrast with the settings

without budget constraints.
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1 INTRODUCTION
Auto-bidding has become increasingly popular in online ad-

vertising as it allows advertisers
1
to set high-level goals and

constraints, rather than manually submitting bids for each

1
We will often use advertisers and bidders interchangeably in this paper since

each auto-bidder acts on behalf of a single agent.
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individual keyword. A prototypical example is that the adver-

tiser may set a goal to maximize the total volume of conver-

sions subject to a return-on-spend (ROS) constraint and a total

budget constraint. There are other possible targets, e.g. maxi-

mizing the number of shown ads, and other constraints, e.g.

target cost per acquisition (tCPA). In general, we can model

such problems as follows: each advertiser 𝑖 has a value 𝑣𝑖, 𝑗 for

query 𝑗 , and advertiser 𝑖’s goal is to maximize their total value

subject to the constraint that their total value exceeds their to-

tal spend. Auto-bidding agents then act on behalf of advertisers

to solve this optimization problem. This can save advertisers a

significant amount of time and effort, and it can also help them

to achieve better results from their advertising campaigns. In

this paper, we refer to advertisers or bidders that maximize

their value subject to a constraint as value-maximizers.

Prior research has shown that the efficiency of auctions

for value-maximizing auto-bidders is different from that of

the more traditional utility maximizers that aim to maximize

their quasilinear utility [1, 6, 8, 14, 16, 23, 25]. Most prior

work focused on auto-bidding with only a ROS constraint, or

with both ROS and budget constraints but restricted to the

Vickrey-Clarke-Groves (VCG) auction [1, 16]. In this paper,

we are interested in the price of anarchy (PoA) [4] of non-

truthful
2
auctions, such as the first price auction (FPA) and the

randomized first price auction (rFPA), for value-maximizing

bidders with ROS and budget constraints.

The analysis of the PoA for FPA with both a ROS and a bud-

get constraint is interesting and challenging in several aspects.

First, it turns out that the gap between the optimal determin-

istic allocation and the optimal randomized allocation is large.

For FPA without a budget constraint, an optimal solution is

to simply allocate each query to the bidder with the highest

value. In particular, there is no benefit in using a randomized,

or fractional, allocation. However, in Theorem 3.1, we show

that in the setting with both ROS and budget constraints, the

gap between the optimal integral allocation and the optimal

fractional allocation can be as large as𝑛, the number of bidders.

Given this, we consider the following two notions of efficiency.

First, we define PoA as the worst case ratio between the liq-

uid welfare of any equilibrium and the optimal randomized
allocation. Second, we define the integral PoA (I-PoA) as the

worst case ratio between the liquid welfare of any equilibrium

and the optimal deterministic allocation. Note that the PoA is

always at least as large as the I-PoA. From our earlier observa-

tion, it follows that any deterministic auction has a PoA of at

least 𝑛. In the setting with both ROS and budget constraints,

we ask and answer the following questions in this paper:

• What is the PoA and integral PoA of FPA?

2
In this paper, as in prior works, an auction is “truthful” if it is a dominant

strategy for the a traditional quasi-linear to bid truthfully. By “non-truthful”,

we refer to auctions that may not be truthful.

1
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• Is there a randomized algorithm that guarantees a con-

stant PoA?

• Are there reasonable assumptions that decrease the

gap between the optimal fractional and optimal inte-

gral allocation? Are there deterministic auctions with a

constant PoA under these assumptions?

Deng et al. [16] showed that the PoA of FPA is 2 with a ROS

constraint but the PoA becomes 1 if the bidders are assumed

to bid uniformly, i.e. each bidder 𝑖 has a uniform multiplier𝑚𝑖

and places a bid of𝑚𝑖𝑣𝑖, 𝑗 for every query 𝑗 . It is natural to ask

whether uniform bidding also improves the equilibria of FPA.

More specifically:

• Does the uniform bidding assumption make the PoA

and integral PoA smaller for FPA with both ROS and

budget constraints?

• Does the uniform bidding assumption make the PoA

smaller for rFPA?

1.1 Our contributions
We study the efficiency of various non-truthful auctions in the

auto-bidding setting with both ROS and budget constraints.

We use 𝑛 to denote the number of bidders. We use Opt

(resp. I-Opt) to denote the optimal liquid welfare achievable

by a randomized (resp. deterministic) allocation. Note that in

an auto-bidding setting with ROS but not budget constraints,

we have Opt = I-Opt since the optimal allocation is to deter-

ministically allocate to the bidder with the highest value. In

Theorem 3.1, we show that the gap between Opt and I-Opt is

at least 𝑛. This implies that the PoA of an deterministic mech-

anism is at least 𝑛. Complementing this, we show that the PoA

for FPA is at most 𝑛. Thus, the optimal PoA for deterministic

mechanisms is exactly 𝑛. This already shows that new tech-

niques will be required for the budgeted case since prior work

compared against a deterministic approach in their proofs.

We first study the efficiency of FPA and summarize the

results in Table 1. We prove that FPA is an optimal mechanism

in a couple settings when there are both ROS and budget

constraints. The previous paragraph established that the PoA

of any deterministic auction is at least𝑛. We prove that this gap

is tight in Theorem 3.3. Interestingly, we show that the PoA

is at most 2 under the mild assumption that for any bidder 𝑖 ,

their value for any query 𝑗 is at most their budget 𝐵𝑖 . This PoA

bound coincides with the setting with only a ROS constraint.

It turns out that the suggested inefficiency of FPA, by incor-

porating a budget, is due to using a randomized allocation as a

benchmark. If we consider a deterministic benchmark instead,

we can show that FPA has no additional loss in efficiency when

a budget is introduced. We formalize the results in Table 2.

Next, we explore the setting where bidders are assumed to

bid uniformly. With only a ROS constraint, previous work

has shown that, under the uniform bidding restriction, FPA

obtains the optimal allocation [16]. Interestingly, enforcing

uniform bidding makes the integral PoA much worse for the

setting with budget. In fact, we show that the I-PoA is 𝑛 (tight).

Intuitively, when the bidders are assumed to have a single bid

multiplier for all queries, they could be in a situation that when

they increase the bid multiplier to win some queries, they win

more than what they could afford and violate their budget.

Note that we show a lower bound of PoA in Theorem 3.15,

which indicates a lower bound of I-PoA. Similarly, we show

an upper bound of I-PoA in Theorem 3.16, which indicates an

upper bound of PoA.

Next, we analyze the randomized FPA (rFPA) mechanism

proposed by Liaw et al. [23] in the setting with both ROS and

budget constraints for two bidders, and show that the PoA

upper bound of 1.8 in their paper also apply in this setting. Re-

call that uniform bidding actually decreases the efficiency for

FPA (compared against a deterministic benchmark). However,

uniform bidding improves the efficiency for rFPA. The results

are summarized in Table 3. The high PoA for uniform bidding

in deterministic algorithm is because of the high correlation

between all bids from the same bidder, that causes a “taking

nothing or breaking the budget” situation. For randomized al-

gorithms like rFPA, even when the bids are highly correlated,

the bidders are able to increase bids smoothly to get more

fractional value. This avoids the cases that cause high PoA in

deterministic auctions.

Finally, we consider a “quasi-proportional” FPA mechanism,

which chooses each bidder with a probability proportional to a

power of their bid. We show that when the power approaches

infinity, the PoA of this auction is at most 2 for auto-bidders

with both ROS and budget constraints in Theorem 5.1.

1.2 Related works
The literature on auto-bidding has focused on various auc-

tion mechanisms, constraints, and extra information. The

main difference between auto-bidding and traditional quasi-

linear bidding is that auto-bidders are value maximizers, while

quasi-linear bidders are profit maximizers. Aggarwal et al. [1]

proposed a general framework for auto-bidding with value

and budget constraints in multi-slot truthful auctions. They

showed that it is a near optimal strategy for auto-bidders to

adopt a uniform bidding strategy, and that the optimal PoA

is 2. Mehta [25] showed that in the setting with two bidders

with only a ROS constraint but not a budget constraint, the

PoA is at most 1.89 with a randomized truthful auction. Liaw

et al. [23] showed that the PoA can be improved to 1.8 using a

non-truthful auction which they called randomized FPA. We

adopt their methodology and extend this result to the setting

with both ROS and budget constraints in Theorem 4.1. They

also showed that when the number of bidders tends to infinity,

any auction satisfying some mild assumptions has a PoA of

at least 2. Both Liaw et al. [23] and Deng et al. [14] showed

that the PoA of FPA with the ROS constraint is 2. We extend

this setting to have both the RoS and budget constraints, and

show that the extra budget constraint brings the PoA of FPA

to 𝑛 (tight). We also study the integral and fractional PoA of

FPA when the bidders are assumed to bid uniformly.

Deng et al. [14] also showed that when there are both value

maximizers and utility maximizers, the PoA of FPA is at most

1/0.457 and that this is tight. There is also a line of work that

explores how to utilize machine-learned signals in the auto-

bidding setting [6, 12, 14, 16]. In particular, they show that by

2
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Table 1: Price of Anarchy (PoA) for FPA

PoA for FPA

ROS + budget ROS

LB UB LB UB

Non-uniform bidding 𝑛 (Cor 3.2) 𝑛 (Thm 3.3) 2 [23] 2 [23]

Non-uniform, 𝑣𝑖, 𝑗 ≤ 𝐵𝑖 2 (Cor 3.7) 2 (Thm 3.8) 2 [23] 2 [23]

Uniform bidding 𝑛 (Thm 3.15) 𝑛 (Thm 3.16) 1 1[16]

Table 2: Integral Price of Anarchy (I-PoA) for FPA

I-PoA for FPA

ROS + budget ROS

LB UB LB UB

Non-uniform bidding 2 (Cor 3.7) 2 (Thm 3.6) 2 [23] 2 [23]

Uniform bidding 𝑛 (Thm 3.15) 𝑛 (Thm 3.16) 1 1[16]

Table 3: Price of Anarchy (PoA) for rFPA with two bidders

PoA for rFPA

ROS + budget ROS

LB UB LB UB

Non-uniform bidding – 1.8 (Thm 4.1) – 1.8 [23]

Uniform bidding – 1.5 (Thm 4.2) 1 1[16]

using such signals as reserves and boosts can lead to improved

efficiency in the presence of auto-bidders.

The majority of the research mentioned above assumes that

there is only a ROS constraint, without any budget constraint.

The only exceptions are Aggarwal et al. [1] and Deng et al.

[16], which both studied the integral PoA in VCG auctions,

where uniform bidding is nearly optimal. In this paper, we

focus on a less studied setting: both the integral and fractional

PoA of value maximizing auto-bidders with ROS and budget

constraints for a number of non-truthful auctions: FPA, rFPA,

and quasi-proportional FPA. There is a thread of research on

budget pacing in online or repeated auctions for auto-bidders

[10, 11, 20, 21, 24] to minimize regret. In this paper, we focus

on the price of anarchy of single-shot auctions, which is fun-

damentally different from budget pacing in online settings

in several aspects. First, in the online setting, the bidders fol-

low a specific budget pacing bidding strategy and show that

when bidders follow such a strategy, the welfare is at least

half of the optimal [24]. In this paper, some of our results are

in the setting where the bidders are allowed to bid arbitrarily.

Thus, the aforementioned result may not apply in this setting.

Second, the online setting assumes that the values are drawn

i.i.d. in every round whereas we assume the value may be ad-

versarially chosen. Third, we study the liquid welfare in pure

Nash equilibria, where no bidder would deviate from their

current bid. In the online setting, people study small regret

or diminishing regret bidding strategies when the number of

steps approaches infinity, but this is different from a pure Nash

equilibrium in the offline setting.

There are also recent related work by Balseiro et al. [5]

and Golrezaei et al. [22] which show that both total revenue

and welfare can be improved by choosing appropriate reserve

prices. Deng et al. [15] studied the PoA of VCG auctions with

user cost. Deng et al. [12] studied fairness in auto-bidding with

machine learned advice. Ni et al. [28] studied ad auction design

with coupons in the auto-bidding world. Other works on auto-

bidding include understanding auto-bidding in multi-channel

auctions [2, 13], incentive properties of auto-bidding [3, 26],

optimal auction design in the Bayesian setting [6], dynamic

auctions for auto-bidders [17, 18], and resource allocation /

auction for utility maximizers with budget constraints [7, 9].

2 PRELIMINARIES
Let 𝐴 be a set of 𝑛 advertisers and 𝑄 be a set of queries. Each

advertiser 𝑖 ∈ 𝐴 has a total budget 𝐵𝑖 and a value 𝑣𝑖, 𝑗 for

query 𝑗 ∈ 𝑄 . We let 𝑏𝑖, 𝑗 denote advertiser 𝑖’s bid on query

𝑗 . A single-slot auction is defined via an allocation function

𝜋 : R𝐴+ → [0, 1]𝐴 , where ∑𝑖∈𝐴 𝜋𝑖 (𝑏) ≤ 1 for all 𝑏 ∈ R𝐴+ , and
a cost function 𝑐 : R𝐴+ → R𝐴+ which denotes the price paid

by advertiser 𝑖 if they are allocated the slot. In particular, the

expected price paid by advertiser 𝑖 is 𝜋𝑖 (𝑏) · 𝑐𝑖 (𝑏).

