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Figure 1: Overview of VisCoder2. We present three components: 1) a dataset of 679K executable
code–visualization pairs with multi-round correction dialogues across 12 programming languages;
2) a benchmark spanning 8 languages with natural language instructions, executable code, and ren-
dered outputs; 3) a family of visualization coding agents that iteratively execute, render, and self-
debug, approaching the performance of proprietary models.

ABSTRACT

Large language models (LLMs) have recently enabled coding agents capable of
generating, executing, and revising visualization code. However, existing mod-
els often fail in practical workflows due to limited language coverage, unreliable
execution, and lack of iterative correction mechanisms. Progress has been con-
strained by narrow datasets and benchmarks that emphasize single-round gener-
ation and single-language tasks. To address these challenges, we introduce three
complementary resources for advancing visualization coding agents. VisCode-
Multi-679K is a large-scale, supervised dataset containing 679K validated and
executable visualization samples with multi-turn correction dialogues across 12
programming languages. VisPlotBench is a benchmark for systematic evalua-
tion, featuring executable tasks, rendered outputs, and protocols for both initial
generation and multi-round self-debug. Finally, we present VisCoder2, a family
of multi-language visualization models trained on VisCode-Multi-679K. Exper-
iments show that VisCoder2 significantly outperforms strong open-source base-
lines and approaches the performance of proprietary models like GPT-4.1, with
further gains from iterative self-debug, reaching 82.4% overall execution pass
rate at the 32B scale, particularly in symbolic or compiler-dependent languages.

1 INTRODUCTION

Recent advances in large language models (LLMs) have enabled coding agents Jimenez et al. (2023);
Yang et al. (2024b) that can generate visualization code, execute it, and even revise their outputs in
response to feedback (Robeyns et al., 2025; Li et al., 2025). These agents are increasingly applied
to data analysis and reporting workflows, where producing plots and diagrams is a central task (Gal-
imzyanov et al., 2024).

While existing models can attempt these steps, they often fail in practice: generating code that
crashes, produces incorrect visuals, or lacks flexibility across programming languages and li-
braries (Goswami et al., 2025). Building more reliable visualization coding agents requires resources
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that go beyond single-round generation, supporting multi-language coverage, runtime validation,
and iterative correction through execution feedback (Yang et al., 2023). However, current datasets
and benchmarks lack these capabilities, limiting progress toward agents that can effectively assist in
real-world visualization workflows (Ni et al., 2025).

Visualization presents a uniquely valuable setting for advancing these agents. Unlike
general-purpose code generation (Li et al., 2022), visualization tasks produce clear and interpretable
outputs: the execution process and rendered figure provide an immediate signal of whether the
code executed successfully and whether the output aligns with the intended result (Ni et al., 2025).
Moreover, visualization requires cross-domain reasoning, combining knowledge of data handling,
plotting syntax, and design conventions (Satyanarayan et al., 2016). Crucially, real-world workflows
are inherently iterative — analysts rarely produce perfect visualizations on the first attempt, instead
refining their code based on runtime behavior and visual inspection (Goswami et al., 2025). This
natural feedback loop makes visualization tasks especially well-suited for developing agents that
can generate and self-correct code (Chen et al., 2023).

Despite this potential, existing resources for visualization code generation remain narrow in scope.
Most datasets focus on single languages, such as Python or Vega-Lite (Galimzyanov et al., 2024; Luo
et al., 2021), and include many snippets that cannot be executed reliably (Ni et al., 2025). They lack
validated, executable samples, and they do not provide the multi-turn interactions needed to train
models for iterative debugging (Ni et al., 2025). Existing benchmarks also have significant gaps:
they emphasize single-round generation and do not support systematic evaluation across languages
or multi-round repair scenarios (Yang et al., 2023). As a result, current models are tested in settings
that fail to capture the complexity of real-world visualization development (Goswami et al., 2025).

To address these limitations, we introduce two complementary resources. First, we present
VisCode-Multi-679K, a large-scale supervised instruction-tuning dataset comprising 679K ex-
ecutable visualization and code-correction samples across twelve programming languages.
VisCode-Multi-679K combines validated visualization code extracted from diverse open-source
repositories (Lozhkov et al., 2024; Yang et al., 2025a; Rodriguez et al., 2025) with multi-turn di-
alogues that teach models to revise faulty code based on execution feedback (Zheng et al., 2024).
Second, we propose VisPlotBench, a benchmark for evaluating visualization coding agents across
eight languages. VisPlotBench provides carefully curated, executable tasks with natural language
instructions and rendered outputs, along with a standardized evaluation protocol for both initial gen-
eration and multi-round self-debug (Galimzyanov et al., 2024).

Finally, we train VisCoder2, a family of multi-language visualization models built on
VisCode-Multi-679K. VisCoder2 substantially outperforms size-matched open-source base-
lines (Hui et al., 2024; Guo et al., 2024a; Ni et al., 2025) and closes much of the performance
gap with proprietary models such as GPT-4.1 (Fachada et al., 2025). Experiments show that itera-
tive self-debug yields further improvements, reaching 82.4% at the 32B scale, on par with GPT-4.1
and surpassing GPT-4.1-mini , particularly benefiting symbolic or compiler-dependent languages
like LilyPond, LaTeX, and Asymptote. Together, VisCode-Multi-679K, VisPlotBench, and
VisCoder2 establish a foundation for building and evaluating visualization coding agents that can
operate reliably across diverse programming languages and real-world visualization tasks.

2 VISCODE-MULTI-679K: AN INSTRUCTION TUNING DATASET FOR
VISUALIZATION ACROSS TWELVE PROGRAMMING LANGUAGES

We present VisCode-Multi-679K, a supervised instruction tuning dataset for visualization code gen-
eration and feedback-driven correction across twelve programming languages. The dataset supports
robust multi-language code generation and enables iterative refinement through multi-turn supervi-
sion, aligning with the needs of interactive visualization workflows.

VisCode-Multi-679K unifies two complementary sources of supervision. The first is a large collec-
tion of executable visualization code extracted from open source repositories across twelve program-
ming languages, spanning diverse chart types, libraries, and real-world usage patterns. Each sample
is validated for runtime execution and paired with its rendered output, ensuring reliable supervision
for multi-language code generation. The second source is 66K multi-turn dialogues from the Code
Feedback dataset (Zheng et al., 2024), which provide training signals for revising faulty code based
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on execution feedback. Although these dialogues are not exclusively visualization-oriented, they are
essential for modeling realistic self-correction behaviors in iterative workflows.

Data Filtering1 Runtime Validation2 Instruction Gen.3
Multi-Lang Vis Code Block

Runnable Vis Code & Image

nbconvert
--allow-errors 

False

Gen. images
validation

Multi-Lang Code Data

Vis Code Block

Libs filter
Vis code block 

extraction

Python, LaTeX, 
LilyPond, SVG,
HTML, ...

Multi-Lang Vis Code + Image

VisCode-Multi-679K

Split 5 parts desc.
Construct instruction

Merge Code-Feedback

Figure 2: Data construction pipeline for VisCode-Multi-679K. We collect code blocks across twelve
programming languages from open-source repositories, including large-scale code corpora, syn-
thetic visualization datasets, and domain-specific diagram collections. We validate executability
and render outputs through Jupyter-based runtime checks, yielding instructions paired with images.
We integrate multi-turn dialogues from Code-Feedback to provide iterative correction supervision.

Figure 2 summarizes the construction pipeline of VisCode-Multi-679K, forming the raw material
for a four-stage process: library-based filtering, code block extraction, runtime validation, and in-
struction generation. The following subsections detail each stage.

2.1 CODE EXTRACTION FROM PUBLIC REPOSITORIES

We construct VisCode-Multi-679K by drawing on three complementary open source corpora: the-
stack-v21 (Lozhkov et al., 2024), svg-diagrams2 (Rodriguez et al., 2025), and CoSyn-400K3 (Yang
et al., 2025b; Deitke et al., 2024). These sources are complementary: the-stack-v2 provides large-
scale, diverse code across many languages, capturing realistic visualization embedded in general
programs; svg-diagrams contributes domain-specific SVG samples focused on diagram rendering;
and CoSyn-400K offers synthetic but cleanly structured visualization code spanning multiple lan-
guages. Together, they cover both natural and synthetic usage across a wide range of languages and
visualization styles. From each corpus, we extract code that invokes widely used visualization li-
braries to capture real-world plotting practices. These sources provide the raw material for a pipeline
with four stages: library-based filtering for each language, code block extraction, runtime validation,
and instruction generation.

Filtering and Code Block Extraction. For the-stack-v2 (Lozhkov et al., 2024), which contains
approximately 900B tokens of code, we restrict our selection to two filtered subsets: stack-edu4 (Al-
lal et al., 2025) and the-stack-v2-train-smol-ids5. stack-edu was curated from the-stack-v2 using a
classifier-based filtering strategy that retains only high-quality educational programming content.
the-stack-v2-train-smol-ids is a near-deduplicated subset further filtered with heuristics and span-
ning 17 programming languages. We first apply library-based filters on these subsets to identify ap-
proximately 5.3M visualization code candidates in Python, JavaScript, C++, TypeScript,
HTML, and R. Because most examples are embedded in broader program contexts rather than self-
contained plotting examples, we use GPT-4.1-mini (OpenAI, 2025) to extract standalone plotting
blocks for each language. When the original code does not include data, we inject mock inputs so
that each block can execute in isolation. This structural cleaning preserves realistic visualization
usage while remaining compatible with our runtime pipeline. After filtering and reconstruction, we
obtain roughly 900K candidate blocks.

For svg-diagrams, which contains 182K domain-specific SVG samples focused on diagrams from
star-vector (Rodriguez et al., 2025), we apply regular-expression filtering to remove noisy data that
lack width, height, or other essential components. This step retains about 79K candidate blocks.