Background on Auto-bidding. Let us assume that all adver-

tisers except 𝑖 have fixed their bids. Then the decision variables

for advertiser 𝑖 are {𝜋𝑖, 𝑗 }𝑗 ∈𝑄 where 𝜋𝑖, 𝑗 is the probability that

3
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advertiser 𝑖 wins the query. The bid 𝑏𝑖, 𝑗 that advertiser 𝑖 must

place to win with probability 𝜋𝑖, 𝑗 is implicitly determined by

𝜋𝑖, 𝑗 . Finally, we let 𝑐𝑖, 𝑗 denote the cost that advertiser 𝑖 must

pay for query 𝑗 when theywin. Note that 𝑐𝑖, 𝑗 may be a function

of 𝜋𝑖, 𝑗 .

The goal of the auto-bidder is to optimize the advertiser’s

total value subject to (i) a budget constraint where advertiser

𝑖’s total expected is no more than 𝐵𝑖 and (ii) a target return-

on-spend (ROS) constraint where advertiser 𝑖’s total expected

value is no less than their total expected spend
3
. More for-

mally, the auto-bidding agent for advertiser 𝑖 aims to solve the

following optimization problem:

maximize:

∑
𝑗 ∈𝑄

𝜋𝑖, 𝑗𝑣𝑖, 𝑗

subject to:

∑
𝑗 ∈𝑄

𝜋𝑖, 𝑗𝑐𝑖, 𝑗 ≤ 𝐵𝑖 (Budget)∑
𝑗 ∈𝑄

𝜋𝑖, 𝑗𝑐𝑖, 𝑗 ≤
∑
𝑗 ∈𝑄

𝜋𝑖, 𝑗𝑣𝑖, 𝑗 (ROS)

∀𝑗 ∈ 𝑄, 𝜋𝑖, 𝑗 ∈ [0, 1] .

Let Π = {𝜋 ∈ [0, 1]𝐴×𝑄 : ∀𝑗, ∑𝑖∈𝐴 𝜋𝑖, 𝑗 ≤ 1} be the set of all
feasible allocations. Given an allocation 𝜋 , we let LW(𝜋) be
the liquid welfare which is defined as

LW(𝜋) =
∑
𝑖∈𝐴

min{𝐵𝑖 ,
∑
𝑗 ∈𝑄

𝜋𝑖, 𝑗𝑣𝑖, 𝑗 }.

The notion of liquid welfare was introduced by [19] and

measures the “willingness to pay” of an allocation. Let Opt =

max𝜋 ∈Π LW((𝜋) be the value of the optimal randomized allo-

cation that maximizes liquid welfare and let 𝜋∗ ∈
argmax𝜋 ∈Π LW((𝜋) denote one such optimal allocation.

2.1 Deterministic allocations
For deterministic allocations, we assume that there is a sin-

gle bidder with positive probability of winning the query.

In other words, 𝜋𝑖, 𝑗 ∈ {0, 1} for all 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝑄 . Let

Π𝐼 B Π ∩ {0, 1}𝐴×𝑄 be the set of feasible deterministic al-

locations. Let I-Opt = max𝜋 ∈Π𝐼 LW(𝜋) be the value of the

optimal deterministic allocation that maximizes liquid welfare

and let 𝜋 𝐼∗ ∈ argmax𝜋 ∈Π𝐼 LW(𝜋) denote one such optimal

allocation.

2.2 Equilibrium
We say that the bids {𝑏𝑖, 𝑗 } are in an equilibrium if the two

statements below holds for each bidder 𝑖:

(1) Advertiser 𝑖 satisfies both their ROS and budget con-

straints:

∑
𝑗 ∈𝑄 𝜋𝑖, 𝑗𝑐𝑖, 𝑗 ≤ min{𝐵𝑖 ,

∑
𝑗 ∈𝑄 𝜋𝑖, 𝑗𝑣𝑖, 𝑗 }.

(2) Let 𝜋 and 𝑐 be the resulting allocation and costs of {𝑏𝑖, 𝑗 }.
Suppose bidder 𝑖 deviates to bids {𝑏 ′

𝑖, 𝑗
}𝑗 ∈𝑄 , while other

bidders remain their bids in {𝑏𝑖, 𝑗 }. Let 𝜋 ′
and 𝑐 ′ denote

the allocation and costs after bidder 𝑖’s deviation. Then

either bidder 𝑖 does not gain more value, or bidder 𝑖

3
One can think of the ROS constraint as an “ex-ante Individual Rationality”

constraint that ensures that the advertiser does not pay more than their value,

on average.

violates their constraint. Formally, at least one of the

following two inequalities is true:

• ∑
𝑗 ∈𝑄 𝜋 ′

𝑖, 𝑗
𝑣𝑖, 𝑗 ≤

∑
𝑗 ∈𝑄 𝜋𝑖, 𝑗𝑣𝑖, 𝑗

• ∑
𝑗 ∈𝑄 𝜋 ′

𝑖, 𝑗
𝑐𝑖, 𝑗 > min{𝐵𝑖 ,

∑
𝑗 ∈𝑄 𝜋 ′

𝑖, 𝑗
𝑣𝑖, 𝑗 }.

When we consider a fixed equilibrium Eq with a determin-

istic allocation 𝜋 , we will use 𝑁 (𝑖) to denote the set of all

queries that bidder 𝑖 wins in Eq and 𝑂 (𝑖) to denote the set of

all queries that are assigned to bidder 𝑖 in Opt. For a query

𝑗 , let Spend( 𝑗) denote the expected spend on query 𝑗 in the

equilibrium. For any bidder 𝑖 , let Spend(𝑖) denote the total

expected spend of bidder 𝑖 in Eq. For any subset of bidders

𝐴′ ⊆ 𝐴, we write

Opt(𝐴′) =
∑
𝑖∈𝐴′

min{𝐵𝑖 ,
∑
𝑗 ∈𝑄

𝜋∗𝑖, 𝑗𝑣𝑖, 𝑗 },

I-Opt(𝐴′) =
∑
𝑖∈𝐴′

min{𝐵𝑖 ,
∑
𝑗 ∈𝑄

𝜋 𝐼∗𝑖, 𝑗𝑣𝑖, 𝑗 },

and

LW(𝐴′) =
∑
𝑖∈𝐴′

min{𝐵𝑖 ,
∑
𝑗 ∈𝑄

𝜋𝑖, 𝑗𝑣𝑖, 𝑗 }.

For a single bidder 𝑖 , we abuse the notation and write LW(𝑖) =
LW({𝑖}) and Opt(𝑖) = Opt({𝑖}).

Given an instance 𝑆 and a mechanism M, let ΠEq
denote

the set of allocations withM at equilibrium. The PoA ofM is

defined as sup𝑆 sup𝜋 ∈ΠEq

LW(𝜋∗)
LW(𝜋 ) . We also define the integral

PoA (I-PoA) as sup𝑆 sup𝜋 ∈ΠEq

LW(𝜋 𝐼∗)
LW(𝜋 ) , which compares the

liquid welfare of an equilibrium with the optimal determinis-

tic allocation. In this paper, we study the PoA when a Nash

equilibrium exists.

3 FIRST PRICE AUCTION
In this section, we study the efficiency of FPA with both ROS

and budget constraints. We note that all our conclusions hold

for arbitrary deterministic tie-breaking rules. It is straight-

forward to see that I-Opt = Opt for auto-bidding without

a budget constraint: the optimal allocation is to assign each

query 𝑗 to bidder 𝑖∗ ∈ argmax𝑖∈𝐴 𝑣𝑖, 𝑗 . However, in the setting

with budget constraints, there is a gap between I-Opt and

Opt. We first show that I-Opt can be as small as
1

𝑛Opt. Next,

we show that both the PoA and for FPA is at most 𝑛, and the

integral PoA for FPA is at most 2.

Theorem 3.1. In auto-bidding with both ROS and budget
constraints, there exists an instance with 𝑛 bidders that I-Opt ≤
1

𝑛Opt.

Proof. We construct the instance as follows. There are 𝑛

bidders and a single query. Each bidder has a budget 𝐵𝑖 = 1

and value 𝑣𝑖,1 = 𝑛 for the query. The optimal allocation is to

assign the query to each bidder 𝑖 with 𝜋𝑖,1 = 1

𝑛 . This results

in a liquid welfare of 𝑛. The optimal integral allocation is to

assign the query to a single arbitrary bidder. This has a liquid

welfare of 1. □

Since the liquid welfare of any equilibrium of FPA is at most

I-Opt, we have the following corollary.

4
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Corollary 3.2. The PoA for FPA is at least𝑛 when the bidders
have both budget and ROS constraints.

Remember our conclusions in this section hold for arbitrary

deterministic tie-breaking rules for FPA. Note that we can ad-

just the example in Theorem 3.1’s proof to change bidder 1’s

value and budget to 𝑣1,1 = 𝑛 + 𝜀 and 𝐵1 = 1 + 𝜀, where 𝜀 → 0.

Consider a case that every bidder bids 𝑏𝑖,1 = 𝑣𝑖,1. It is easy to

see this is an Equilibrium with deterministic or randomized

tie-breaking rules. Therefore, the PoA is still at least 𝑛 for FPA

also with randomized tie-breaking rules.

Next, we show that the PoA of FPA is at most 𝑛, i.e. the

lower bound example is tight.

Theorem 3.3. The PoA for FPA with both ROS and budget
constraints is at most 𝑛.

Proof. We split the bidders into two sets:

𝐴𝐵 = {𝑖 ∈ 𝐴 | 𝐵𝑖 ≤
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 } and 𝐴𝐵̄ = 𝐴 \𝐴𝐵 .

Note that, by the definition of liquid welfare, for 𝑖 ∈ 𝐴𝐵 , we

have LW(𝑖) = 𝐵𝑖 ≥ Opt(𝑖). Thus, we have
LW(𝐴𝐵) ≥ Opt(𝐴𝐵). (1)

We further split 𝐴𝐵̄ in to two sets. We define 𝐴𝐵̄1
as the set

of bidders 𝑖 for which there exists at least one query 𝑗 ∉ 𝑁 (𝑖)
such that if bidder 𝑖 wins query 𝑗 then, in addition to the

queries they are currently winning, their total value would

exceed 𝐵𝑖 . In other words, if bidder 𝑖 gets this extra query 𝑗 ,

then they will achieve their optimal liquid welfare 𝐵𝑖 . Next,

we define 𝐴𝐵̄0
= 𝐴𝐵̄ \ 𝐴𝐵̄1

. These are the bidders for which

we can add any query not in 𝑁 (𝑖) and their total value would

still be at most 𝐵𝑖 . Formally, the sets are defined as

𝐴𝐵̄1
= {𝑖 ∈ 𝐴𝐵̄ | ∃ 𝑗 ∉ 𝑁 (𝑖), 𝑠 .𝑡 . 𝑣𝑖, 𝑗 +

∑
𝑗 ′∈𝑁 (𝑖)

𝑣𝑖, 𝑗 ′ ≥ 𝐵𝑖 }

𝐴𝐵̄0
= 𝐴𝐵̄ \𝐴𝐵̄1

.

We first bound Opt(𝐴𝐵̄1
) and Opt(𝐴𝐵̄0

) in Lemma 3.4 and

Lemma 3.5 below, and then put everything together using the

constraint that the total spend in the auction is upper bounded

by the total liquid welfare.

Lemma 3.4. Wehave
∑
𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖) Spend( 𝑗)+LW(𝐴𝐵̄1

) ≥
Opt(𝐴𝐵̄1

).

Proof. Fix any 𝑖 ∈ 𝐴𝐵̄1
and consider a query 𝑗 ′ ∉ 𝑁 (𝑖)

such that 𝑣𝑖, 𝑗 ′ +
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 ≥ 𝐵𝑖 . Note that such a query 𝑗 ′

must exist by definition of 𝐴𝐵̄1
. We claim that Spend( 𝑗 ′) ≥

𝐵𝑖 −
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 in any equilibrium of FPA. We will prove this

by contradiction, so assume Spend( 𝑗 ′) < 𝐵𝑖 −
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 .
Then the highest bid on 𝑗 ′ is strictly less than 𝐵𝑖 −

∑
𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 .

Now, observe that if bidder 𝑖 bids 𝐵𝑖 −
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 on query

𝑗 ′ then bidder 𝑖 would win query 𝑗 ′. Their total value would
then be at least 𝐵𝑖 and their total spend would be at most

𝐵𝑖 . Thus their value has increased while both their budget

and ROS constraints remain satisfied. This contradicts the

assumption that the bidders are in an equilibrium.We conclude

that there exists 𝑗 ′, such that Spend( 𝑗 ′) ≥ 𝐵𝑖−
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 for
all bidders 𝑖 ∈ 𝐴𝐵̄1

. Using the trivial upper bound Spend( 𝑗 ′) ≤

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖) Spend( 𝑗) (since 𝑗 ′ ∈ 𝑂 (𝑖) \ 𝑁 (𝑖)), this implies

that 𝐵𝑖 ≤ ∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖) Spend( 𝑗) +

∑
𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 for 𝑖 ∈ 𝐴𝐵̄1

.

We thus have that,

Opt(𝐴𝐵̄1
) ≤

∑
𝑖∈𝐴𝐵̄1

𝐵𝑖

≤
∑

𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) +
∑

𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑁 (𝑖)

𝑣𝑖, 𝑗

≤
∑

𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) + LW(𝐴𝐵̄1
),

as claimed. Note that for the first line, we used Opt(𝐴𝐵̄1
) =∑

𝑖∈𝐴𝐵̄1

min{𝐵𝑖 ,
∑

𝑗 𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗 } ≤
∑
𝑖∈𝐴𝐵̄1

𝐵𝑖 . □

Lemma 3.5. Wehave
∑
𝑖∈𝐴𝐵̄0

∑
𝑗∉𝑁 (𝑖) Spend( 𝑗)+LW(𝐴𝐵̄0

) ≥
Opt(𝐴𝐵̄0

).

Proof. The proof is similar to the proof of Lemma 3.4. For

𝑖 ∈ 𝐴𝐵̄0
, we claim that for each query 𝑗 ′ ∉ 𝑁 (𝑖), Spend( 𝑗 ′) is

at least 𝑣𝑖, 𝑗 ′ . Again, we prove this by contradiction. Assume

there exists 𝑗 ′ ∈ 𝑂 (𝑖)−𝑁 (𝑖), such that Spend( 𝑗 ′) < 𝑣𝑖, 𝑗 ′ . Then

bidder 𝑖 can bid 𝑣𝑖, 𝑗 ′ to win query 𝑗 ′. Note that

𝑐𝑖, 𝑗 ′ +
∑

𝑗 ∈𝑁 (𝑖)
𝑐𝑖, 𝑗 ≤ 𝑣𝑖, 𝑗 ′ +

∑
𝑗 ∈𝑁 (𝑖)

𝑐𝑖, 𝑗 < 𝐵𝑖 ,

where the first inequality uses that bidder 𝑖 bids and pays 𝑣𝑖, 𝑗 ′

on query 𝑗 ′ and that bidder 𝑖’s ROS constraint was initially

satisfied and the second is by definition of𝐴𝐵̄0
. But this shows

that bidder 𝑖 can improve their value without violating their

constraints, which contradicts the assumption that the bidders

are in an equilibrium. Thus, it must be Spend( 𝑗 ′) ≥ 𝑣𝑖, 𝑗 ′ for

all 𝑖 ∈ 𝐴𝐵̄0
and 𝑗 ′ ∉ 𝑁 (𝑖). In particular,

∑
𝑗∉𝑁 (𝑖) Spend( 𝑗) ≥∑

𝑗∉𝑁 (𝑖) 𝑣𝑖, 𝑗 . Following a similar argument as in Lemma 3.4,

we have that

Opt(𝐴𝐵̄0
) ≤

∑
𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑄

𝑣𝑖, 𝑗

=
∑

𝑖∈𝐴𝐵̄0

∑
𝑗∉𝑁 (𝑖)

𝑣𝑖, 𝑗 +
∑

𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑁 (𝑖)

𝑣𝑖, 𝑗

≤
∑

𝑖∈𝐴𝐵̄0

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) + LW(𝐴𝐵̄0
),

where the first inequality is because

Opt(𝐴𝐵̄0
) = ∑

𝑖∈𝐴𝐵̄0

min{𝐵𝑖 ,
∑

𝑗 𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗 } ≤
∑

𝑗 ∈𝑄 𝑣𝑖, 𝑗 . □

We now return to the proof of Theorem 3.3. Let 𝑁−1 ( 𝑗)
denote the advertiser that wins query 𝑗 . Combining Inequality

(1), Lemma 3.4 and Lemma 3.5, we have

Opt = Opt(𝐴𝐵) + Opt(𝐴𝐵̄1
) + Opt(𝐴𝐵̄0

)

≤ LW(𝐴𝐵) +
∑

𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) + LW(𝐴𝐵̄1
)

+ LW(𝐴𝐵̄0
) +

∑
𝑖∈𝐴𝐵̄0

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗)

= LW(𝐴𝐵) + LW(𝐴𝐵̄1
) + LW(𝐴𝐵̄0

) +
∑
𝑖∈𝐴𝐵̄

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗)

≤ LW(𝐴) +
∑
𝑗 ∈𝑄

∑
𝑖∈𝐴\𝑁 −1 ( 𝑗)

Spend( 𝑗) (2)

5
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= LW(𝐴) + (𝑛 − 1) ·
∑
𝑗 ∈𝑄

Spend( 𝑗) (3)

≤ 𝑛 · LW(𝐴). (4)

In Eq. (2), we swapped the order of the sum. In Eq. (3), we

used that |𝐴\𝑁−1 ( 𝑗) | = 𝑛−1 (each query is assigned to exactly

one bidder). In Eq. (4), we used that the liquid welfare is an

upper bound on the total spend. □

Although the PoA of FPA is large because of the large gap

between Opt and I-Opt, the theorem below shows that the I-

PoA of FPA with both ROS and budget constraints is at most 2,

which is the same as in the setting with only a ROS constraint.

Theorem 3.6. The I-PoA for FPA with both ROS and budget
constraints is at most 2.

This proof and all other proofs not included in the main

paper are relegated to the appendix.

Corollary 3.4 of [23] shows that the I-PoA of FPA without

budget is at least 2. It is straightforward to generalize it to

obtain the following corollary, by assuming all the budgets

are infinity. Note that the lower bound of I-PoA is also a lower

bound of PoA.

Corollary 3.7. The I-PoA for FPA with both ROS and budget
constraints is at least 2.

Next, we make a mild assumption that 𝑣𝑖, 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ 𝐴

and 𝑗 ∈ 𝑄 , i.e. any bidder’s value for any query is no more

than their budget. With this assumption, we are able to show

that the PoA is at most 2 for FPA in Theorem 3.8. Indeed, our

assumption avoids the “large value” cases represented by the

example in Theorem 3.1 to achieve a small PoA bound.

Theorem 3.8. If 𝑣𝑖, 𝑗 ≤ 𝐵𝑖 for every 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝑄 then the
PoA of FPA with both ROS and budget constraints is at most 2.

Proof. We split the bidders into two sets:

𝐴𝐵 = {𝑖 ∈ 𝐴 | 𝐵𝑖 ≤
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 } and 𝐴𝐵̄ = 𝐴 \𝐴𝐵 .

By the definition of liquidwelfare, for 𝑖 ∈ 𝐴𝐵 , we have LW(𝑖) =
𝐵𝑖 ≥ Opt(𝑖). Thus, we have

LW(𝐴𝐵) ≥ Opt(𝐴𝐵) . (5)

For 𝑖 ∈ 𝐴𝐵̄ , define D(𝑖) = { 𝑗 ∉ 𝑁 (𝑖) | Spend( 𝑗) < 𝑣𝑖, 𝑗 }.
Let𝑉𝑖 =

∑
𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 denote the total value that bidder 𝑖 has in

the equilibrium Eq. Note that 𝑉𝑖 = LW(𝑖) for 𝑖 ∈ 𝐴𝐵̄ because

𝐵𝑖 ≥ 𝑉𝑖 . For a set 𝑁
′ ⊆ 𝑁 (𝑖), let 𝑉𝑖 (𝑁 ′) = ∑

𝑗 ∈𝑁 ′ 𝑣𝑖, 𝑗 .

Claim 3.9. Fix a bidder 𝑖 . For every 𝑗 ∈ D(𝑖), we have

Spend( 𝑗) + Spend(𝑖) ≥ 𝐵𝑖 .

Intuitively, if Spend( 𝑗) < 𝑣𝑖, 𝑗 , then it must be that bidder 𝑖

could not bid higher because of their budget constraint, i.e.,

𝐵𝑖 could be covered by Spend( 𝑗) + Spend(𝑖) ≥ 𝐵𝑖 . See the full

proof in the appendix.

Claim 3.10. Fix a bidder 𝑖 . For every 𝑗 ∈ D(𝑖), we have

𝑣𝑖, 𝑗 ≤ 𝑉𝑖 .

We prove this claim by contradiction. To that end assume

there exists 𝑗 ∈ D(𝑖), such that 𝑣𝑖, 𝑗 > 𝑉𝑖 . For a sufficiently

small 𝜀 > 0, if bidder 𝑖 changes their bid on query 𝑗 to Spend( 𝑗)+
𝜀 and their bid on all other queries to 0, then bidder 𝑖 would

win query 𝑗 and pay Spend( 𝑗) + 𝜀. Their total value would

be 𝑣𝑖, 𝑗 > 𝑉𝑖 . By the condition of Theorem 3.8, we know

𝑣𝑖, 𝑗 ≤ 𝐵𝑖 . By the definition of D(𝑖), Spend( 𝑗) < 𝑣𝑖, 𝑗 and thus,

Spend( 𝑗) + 𝜀 < 𝑣𝑖, 𝑗 provided 𝜀 is sufficiently small. Thus, bid-

der 𝑖 is able to get more value while satisfying both constraints,

which contradicts the equilibrium assumption.

We further partition 𝐴𝐵̄ into two sets:

𝐴𝐵̄0
= {𝑖 ∈ 𝐴𝐵̄ |

∑
𝑗 ∈D(𝑖)

𝜋∗𝑖, 𝑗 ≥ 1} and 𝐴𝐵̄1
= 𝐴𝐵̄ \𝐴𝐵̄0

.

We bound Opt(𝐴𝐵̄0
) and Opt(𝐴𝐵̄1

) separately by Lemma 3.11

and Lemma 3.14.

Lemma 3.11. We have
∑
𝑖∈𝐴𝐵̄0

∑
𝑗 ∈D(𝑖) 𝜋

∗
𝑖, 𝑗

· Spend( 𝑗) +
LW(𝐴𝐵̄0

) ≥ Opt(𝐴𝐵̄0
).

Proof. Fix 𝑖 ∈ 𝐴𝐵̄0
. By Claim 3.9, we have∑

𝑗 ∈D(𝑖)
𝜋∗𝑖, 𝑗 · Spend( 𝑗) + LW(𝑖)

≥
∑

𝑗 ∈D(𝑖)
𝜋∗𝑖, 𝑗 · Spend( 𝑗) + Spend(𝑖) ≥ 𝐵𝑖 .

Summing up this inequality for all 𝑖 ∈ 𝐴𝐵̄0
yields∑

𝑖∈𝐴𝐵̄0

∑
𝑗 ∈D(𝑖)

𝜋∗𝑖, 𝑗 ·Spend( 𝑗)+LW(𝐴𝐵̄0
) ≥

∑
𝑖∈𝐴𝐵̄0

𝐵𝑖 ≥ Opt(𝐴𝐵̄0
) .

□

To bound Opt(𝐴𝐵̄1
), we require the following auxiliary

lemma.

Lemma 3.12. Fix bidder 𝑖 ∈ 𝐴𝐵̄1
. If

∑
𝑗 ∈D(𝑖) 𝜋

∗
𝑖, 𝑗

< 1 then∑
𝑗 ∈𝑁 (𝑖)

(𝑣𝑖, 𝑗 · (1 − 𝜋∗𝑖, 𝑗 ) + 𝜋∗𝑖, 𝑗 · Spend( 𝑗))

≥
∑

𝑗 ∈D(𝑖)
𝜋∗𝑖, 𝑗 · (𝑣𝑖, 𝑗 − Spend( 𝑗)) .

Proof. We split 𝑁 (𝑖) into two sets:

𝑁1 = { 𝑗 ∈ 𝑁 (𝑖) | Spend( 𝑗) ≥ 𝑣𝑖, 𝑗 } and 𝑁2 = 𝑁 (𝑖) \ 𝑁1 .

We first show the following claim to bound 𝑉𝑖 (𝑁1) +
Spend(𝑁2).

Claim 3.13.
∑

𝑗 ∈𝑁 (𝑖) (𝑣𝑖, 𝑗 · (1 − 𝜋∗
𝑖, 𝑗
) + 𝜋∗

𝑖, 𝑗
· Spend( 𝑗)) ≥

𝑉𝑖 (𝑁1) + Spend(𝑁2).

Fix a query 𝑗 ′ ∈ D(𝑖). Since bidder 𝑖 is in an equilibrium,

it means bidder 𝑖 cannot get more value, while satisfying

their constraints, by giving up queries in 𝑁1 and bidding high

enough to win query 𝑗 ′. In other words, if bidder 𝑖 deviates

by bidding 0 on all queries in 𝑁1 and bidding Spend( 𝑗 ′) on
query 𝑗 ′ to win query 𝑗 ′ then at least one of the following two

statements is true: (1) the value that bidder 𝑖 loses from 𝑁1 is

at least the value 𝑖 gains by winning 𝑗 ′ or (2) bidder 𝑖 violates
their constraints. We analyze each case below.
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Case 1: 𝑣𝑖, 𝑗 ′ ≤ 𝑉𝑖 (𝑁1). In this case, bidder 𝑖 gives up all

queries in 𝑁1 and bids Spend( 𝑗 ′) to win 𝑗 ′, but bidder 𝑖’s total
value decreases after the switch. In other words 𝑉𝑖 (𝑁1) ≥
𝑣𝑖, 𝑗 ′ ≥ 𝑣𝑖, 𝑗 ′ − Spend( 𝑗).