For CoSyn-400K, we select 408K visualization snippets across eight languages, including Python,
HTML, LaTeX, SVG, Asymptote, Mermaid, LilyPond, and Vega-Lite. CoSyn-400K pro-

1hf.co/datasets/bigcode/the-stack-v2
2hf.co/datasets/starvector/svg-diagrams
3hf.co/datasets/allenai/CoSyn-400K
4hf.co/datasets/HuggingFaceTB/stack-edu
5hf.co/datasets/bigcode/the-stack-v2-train-smol-ids

3
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https://huggingface.co/datasets/starvector/svg-diagrams
https://huggingface.co/datasets/allenai/CoSyn-400K
https://huggingface.co/datasets/HuggingFaceTB/stack-edu
https://huggingface.co/datasets/bigcode/the-stack-v2-train-smol-ids
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vides synthetic but cleanly structured code spanning a wide range of styles, with well-rendered out-
puts and consistent structure. Unlike the-stack-v2, its Python and HTML code store logic and data
separately, which requires reconstruction for runtime execution. For languages requiring reconstruc-
tion, we rebuild runnable scripts by inserting lightweight annotations such as column headers and
a data row to emulate realistic data loading. When necessary, we append missing plotting function
calls to ensure that each language can execute within a Jupyter notebook environment.

Runtime Validation. To ensure executability, we run each candidate block in isolated Jupyter en-
vironments. C++, JavaScript, and R are executed in dedicated kernels, while all other languages
share the Python kernel. Each block is run with nbconvert using allow-error=False to en-
force strict filtering. We apply a fixed timeout and terminate runs that hang or enter infinite loops
via a simulated keyboard interrupt. Only samples that execute successfully and generate valid image
files that are non-monochrome and larger than 10KB are retained. This step produces 245K vali-
dated plotting scripts from the-stack-v2, 43K from svg-diagrams, and 322K from CoSyn-400K, each
paired with its rendered output. The detailed distribution is shown in Table 5.

Instruction Generation. To enable models to learn from both structural code features and ren-
dered visual outputs, we generate natural language instructions for each validated example using
GPT-4.1 (OpenAI, 2025). This process ensures that supervision captures not only code syntax but
also the semantics of the corresponding visualization.

To capture both data semantics and visual design, each instruction is structured into five components:
(1) a brief setup description specifying the programming language and visualization libraries used;
(2) a description of either the underlying data (for data-driven code) or the visible elements of the
figure (for non-data-driven code); (3) a data block that either contains a copied data-generation line
or a two-row preview, left empty for non-data-driven cases; (4) a high-level output description that
conveys the intended visualization conceptually; and (5) a style description capturing colors, grid
layout, and other visual properties. These components are assembled into a fixed template:

[Output Description]
[Setup]
[Data/Visual Description]
"The data is shown below:" or None
[Data] or None
[Style Description]

This format enforces a consistent prompt structure across sources and languages, ensuring that mod-
els receive a unified description of the visualization target, its data, and its stylistic attributes.

2.2 MULTI-TURN INSTRUCTION-FOLLOWING DIALOGUES WITH EXECUTION FEEDBACK

VisCode-Multi-679K further includes over 66K multi-turn dialogues from the Code-Feedback6

dataset (Zheng et al., 2024). These dialogues cover programming tasks in Python, HTML,
JavaScript,R, and other languages, with user instructions, model-generated code, and follow-
up turns carrying execution feedback or revision prompts.

Although not tailored to visualization, they provide essential supervision for teaching models to
revise faulty code based on runtime signals and to reason over iterative interactions. We incorporate
these dialogues into the instruction tuning corpus alongside single-turn samples from stack-edu,
the-stack-v2, svg-diagrams, and CoSyn-400K. This integration allows models to practice both initial
code generation and multi-turn refinement strategies.

3 VISPLOTBENCH: MULTI-LANGUAGE BENCHMARK FOR VISUALIZATION
CODING AGENTS

VisPlotBench is a benchmark for evaluating visualization coding agents across eight languages.
Unlike prior efforts that focus on a single language or specification style, VisPlotBench spans im-
perative libraries, declarative grammars, markup-based formats, and symbolic notations, providing
a standardized protocol for assessing both initial code generation and multi-round self-debug.

6hf.co/datasets/m-a-p/Code-Feedback
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Visual Cate. : Music; 
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Mermaid

Visual Cate. : Diagramming; 
Subtype : Gantt

Task: Create an area chart to 
visualize the sum of counts over 
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series. The x-axis represents 
time in … …

Task: Generate a musical score 
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analysis of J.S. Bach's piece 
"Wenn wir in höchsten Nöten
sein" … …

Task: Generate a Gantt chart to 
visualize a project timeline, 
illustrating tasks across different 
sections such as "A section," 
"Critical … …
Style: The 
visual consists 
of horizontal 
bars aligned with labeled 
sections on the left, each … …

Style: The area 
segments are 
stacked on top of 
each other, each 
filled with erse palette … …

SVG Asymptote

Visual Cate. : Distribution; 
Subtype : Box-Plot

Visual Cate. : 3D; 
Subtype : Surface

LaTeX

Visual Cate. : Diagramming; 
Subtype : Electrical Circuit

HTML

Visual Cate. : Radial & Polar; 
Subtype : Radial Area

Task: Generate a 3D surface plot 
representing a mathematical 
function defined by the cosine 
and sine of the coordinates. The 
surface is … …
Style: Create a 
colorful, 
grid-like 3D 
visualization with a rainbow 
gradient applied to the … …

Task: Generate a polar area 
chart to represent the market 
share percentages of different 
smartphone brands. The chart 
includes … …
Style: The chart 
is centered on a 
light gray 
background 
with a title above it … …

Task: Generate a box plot to 
display the distribution of data 
across five different categories. 
Each category is represented by 
a separate … …

Style: The visual 
consists of five 
colored boxes 
aligned horizontally, each with 
a distinct color … …

Style: The 
components are 
labeled with 
their respective
symbols and names, and … …

Style: The visual 
features a 
smooth, colorful 
surface with a
gradient transitioning … …

Style: The 
staves are 
spaced apart, 
with the right hand above the 
left hand. Notes are … …

Task: Generate a schematic 
diagram of an electronic circuit 
that includes various 
components such as resistors, 
capacitors, … …

Figure 3: Overview of VisPlotBench. The benchmark covers eight visualization languages and con-
tains 888 diverse visualization tasks, each combining a natural language instruction and a rendered
visual. Tasks are annotated with a Visual category and a Subtype, spanning 13 categories in total.

3.1 OVERVIEW

Existing visualization benchmarks are narrow in scope: most cover a single language, few chart
families, and no iterative debugging. VisPlotBench fills these gaps with 888 tasks across eight
languages and 13 Visual categories (Figure 4). The taxonomy spans common families such as Bars,
Lines, and Scatter, while adding rarely represented ones like Hierarchies, Music, and Networks &
Flows. Each task combines a natural language instruction, executable code, and a rendered output,
enabling execution-grounded evaluation. With its execute–render–score protocol and multi-round
self-debug loop, VisPlotBench provides the first systematic benchmark for assessing visualization
coding agents across languages and task types.

Table 1: Comparison with existing benchmarks. VisPlotBench provides executable, multi-language
tasks with natural language instructions, rendered outputs, and a standardized protocol for both
initial code generation and multi-round self-debugging.

Benchmark Coverage Self-debug Visual Category Num

VisEval (Chen et al., 2024) Python ✗ 4 2,524
MatPlotBench (Yang et al., 2024c) Python ✗ 11 100
nvBench (Luo et al., 2021) Vega–Lite ✗ 4 25,750
nvBench 2.0 (Luo et al., 2025) Vega–Lite ✗ 5 7,878
Text2Vis (Rahman et al., 2025) Python ✗ 10 1,985
PandasPlotBench (Galimzyanov et al., 2024) Python ✗ 10 175
PandasPlotBench-Enhanced (Ni et al., 2025) Python ✔ 10 175

VisPlotBench (ours) 8 languages ✔ 13 888

Table 1 positions VisPlotBench among representative benchmarks across four dimensions: language
coverage, visual categories, self-debug support, and dataset size. Earlier resources remain nar-
row—focusing on Python or Vega-Lite, with limited chart types and no iterative debugging.
VisCoder introduced self-debugging for PandasPlotBench, while VisPlotBench generalizes this to
eight languages, expands coverage to 13 categories, including Hierarchies, Music, and Networks &
Flows, and standardizes evaluation for systematic cross-language assessment.

5
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3.2 DATA COLLECTION AND CURATION

We assemble 888 executable tasks from publicly available examples, library documentation, and
high-quality code snippets across eight programming languages. The tasks span 13 Visual cate-
gories and 116 Subtypes, covering common families such as Bars, Lines, and Scatter, as well as
underrepresented ones including Hierarchies, Music, and Networks & Flows.

Each candidate script is executed in an isolated runtime with language-specific kernels or headless
renderers. Tasks are retained only if execution succeeds and a valid image is produced. We discard
visually trivial outputs (e.g., near-monochrome images) and remove duplicates by hashing rendered
outputs and normalizing code. This process yields a pool of verified code–image pairs compatible
with our evaluation pipeline.

Annotators then review verified pairs, removing low-quality items such as unreadable or degenerate
plots. Each remaining task is annotated with a Visual category and Subtype from the shared taxon-
omy shown in Appendix G, with library-specific idioms added when appropriate. A double-pass
review with conflict resolution ensures consistency across languages.

3.3 TASK CONSTRUCTION

Each VisPlotBench task extends the verified code–image pair with a structured natural language
instruction. To ensure consistency across languages, we adopt a five-part schema: Setup → Plot
Instruct → Data Instruct → Task Description → Style Description. This schema provides a unified
template that reflects both the semantic intent and the stylistic requirements of each visualization.

Setup, Plot Instruct, and Data Instruct are authored separately for each language so that tasks cap-
ture real usage, including syntax constraints, runtime notes, and data access conventions. Task
Description and Style Description are generated with GPT-4.1 conditioned on the verified code and
its rendered visual. The Task Description specifies the semantic intent and structural elements re-
quired for correctness, while the Style Description summarizes perceptual attributes such as layout,
annotations, label formatting, and color usage. Detailed authoring templates and generation prompts
are provided in Appendix F.2 and F.3.

The final instruction is the concatenation of the five components, producing a unified input format
across languages. This design enables coding agents to condition on natural language instructions
paired with minimal data previews and generate executable code that satisfies both the semantic and
stylistic requirements of the task.

3.4 EVALUATION PROTOCOL

VisPlotBench adopts a standardized execute–render–score pipeline. Each submission is executed in
an isolated runtime with language-specific kernels or headless renderers, subject to strict timeouts
and log capture. The process outputs three artifacts—a rendered image, an execution log, and a
metadata record—supporting execution-grounded and judgment-based evaluation.

Evaluation metrics extend those of PandasPlotBench and VisCoder. Execution Pass Rate checks
whether the code runs without error and produces a valid visualization. Task Score measures in-
struction compliance using an LLM judge guided by semantic and structural rubrics, and Visual
Score assesses perceptual similarity between generated and reference outputs. Both follow the GPT-
based judging protocol of PandasPlotBench.

To assess iterative refinement, VisPlotBench includes a multi-round self-debug protocol. Unresolved
tasks are revisited for up to three rounds, where the model receives the instruction, its prior code,
and an excerpt of the execution log before producing a revision. The final score reflects the best
attempt, mirroring real-world correction loops and enabling systematic evaluation of both baseline
generation and feedback-driven recovery.

4 MAIN RESULTS

We evaluate both proprietary and open-source models on VisPlotBench to compare execution reli-
ability across parameter scales, programming languages, and evaluation modes. Proprietary refer-
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ences include GPT-4.1 (OpenAI, 2025) and its lighter variant GPT-4.1-mini (OpenAI, 2025), while
open-source baselines include DeepSeek-Coder (Guo et al., 2024b), DeepSeek-CoderV2 (Zhu et al.,
2024), Qwen2.5-Coder (Hui et al., 2024), and VisCoder (Ni et al., 2025). Our VisCoder2 models are
trained on VisCode-Multi-679K using Qwen2.5-Coder backbones at 3B, 7B, 14B, and 32B scales,
a full training and evaluation setup provided in Appendix B. A controlled ablation of training data
sources is presented in Appendix D.

Table 2: Overall execution pass rate (%) of selected models on the VisPlotBench benchmark. The
best-performing model in each scale is shown in bold, and the second best is underlined.

Model
Exec Pass
Overall

Python
(196)

Vega-Lite
(129)

LilyPond
(55)

Mermaid
(131)

SVG
(65)

LaTeX
(112)

Asymptote
(92)

HTML
(108)

GPT-4.1 63.4 64.3 84.5 43.6 68.7 95.4 31.3 21.7 89.8
GPT-4.1 + Self Debug 82.4 84.2 96.1 63.6 93.9 96.9 66.1 46.7 97.2
GPT-4.1-mini 58.9 64.8 84.5 16.4 51.9 95.4 29.5 23.9 86.1
GPT-4.1-mini + Self Debug 81.1 80.6 96.9 56.4 94.7 96.9 58.9 48.9 100.0

∼ 3B Scale

DeepSeek-Coder-1.3B-Ins. 32.3 29.1 53.5 30.9 63.4 7.7 4.5 13.0 36.1
Qwen2.5-Coder-3B-Ins. 45.8 34.2 68.2 3.6 74.1 75.4 17.9 18.5 62.0
VisCoder-3B 56.1 45.4 83.7 21.8 75.6 76.9 23.2 30.4 79.6

VisCoder2-3B 67.7 56.1 83.0 50.9 76.3 87.7 36.6 62.0 93.5
VisCoder2-3B + Self Debug 70.0 63.3 84.5 52.7 76.3 87.7 38.4 63.0 94.4

∼ 7B Scale

DeepSeek-Coder-6.7B-Ins. 46.4 39.3 79.8 7.3 91.6 96.9 18.8 0.0 22.2
Qwen2.5-Coder-7B-Ins. 51.2 41.3 76.0 5.5 77.9 92.3 25.9 13.0 64.8
VisCoder-7B 57.2 58.2 71.3 23.6 77.1 93.9 25.9 17.4 75.9

VisCoder2-7B 70.9 64.8 83.0 69.1 78.6 96.9 39.3 64.1 82.4
VisCoder2-7B + Self Debug 76.4 77.0 84.5 72.7 84.7 96.9 42.9 70.7 84.3

∼ 14B Scale

DeepSeek-Coder-V2-Lite-Ins. 55.3 47.5 75.2 49.1 69.5 93.9 29.5 20.7 64.8
Qwen2.5-Coder-14B-Ins. 59.5 50.0 83.0 25.5 74.8 98.5 30.4 25.0 83.3

VisCoder2-14B 72.1 65.3 93.0 54.6 81.7 89.2 42.0 56.5 90.7
VisCoder2-14B + Self Debug 78.4 78.1 94.6 63.6 86.3 90.8 45.5 66.3 94.4

∼ 32B Scale

DeepSeek-Coder-33B-Ins. 54.3 58.2 90.7 30.9 87.0 92.3 24.1 21.7 12.0
Qwen2.5-Coder-32B-Ins. 57.5 50.5 83.0 30.9 71.0 93.9 29.5 17.4 78.7

VisCoder2-32B 73.1 65.3 94.6 56.4 87.0 81.5 42.9 58.7 91.7
VisCoder2-32B + Self Debug 82.4 81.6 96.1 69.1 90.1 86.2 61.6 71.7 93.5

4.1 OVERALL COMPARISON

Table 2 summarizes execution pass rates for all models across eight visualization languages and
overall averages. The following analysis examines differences between proprietary and open-source
models, variation across languages, and the relative advantages of VisCoder2 under both default and
self-debug evaluation modes.

Proprietary Models Remain Stronger. GPT-4.1 achieves 63.4% overall, the highest among refer-
ence models, and GPT-4.1-mini follows closely. Both perform strongly on standardized declarative
or markup languages such as Vega-Lite, SVG, and HTML, all above 84%. In contrast, instruction-
tuned open-source models remain far behind. At the 7B scale, Qwen2.5-Coder reaches only 51.2%
overall, with fewer than 30% on LaTeX and just 5.5% on LilyPond. Previous VisCoder variants
improve Python performance but fail to generalize across languages. These results underline the
substantial gap between proprietary and open-source models.

Cross-Language Variation. Performance differs sharply across visualization languages.
Vega-Lite and HTML are close to saturation for most models, while Python shows steady gains
with scale. By contrast, symbolic and compiler-dependent languages remain the most difficult. Even
GPT-4.1 achieves less than 45% on LilyPond and under 25% on Asymptote, and open-source
baselines fall much lower. This uneven landscape highlights that progress on symbolic grammars is
the key bottleneck for reliable multi-language visualization.
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VisCoder2 Advantage. Across all scales, VisCoder2 consistently outperforms size-matched
open-source baselines. At 32B, it improves overall execution pass rate by approximately 15 points
compared with Qwen2.5-Coder and reaches parity with GPT-4.1. The only consistent shortfall is on
SVG, where VisCoder2 trails the strongest baseline by over 10 points. Overall, VisCoder2 is the first
open-source model to match proprietary reliability on executable visualization tasks.

Effect of Self-Debug. Iterative correction consistently improves execution reliability across model
families and scales. Proprietary models benefit strongly, and VisCoder2 follows the same trend:
at larger scales, overall execution rises by nearly ten points when self-debugging is enabled. The
effect is especially pronounced for symbolic and compiler-dependent languages such as LilyPond,
LaTeX, and Asymptote, where fragile syntax or compilation errors dominate. Self-debugging
enables the model to repair these shallow but frequent failures, allowing models to resolve previously
intractable failures into valid outputs. This demonstrates that feedback-driven refinement is not just
a marginal improvement but a critical mechanism for tackling the hardest visualization languages.

4.2 TASK AND VISUAL SCORE ANALYSIS

We analyze Task Score and Visual Score on three representative languages that highlight different
behaviors: LaTeX illustrates execution–semantics mismatch, LilyPond shows the largest gains
on symbolic grammars, and SVG exposes model–library sensitivity where semantic and perceptual
signals diverge. Results for all languages and scales are provided in Appendix H.

Table 3: Performance of selected languages on the VisPlotbench benchmark. For each model, we
report (1) execution pass rate (Exec Pass), (2) mean visual and task scores (Mean), and (3) the
proportion of samples scoring at least 75 (Good). The best-performing model in each scale is shown
in bold, and the second best is underlined.

Model
LaTeX (112) LilyPond (55) SVG (65)

Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75)
vis task vis task vis task vis task vis task vis task

GPT-4.1 31.3 18 26 13% 25% 43.6 14 38 5% 36% 95.4 45 92 14% 94%
GPT-4.1 + Self Debug 66.1 38 56 25% 51% 63.6 17 54 5% 53% 96.9 45 93 14% 95%
GPT-4.1-mini 29.5 21 25 18% 25% 16.4 2 12 0% 11% 95.4 41 86 11% 86%
GPT-4.1-mini + Self Debug 58.9 35 50 23% 49% 56.4 14 42 0% 35% 96.9 42 88 11% 88%

Qwen2.5-Coder-7B-Instruct 25.9 11 15 6% 8% 5.5 0 3 0% 4% 92.3 23 58 0% 40%
VisCoder2-7B 39.3 15 23 6% 15% 69.1 16 52 2% 45% 96.9 34 73 3% 62%
VisCoder2-7B + Self Debug 42.9 16 24 6% 15% 72.7 17 55 2% 45% 96.9 34 73 3% 62%

Qwen2.5-Coder-32B-Instruct 29.5 14 25 9% 27% 30.9 5 22 2% 18% 93.9 34 81 3% 75%
VisCoder2-32B 42.9 20 35 11% 34% 56.4 14 39 2% 27% 81.5 33 68 11% 63%
VisCoder2-32B + Self Debug 61.6 28 45 14% 42% 69.1 16 48 2% 35% 86.2 34 71 11% 66%

LaTeX: Execution–Semantics Mismatch. Models often capture the intended structure of a figure
but fail to compile reliably. For example, GPT-4.1 improves from 31.3% to 66.1% execution pass
rate with Self-Debug, while task scores remain around 50 even when execution fails. VisCoder2
raises execution and task scores compared with baselines, but compilation errors remain frequent.
This pattern indicates that semantic alignment does not always translate into successful rendering.

LilyPond: Symbolic Grammar Gains. VisCoder2 delivers the clearest advantage on symbolic
languages. At 7B, Qwen2.5-Coder executes only 5.5% of tasks, while VisCoder2 reaches 69.1%
and further improves with Self-Debug. The proportion of examples with task scores above 75 also
increases by more than tenfold. These results show that targeted coverage of symbolic grammars in
VisCode-Multi-679K translates directly into reliable generation and semantic adherence.