Case 2: bidder 𝑖 violates at least one of their constraints. It is
not possible to violate their ROS constraint because Spend(𝑁1)
≥ 𝑉𝑖 (𝑁1) and Spend( 𝑗 ′) < 𝑣𝑖, 𝑗 ′ . Thus bidder 𝑖 must vio-

late their budget constraint. Bidder 𝑖 does not spend any-

thing on 𝑁1 now because bidder 𝑖 bids 0 on all queries in

𝑁1. The total spend of bidder 𝑖 after the strategy deviation

is Spend( 𝑗 ′) + Spend(𝑁2), which must be greater than 𝐵𝑖 .

Combining with the condition that 𝑣𝑖, 𝑗 ′ ≤ 𝐵𝑖 , we have

Spend(𝑁2) > 𝐵𝑖 − Spend( 𝑗 ′) ≥ 𝑣𝑖, 𝑗 ′ − Spend( 𝑗 ′) .

Combining Case 1 and Case 2 and Claim 3.13, we have that

for every 𝑗 ′ ∈ D(𝑖):∑
𝑗 ∈𝑁 (𝑖)

(𝑣𝑖, 𝑗 · (1 − 𝜋∗𝑖, 𝑗 ) + 𝜋∗𝑖, 𝑗 · Spend( 𝑗)) ≥ 𝑉𝑖 (𝑁1) + Spend(𝑁2)

≥ 𝑣𝑖, 𝑗 ′ − Spend( 𝑗 ′) .

Since

∑
𝑗 ′∈D(𝑖) 𝜋

∗
𝑖, 𝑗 ′ < 1 and 𝑣𝑖, 𝑗 > Spend( 𝑗 ′) for 𝑗 ∈ D(𝑖),

we conclude that∑
𝑗 ∈𝑁 (𝑖)

𝑣𝑖, 𝑗 ·(1−𝜋∗𝑖, 𝑗 )+𝜋
∗
𝑖, 𝑗 ·Spend( 𝑗) ≥

∑
𝑗 ∈D(𝑖)

𝜋∗𝑖, 𝑗 ·(𝑣𝑖, 𝑗−Spend( 𝑗)).

□

Lemma 3.14. We have
Opt(𝐴𝐵̄1

) ≤ LW(𝐴𝐵̄1
) +∑

𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑄 Spend( 𝑗) · 𝜋∗

𝑖, 𝑗

Proof. Fix 𝑖 ∈ 𝐴𝐵̄1
. We first split Opt(𝑖) into three parts

and then bound each term separately. Indeed, for all 𝑖 ∈ 𝐴𝐵̄1
,

we have

Opt(𝑖) ≤
∑
𝑗 ∈𝑄

𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗

=
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗 +

∑
𝑗 ∈D(𝑖)

𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗 +
∑

𝑗 ∈𝑄\𝑁 (𝑖)\D(𝑖)
𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗

=
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗 + (

∑
𝑗 ∈D(𝑖)

(𝑣𝑖, 𝑗 − Spend( 𝑗)) · 𝜋∗𝑖, 𝑗

+
∑

𝑗 ∈D(𝑖)
Spend( 𝑗) · 𝜋∗𝑖, 𝑗 ) +

∑
𝑗 ∈𝑄\𝑁 (𝑖)\D(𝑖)

𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗 .

Weknow that if 𝑗 ∈ 𝑄\𝑁 (𝑖)\D(𝑖) we have Spend( 𝑗) ≥ 𝑣𝑖, 𝑗 .

Combining with Lemma 3.12 gives that

Opt(𝑖)

≤
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 · 𝜋∗𝑖, 𝑗 +

∑
𝑗 ∈𝑁 (𝑖)

(𝑣𝑖, 𝑗 · (1 − 𝜋∗𝑖, 𝑗 ) + 𝜋∗𝑖, 𝑗 · Spend( 𝑗))

+
∑

𝑗 ∈D(𝑖)
Spend( 𝑗) · 𝜋∗𝑖, 𝑗 +

∑
𝑗 ∈𝑄\𝑁 (𝑖)\D(𝑖)

Spend( 𝑗) · 𝜋∗𝑖, 𝑗

=
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 +

∑
𝑗 ∈𝑄

Spend( 𝑗) · 𝜋∗𝑖, 𝑗 .

Summing up for all 𝑖 ∈ 𝐴𝐵̄1
gives that Opt(𝐴𝐵̄1

) ≤ LW(𝐴𝐵̄1
)+∑

𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑄 Spend( 𝑗) · 𝜋∗

𝑖, 𝑗
. □

We are ready to finish the proof by putting Inequality 5,

Lemma 3.11 and Lemma 3.14 together. We have

Opt = Opt(𝐴𝐵) + Opt(𝐴𝐵̄0
) + Opt(𝐴𝐵̄1

)

≤ LW(𝐴𝐵) + LW(𝐴𝐵̄0
) +

∑
𝑖∈𝐴𝐵̄0

∑
𝑗 ∈D(𝑖)

𝜋∗𝑖, 𝑗 · Spend( 𝑗)

+ LW(𝐴𝐵̄1
) +

∑
𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑄

Spend( 𝑗) · 𝜋∗𝑖, 𝑗

≤ LW(𝐴) +
∑
𝑖∈𝐴

∑
𝑗 ∈𝑄

𝜋∗𝑖, 𝑗 · Spend( 𝑗)

≤ LW(𝐴) +
∑
𝑗 ∈𝑄

∑
𝑖∈𝐴

𝜋∗𝑖, 𝑗 · Spend( 𝑗)

≤ LW(𝐴) +
∑
𝑗 ∈𝑄

Spend( 𝑗) ≤ 2LW(𝐴),

which concludes that the PoA is at most 2. □

3.1 Uniform bidding
It is known that, without budget constraints, when the bidders

are assumed to bid uniformly, the PoA is 1 for FPA [16, Theo-

rem 6.5]. In this section, we study uniform bidding when the

bidders have a budget constraint. We first show, somewhat

surprisingly, that the I-PoA of FPA now becomes 𝑛.

Theorem 3.15. If the bidders are assumed to bid uniformly
in FPA with both ROS and budget constraints, then the integral
price of anarchy is at least 𝑛.

The following theorem gives a matching upper bound of

the PoA of FPA with budget constraints.

Theorem 3.16. If the bidders are assumed to bid uniformly
in FPA with both ROS and budget constraints, then the price of
anarchy is at most 𝑛.

4 RANDOMIZED FIRST-PRICE AUCTION
In this section, we study the efficiency of the randomized first-

price auction [23, §5]. The auction is defined as follows. Given

a parameter 𝛼 ≥ 1 and the two highest bids 𝑏1 ≥ 𝑏2:

• If 𝑏1 ≥ 𝛼𝑏2 then bidder 1 wins with probability 1.

• Otherwise, bidder 1 wins with probability

1

2

(
1 + log𝛼 (𝑏1/𝑏2)

)
. With the remaining probability,

bidder 2 wins.

The winner of the auction pays their bid. We use rFPA(𝛼) to
denote the randomized first-price auction with parameter 𝛼 .

In this section, we focus on the setting where there are two

bidders in each query.

We prove two results for rFPA when advertisers have a

budget constraint. The first is that rFPA with an appropriate 𝛼

parameter achieves at least 0.555 of the optimal liquid welfare;

this is identical to the efficiency of rFPA when advertisers only

have a ROS constraint [23].

Theorem 4.1. For any set of undominated bids for two bid-
ders with both ROS and budget constraints, rFPA(𝛼 = 1.4)
obtains at least 1

1.8 -fraction of the welfare of the optimal (ran-
domized) allocation.
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For the second result, we consider the setting where adver-

tisers are assumed to bid uniformly. Recall that Theorem 3.15

shows that uniform bidding increases the I-PoA for FPA. Inter-

estingly, restricting bidders to bid uniformly actually lowers

the PoA for rFPA. Intuitively, the reason that I-PoA is large

for uniform bidding in FPA is because a bidder’s bid to all

queries are highly correlated. It is possible to construct in-

stances where, using uniform bidding, a bidder can either

win no queries or win everything and violate their budget

constraint but it is not possible for the bidder to smoothly

interpolate these extremes. However, in randomized auctions,

bidders are able to smoothly increase or decrease their bids

to win fractional queries, making it possible to avoid the bad

cases in deterministic auctions.

Theorem 4.2. If the bidders are assumed to bid uniformly in
rFPA(𝛼 = 7.62), then the PoA is at most 1.5.

5 QUASI-PROPORTIONAL FIRST PRICE
AUCTION

In this section, we consider the following quasi-proportional

power mechanism. Given a parameter 𝛼 ≥ 1 and the bids

𝑏1, . . . , 𝑏𝑛 , we allocate to bidder 𝑖 with probability
𝑏𝛼
𝑖

∥𝑏 ∥𝛼𝛼 , where

∥𝑏∥𝛼 = (∑𝑖∈𝐴 𝑏𝛼
𝑖
)1/𝛼

. The winner of the auction is charged

their bid. We note that a similar mechanism was also studied

in [27] although they considered the mechanism with 𝛼 ≤ 1.

Theorem 5.1. The price of anarchy for the quasi-proportional
FPA mechanism with both ROS and budget constraints is at most
2 when 𝛼 → ∞.

Proof. First, we require the following lemma.

Lemma 5.2. Fix a query 𝑗 and suppose that
0 < Pr [𝑖 wins query 𝑗] ≤ 𝜂. Then

Spend( 𝑗) ≥ 𝑣𝑖, 𝑗 ·
𝛼 · (1 − 𝜂)

(𝑛𝜂)1/𝛼 (𝛼 − 𝛼𝜂 + 1)
.

Lemma 5.3. For every 𝑖 ∈ 𝐴𝐵̄ , 𝑗 ∈ 𝑄 , 𝜂 ∈ (0, 1), and 𝑦𝑖, 𝑗 ∈
[0, 1], we have

𝜋𝑖, 𝑗 · 𝑣𝑖, 𝑗 +𝑦𝑖, 𝑗 ·
(𝑛𝜂)1/𝛼𝜂 (𝛼 − 𝛼𝜂 + 1)

𝛼 (1 − 𝜂) · Spend( 𝑗) ≥ 𝜂 ·𝑦𝑖, 𝑗𝑣𝑖, 𝑗 .

Proof. If 𝜋𝑖, 𝑗 ≥ 𝜂 then 𝜋𝑖, 𝑗 · 𝑣𝑖, 𝑗 ≥ 𝜂 ·𝑦𝑖, 𝑗𝑣𝑖, 𝑗 . Otherwise, if
𝜋𝑖, 𝑗 < 𝜂 then we can apply Lemma 5.2. □

We now apply Lemma 5.3 with 𝑦𝑖, 𝑗 =
𝜋∗
𝑖,𝑗∑

𝑖′∈𝐴
𝐵̄
𝜋∗
𝑖′, 𝑗

. For a

fixed bidder 𝑖 , we can sum over all 𝑗 to get that

𝜂 · Opt(𝑖) = 𝜂
∑
𝑗 ∈𝑄

𝜋∗𝑖, 𝑗𝑣𝑖, 𝑗 ≤
∑
𝑗 ∈𝑄

𝜂 ·
𝜋∗
𝑖, 𝑗∑

𝑖′∈𝐴𝐵̄
𝜋∗
𝑖′, 𝑗

𝑣𝑖, 𝑗

≤
∑
𝑗 ∈𝑄

𝜋∗
𝑖, 𝑗∑

𝑖′∈𝐴𝐵̄
𝜋∗
𝑖′, 𝑗

(𝑛𝜂)1/𝛼𝜂 (𝛼 − 𝛼𝜂 + 1)
𝛼 (1 − 𝜂) · Spend( 𝑗)

+
∑
𝑗 ∈𝑄

𝜋𝑖, 𝑗𝑣𝑖, 𝑗

≤ (𝑛𝜂)1/𝛼𝜂 (𝛼 − 𝛼𝜂 + 1)
𝛼 (1 − 𝜂) ·

∑
𝑗 ∈𝑄

𝜋∗
𝑖, 𝑗∑

𝑖′∈𝐴𝐵̄
𝜋∗
𝑖′, 𝑗

Spend( 𝑗)

+ LW(𝑖).
Thus, summing both sides over 𝑖 ∈ 𝐴𝐵̄ , we have that

𝜂 · Opt(𝐴𝐵̄)

≤ LW(𝐴𝐵̄) +
(𝑛𝜂)1/𝛼𝜂 (𝛼 − 𝛼𝜂 + 1)

𝛼 (1 − 𝜂) ·
∑
𝑗 ∈𝑄

Spend( 𝑗)

≤ LW(𝐴𝐵̄) +
(𝑛𝜂)1/𝛼𝜂 (𝛼 − 𝛼𝜂 + 1)

𝛼 (1 − 𝜂) · LW.

Adding LW(𝐴𝐵) = Opt(𝐴𝐵) to both sides gives that 𝜂 ·Opt ≤(
1 + (𝑛𝜂)1/𝛼𝜂 (𝛼−𝛼𝜂+1)

𝛼 (1−𝜂)

)
· LW. Thus, the PoA is at most

1

𝜂 +
(𝑛𝜂)1/𝛼 (𝛼−𝛼𝜂+1)

𝛼 (1−𝜂) . If we take limits as 𝛼 → ∞, we get that this

converges to 1/𝜂 + 1. Since 𝜂 is arbitrary, we conclude that the

PoA is 2. □

6 DISCUSSION
In this paper, we study the PoA and I-POA of auto-bidders

with both budget and ROS constraints in non-truthful auctions,

which complement previous works on the PoA of different

auctions for auto-bidders with only ROS constraints. The set-

ting with budget constraints is different and challenging for

several reasons. First, Theorem 3.1 shows that there is a large

gap between deterministic and randomized allocations in our

setting. In contrast, recall that the best deterministic alloca-

tion is also the best randomized allocation in the setting with

only a ROS constraint. Thus, the techniques required for the

efficiency analyses are different from previous related work

and may be extended for future work with budget constraints.