SVG: Sensitivity to Rendering Libraries. Execution success is high across most models, yet vi-
sual scores lag behind task scores. For instance, GPT-4.1 with Self-Debug achieves 95.4% execution
and a task score near 90, but the average visual score is below 50. VisCoder2 performs competitively
but trails Qwen2.5 on execution at larger scales (81.5% versus 93.9% at 32B). These discrepancies
suggest that evaluation on SVG is strongly influenced by library-specific rendering details rather than
semantic understanding alone.
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4.3 ERROR ANALYSIS

To better understand failure modes across languages, we analyze execution errors before and after
self-debug. Many language-specific exceptions, such as FunctionSignatureError in Asymptote or
MarkupError in LilyPond, were merged into four broader categories for clarity: Structural Errors
(syntax or parsing), Type & Interface Errors (invalid calls or arguments), Semantic / Data Errors
(mismatched variables or values), and Runtime / Environment Errors (renderer or package issues).
Representative results for VisCoder2-32B are shown in Table 4, with full breakdowns in Appendix J.

Table 4: Representative error transitions for VisCoder2-32B across eight visualization languages.
Each cell shows error counts from initial failure to the final self-debug round (X → Y). A dash
indicates the error type does not occur for that language.

Error Category Python Vega-Lite LilyPond Mermaid SVG LaTeX Asymptote HTML
Structural Errors 1 → 1 2 → 1 14 → 10 12 → 9 8 → 7 10 → 4 9 → 3 -
Type & Interface 13 → 3 2 → 1 5 → 2 - - - - -
Semantic / Data 19 → 8 - - - - 28 → 23 15 → 11 -
Runtime / Env. - 2 → 2 - - - 27 → 6 8 → 6 3 → 2

Effective recovery on structural and interface errors. Self-debug reduces shallow errors such
as missing tokens or invalid arguments across multiple languages. For example, Python interface
errors fall from 13 to 3 (Figure 6), and structural errors in LilyPond decrease from 14 to 10
(Figure 12). Mermaid and Asymptote show the same trend, with syntax and function signature
errors shrinking after correction (Figure 15). These cases benefit from explicit diagnostic traces,
making them relatively easy to fix through iterative feedback.

Persistent failures in semantic and runtime errors. Errors involving semantics or execution
environments remain difficult to resolve. In LaTeX, undefined variables decrease only slightly
(28 to 23), and Asymptote variable mismatches improve only marginally (15 to 11) (Figure 24).
Renderer failures such as Vega-Lite rendering errors (2 to 2) and HTML request failures (3 to
2) often persist across all rounds (Figure 28). These errors require deeper reasoning over symbolic
grammars and runtime contexts, which current self-debug protocols cannot fully capture. Symbolic
languages and renderer-sensitive environments therefore remain the dominant bottlenecks, pointing
to the need for grammar-aware training objectives and more robust runtime integration.

5 CONCLUSION

Reliable visualization coding goes beyond single-pass generation: it requires competence across
diverse languages and the ability to refine outputs iteratively in response to execution feedback.
Existing datasets and benchmarks lack these capabilities, limiting progress toward practical agents
for real-world workflows.

We addressed these gaps through three contributions. First, we introduced VisCode-Multi-679K, a
large-scale instruction tuning dataset that unifies executable visualization code across twelve lan-
guages with multi-turn feedback dialogues. Second, we built VisPlotBench, a benchmark covering
eight visualization languages under a standardized execute–render–score protocol, with tasks span-
ning 13 categories and 116 subtypes. Third, we trained the VisCoder2 model family on these re-
sources, showing that it consistently outperforms open-source baselines and approaches proprietary
models in execution reliability.

Our experiments highlight two insights. Broad multi-language coverage is essential: symbolic and
compiler-dependent languages such as LaTeX, LilyPond, and Asymptote remain challenging,
yet progress on them is decisive for true generalization. Iterative refinement further proves indis-
pensable: self-debug delivers large gains across models, especially on languages where structural
and semantic errors are common.

Taken together, VisCode-Multi-679K, VisPlotBench, and VisCoder2 establish the first systematic
framework for building and evaluating visualization coding agents. We believe these resources can
accelerate the development of agents that are not only multilingual but also capable of realistic
correction loops, pushing toward reliable coding assistants for data analysis, reporting, and beyond.
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to minimize unfair bias or discriminatory effects throughout the research process. No personally
identifiable information was processed, and no experiments were conducted that could raise privacy
or security risks. We remain committed to transparency and research integrity across the entire
project lifecycle.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. We re-
lease all prompts used to construct the training datasets in Appendix F.1, the full processing pipeline
applied to raw sources, and the prompts and instructions used in building the VisPlotBench bench-
mark in Appendix F.2 and subsection F.3. We also provide a detailed description of the experimental
setup in Appendix B.

In addition, all datasets used (stack-edu, the-stack-v2-train-smol-ids,
svg-diagrams, and Code-Feedback) in constructing VisCode-Multi-679K are publicly
available, as described in subsection 2.1. We will open-source our complete training and evaluation
codebase, along with all trained model weights after publication. This release will include
comprehensive documentation and usage examples to support future research and enable direct
comparison with our results.

We believe these measures will enable other researchers to reproduce our findings, trace our dataset
construction pipeline, and extend our work in future studies.
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A RELATED WORK

LLMs for Visualization Code Generation Large language models have shown promising re-
sults in generating visualization code from natural language descriptions (Yang et al., 2024c; Chen
et al., 2024; Galimzyanov et al., 2024). Most existing approaches focus on single languages, par-
ticularly Python with matplotlib or plotly (Wu et al., 2024; Yang et al., 2024a), while some explore
specification-based methods using Vega-Lite (Xie et al., 2024). However, these systems face signif-
icant limitations: they typically support only one or two programming languages, lack systematic
execution validation, and often generate code that fails to run reliably (Ni et al., 2025). Multi-
language code generation efforts in broader domains (Lozhkov et al., 2024; Muennighoff et al.,
2023) provide extensive language coverage but lack the specialized knowledge required for visu-
alization tasks, particularly for domain-specific languages like LaTeX for mathematical plots or
LilyPond for musical notation. Our VisCode-Multi-679K dataset addresses these limitations by pro-
viding validated, executable visualization samples across twelve programming languages, enabling
robust multi-language visualization code generation with systematic quality control and execution
verification.

Self-Debug and Coding Agents Recent advances in coding agents have emphasized iterative de-
velopment capabilities, where models can generate, execute, and refine code through multiple rounds
of feedback (Jimenez et al., 2023; Yang et al., 2024b). Self-debug approaches leverage execution
traces, error messages, and runtime outcomes to guide automatic code correction (Chen et al., 2023;
Madaan et al., 2023; Zheng et al., 2024; Zeng et al., 2025). Agent-based systems further extend
these capabilities by incorporating planning, tool use, and collaborative debugging workflows (Gr-
ishina et al., 2025; Li et al., 2024). While these methods show promise in general programming
tasks, their application to visualization remains underexplored. Existing visualization systems like
LIDA (Dibia, 2023) incorporate some feedback mechanisms, but lack the systematic multi-turn
correction capabilities needed for reliable cross-language deployment. Our work uniquely com-
bines multi-language visualization generation with systematic self-debug, enabling VisCoder2 to
iteratively refine code across diverse programming environments, particularly excelling in symbolic
languages where execution validation is essential.

Visualization Benchmark Existing visualization benchmarks focus predominantly on Python
(Galimzyanov et al., 2024; Chen et al., 2024; Yang et al., 2024c; Rahman et al., 2025) or declara-
tive specifications like Vega-Lite (Luo et al., 2021; 2025), limiting their applicability across diverse
programming environments used in real-world data analysis. While general code datasets like the-
stack-v2 (Lozhkov et al., 2024) provide broad language coverage, they lack visualization-specific
content and execution validation. Most visualization benchmarks evaluate only single-turn gener-
ation, failing to capture the iterative debugging workflows that characterize practical visualization
development (Ni et al., 2025; Seo et al., 2025). Without multi-language support and multi-round
evaluation, existing benchmarks cannot assess whether models can handle the diverse toolchains
and iterative workflows essential for real-world visualization tasks. VisCode-Multi-679K addresses
these limitations by providing the first large-scale dataset with execution-validated visualization
code across twelve programming languages, while VisPlotBench enables a systematic evaluation of
both initial generation and multi-turn self-debug capabilities across visualization tasks in multiple
programming languages.
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B EXPERIMENT SETUP

Training Setup. We fine-tune Qwen2.5-Coder-Instruct (Hui et al., 2024) at four parameter scales:
3B, 7B, 14B, and 32B. This setup allows us to assess the generalizability of VisCode-Multi-679K
across capacities. All models are trained for 3 epochs with a learning rate of 5 × 10−6, a warm-up
ratio of 0.05, and a cosine scheduler. We perform full-parameter tuning in bfloat16 precision on
8×H100 GPUs with a total batch size of 64, using the SWIFT infrastructure (Zhao et al., 2024).

Evaluation Setup. All evaluations are conducted on VisPlotBench using the standardized proto-
col in Section 3.4. We report three metrics: Execution Pass Rate, Task Score, and Visual Score,
capturing executability, semantic alignment, and perceptual similarity. Models are also tested under
the self-debug protocol with up to three rounds of correction based on execution feedback, assessing
both baseline generation and recovery through iterative refinement.

C TRAINING DATA DISTRIBUTION

Table 5: Distribution of visualization code samples across languages and sources. The final column
reports per-language totals, and the final row reports per-source totals.