Second, when the bidders are assumed to bid uniformly, our

results are surprisingly inconsistent with setting with only a

ROS constraint. Deng et al. [16] shows that the PoA is 1 when

bidders are assumed to bid uniformly in FPA with only ROS

constraints. However, we show that the I-PoA for this setting

with budget constraints becomes 𝑛, which is worse than the

I-PoA of 2 for non-uniform bidding. We also show that uni-

form bidding does improve the PoA for randomized FPA in

Theorem 4.2. Intuitively, the reason that I-PoA is large for uni-

form bidding in FPA is because a bidder’s bid to all queries are

highly correlated, and it is possible that a bidder could not win

any query because when they will have to take none or too

many queries and violate their budget constraint. However, in

randomized auctions, bidders are able to smoothly increase or

decrease their bids to win fractional queries to avoid such bad

cases in deterministic auctions.

There are many interesting future directions to explore

beyond this work. We analyze the PoA and I-PoA of different

non-truthful auctions for the cases that a Nash equilibrium

exists. One question we leave for future work the existence

of Nash equilibria. For the budget constraints in randomized

auctions, we study the ex ante version. It will be interesting

to also consider the ex post budget constraint setting and

compare it with our setting.
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A MISSING PROOFS FOR SECTION3
A.1 Proof of Theorem 3.6

Proof of Theorem 3.6. We split the bidders into two sets:

𝐴𝐵 = {𝑖 ∈ 𝐴 | 𝐵𝑖 ≤
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 } and 𝐴𝐵̄ = 𝐴 \𝐴𝐵 .

Note that, by the definition of liquid welfare, for 𝑖 ∈ 𝐴𝐵 , we

have LW(𝑖) = 𝐵𝑖 ≥ I-Opt(𝑖). Thus, we have

LW(𝐴𝐵) ≥ I-Opt(𝐴𝐵) . (6)

We further split 𝐴𝐵̄ in to two sets. We define 𝐴𝐵̄1
as the set

of bidders 𝑖 for which there exists at least one query 𝑗 ∈
𝑂 (𝑖) \𝑁 (𝑖) such that if bidder 𝑖 wins query 𝑗 as well then their

total value would be at least 𝐵𝑖 . In other words, if bidder 𝑖 gets

this extra query 𝑗 , then they will achieve their optimal liquid

welfare 𝐵𝑖 . Next, we define 𝐴𝐵̄0
= 𝐴𝐵̄ \ 𝐴𝐵̄1

. These are the

bidders for which we can add any query in 𝑂 (𝑖) \ 𝑁 (𝑖) and
their total value would still be at most 𝐵𝑖 . Formally, the sets

are defined as

𝐴𝐵̄1
= {𝑖 ∈ 𝐴𝐵̄ | ∃ 𝑗 ∈ 𝑂 (𝑖) \ 𝑁 (𝑖), 𝑠 .𝑡 . 𝑣𝑖, 𝑗 +

∑
𝑗 ′∈𝑁 (𝑖)

𝑣𝑖, 𝑗 ′ ≥ 𝐵𝑖 }

𝐴𝐵̄0
= 𝐴𝐵̄ \𝐴𝐵̄1

.

We first bound I-Opt(𝐴𝐵̄1
) and I-Opt(𝐴𝐵̄0

) in Lemma A.1

and Lemma A.2 below, and then put everything together using

the constraint that the total spend in the auction is upper

bounded by the total liquid welfare.

Lemma A.1. We have∑
𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖) Spend( 𝑗) + LW(𝐴𝐵̄1

) ≥ I-Opt(𝐴𝐵̄1
).

Proof. Fix any bidder 𝑖 ∈ 𝐴𝐵̄1
and consider a query 𝑗 ′ ∈

𝑂 (𝑖) \ 𝑁 (𝑖) such that 𝑣𝑖, 𝑗 +
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 ≥ 𝐵𝑖 (such a query 𝑗 ′

must exist by definition of 𝐴𝐵̄1
). We claim that Spend( 𝑗 ′) ≥

𝐵𝑖 −
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 in any equilibrium of FPA. We will prove this

by contradiction, so assume Spend( 𝑗 ′) < 𝐵𝑖 −
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 .
Then the highest bid on 𝑗 ′ must be at most 𝐵𝑖 −

∑
𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 .

Now, observe that if bidder 𝑖 bids 𝐵𝑖 −
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 on query

𝑗 ′ then bidder 𝑖 would win query 𝑗 ′. Their total value would
then be 𝐵𝑖 and their total spend would be at least 𝐵𝑖 . Thus

their value has increased while both their budget and ROS

constraints are satisfied. This contradicts the assumption that

the bidders are in equilibrium. We conclude that Spend( 𝑗 ′) ≥
𝐵𝑖−

∑
𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 for all bidders 𝑖 ∈ 𝐴𝐵̄1

. Using the trivial upper

bound Spend( 𝑗 ′) ≤ ∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖) Spend( 𝑗) (since 𝑗 ′ ∈ 𝑂 (𝑖) \

𝑁 (𝑖)), this implies that

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖) Spend( 𝑗) +

∑
𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗

for 𝑖 ∈ 𝐴𝐵̄1
. We thus have that,

I-Opt(𝐴𝐵̄1
) ≤

∑
𝑖∈𝐴𝐵̄1

𝐵𝑖

≤
∑

𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖)

Spend( 𝑗) +
∑

𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑁 (𝑖)

𝑣𝑖, 𝑗

≤
∑

𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖)

Spend( 𝑗) + LW(𝐴𝐵̄1
),

as claimed. Note that the first line is because I-Opt(𝐴𝐵̄1
) =∑

𝑖∈𝐴𝐵̄1

min{𝐵𝑖 ,
∑

𝑗 ∈𝑂 (𝑖) 𝑣𝑖, 𝑗 } ≤
∑
𝑖∈𝐴𝐵̄1

𝐵𝑖 . □

Lemma A.2. We have∑
𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖) Spend( 𝑗) + LW(𝐴𝐵̄0

) ≥ I-Opt(𝐴𝐵̄0
).

Proof. The proof is similar to the proof of Lemma A.1.

For 𝑖 ∈ 𝐴𝐵̄0
, we claim that for each query 𝑗 ′ ∈ 𝑂 (𝑖) \ 𝑁 (𝑖),

Spend( 𝑗 ′) is at least 𝑣𝑖, 𝑗 ′ . Again, we prove this by contradic-

tion. Assume there exists 𝑗 ′ ∈ 𝑂 (𝑖)\𝑁 (𝑖), such that Spend( 𝑗 ′) <
𝑣𝑖, 𝑗 ′ . Then bidder 𝑖 can bid 𝑣𝑖, 𝑗 ′ to win query 𝑗 ′. Note that

𝑐𝑖, 𝑗 ′ +
∑

𝑗 ∈𝑁 (𝑖)
𝑐𝑖, 𝑗 ≤ 𝑣𝑖, 𝑗 ′ +

∑
𝑗 ∈𝑁 (𝑖)

𝑐𝑖, 𝑗 < 𝐵𝑖 ,

where the first inequality uses that bidder 𝑖 bids and pays

𝑣𝑖, 𝑗 ′ on query 𝑗 ′ and that bidder 𝑖’s ROS constraint was ini-

tially satisfied and the second is by definition of 𝐴𝐵̄0
. But

this shows that bidder 𝑖 can improve their value without

violating their constraints, which contradicts the assump-

tion that the bidders are in an equilibrium. Thus, it must be

Spend( 𝑗 ′) ≥ 𝑣𝑖, 𝑗 ′ for all 𝑖 ∈ 𝐴𝐵̄0
and 𝑗 ′ ∈ 𝑂 (𝑖) \𝑁 (𝑖). In partic-

ular,

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖) Spend( 𝑗) ≥

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖) 𝑣𝑖, 𝑗 . Following a

similar argument as in Lemma A.1, we have that

I-Opt(𝐴𝐵̄0
) ≤

∑
𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑂 (𝑖)

𝑣𝑖, 𝑗

=
∑

𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖)

𝑣𝑖, 𝑗 +
∑

𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑁 (𝑖)

𝑣𝑖, 𝑗

≤
∑

𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖)

Spend( 𝑗) + LW(𝐴𝐵̄0
) .

The first inequality is because I-Opt(𝐴𝐵̄0
) =∑

𝑖∈𝐴𝐵̄0

min{𝐵𝑖 ,
∑

𝑗 ∈𝑂 (𝑖) 𝑣𝑖, 𝑗 } ≤
∑
𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑂 (𝑖) 𝑣𝑖, 𝑗 . □

We now return to the proof of Theorem 3.6. Since each

bidder’s spend is at most their liquid welfare, we have that

LW(𝐴) ≥
∑
𝑖∈𝐴

∑
𝑗 ∈𝑂 (𝑖)

Spend( 𝑗)

≥
∑

𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖)

Spend( 𝑗)

+
∑

𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖)

Spend( 𝑗)

Combining Inequality (6), Lemma A.1 and Lemma A.2, we

have

I-Opt = I-Opt(𝐴𝐵) + I-Opt(𝐴𝐵̄1
) + I-Opt(𝐴𝐵̄0

)

≤ LW(𝐴𝐵) +
∑

𝑖∈𝐴𝐵̄1

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖)

Spend( 𝑗) + LW(𝐴𝐵̄1
)

+ LW(𝐴𝐵̄0
) +

∑
𝑖∈𝐴𝐵̄0

∑
𝑗 ∈𝑂 (𝑖)\𝑁 (𝑖)

Spend( 𝑗)

≤ LW(𝐴𝐵) + LW(𝐴𝐵̄1
) + LW(𝐴𝐵̄0

) + LW(𝐴)
= 2LW(𝐴),

which completes the proof. □

A.2 Proof of Claim 3.9
Proof of Claim 3.9. We prove this claim by contradiction.

To that end, assume there exists 𝑗 ∈ D(𝑖) such that Spend( 𝑗)+
Spend(𝑖) < 𝐵𝑖 . Since we are using a FPA, this means the high-

est bid on query 𝑗 is exactly Spend( 𝑗). Recall that Spend( 𝑗) <
10



1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

Efficiency of Non-Truthful Auctions in Auto-bidding with Budget Constraints WWW’24, May 13–17, SINGAPORE

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

𝑣𝑖, 𝑗 by the definition of D(𝑖). Let 𝜀 be such that 0 < 𝜀 <

min{𝐵𝑖 −Spend( 𝑗) −Spend(𝑖), 𝑣𝑖, 𝑗 −Spend( 𝑗)}. Thus bidder 𝑖
can win query 𝑗 by bidding and spending Spend( 𝑗) +𝜀 without
violating their budget constraint. Note that bidder 𝑖 also sat-

isfies their ROS constraint after winning 𝑗 . We conclude that

bidder 𝑖 is able to obtain more value while satisfying their con-

straints, which contradicts the equilibrium assumption. □

A.3 Proof of Claim 3.10
Proof of Claim 3.10. We prove this claim by contradic-

tion. To that end assume there exists 𝑗 ∈ D(𝑖), such that

𝑣𝑖, 𝑗 > 𝑉𝑖 . For a sufficiently small 𝜀 > 0, if bidder 𝑖 changes their

bid on query 𝑗 to Spend( 𝑗)+𝜀 and their bid on all other queries
to 0, then bidder 𝑖 would win query 𝑗 and pay Spend( 𝑗) + 𝜀.

Their total value would be 𝑣𝑖, 𝑗 > 𝑉𝑖 . By the condition of

Theorem 3.8, we know 𝑣𝑖, 𝑗 ≤ 𝐵𝑖 . By the definition of D(𝑖),
Spend( 𝑗) < 𝑣𝑖, 𝑗 and thus, Spend( 𝑗) + 𝜀 < 𝑣𝑖, 𝑗 provided 𝜀 is

sufficiently small. Thus, bidder 𝑖 is able to get more value while

satisfying both constraints, which contradicts the equilibrium

assumption. □

A.4 Proof of Claim 3.13
Proof of Claim 3.13. Observe that

𝑣𝑖, 𝑗 · (1 − 𝜋∗𝑖, 𝑗 ) + 𝜋∗𝑖, 𝑗 · Spend( 𝑗) ≥
{
𝑣𝑖, 𝑗 𝑗 ∈ 𝑁1

Spend( 𝑗) 𝑗 ∈ 𝑁2

.

The claim follows by summing this inequality for 𝑗 ∈ 𝑁 (𝑖). □

A.5 Proof of Theorem 3.15
Proof of Theorem 3.15. We construct the instance as fol-

lows. There are 𝑛 bidders {1, . . . , 𝑛} and 𝑛 queries {1, . . . , 𝑛}.
Bidder 1 has 𝐵1 = +∞, 𝑣1,1 = 𝑏1,1 = 1 + 𝜀, and for every

𝑗 ∈ {2, . . . , 𝑛}, 𝑣1, 𝑗 = 𝑏1, 𝑗 = 2𝜀. Note that the uniform multi-

plier of bidder 1 is 1. Next, for every 𝑖 ∈ {2, . . . , 𝑛}, suppose
bidder 𝑖 has 𝐵𝑖 = 1, 𝑣𝑖,1 = 1

𝜀 , and 𝑣𝑖,𝑖 = 1. All other values are

0. We will discuss the bids of bidder 2, . . . , 𝑛 below.

Note if bidder 1 wins every query then they have no incen-

tive to change their bid since they are paying their value on

each query. We now show that, if bidder 1 does use a uniform

multiplier of 1 then in any equilibrium, bidder 𝑖 ∈ {2, . . . , 𝑛}
cannot win any query. Indeed, note that they cannot win query

1 because they would need to beat bidder 1 and pay at least

1 + 𝜀, violating their budget constraint. Since their value for

query 1 is 1/𝜀, this means bidder 𝑖 must use a bid multiplier

𝑚𝑖 ≤ 𝜀 (1+ 𝜀). Next, recall that their value for query 𝑖 is 1. And

thus, they bid at most 𝜀 (1 + 𝜀) < 2𝜀 since 𝜀 < 1 on query 𝑖 .

Thus, bidder 𝑖 loses this query as well.

Based on the above analysis, the only feasible allocation in

any equilibrium is that bidder 1 wins all the queries, which

has a total liquid welfare of 1 + 𝜀 + (𝑛 − 1) · 2𝜀. The optimal

(integral) allocation would be to allocate query 𝑖 to bidder

𝑖 for 𝑖 ∈ {1, . . . , 𝑛}. The optimal (integral) liquid welfare is

I-Opt = 1 + 𝜀 + (𝑛 − 1) = 𝑛 + 𝜀. Thus, the liquid welfare at

equilibrium is at most
1+𝜀+2(𝑛−1)𝜀

𝑛+𝜀 · I-Opt ≤
(

1

𝑛 + 3𝜀

)
· I-Opt.

Replacing 𝜀 with 𝜀/3 in the argument proves the theorem. □

A.6 Proof of Theorem 3.16
Proof of Theorem 3.16. Suppose that each bidder 𝑖 has a

uniform bid multiplier𝑚𝑖 , i.e. for every 𝑗 ∈ 𝑄 , 𝑏𝑖, 𝑗 =𝑚𝑖 · 𝑣𝑖, 𝑗 .
Given the bidders’ multipliers𝑚1,𝑚2, . . . ,𝑚𝑛 , let𝜋𝑖 (𝑚1,𝑚2, . . . ,𝑚𝑛) ∈
[0, 1]𝑄 denote bidder 𝑖’s allocation and 𝑐𝑖 (𝑚1,𝑚2, . . . ,𝑚𝑛) ∈ R
denote bidder 𝑖’s total spend across all queries. In an equilib-

rium, the spend must be feasible, i.e., 𝑐𝑖 (𝑚1,𝑚2, . . . ,𝑚𝑛) ≤
min{𝐵𝑖 ,

∑
𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 }.

Consider an equilibrium Eq. Similar to the proof of Theo-

rem 3.6, we split the bidders into two sets:

𝐴𝐵 = {𝑖 ∈ 𝐴 | 𝐵𝑖 ≤
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 } and 𝐴𝐵̄ = 𝐴 \𝐴𝐵 .

Observe that for 𝑖 ∈ 𝐴𝐵 , we have LW(𝑖) = 𝐵𝑖 ≥ Opt(𝑖).
Summing up for all 𝑖 ∈ 𝐴𝐵 , we have

LW(𝐴𝐵) ≥ Opt(𝐴𝐵). (7)

We further partition 𝐴𝐵̄ into two sets:

𝐴𝐵̄0
= {𝑖 ∈ 𝐴𝐵̄ | 𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) = 𝜋𝑖 (1,𝑚−𝑖 ) and 𝑐𝑖 (1,𝑚−𝑖 ) ≤ 𝐵𝑖 }

𝐴𝐵̄1
= 𝐴𝐵̄ \𝐴𝐵̄0

.

In words, 𝐴𝐵̄0
is the set of bidders 𝑖 such that either (i)𝑚𝑖 = 1

or (ii) if bidder 𝑖 changes their bid multiplier 𝑚𝑖 to 1 then

they win the same set of queries as in Eq and still satisfy their

budget constraint. We will bound Opt(𝐴𝐵̄1
) and Opt(𝐴𝐵̄0

) in
Lemma A.4 and Lemma A.6 below, and then put everything

together using the constraint that the total spend in the auction

is upper bounded by the total liquid welfare.

We first show the following claim when 𝑚𝑖 > 1 for any

bidder 𝑖 .

Claim A.3. If the bidders are assumed to bid uniformly in

FPA and𝑚𝑖 > 1 in an equilibrium Eq then bidder 𝑖 does not

win any query. In particular, 𝑖 ∈ 𝐴𝐵̄0
. In addition, Spend( 𝑗) ≥

𝑣𝑖, 𝑗 for every 𝑗 ∈ 𝑄 .

Proof. The first assertion follows from the observation

that if bidder 𝑖 did win any queries then their total cost would

be more than their total value. Thus, bidder 𝑖 would violate

their ROS constraint. Since the allocation is monotone in a

bidder’s bid, bidder 𝑖 would still win no query when 𝑚𝑖 is

lowered to 1, i.e., 𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) = 𝜋𝑖 (𝑚′
𝑖
= 1,𝑚−𝑖 ). Hence, 𝑖 ∈

𝐴𝐵̄0
.

For the last assertion, note that on each query 𝑗 , the winner

in Eq bids and pays at least𝑚𝑖 · 𝑣𝑖, 𝑗 > 𝑣𝑖, 𝑗 . □

Lemma A.4. We have
LW(𝐴𝐵̄0

) +∑
𝑖∈𝐴𝐵̄0

∑
𝑗∉𝑁 (𝑖) Spend( 𝑗) ≥ Opt(𝐴𝐵̄0

) .

Proof. We first show that for all 𝑖 ∈ 𝐴𝐵̄0
and 𝑗 ∉ 𝑁 (𝑖), we

have Spend( 𝑗) ≥ 𝑣𝑖, 𝑗 and thus,∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) ≥
∑

𝑗∉𝑁 (𝑖)
𝑣𝑖, 𝑗 . (8)

To see this, fix 𝑖 ∈ 𝐴𝐵̄0
. If𝑚𝑖 > 1 then Claim A.3 shows that

Spend( 𝑗) ≥ 𝑣𝑖, 𝑗 . Now suppose𝑚𝑖 ≤ 1. By definition of 𝐴𝐵̄0
,

for every query 𝑗 ∉ 𝑁 (𝑖), if bidder 𝑖 increases their bid to 𝑣𝑖, 𝑗 ,

they would continue to lose that query. This implies that the

winner of 𝑗 ∉ 𝑁 (𝑖) pays at least 𝑣𝑖, 𝑗 .
11
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Since 𝑖 ∈ 𝐴𝐵̄0
, we have that LW(𝑖) = ∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 . Combin-

ing with Eq. (8), we get that

LW(𝑖) +
∑

𝑗∉𝑁 (𝑖)
Spend( 𝑗) ≥

∑
𝑗 ∈𝑁 (𝑖)

𝑣𝑖, 𝑗 +
∑

𝑗∉𝑁 (𝑖)
𝑣𝑖, 𝑗

=
∑
𝑗 ∈𝑄

𝑣𝑖, 𝑗 ≥ Opt(𝑖) .

The last inequality holds because

∑
𝑗 ∈𝑄 𝑣𝑖, 𝑗 is an upper bound

on bidder 𝑖’s liquid welfare. Summing up the above inequality

over all 𝑖 ∈ 𝐴𝐵̄0
, we conclude that

LW(𝐴𝐵̄0
) +

∑
𝑖∈𝐴𝐵̄0

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) ≥ Opt(𝐴𝐵̄0
). □

Lemma A.5. For every bidder 𝑖 ∈ 𝐴𝐵̄1
, we have that

𝜋𝑖 (1,𝑚−𝑖 ) ≠ 𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) and 𝑐𝑖 (1,𝑚−𝑖 ) > 𝐵𝑖 .

Proof. If 𝑖 ∈ 𝐴𝐵̄1
then there can be three possibilities.

Either (1) 𝜋𝑖 (1,𝑚−𝑖 ) = 𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) and 𝑐𝑖 (1,𝑚−𝑖 ) > 𝐵𝑖 , (2)

𝜋𝑖 (1,𝑚−𝑖 ) ≠ 𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) and 𝑐𝑖 (1,𝑚−𝑖 ) ≤ 𝐵𝑖 , or (3) 𝜋𝑖 (1,𝑚−𝑖 )
≠ 𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) and 𝑐𝑖 (1,𝑚−𝑖 ) > 𝐵𝑖 . We show that the first two

are impossible and so the last condition must hold.

To see that (1) is not possible, note that since 𝑖 ∉ 𝐴𝐵

we have 𝐵𝑖 >
∑

𝑗 ∈𝑁 (𝑖) 𝑣𝑖, 𝑗 =
∑

𝑗 ∈𝑄 𝜋𝑖, 𝑗 (𝑚𝑖 ,𝑚−𝑖 )𝑣 𝑗 . Thus, if
𝜋𝑖 (1,𝑚−𝑖 ) = 𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) then we would have 𝐵𝑖 >∑

𝑗 ∈𝑄 𝜋𝑖, 𝑗 (1,𝑚−𝑖 )𝑣 𝑗 = 𝑐𝑖 (1,𝑚−𝑖 ).
To see that (2) is not possible, note that ClaimA.3 shows that

𝑚𝑖 ≤ 1 and the fact that 𝑖 ∈ 𝐴𝐵̄1
means that𝑚𝑖 ≠ 1. Thus,𝑚𝑖 <

1. Therefore, if 𝜋𝑖 (1,𝑚−𝑖 ) ≠ 𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) and 𝑐𝑖 (1,𝑚−𝑖 ) ≤ 𝐵𝑖
then the multipliers would not form an equilibrium (since the

allocation is non-decreasing in bid). □

For 𝑖 ∈ 𝐴𝐵̄1
, define 𝑚′

𝑖
= inf{𝑚 ∈ (𝑚𝑖 , 1] | 𝜋𝑖 (𝑚,𝑚−𝑖 ) ≠

𝜋𝑖 (𝑚𝑖 ,𝑚−𝑖 ) and 𝑐𝑖 (𝑚,𝑚−𝑖 ) > 𝐵𝑖 }. Note that𝑚′
𝑖
is well-defined

(and in (𝑚𝑖 , 1]) by Lemma A.5.

Lemma A.6. Let 𝜀 > 0 be such that𝑚𝑖 + 𝜀/2 < 𝑚′
𝑖
for every

𝑖 ∈ 𝐴𝐵̄1
. Then

LW(𝐴𝐵̄1
) +

∑
𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) +
∑

𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

𝜀 · 𝑣𝑖, 𝑗

≥ Opt(𝐴𝐵̄1
) .

Proof. Consider a bidder 𝑖 ∈ 𝐴𝐵̄1
. Let𝑚′′

𝑖
= min{1,𝑚′

𝑖
+

𝜀/2}. By the definition of𝑚′
𝑖
and Lemma A.5, if bidder 𝑖 uses a

bid multiplier of𝑚′′
𝑖
then bidder 𝑖 wins strictly more queries

but must then violate their budget constraint. We thus have

that

𝐵𝑖 <
∑

𝑗 ∈𝑁 ′ (𝑖)
𝑚′′
𝑖 · 𝑣𝑖, 𝑗 (9)

=
∑

𝑗 ∈𝑁 (𝑖)
𝑚′′
𝑖 · 𝑣𝑖, 𝑗 +

∑
𝑗 ∈𝑁 ′ (𝑖)\𝑁 (𝑖)

𝑚′′
𝑖 · 𝑣𝑖, 𝑗

≤
∑

𝑗 ∈𝑁 (𝑖)
𝑣𝑖, 𝑗 +

∑
𝑗 ∈𝑁 ′ (𝑖)\𝑁 (𝑖)

(𝑚′
𝑖 + 𝜀/2) · 𝑣𝑖, 𝑗 (10)

= LW(𝑖) +
∑

𝑗 ∈𝑁 ′ (𝑖)\𝑁 (𝑖)
(𝑚′

𝑖 + 𝜀/2) · 𝑣𝑖, 𝑗 . (11)

Since 𝑚𝑖 + 𝜀/2 < 𝑚′
𝑖
, it must be that bidder 𝑖 still wins

𝑁 (𝑖) when setting their multiplier to𝑚′
𝑖
− 𝜀. In other words,

the spend of query 𝑗 ∈ 𝑁 ′(𝑖) \ 𝑁 (𝑖) must be at least (𝑚′
𝑖
−

𝜀/2)𝑣𝑖, 𝑗 . Combining with Eq. (11), we have 𝐵𝑖 < LW(𝑖) +∑
𝑗 ∈𝑁 ′ (𝑖)\𝑁 (𝑖) (Spend( 𝑗) + 𝜀 · 𝑣𝑖, 𝑗 ). Therefore, using that