[Back to Appendix Contents]

Language CoSyn-400K the-stack-v2 svg-diagrams Total
Python 66,052 120,902 - 186,954
HTML 75,315 59,915 - 135,230
LaTeX 124,039 - - 124,039
SVG 2,693 - 43,928 46,621
JavaScript - 28,807 - 28,807
Asymptote 22,539 - - 22,539
C++ - 16,776 - 16,776
R - 13,437 - 13,437
Mermaid 13,381 - - 13,381
LilyPond 12,093 - - 12,093
Vega-Lite 6,790 - - 6,790
TypeScript 6,315 - 6,315

Total 322,902 246,152 43,928 612,982
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D ABLATION STUDY

To disentangle the contribution of each data source, we conduct a controlled ablation study using
Qwen2.5-Coder-7B as the base model. Separate models are fine-tuned on individual subsets of
The-Stack-V2, CoSyn, StarVector, and Code-Feedback, under the same instruction-
tuning setup as the full configuration. We report execution pass rates on VisPlotBench in both
default and self-debug modes, with comparisons to the untuned Qwen2.5-Coder-7B baseline and
the full VisCode-Multi-679K model (Table 6).

Table 6: Execution pass rates of Qwen2.5-Coder-7B models trained on individual subsets of
VisCode-Multi-679K. Each model is evaluated under both default (✗) and self-debug (✔) modes.

[Back to Appendix Contents]

Model Self-Debug Overall Python Vega-Lite LilyPond Mermaid SVG LaTeX Asymptote HTML

Qwen2.5-Coder-7B-Ins. ✗ 51.2 41.3 76.0 5.5 77.9 92.3 25.9 13.0 64.8
✔ 59.0 61.7 77.5 5.5 79.4 92.3 30.4 20.7 76.9

+ The-Stack-V2-246K ✗ 49.0 47.5 81.4 7.3 69.5 84.6 0.9 17.4 64.8
✔ 56.5 58.2 83.7 10.9 73.3 84.6 31.3 18.5 65.7

+ CoSyn-323K ✗ 59.2 25.5 83.7 65.5 57.3 100.0 36.6 56.5 91.7
✔ 62.2 31.1 84.5 69.1 61.1 100.0 38.4 62.0 91.7

+ StarVector-44K ✗ 40.1 43.4 72.1 5.5 67.9 16.9 10.7 13.0 47.2
✔ 44.5 53.6 73.6 7.3 70.2 18.5 13.4 19.6 50.0

+ Code-Feedback-66K ✗ 55.2 47.5 78.3 20.0 81.7 92.3 27.7 17.4 65.7
✔ 63.1 62.2 80.6 21.8 81.7 92.3 38.4 23.9 83.3

+ Full VisCode-Multi-679K ✗ 70.9 64.8 83.0 69.1 78.6 96.9 39.3 64.1 82.4
✔ 76.4 77.0 84.5 72.7 84.7 96.9 42.9 70.7 84.3

Natural vs. Synthetic. Training on The-Stack-V2 alone yields limited improvements and even
degrades symbolic languages such as LaTeX, reflecting the sparsity of clean visualization signals in
general-purpose code. By contrast, CoSyn delivers large gains on symbolic and grammar-sensitive
languages, with execution rates on LilyPond and Asymptote rising by over 60 points compared
to the baseline. This contrast shows that large-scale synthetic data provides valuable structural
coverage that complements natural code.

Domain vs. Multi-turn. The StarVector subset contributes primarily to SVG but is too small
to improve overall performance. In contrast, Code-Feedback does not drastically shift baseline
pass rates but produces consistent gains under self-debug, lifting overall execution from 55.2% to
63.1%. This demonstrates that multi-turn dialogue data provides critical supervision for recovery
through iterative correction, rather than improving one-shot generation.

Full Dataset Synergy. Combining all subsets yields the strongest model. With VisCode-Multi-
679K, the overall pass rate reaches 70.9% in default mode and 76.4% with self-debug, substantially
surpassing both the untuned baseline and any single-source variant. These results confirm that the
dataset’s diverse composition—balancing natural, synthetic, domain-specific, and iterative data—is
essential for building robust multi-language visualization coding agents.
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E LIMITATION

While VisCode-Multi-679K and VisPlotBench represent a significant step toward building reliable
multi-language visualization coding agents, several limitations remain. First, the training corpus,
although spanning twelve languages, is still imbalanced: common ecosystems such as Python
and Vega-Lite are well represented, whereas symbolic and domain-specific languages have far
fewer examples. This uneven distribution may bias models toward dominant languages and limit
generalization in low-resource cases. Second, VisPlotBench currently supports eight languages;
expanding benchmark coverage to a broader set of visualization frameworks would enable more
comprehensive evaluation and reduce the risk of overfitting to the existing taxonomy. Addressing
these limitations will be crucial for advancing toward fully general-purpose visualization coding
agents.
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F PROMPT USED AND INSTRUCT DESIGN

In this section, we present the prompts used during the construction of VisCode-Multi-679K and
VisPlotBench.

F.1 PROMPT USED IN VISCODE-MULTI-679K

Code Extraction Prompt

Model: GPT-4.1-mini

# LANGUAGE= [Python, JavaScript, TypeScript, C++, R, HTML]
# LANG BULLET = {
Python: Write a single .py file. No external files or internet access. Use helper libraries only if truly
required for the chart.
JavaScript: Write a single .js file. Add necessary imports for any required libraries.
TypeScript: Write a single .ts file. Use ES6 module syntax (import/export). The code should not
require a module bundler.
C++: Write a single .cpp file with main(). Program must exit automatically. Do not load external
assets. If linking is needed, add one build command as a comment.
R: Write a single .R file. Use library(Library). Create mock data if needed. No external files.
HTML: Write a single HTML file. Include a <script> tag and the needed DOM element for the
chart. All code runs in the browser.
}

You are a {LANGUAGE} visualization code extraction agent.

Given a {LANGUAGE} code snippet and the used library, your task is to extract a minimal yet runnable
{LANGUAGE} snippet that reflects how the library is actually used for visual output.
Guidelines: - Keep only the logic needed for the visual output; remove unrelated code.
- If the library is not used for rendering/drawing/plotting in Code, return ”null”.
- If inputs/assets are missing, create semantically relevant mock data that makes the output meaning-
ful.
- Preserve the main intent, API pattern, key parameters, and style** from the original code; simplify
when it improves clarity, and avoid adding new wrappers or layers that are not essential.
- Make the visual output clear and professional: use appropriate visual cues (titles/labels/legends
when applicable); keep layout readable.
- Ensure the snippet runs standalone in a minimal environment and terminates automatically (no user
input required).
- {LANG BULLET}
- If the library is unused or information is insufficient, return ”null”.

Used Library: {used libs}
Code: {code}
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Instruct Generation Prompt: the-stack-v2& svg-diagrams

Model: GPT-4.1

# LANGUAGE= [Python, JavaScript, TypeScript, C++, R, HTML, SVG]

You are given a {LANGUAGE} code snippet that renders an image. A rendered image of the resulting
output is provided at the end. Your task is to infer and clearly describe the purpose, structure, and style
of this image.

Break your response into the following five parts:
1. Setup (state the language and rendering context, including any tools or libs implied).
2. Data/Visual Description
- If the code is data-driven: summarize the inputs the code relies on and any shaping operations.
- If the code is not data-driven: summarize the visible content of the image.
3. Data Generation (the data-generation lines copied verbatim, or “None” if not applicable).
4. Output Description (omit language constructs; start with “Generate...” or “Create...”, and describe
the final image conceptually).
5. Style Description (describe appearance and layout without naming language constructs).

Each part must start on a new line, numbered 1 through 5.
Use plain text only; no markdown.

Code:
{code}

Image:

Instruct Generation Prompt: CoSyn-400K

Model: GPT-4.1

# FOR DATA-DRIVEN LANGUAGES
# LANGUAGE= [Python, Vega-Lite, HTML, LilyPond, Mermaid]

You are given a {LANGUAGE} code snippet that produces a rendered visual. A rendered image of
the resulting output is provided at the end. Your task is to infer and clearly describe the purpose and
structure of this visual.

Break your response into the following four parts:
1. Setup (state the {LANGUAGE} and its rendering context, including any tools or specification
frameworks implied).
2. Data/Content Description (summarize the input fields, entities, or content the code relies on,
including any shaping or transformation operations).
3. Output Description (omit library, directive, or element names; start with “Generate...” or “Create...”,
and describe the visual conceptually).
4. Style Description (describe appearance and layout without naming language constructs).

Each part must start on a new line, numbered 1 through 4.
Use plain text only; no markdown.

Code:
{code}

Image:
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Instruct Generation Prompt: CoSyn-400K

Model: GPT-4.1

# FOR NONE DATA-DRIVEN LANGUAGES
# LANGUAGE= [Asymptote, SVG]

You are given a {LANGUAGE} code snippet that renders an image. A rendered image of the resulting
output is provided at the end. Your task is to infer and clearly describe the purpose and structure of
this image.

Break your response into the following four parts:
1. Setup (state the {LANGUAGE} and its rendering context).
2. Visual Elements (summarize the visible components of the image).
3. Output Description (omit language constructs; start with “Generate...” or “Create...”, and describe
the image conceptually).
4. Style Description (describe appearance and layout without naming language constructs).

Each part must start on a new line, numbered 1 through 4.
Use plain text only; no markdown.