Opt(𝑖) ≤ 𝐵𝑖 , we have Opt(𝑖) ≤ LW(𝑖) +∑
𝑗∉𝑁 (𝑖) Spend( 𝑗) +∑

𝑗∉𝑁 (𝑖) 𝜀 · 𝑣𝑖, 𝑗 . Summing this inequality for all 𝑖 ∈ 𝐴𝐵̄1
, we

get that

Opt(𝐴𝐵̄1
) ≤ LW(𝐴𝐵̄1

) +
∑

𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗)

+
∑

𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

𝜀 · 𝑣𝑖, 𝑗 . □

Let 𝑁−1 ( 𝑗) denote the advertiser that wins query 𝑗 and let

𝑉 = max𝑖∈𝐴
∑

𝑗 ∈𝑄 𝑣𝑖, 𝑗 . Combining LemmaA.6 and LemmaA.4,

we get that

Opt(𝐴𝐵̄) = Opt(𝐴𝐵̄0
) + Opt(𝐴𝐵̄1

)

≤ LW(𝐴𝐵̄0
) +

∑
𝑖∈𝐴𝐵̄0

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) + LW(𝐴𝐵̄1
)

+
∑

𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) +
∑

𝑖∈𝐴𝐵̄1

∑
𝑗∉𝑁 (𝑖)

𝜀 · 𝑣𝑖, 𝑗

≤ LW(𝐴𝐵̄) +
∑
𝑖∈𝐴𝐵̄

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) + 𝜀𝑛𝑉

≤ LW(𝐴𝐵̄) +
∑
𝑖∈𝐴

∑
𝑗∉𝑁 (𝑖)

Spend( 𝑗) + 𝜀𝑛𝑉

≤ LW(𝐴𝐵̄) +
∑
𝑗 ∈𝑄

∑
𝑖∈𝐴\𝑁 −1 ( 𝑗)

Spend( 𝑗) + 𝜀𝑛𝑉 (12)

≤ LW(𝐴𝐵̄) + (𝑛 − 1) ·
∑
𝑗 ∈𝑄

Spend( 𝑗) + 𝜀𝑛𝑉 (13)

≤ LW(𝐴𝐵̄) + (𝑛 − 1) · LW(𝐴) + 𝜀𝑛𝑉 . (14)

In Eq. (12), we swapped the order of the sum. In Eq. (13), we

used that |𝐴 \ 𝑁−1 ( 𝑗) | = 𝑛 − 1 (each query is assigned to

exactly one bidder). In Eq. (14), we used that the liquid welfare

is an upper bound on the total spend. Finally, combining with

Eq. (7), we conclude that

Opt(𝐴) = Opt(𝐴𝐵) + Opt(𝐴𝐵̄)
≤ LW(𝐴𝐵) + LW(𝐴𝐵̄) + (𝑛 − 1) · LW(𝐴) + 𝜀𝑛𝑉

= 𝑛 · LW(𝐴) + 𝜀𝑛𝑉 .

Since the above inequality is true for every 𝜀 > 0, we conclude

that Opt(𝐴) ≤ 𝑛 · LW(𝐴). □

B MISSING PROOFS FOR SECTION4
B.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Let 𝜋𝑖, 𝑗 denote the probability that

bidder 𝑖 wins query 𝑗 in an equilibrium, 𝜋∗
𝑖, 𝑗

be the probability

that bidder 𝑖 wins query 𝑗 for some 𝜋∗ ∈ argmax𝜋 ∈Π{LW(𝜋)}.
Let 𝑣𝑖, 𝑗 = 𝜋𝑖, 𝑗 · 𝑣𝑖, 𝑗 be the expected value bidder 𝑖 obtains

from query 𝑗 in the equilibrium and 𝑣∗
𝑖, 𝑗

= 𝜋∗
𝑖, 𝑗

· 𝑣𝑖, 𝑗 be the

expected value that bidder 𝑖 obtains from query 𝑗 in Opt. For

a fixed equilibrium Eq, let 𝑉
Eq

𝑖
=
∑

𝑗 ∈𝑄 𝜋𝑖, 𝑗𝑣𝑖, 𝑗 be the value

that bidder 𝑖 obtains in equilibrium. For a bidder 𝑖 , let 𝑖 denote

the other bidder.
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Lemma B.1. Suppose that bidder 𝑖 wins query 𝑗 with prob-
ability 1. If 𝑉 Eq

𝑖
< 𝐵𝑖 and the bids are undominated then

𝑏𝑖, 𝑗 ≥ 𝛼𝑣𝑖, 𝑗 .

Proof. Wewill prove the contrapositive statement. In other

words, we will show that if𝑉
Eq

𝑖
< 𝐵𝑖 and 𝑏𝑖, 𝑗 < 𝛼𝑣𝑖, 𝑗 then the

bids are not undominated. To that end, suppose that bidder 𝑖

wins query 𝑗 with probability 1 and 𝑏𝑖, 𝑗 < 𝛼𝑣𝑖, 𝑗 . Since bidder

𝑖 wins with probability 1, it must be that 𝑏𝑖, 𝑗 ≤ 𝑏𝑖, 𝑗/𝛼 . Let
Cost(𝑏) = 𝑏

2
(1 + log𝛼

𝑏
𝑏𝑖,𝑗

) be the cost function of bidder

𝑖’s bid 𝑏 = 𝑏𝑖, 𝑗 . We consider two cases based on whether

Cost(𝑣𝑖, 𝑗 ) ≤ 𝐵 −𝑉
Eq

𝑖
or Cost(𝑣𝑖, 𝑗 ) > 𝐵 −𝑉

Eq

𝑖
.

Case 1: Cost(𝑣𝑖, 𝑗 ) ≤ 𝐵 − 𝑉
Eq

𝑖
. Bidder 𝑖 could bid 𝑣𝑖, 𝑗 and

have a non-zero probability of winning while maintaining

both their ROS and budget constraints. Indeed, since 𝑏𝑖, 𝑗 =

𝑣𝑖, 𝑗 > 𝑏𝑖, 𝑗/𝛼 , this would mean that bidder 𝑖 wins with some

probability 𝑝 ∈ (0, 1]. In this case, bidder 𝑖’s value would

increase by 𝑝 ·𝑣𝑖, 𝑗 > 0. Moreover, they pay Cost(𝑣𝑖, 𝑗 ) = 𝑝 ·𝑣𝑖, 𝑗
which is less than both the value gained and their remaining

budget.

Case 2: Cost(𝑣𝑖, 𝑗 ) > 𝐵 − 𝑉
Eq

𝑖
. Observe that Cost(𝑏) is a

non-decreasing continuous function of 𝑏 with Cost(𝑏𝑖, 𝑗/𝛼) =
0 and Cost(𝑣𝑖, 𝑗 ) > 0. Hence, there exists

ˆ𝑏 ∈ (𝑏𝑖, 𝑗/𝛼, 𝑣𝑖, 𝑗 )
such that 0 < Cost( ˆ𝑏) ≤ 𝐵 −𝑉

Eq

𝑖
. Similar to Case 1, if bidder

𝑖 bids ˆ𝑏 then bidder 𝑖 wins with some probability 𝑝 ∈ (0, 1].
Their value would increase by 𝑝 · 𝑣𝑖, 𝑗 > 0 and they would

pay Cost( ˆ𝑏) = 𝑝 · ˆ𝑏 < 𝑝 · 𝑣𝑖, 𝑗 . In particular, bidder 𝑖 would

continue to satisfy both their ROS and budget constraints.

To conclude, in both Case 1 and Case 2, bidder 𝑖 can in-

crease their value while maintaining both their ROS and bud-

get constraints, which contradicts the fact that the bids are

undominated. □

We restate the following lemma in [23]:

Lemma B.2 ([23, Lemma 5.5]). Fix bidder 𝑖 and query 𝑗 . For
any set of undominated bids, if 𝜋𝑖, 𝑗 ∈ (0, 1) and 𝑉𝑖 < 𝐵𝑖 then
𝑏𝑖, 𝑗 ≥

𝑣𝑖,𝑗
1+ln(𝛼)+ln(𝛽𝑖 ) where 𝛽𝑖, 𝑗 = 𝑏𝑖, 𝑗/𝑏𝑖, 𝑗 is the ratio between

bidder 𝑖’s bid and the other bidder’s bid.

We follow the proof of Theorem 5.3 in [23]. The setting

in this paper is different from [23] in that there is a budget

constraint in addition to the ROS constraint. This makes the

analysis of bidders’ spend different.

In addition, including the budget constraint means that the

optimal assignment may be randomized while the setting in

[23] always has an optimal assignment which is deterministic.

Consider the following example with two bidders and one

query: 𝐵1 = 𝐵2 = 1, 𝑣11 = 𝑣21 = 2. The optimal assignment

is to assign the query to each bidder with a 0.5 probability,

which achieves a total expected liquid welfare of 2, but any

deterministic assignment only has a total liquid welfare of 1.

Fix any equilibrium Eq with two bidders, we use 𝑉𝑖 instead

of 𝑉
Eq

𝑖
to denote the value bidder 𝑖 obtains in the equilibrium.

We split all the advertisers into two sets:

𝐴𝐵 = {𝑖 | 𝐵𝑖 ≤ 𝑉𝑖 } and 𝐴𝐵̄ = 𝐴 \𝐴𝐵 .

For 𝑖 ∈ 𝐴𝐵 , LW(𝑖) = 𝐵𝑖 , which is the maximum liquid welfare

bidder 𝑖 can obtain. Thus, we have:

LW(𝐴𝐵) ≥ Opt(𝐴𝐵). (15)

Fix 𝑖 ∈ 𝐴𝐵̄ . We now consider three cases depending on 𝜋𝑖, 𝑗
relative to 𝜋∗

𝑖, 𝑗
.

Case 1: 𝜋∗
𝑖, 𝑗

≤ 𝜋𝑖, 𝑗 . In this case, we have 𝑣𝑖, 𝑗 ·𝜋∗𝑖, 𝑗 ≤ 𝑣𝑖, 𝑗 ·𝜋𝑖, 𝑗 .
We let 𝑄𝑖,1 = { 𝑗 ∈ 𝑄 : 𝜋∗

𝑖, 𝑗
≤ 𝜋𝑖, 𝑗 }.

Case 2: 𝜋∗
𝑖, 𝑗

> 0 and 𝜋𝑖, 𝑗 = 0. By Lemma B.1, Spend( 𝑗) =
𝑏𝑖, 𝑗 ≥ 𝛼𝑣𝑖, 𝑗 ≥ 𝛼 · 𝜋∗

𝑖, 𝑗
· 𝑣𝑖, 𝑗 .

We let 𝑄𝑖,2 = { 𝑗 ∈ 𝑄 : 𝜋∗
𝑖, 𝑗

> 0, 𝜋𝑖, 𝑗 = 0}.

Case 3: 0 < 𝜋𝑖, 𝑗 < 𝜋∗
𝑖, 𝑗

< 1. Fix a query 𝑗 and let 𝛽 𝑗 =

𝑏𝑖, 𝑗/𝑏𝑖, 𝑗 ∈ (1/𝛼, 𝛼). Define𝑚𝛽 = 1

2
ln

(
1 + ln 𝛽

ln𝛼

)
. We have that

𝜋𝑖, 𝑗 =𝑚𝛽 . Next, by Lemma B.2, we have 𝑏𝑖, 𝑗 ≥
𝑣𝑖,𝑗

1+ln(𝛼)+ln(𝛽 𝑗 ) .

In particular, we have

Spend( 𝑗)
=𝑚𝛽 · 𝑏𝑖, 𝑗 + (1 −𝑚𝛽 ) · 𝑏𝑖, 𝑗

≥ 𝑚𝛽 ·
𝑣𝑖, 𝑗

1 + ln𝛼 + ln 𝛽
+ (1 −𝑚𝛽 ) ·

𝑣𝑖, 𝑗

𝛽 · (1 + ln𝛼 + ln 𝛽)
= 𝑣𝑖, 𝑗 · 𝑠𝛽 ≥ 𝜋∗𝑖, 𝑗 · 𝑣𝑖, 𝑗 · 𝑠𝛽 .

where 𝑠𝛽 =
1+ ln 𝛽

ln𝛼

2(1+ln𝛼+ln 𝛽) + 1− ln 𝛽

ln𝛼

2𝛽 (1+ln𝛼+ln 𝛽) . For a fixed 𝛽 , we

define the set 𝑄
𝛽

𝑖,3
= { 𝑗 ∈ 𝑄 : 𝑏𝑖, 𝑗/𝑏𝑖, 𝑗 = 𝛽}.

Since the number of queries 𝑄 is finite, there exists a finite

list 𝛽1, . . . , 𝛽𝑘 such that

𝑄 =
⋃
𝑖∈[2]

(
𝑄𝑖,1 ∪𝑄𝑖,2 ∪ (∪𝑘ℓ=1

𝑄
𝛽ℓ
𝑖,3
)
)
.

We now lower bound the liquid welfare in several ways.

Later, we use these lower bounds to show that some linear

combination of them give an upper bound on the optimal

liquid welfare which yields our desired approximation ratio.