Code:
{code}

Image:
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F.2 PROMPT USED IN VISPLOTBENCH

Task & Style Description Generation Prompt:

Model: GPT-4.1
# LANGUAGE= [Python, Vega-Lite, HTML, LilyPond, Mermaid, Asymptote, HTML, SVG]

You are given a {LANGUAGE} code that produces a rendered visual. A rendered image of the resulting
output is provided at the end. Your task is to infer and clearly describe the purpose and structure of this
visual.
Break your response into the following two parts: 1. Task Description (omit libraries and specific
function names at this part, start with ”Generate...” or ”Create...”). 2. Style Description (describe
appearance and layout without using specification keywords).
Each part must start on a new line, numbered 1 through 2. Use plain text only; no markdown.
CODE: code
IMAGE:

Vis & Task Judge Prompt

# Visual Judge
You are an excellent judge at evaluating visualization plots between a model generated plot and the
ground truth.
You will be giving scores on how well it matches the ground truth plot.
The generated plot will be given to you as the first figure.
Another plot will be given to you as the second figure, which is the desired outcome of the user query,
meaning it is the ground truth for you to reference.
Please compare the two figures head to head and rate them.
Suppose the second figure has a score of 100, rate the first figure on a scale from 0 to 100.
Scoring should be carried out in the following aspect:
Plot correctness: compare closely between the generated plot and the ground truth, the more
resemblance the generated plot has compared to the ground truth, the higher the score. The score
should be proportionate to the resemblance between the two plots.
Ignore color matching. If the plots present the same information but are made in different colors,
consider them matching. Capture the resemblance of the main idea of the plot.
Only rate the first figure, the second figure is only for reference.
After scoring from the above aspect, please give a final score. Do not write anything else. The final
score is preceded by the [FINAL SCORE] token.
For example [FINAL SCORE]: 40

# Task Judge
You are an excellent judge at evaluating visualization plot according to the given task.
You will be giving scores on how well plot image matches the task.
The generated plot will be given to you as an image.
Please score how well plot matches the task. Score it on a scale from 0 to 100.
Scoring should be carried out in the following aspect:
Task adherence: how the plot corresponds to the task given below (begins from [PLOT TASK] token).
After scoring from the above aspect, please give a final score. Do not write anything else. The final
score is preceded by the [FINAL SCORE] token.
For example [FINAL SCORE]: 40
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F.3 INSTRUCT DESIGN IN VISPLOTBENCH EVALUATION

Python Instruct

# SYSTEM PROMPT:
You are a helpful programming assistant proficient in Python. All answers must be enclosed in a block
“‘python SOME CODE“‘ containing one complete Python code. Example minimal spec: “‘python

print(’hello world’)

“‘

# SETUP INSTRUCT:
Use Python programming language. Import essential libraries. The essential libraries needed are
pandas for managing dataframes and [USED LIB] with its subsidiary libraries for plotting. Ensure
importing numpy as np and scipy if they are used in program. DO NOT use or import other
visualization libraries.

# PLOT INSTRUCT:
Write a code to build a plot of dataframe according to following instructions. Write a code that returns
plot, not just function declaration. Do not write explanations, just a code enclosed in codeblock.
Important reasoning write in comments to the code. Make sure that all used libraries and functions are
imported.

# DATA INSTRUCT:
Load df dataframe by single line df = pd.read csv(”data.csv”). DO NOT alter df dataframe columns or
add columns. This df dataframe should remain intact. The metadata of the dataframe is following:

Vega-Lite Instruct

# SYSTEM PROMPT:
You are a helpful programming assistant proficient in Vega-Lite. All answers must be enclosed in a
block “‘vegalite SOME CODE“‘ containing one complete Vega-Lite specification. Example minimal
spec: “‘vegalite

{
"$schema":"https://vega.github.io/schema/vega-lite/v6.json",
"data":{"values":[{"hello":"world"}]},
"mark":"text",
"encoding":{"text":{"field":"hello","type":"nominal"}}

}

“‘

# SETUP INSTRUCT:
Setup. Use the Vega-Lite v6 JSON schema and produce exactly one valid Vega-Lite specification as
a single top-level JSON object that MUST include the $schema property. Do not output raw Vega
specifications, imperative code, language-specific wrappers, or references to other plotting libraries;
use only Vega-Lite encodings, transforms, and configuration required by the plot.

# PLOT INSTRUCT:
Write a code to build a plot of the dataset according to the following instructions. Return one complete
Vega-Lite JSON specification enclosed in a single code block, and do not include explanations or
comments. Use only the constructs permitted by the setup, ensure that all referenced field names
exactly match the dataset metadata, and do not rename or drop columns; only use non-destructive
Vega-Lite transforms if required.

# DATA INSTRUCT:
Data description. Load the dataset by setting ”data”: ”url”: ”data.csv”. Do not create synthetic data or
load inline data values. The metadata of the dataset is following:
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Mermaid Instruct

# SYSTEM PROMPT:
You are a helpful programming assistant proficient in Mermaid diagrams. All answers must be enclosed
in a block “‘mermaid SOME CODE“‘ containing one complete Mermaid specification. Example min-
imal spec: “‘mermaid

graph TD
A[Start] -\rightarrow B{Condition}
B -\rightarrow|Yes| C[Do something]
B -\rightarrow|No| D[Stop]

“‘

# SETUP INSTRUCT:
Setup. Use Mermaid syntax only and produce exactly one valid Mermaid diagram definition. Do not
output explanations, comments outside the code block, or code in other languages or formats. Do
not split the diagram into multiple blocks. Ensure the code can be rendered directly by mermaid-cli
(mmdc).

# PLOT INSTRUCT:
Write a diagram according to the following instructions. Do not include explanations or natural
language outside the code block. Ensure that the diagram is self-contained, syntactically correct
Mermaid code, and does not rely on external data or libraries. Use node and edge labels exactly as
provided in the instructions.

# DATA INSTRUCT:
Data description. The diagram is constructed only from the provided instructions. Do not load external
files or datasets.

LilyPond Instruct

# SYSTEM PROMPT:
You are a helpful programming assistant proficient in LilyPond. Always use the version statement ‘
version ”2.22.1”‘. All answers must be enclosed in a block “‘lilypond SOME CODE“‘ containing one
complete LilyPond score. Example minimal spec: “‘lilypond

\version "2.22.1"
\score {

\new Staff { c’ d’ e’ f’ }
\layout { }

}

“‘

# SETUP INSTRUCT:
Setup. Use LilyPond syntax only and produce exactly one valid LilyPond music notation definition.
Do not output explanations, comments outside the code block, or code in other languages or formats.
Do not split the notation into multiple blocks. Ensure the code can be rendered directly by LilyPond.

# PLOT INSTRUCT:
Write a music notation according to the following instructions. Do not include explanations or natural
language outside the code block. Ensure that the notation is self-contained, syntactically correct
LilyPond code, and does not rely on external data or libraries. Use note names and other musical
symbols exactly as provided in the instructions.

# DATA INSTRUCT:
Data description. The music notation is constructed only from the provided instructions. Do not load
external files or datasets.
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SVG Instruct

# SYSTEM PROMPT:
You are a helpful programming assistant proficient in SVG. All answers must be enclosed in a block
“‘svg SOME CODE“‘ containing one complete SVG specification. Example minimal spec: “‘svg

<svg width="100" height="100" xmlns="http://www.w3.org/2000/svg">
<circle cx="50" cy="50" r="40" stroke="black"
stroke-width="2" fill="red" />

</svg>

“‘

# SETUP INSTRUCT:
Setup. Use SVG syntax only and produce exactly one valid SVG definition. Do not output expla-
nations, comments outside the code block, or code in other languages or formats. Do not split the
diagram into multiple blocks. Ensure the code can be rendered directly by SVG viewers.

# PLOT INSTRUCT:
Write an SVG according to the following instructions. Do not include explanations or natural language
outside the code block. Ensure that the SVG is self-contained, syntactically correct SVG code, and
does not rely on external data or libraries. Use shapes and attributes exactly as provided in the
instructions.

# DATA INSTRUCT:
Data description. The SVG is constructed only from the provided instructions. Do not load external
files or datasets.

Asymptote Instruct

# SYSTEM PROMPT:
You are a helpful programming assistant proficient in Asymptote. All answers must be enclosed in a
block “‘asymptote SOME CODE“‘ containing one complete Asymptote specification. Example mini-
mal spec: “‘asymptote

import graph;
size(100);
draw((0,0)--(1,1));

“‘

# SETUP INSTRUCT:
Setup. Use Asymptote syntax only and produce exactly one valid Asymptote definition. Do not output
explanations, comments outside the code block, or code in other languages or formats. Do not split the
diagram into multiple blocks. Ensure the code can be rendered directly by Asymptote.

# PLOT INSTRUCT:
Write an Asymptote according to the following instructions. Do not include explanations or natural
language outside the code block. Ensure that the Asymptote is self-contained, syntactically correct
Asymptote code, and does not rely on external data or libraries. Use shapes and attributes exactly as
provided in the instructions.

# DATA INSTRUCT:
Data description. Please use the provided data definition code to construct the plot. Do not modify this
code or create data by yourself. Use the variables defined in this code directly when building the plot.
The data definition code is as follows:
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LaTeX Instruct

# SYSTEM PROMPT:
You are a helpful programming assistant proficient in LaTeX. All answers must be enclosed in a block
“‘latex SOME CODE“‘ containing one complete LaTeX document. Example minimal spec: “‘latex

\documentclass{standalone}
\begin{document}
Hello
\end{document}

“‘

# SETUP INSTRUCT:
Setup. Use LaTeX syntax only and produce exactly one valid LaTeX document as a single code block.
Do not output explanations, comments outside the code block, or code in other languages or formats.
Ensure the document can be rendered directly by LaTeX compilers.

# PLOT INSTRUCT:
Write a LaTeX code to build a plot of the dataset according to the following instructions. Re-
turn exactly one complete LaTeX document enclosed in a single code block. Include all required
packages. Do not include explanations or comments. Do not create synthetic data or modify the dataset.

# DATA INSTRUCT:
Data description. Load the dataset by adding \pgfplotstablereadlatex.csv\datatable. Do not create
synthetic data or modify the dataset. The metadata of the dataset is following:

HTML Instruct

# SYSTEM PROMPT:
You are a helpful programming assistant proficient in HTML. All answers must be enclosed in a block
“‘html SOME CODE“‘ containing one complete HTML document Example minimal spec: “‘html

<!DOCTYPE html>
<html>
<body>Hello</body>
</html>

“‘

# SETUP INSTRUCT:
Setup. Use HTML syntax only and produce exactly one valid HTML document as a single code block.
Do not output explanations, comments outside the code block, or code in other languages or formats.
Ensure the document can be rendered directly by web browsers.

# PLOT INSTRUCT:
Write an HTML code to build a plot of the dataset according to the following instructions. Return
exactly one complete HTML document enclosed in a single code block. Include all required libraries
and scripts. Do not include explanations or comments. Do not create synthetic data or modify the
dataset.

# DATA INSTRUCT:
Data description. Load the dataset by defining: const data = [html.csv]; [html.csv] is a placeholder for
the parsed CSV rows. Assume that the placeholder will be replaced at runtime by the CSV content
converted into a JavaScript array of objects (i.e., a list of dicts), where each object represents one row
with column names as keys and cell values as values. Write the code as if ”data” is already such a valid
JavaScript array of objects. Do not create synthetic data or modify the dataset. The metadata of the
dataset is following:
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G TAXONOMY OF VISUALIZATION TYPES AND SUBTYPES
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Figure 4: Distribution of fine-grained visualization types in VisPlotBench. Tasks are organized into

13 Visual categories and 116 Subtypes, ensuring broad coverage of both common and
underexplored visualization families.

[Back to Appendix Contents]
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Table 7: Taxonomy of Visual Categories and Subtypes
[Back to Appendix Contents]

Visual Category Subtype Count Visual Category Subtype Count

vertical-bar 31 area 17
horizontal-bar 23 stacked-area 14
grouped-bar 15 normalized-stacked-area 4

normalized-stacked-bar 8 difference-area 4
stacked-bar 7 missing-data-matrix 3

diverging-bar 5 ternary-area 1
dot-plot 5 streamgraph 1
lollipop 3

Areas

ridgeline 1
sorted-bar 2
waterfall 1 bubble 25
polar-bar 1 scatter 24

bullet 1 color-scatter 20
funnel 1 regression-ci 4

combo-chart 1 ternary-line 4
missing-bar 1 quadrant-chart 3

Bars

marimekko 1 ellipse-scatter 3
polar-line-scatter 3

single-line 45 splom 2
multi-line 39 connected-scatter 1

function-line 26

Scatter & Relation

dumbbell chart 1
step-line 10

gapped-line 6 box-plot 17
band-line 4 histogram 13

slope-chart 3 density-contours 5

Lines

candlestick 3 violin 5
kde-1d 6

surface 21 hexbin-2d 2
multi-line 3 qq-plot 2

scatter 4 rug-plot 2
point-cloud 3 ridgeline 1

solid 3 prediction-interval 1
single-line 2

Distribution

spectrum 1
vector-field-map 2

3d-density-contours 2 heatmap 40
connected-scatter 1 calendar-heatmap 5

isosurface 1 missing-corr-heatmap 2

3D

slices 1 adjacency-matrix 1
Matrix & Heatmaps

correlation-heatmap 1
sequence-diagram 37

flowchart 25 treemap 10
geometric-figure 20 sunburst 4

electrical-circuit-diagram 16 circle-packing 3
state-machine 16 missing-dendrogram 3

table 15 tidy-tree 3
uml-class-diagram 12

Hierarchies

indented-tree 1
gantt 11

timeline 11 choropleth 4
simple-figure 10 vector-field-map 2

concept-illustration 10 dot-map 2
icon 10

Maps

proportional-symbol-map 1
block-diagram 3

physics-diagram 2 sankey 5
venn 2 chord 2

word-cloud 2 dependency-graph 2
mind-map 2 arc-diagram 1

color-palette 1 dag-layered 1
arrow-annotations 1

Networks & Flows

force-directed 1
Chemical graph 1

Diagramming

sankey 1 pie 17
radar 10

Music sheet-music 55 polar-line-scatter 10
donut 7

radial-bar 7
radial-area 3

Radial & Polar

wind-rose 2
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H BREAKDOWN MAIN RESULTS

In this section, we provide a breakdown of model performance in VisPlotBench. For each visualiza-
tion language,e report (1) execution pass rate (Exec Pass), (2) mean visual and task scores (Mean),
and (3) the proportion of samples scoring at least 75 (Good).

H.1 PYTHON, VEGA-LITE & LILYPOND

Table 8: Performance of selected languages on the VisPlotbench benchmark. For each model, we
report (1) execution pass rate (Exec Pass), (2) mean visual and task scores (Mean), and (3) the
proportion of samples scoring at least 75 (Good). The best-performing model in each scale is

shown in bold, and the second best is underlined.
[Back to Appendix Contents]

Model
Python (196) Vega-Lite (129) LilyPond (55)

Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75)
vis task vis task vis task vis task vis task vis task

GPT-4.1 64.3 53 61 51% 61% 84.5 60 68 56% 66% 43.6 14 38 5% 36%
GPT-4.1 + Self Debug 84.2 66 76 64% 76% 96.1 64 74 60% 72% 63.6 17 54 5% 53%
GPT-4.1-mini 64.8 53 61 47% 59% 84.5 53 63 45% 60% 16.4 2 12 0% 11%
GPT-4.1-mini + Self Debug 80.6 61 71 56% 67% 96.9 60 71 51% 68% 56.4 14 42 0% 35%

∼ 3B Scale

DeepSeek-Coder-1.3B-Instruct 29.1 16 19 10% 11% 53.5 1 2 0% 0% 30.9 2 1 0% 0%
Qwen2.5-Coder-3B-Instruct 34.2 23 28 17% 24% 68.2 25 34 13% 22% 3.6 1 2 0% 0%
VisCoder-3B 45.4 32 39 26% 35% 83.7 31 37 20% 26% 21.8 3 7 0% 2%

VisCoder2-3B 56.1 39 45 33% 38% 83.0 41 49 33% 40% 50.9 10 31 2% 15%
VisCoder2-3B + Self Debug 63.3 42 49 35% 40% 84.5 43 50 34% 41% 52.7 10 32 2% 15%

∼ 7B Scale

DeepSeek-Coder-6.7B-Instruct 39.3 25 29 19% 23% 79.8 37 47 24% 37% 7.3 0 3 0% 4%
Qwen2.5-Coder-7B-Instruct 41.3 29 37 24% 32% 76.0 40 50 29% 40% 5.5 0 3 0% 4%
VisCoder-7B 58.2 40 48 33% 42% 71.3 39 49 31% 43% 23.6 4 11 2% 4%

VisCoder2-7B 64.8 44 54 37% 49% 83.0 49 58 43% 51% 69.1 16 52 2% 45%
VisCoder2-7B + Self Debug 77.0 50 61 41% 54% 84.5 49 59 43% 52% 72.7 17 55 2% 45%

∼ 14B Scale

DeepSeek-Coder-V2-Lite-Instruct 47.5 32 40 28% 36% 75.2 36 43 27% 33% 49.1 9 28 0% 13%
Qwen2.5-Coder-14B-Instruct 50.0 35 43 28% 39% 83.0 52 61 42% 53% 25.5 5 12 2% 4%

VisCoder2-14B 65.3 47 56 39% 52% 93.0 55 63 47% 58% 54.6 11 44 0% 40%
VisCoder2-14B + Self Debug 78.1 55 64 46% 58% 94.6 56 64 47% 60% 63.6 12 47 0% 40%

∼ 32B Scale

DeepSeek-Coder-33B-Instruct 58.2 40 48 34% 41% 90.7 52 61 40% 51% 30.9 3 11 0% 4%
Qwen2.5-Coder-32B-Instruct 50.5 36 43 30% 41% 83.0 48 57 39% 49% 30.9 5 22 2% 18%

VisCoder2-32B 65.3 49 56 42% 54% 94.6 60 70 53% 65% 56.4 14 39 2% 27%
VisCoder2-32B + Self Debug 81.6 58 68 46% 62% 96.1 62 72 54% 67% 69.1 16 48 2% 35%
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H.2 MERMAID, SVG & LATEX

Table 9: Performance of selected languages on the VisPlotbench benchmark. For each model, we
report (1) execution pass rate (Exec Pass), (2) mean visual and task scores (Mean), and (3) the
proportion of samples scoring at least 75 (Good). The best-performing model in each scale is

shown in bold, and the second best is underlined.
[Back to Appendix Contents]

Model
Mermaid (131) SVG (65) LaTeX (112)

Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75)
vis task vis task vis task vis task vis task vis task

GPT-4.1 68.7 41 57 22% 56% 95.4 45 92 14% 94% 31.3 18 26 13% 25%
GPT-4.1 + Self Debug 93.9 56 77 32% 73% 96.9 45 93 14% 95% 66.1 38 56 25% 51%
GPT-4.1-mini 51.9 33 45 18% 43% 95.4 41 86 11% 86% 29.5 21 25 18% 25%
GPT-4.1-mini + Self Debug 94.7 58 79 26% 74% 96.9 42 88 11% 88% 58.9 35 50 23% 49%

∼ 3B Scale

DeepSeek-Coder-1.3B-Instruct 63.4 19 25 2% 8% 7.7 1 1 0% 0% 4.5 2 1 2% 1%
Qwen2.5-Coder-3B-Instruct 74.1 30 38 9% 21% 75.4 18 39 2% 28% 17.9 6 9 3% 5%
VisCoder-3B 75.6 32 40 12% 21% 76.9 13 31 0% 12% 23.2 9 12 7% 9%

VisCoder2-3B 76.3 43 59 23% 50% 87.7 25 59 3% 48% 36.6 14 21 3% 12%
VisCoder2-3B + Self Debug 76.3 43 59 23% 50% 87.7 25 59 3% 48% 38.4 14 23 3% 13%

∼ 7B Scale

DeepSeek-Coder-6.7B-Instruct 91.6 40 50 11% 28% 96.9 19 46 0% 22% 18.8 6 11 3% 8%
Qwen2.5-Coder-7B-Instruct 77.9 39 53 13% 38% 92.3 23 58 0% 40% 25.9 11 15 6% 8%
VisCoder-7B 77.1 41 54 17% 43% 93.9 23 53 2% 32% 25.9 10 15 6% 12%

VisCoder2-7B 78.6 43 59 20% 53% 96.9 34 73 3% 62% 39.3 15 23 6% 15%
VisCoder2-7B + Self Debug 84.7 45 62 21% 54% 96.9 34 73 3% 62% 42.9 16 24 6% 15%

∼ 14B Scale

DeepSeek-Coder-V2-Lite-Instruct 69.5 34 46 12% 34% 93.9 23 55 2% 34% 29.5 10 16 4% 10%
Qwen2.5-Coder-14B-Instruct 74.8 39 56 15% 48% 98.5 33 80 5% 77% 30.4 15 22 6% 15%

VisCoder2-14B 81.7 53 67 32% 62% 89.2 34 72 8% 65% 42.0 22 33 12% 27%
VisCoder2-14B + Self Debug 86.3 55 70 33% 64% 90.8 34 72 8% 65% 45.5 24 35 12% 28%

∼ 32B Scale

DeepSeek-Coder-33B-Instruct 87.0 44 57 15% 40% 92.3 23 58 0% 43% 24.1 8 14 4% 11%
Qwen2.5-Coder-32B-Instruct 71.0 41 56 21% 53% 93.9 34 81 3% 75% 29.5 14 25 9% 27%