First, we note that the total liquid welfare is an upper bound

on the total spend. Thus, we have

LW ≥
∑
𝑗 ∈𝑄

Spend( 𝑗) ≥
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄𝑖,2

Spend( 𝑗)

+
∑
𝑖∈𝐴𝐵̄

𝑘∑
ℓ=1

∑
𝑗 ∈𝑄𝛽ℓ

𝑖,3

Spend( 𝑗) (16)

≥
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄𝑖,2

𝛼 · 𝜋∗𝑖, 𝑗 · 𝑣𝑖, 𝑗 +
∑
𝑖∈𝐴𝐵̄

𝑘∑
ℓ=1

∑
𝑗 ∈𝑄𝛽ℓ

𝑖,3

𝑠𝛽ℓ · 𝜋
∗
𝑖, 𝑗 · 𝑣𝑖, 𝑗

(17)

=
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄𝑖,2

𝛼 · 𝑣∗𝑖, 𝑗 +
∑
𝑖∈𝐴𝐵̄

𝑘∑
ℓ=1

∑
𝑗 ∈𝑄𝛽ℓ

𝑖,3

𝑠𝛽ℓ · 𝑣
∗
𝑖, 𝑗 . (18)

In Eq. (16), we made use of the fact that the sets {𝑄𝑖,2}𝑖∈𝐴𝐵̄
∪

{𝑄𝛽ℓ
𝑖,3
}𝑖∈𝐴𝐵̄ ,ℓ∈[𝑘 ] are all pairwise disjoint (Claim B.3) and thus,

the RHS is a valid lower bound on the total spend. For Eq. (17),

we used the spend lower bounds from case 2 and case 3 de-

scribed above.
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Claim B.3. The sets {𝑄𝑖,2}𝑖∈𝐴𝐵̄
, {𝑄𝛽ℓ

𝑖,3
}𝑖∈𝐴𝐵̄ ,ℓ∈[𝑘 ] are all pair-

wise disjoint.

Proof. For fixed 𝑖 ∈ 𝐴𝐵̄ , the sets {𝑄𝑖,2}, {𝑄𝛽ℓ
𝑖,3
}ℓ∈[𝑘 ] are

pairwise disjoint since 𝑄𝑖,2 correspond to queries 𝑗 where

𝑏𝑖, 𝑗 ≤ 𝑏𝑖, 𝑗/𝛼 and 𝑄
𝛽

𝑖,3
correspond to queries 𝑗 where 𝑏𝑖, 𝑗 =

𝛽𝑏𝑖, 𝑗 . If |𝐴𝐵̄ | ≤ 1 then the claim is proved. Otherwise, we

assume 𝐴𝐵̄ = {1, 2}. Let 𝑄𝑖 = 𝑄𝑖,2 ∪
(
∪𝑘
ℓ=1

𝑄
𝛽ℓ
𝑖,3

)
. Note that if

𝑗 ∈ 𝑄𝑖 then 𝜋𝑖, 𝑗 < 𝜋∗
𝑖, 𝑗

and so it must be that 𝜋𝑖, 𝑗 > 𝜋∗
𝑖, 𝑗
. Hence

𝑗 ∉ 𝑄𝑖 . The claim is proved. □

Note that for 𝑗 ∈ 𝑄𝑖,1, we have 𝜋𝑖, 𝑗𝑣𝑖, 𝑗 ≥ 𝜋∗
𝑖, 𝑗
𝑣𝑖, 𝑗 (by defi-

nition of 𝑄1,𝑖 ) and for 𝑗 ∈ 𝑄
𝛽

𝑖,3
, we have 𝜋𝑖, 𝑗𝑣𝑖, 𝑗 = 𝑚𝛽𝑣𝑖, 𝑗 ≥

𝑚𝛽𝑣
∗
𝑖, 𝑗
. Thus, we have

LW(𝐴𝐵̄) ≥
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄𝑖,1

𝑣𝑖, 𝑗 +
∑
𝑖∈𝐴𝐵̄

𝑘∑
ℓ=1

∑
𝑗 ∈𝑄𝛽ℓ

𝑖,3

𝑣𝑖, 𝑗

≥
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄𝑖,1

𝑣∗𝑖, 𝑗 +
∑
𝑖∈𝐴𝐵̄

𝑘∑
ℓ=1

∑
𝑗 ∈𝑄𝛽ℓ

𝑖,3

𝑚𝛽ℓ · 𝑣
∗
𝑖, 𝑗 . (19)

Let Opt(𝐴𝐵̄) be the total optimal liquid welfare for all bidders

in 𝐴𝐵̄ . In other words,

Opt(𝐴𝐵̄) =
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄𝑖,1∪𝑄𝑖,2∪(∪𝑘

ℓ=1
𝑄

𝛽ℓ
𝑖,3

)

𝑣∗𝑖, 𝑗 (20)

Combining Eq. (18), Eq. (19), and Eq. (20), if 𝛾, 𝜂 ≥ 0, we have

that

𝜂LW + 𝛾LW(𝐴𝐵̄)

≥
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄𝑖,1

𝛾𝑣∗𝑖, 𝑗 +
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄𝑖,2

𝛼𝜂𝑣∗𝑖, 𝑗

+
∑
𝑖∈𝐴𝐵̄

𝑘∑
ℓ=1

∑
𝑗 ∈𝑄𝛽ℓ

𝑖,3

(𝜂𝑚𝛽ℓ + 𝛾𝑠𝛽ℓ )𝑣
∗
𝑖, 𝑗

≥ min

{
𝛾, 𝛼𝜂, min

𝛽∈[1/𝛼,𝛼 ]
𝜂𝑚𝛽 + 𝛾𝑠𝛽

}
·
∑
𝑖∈𝐴𝐵̄

∑
𝑗 ∈𝑄

𝑣∗𝑖, 𝑗

= min

{
𝛾, 𝛼𝜂, min

𝛽∈[1/𝛼,𝛼 ]
𝜂𝑚𝛽 + 𝛾𝑠𝛽

}
· Opt(𝐴𝐵̄) .

[23] show that for 𝛼 = 1.4, if 𝜂 = 0.44 and 𝛾 = 0.56 then

min

{
𝛾, 𝛼𝜂,min𝛽∈[1/𝛼,𝛼 ] 𝜂𝑚𝛽 + 𝛾𝑠𝛽

}
≥ 1/1.8. Combiningwith

Eq. (15), we conclude that

LW = (𝜂 + 𝛾) · LW = (𝜂LW + 𝛾LW(𝐴𝐵̄)) + 𝛾LW(𝐴𝐵)

≥ 1

1.8
· Opt(𝐴𝐵̄) + 𝛾Opt(𝐴𝐵) ≥

1

1.8
Opt,

since 𝛾 = 0.56 ≥ 1

1.8 . □

B.2 Proof of Theorem 4.2
Proof of Theorem 4.2. The proof is similar to Theorem 4.1.

Case 1 and Case 2 are the same as in Theorem 4.1. For Case 3,

we have the following lemma instead of Lemma B.2:

Lemma B.4. Suppose the bidders are assumed to bid uni-
formly. Fix bidder 𝑖 and query 𝑗 . For any set of undominated
bids, if 𝜋𝑖, 𝑗 ∈ (0, 1) and 𝑉𝑖 < 𝐵𝑖 then 𝑏𝑖, 𝑗 = 𝑣𝑖, 𝑗 .

Proof. We denote bidder 𝑖’s uniform bid multiplier as𝑚𝑖 ,

i.e. for every query 𝑗 ∈ 𝑄 ,𝑏𝑖, 𝑗 =𝑚𝑖 ·𝑣𝑖, 𝑗 . Let 𝜋 be the allocation

in equilibrium Eq. It is easy to see that𝑚𝑖 ≤ 1 when 𝑉𝑖 > 0.

Assume the opposite that𝑚𝑖 > 1, then we have 𝑏𝑖, 𝑗 > 𝑣𝑖, 𝑗 . If

there exists 𝜋𝑖, 𝑗 > 0, then

∑
𝑗 ∈𝑄 𝜋𝑖, 𝑗 · 𝑏𝑖, 𝑗 >

∑
𝑗 ∈𝑄 𝜋𝑖, 𝑗 · 𝑣𝑖, 𝑗 ,

i.e., the ROS constraint is violated.

Next we show that𝑚𝑖 ≥ 1. Assume the opposite that𝑚𝑖 < 1.

Let Cost(𝑚) be the cost function of bidder 𝑖’s uniform mul-

tiplier and 𝑉 (𝑚) the the value function of bidder 𝑖’s uniform

multiplier. Note that the ROS constraint is always satisfied as

long as𝑚𝑖 ≤ 1. So the only reason why𝑚𝑖 < 1 would be that

if bidder 𝑖 deviates to𝑚 = 1, they may violate their budget

constraint i.e. 𝐵𝑖 < Cost(1) = 𝑉 (1). In the equilibrium Eq,

we have 𝑚𝑖 < 1, and Cost(𝑚𝑖 ) < 𝑉 (𝑚𝑖 ) < 𝐵𝑖 where the

last inequality is by the hypothesis of this lemma. Because

Cost(𝑚) and 𝑉 (𝑚) are both monotone non-decreasing func-

tions, there must exist𝑚′ ∈ (𝑚𝑖 , 1) such that 𝑉 (𝑚′) > 𝑉 (𝑚𝑖 )
and Cost(𝑚′) < 𝐵𝑖 . This contradicts the fact that bidder 𝑖 is

in an equilibrium. We conclude that𝑚𝑖 = 1. □

Case 3: 0 < 𝜋𝑖, 𝑗 < 𝜋∗
𝑖, 𝑗

< 1. Fix a query 𝑗 and let 𝛽 𝑗 =

𝑏𝑖, 𝑗/𝑏𝑖, 𝑗 ∈ (1/𝛼, 𝛼). Define

𝑚𝛽 =
1

2

ln

(
1 + ln 𝛽

ln𝛼

)
.

We have that 𝜋𝑖, 𝑗 =𝑚𝛽 . Next, by Lemma B.4, we have 𝑏𝑖, 𝑗 ≥
𝑣𝑖, 𝑗 . In particular, we have

Spend( 𝑗) =𝑚𝛽 · 𝑏𝑖, 𝑗 + (1 −𝑚𝛽 ) · 𝑏𝑖, 𝑗

≥ 𝑚𝛽 · 𝑣𝑖, 𝑗 + (1 −𝑚𝛽 ) ·
𝑣𝑖, 𝑗

𝛽

= 𝑣𝑖, 𝑗 · 𝑠𝛽
≥ 𝜋∗𝑖, 𝑗 · 𝑣𝑖, 𝑗 · 𝑠𝛽 ,

where 𝑠𝛽 =𝑚𝛽 + 1−𝑚𝛽

𝛽
.

Proceeding as in the proof of Theorem 4.2, we conclude

that PoA ≤ 1.5 when 𝛼 = 7.63 and 𝜂 = 0.33. □

C MISSING PROOFS FOR SECTION5
C.1 Proof of Lemma 5.2

Proof of Lemma 5.2. Since the query 𝑗 is fixed, we drop

the subscript 𝑗 . We also set 𝑖 = 1. First observe that the condi-

tion

Pr [𝑖 wins query 𝑗] ≤ 𝜂 is equivalent to ∥𝑏∥𝛼𝛼 ≥ 𝑏𝛼
1
/𝜂. Next,

we prove a lower bound on𝑏1. Let 𝑓 (𝑏) = (𝑣−𝑏) ·𝑏𝛼
𝑏𝛼+∥𝑏−1 ∥𝛼𝛼 be the dif-

ference between the value that bidder 1 extracts on the query

and their expected payment, if they bid 𝑏. Note that we must

have that 𝑓 ′(𝑏1) ≤ 0 otherwise bidder 1 can raise their bid by

an infinitesimal amount to get more value while maintaining

their ROS and budget constraint. Taking derivatives, we thus

have that

𝑓 ′(𝑏) = −
𝑏𝛼−1 ·

(
𝑏𝛼+1 + 𝑏∥𝑏−1∥𝛼𝛼 · (𝛼 + 1) − ∥𝑏−1∥𝛼𝛼 𝑣𝛼

)
∥𝑏∥2𝛼

𝛼

.
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We thus require that

0 ≤ 𝑏𝛼+1 + 𝑏∥𝑏−1∥𝛼𝛼 · (𝛼 + 1) − ∥𝑏−1∥𝛼𝛼 𝑣𝛼

≤ 𝑏∥𝑏−1∥𝛼𝛼 ·
(

1

1/𝜂 − 1

+ 𝛼 + 1

)
− ∥𝑏−1∥𝛼𝛼 𝑣𝛼,

whence, 𝑏 ≥ 𝑣𝛼 · 1/𝜂−1

𝛼/𝜂−𝛼+1/𝜂 . Now, we lower bound the spend.

We have that

Spend( 𝑗) =
𝑛∑
𝑖=1

𝑏𝛼+1

𝑖

∥𝑏∥𝛼𝛼
≥ ∥𝑏∥𝛼

𝑛1/𝛼 ≥ 𝑏1

(𝑛𝜂)1/𝛼

≥ 𝑣 · 𝛼/𝜂 − 𝛼

(𝑛𝜂)1/𝛼 (𝛼/𝜂 − 𝛼 + 1/𝜂)
.

Multiplying the numerator and denominator by 𝜂 gives the

claim. □
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