VisCoder2-32B 87.0 51 67 31% 62% 81.5 33 68 11% 63% 42.9 20 35 11% 34%
VisCoder2-32B + Self Debug 90.1 54 69 34% 63% 86.2 34 71 11% 66% 61.6 28 45 14% 42%

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H.3 ASYMPTOTE & HTML

Table 10: Performance of selected languages on the VisPlotbench benchmark. For each model, we
report (1) execution pass rate (Exec Pass), (2) mean visual and task scores (Mean), and (3) the
proportion of samples scoring at least 75 (Good). The best-performing model in each scale is

shown in bold, and the second best is underlined.
[Back to Appendix Contents]

Model
Asymptote (92) HTML (108)

Exec
Pass

Mean Good(≥75) Exec
Pass

Mean Good(≥75)
vis task vis task vis task vis task

GPT-4.1 21.7 12 20 7% 20% 89.8 48 64 21% 50%
GPT-4.1 + Self Debug 46.7 22 41 9% 39% 97.2 51 68 22% 52%
GPT-4.1-mini 23.9 13 22 7% 21% 86.1 36 53 11% 34%
GPT-4.1-mini + Self Debug 48.9 21 40 9% 36% 100 42 62 12% 42%

∼ 3B Scale

DeepSeek-Coder-1.3B-Instruct 13.0 0 0 0% 0% 36.1 2 3 1% 0%
Qwen2.5-Coder-3B-Instruct 18.5 8 11 4% 9% 62.0 16 19 6% 7%
VisCoder-3B 30.4 7 12 3% 8% 79.6 21 29 9% 17%

VisCoder2-3B 62.0 23 36 7% 26% 93.5 34 47 8% 23%
VisCoder2-3B + Self Debug 63.0 23 37 7% 27% 94.4 34 47 8% 23%

∼ 7B Scale

DeepSeek-Coder-6.7B-Instruct 0 0 0 0% 0% 22.2 5 8 1% 3%
Qwen2.5-Coder-7B-Instruct 13.0 7 10 5% 9% 64.8 20 31 6% 13%
VisCoder-7B 17.4 7 11 3% 9% 75.9 20 32 5% 16%

VisCoder2-7B 64.1 27 43 11% 33% 82.4 30 46 7% 19%
VisCoder2-7B + Self Debug 70.7 29 47 11% 35% 84.3 31 47 7% 21%

∼ 14B Scale

DeepSeek-Coder-V2-Lite-Instruct 20.7 5 10 1% 9% 64.8 21 32 4% 18%
Qwen2.5-Coder-14B-Instruct 25.0 12 17 9% 16% 83.3 34 50 9% 31%

VisCoder2-14B 56.5 27 45 15% 41% 90.7 41 58 12% 36%
VisCoder2-14B + Self Debug 66.3 31 50 16% 45% 94.4 42 60 13% 37%

∼ 32B Scale

DeepSeek-Coder-33B-Instruct 21.7 8 14 2% 9% 12.0 4 6 0% 0%
Qwen2.5-Coder-32B-Instruct 17.4 9 13 5% 12% 78.7 33 49 11% 32%

VisCoder2-32B 58.7 27 46 10% 39% 91.7 43 61 18% 48%
VisCoder2-32B + Self Debug 71.7 31 53 10% 41% 93.5 44 62 18% 49%
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I BREAKDOWN SELF-DEBUG RESULTS

In this section, we provide a breakdown of model performance under the self-debug setting. For
each language, we report execution pass rates across up to three rounds of automatic correction,
grouped by model series

I.1 PYTHON & VEGA-LITE

Table 11: Execution pass rates (%) in Python and Vega-Lite under the normal and self-debug
settings. Models that fail initially are allowed up to three rounds of automatic correction. Left

columns show Python results, right columns show Vega-Lite results.
[Back to Appendix Contents]

Model Normal Python Self Debug Normal Vega-Lite Self Debug
Round 1 Round 2 Round 3 Round 1 Round 2 Round 3

GPT-4.1 64.3 75.0 81.6 84.2 84.5 95.3 96.1 96.1
GPT-4.1-mini 64.8 73.5 79.1 80.6 84.5 95.3 96.9 96.9

∼ 3B Scale

DeepSeek-Coder-1.3B-Instruct 29.1 35.7 35.7 35.7 53.5 53.5 53.5 53.5
Qwen2.5-Coder-3B-Instruct 34.2 39.8 41.8 42.9 68.2 68.2 69.0 69.0
VisCoder-3B 45.4 51.0 52.6 52.6 83.7 83.7 83.7 83.7

VisCoder2-3B 56.1 61.7 62.8 63.3 83.0 84.5 84.5 84.5

∼ 7B Scale

DeepSeek-Coder-6.7B-Instruct 39.3 46.9 49.5 53.1 79.8 81.4 81.4 81.4
Qwen2.5-Coder-7B-Instruct 41.3 53.6 60.2 61.7 76.0 77.5 77.5 77.5
VisCoder-7B 58.2 66.8 68.9 71.9 71.3 76.0 77.5 77.5

VisCoder2-7B 64.8 72.5 76.0 77.0 83.0 84.5 84.5 84.5

∼ 14B Scale

DeepSeek-Coder-V2-Lite-Instruct 47.5 54.6 55.6 58.7 75.2 78.3 79.8 79.8
Qwen2.5-Coder-14B-Instruct 50.0 65.3 72.5 76.0 83.0 86.8 86.8 86.8

VisCoder2-14B 65.3 76.5 78.1 78.1 93.0 93.8 94.6 94.6

∼ 32B Scale

DeepSeek-Coder-33B-Instruct 58.2 67.9 71.4 73.0 90.7 92.3 92.3 92.3
Qwen2.5-Coder-32B-Instruct 50.5 70.9 78.1 79.1 83.0 87.6 89.9 89.9

VisCoder2-32B 65.3 76.0 80.1 81.6 94.6 96.1 96.1 96.1
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I.2 LILYPOND & MERMAID

Table 12: Execution pass rates (%) in LilyPond and Mermaid under the normal and self-debug
settings. Models that fail initially are allowed up to three rounds of automatic correction. Left

columns show LilyPond results, right columns show Mermaid results.
[Back to Appendix Contents]

Model Normal LilyPond Self Debug Normal Mermaid Self Debug
Round 1 Round 2 Round 3 Round 1 Round 2 Round 3

GPT-4.1 43.6 54.5 63.6 63.6 68.7 84.7 93.0 93.9
GPT-4.1-mini 16.4 30.9 47.3 56.4 51.9 81.7 90.1 94.7

∼ 3B Scale

DeepSeek-Coder-1.3B-Instruct 30.9 32.7 32.7 32.7 63.4 76.3 77.9 78.6
Qwen2.5-Coder-3B-Instruct 3.6 5.5 5.5 5.5 74.1 76.3 76.3 76.3
VisCoder-3B 21.8 21.8 21.8 21.8 75.6 76.3 76.3 76.3

VisCoder2-3B 50.9 52.7 52.7 52.7 76.3 76.3 76.3 76.3

∼ 7B Scale

DeepSeek-Coder-6.7B-Instruct 7.3 9.1 10.9 10.9 91.6 93.9 94.7 94.7
Qwen2.5-Coder-7B-Instruct 5.5 5.5 5.5 5.5 77.9 79.4 79.4 79.4
VisCoder-7B 23.6 27.3 30.9 30.9 77.1 80.9 80.9 80.9

VisCoder2-7B 69.1 72.7 72.7 72.7 78.6 84.0 84.7 84.7

∼ 14B Scale

DeepSeek-Coder-V2-Lite-Instruct 49.1 52.7 52.7 52.7 69.5 69.5 69.5 71.0
Qwen2.5-Coder-14B-Instruct 50.0 65.3 72.5 76.0 83.0 86.8 86.8 86.8

VisCoder2-14B 54.6 63.6 63.6 63.6 81.7 86.3 86.3 86.3

∼ 32B Scale

DeepSeek-Coder-33B-Instruct 30.9 40.0 41.8 41.8 87.0 87.0 87.8 88.6
Qwen2.5-Coder-32B-Instruct 30.9 40.0 43.6 43.6 71.0 74.8 75.6 76.3

VisCoder2-32B 56.4 61.8 69.1 69.1 87.0 89.3 90.1 90.1
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I.3 SVG & LATEX

Table 13: Execution pass rates (%) in SVG and LaTeX under the normal and self-debug settings.
Models that fail initially are allowed up to three rounds of automatic correction. Left columns show

SVG results, right columns show LaTeX results.
[Back to Appendix Contents]

Model Normal SVG Self Debug Normal LaTeX Self Debug
Round 1 Round 2 Round 3 Round 1 Round 2 Round 3

GPT-4.1 95.4 96.9 96.9 96.9 31.3 53.6 59.8 66.1
GPT-4.1-mini 95.4 96.9 96.9 96.9 29.5 50.9 55.4 58.9

∼ 3B Scale

DeepSeek-Coder-1.3B-Instruct 7.7 95.4 95.4 95.4 4.5 5.4 5.4 5.4
Qwen2.5-Coder-3B-Instruct 75.4 75.4 75.4 75.4 17.9 17.9 17.9 17.9
VisCoder-3B 76.9 76.9 76.9 76.9 23.2 25.9 25.9 25.9

VisCoder2-3B 87.7 87.7 87.7 87.7 36.6 38.4 38.4 38.4

∼ 7B Scale

DeepSeek-Coder-6.7B-Instruct 96.9 98.5 98.5 98.5 18.8 19.6 22.3 22.3
Qwen2.5-Coder-7B-Instruct 92.3 92.3 92.3 92.3 25.9 28.6 30.4 30.4
VisCoder-7B 93.9 93.9 93.9 93.9 25.9 38.4 42.0 43.8

VisCoder2-7B 96.9 96.9 96.9 96.9 39.3 42.9 42.9 42.9

∼ 14B Scale

DeepSeek-Coder-V2-Lite-Instruct 93.9 93.9 93.9 93.9 29.5 33.9 35.7 35.7
Qwen2.5-Coder-14B-Instruct 98.5 98.5 98.5 98.5 30.4 37.5 38.4 38.4

VisCoder2-14B 89.2 90.8 90.8 90.8 42.0 43.8 45.5 45.5

∼ 32B Scale

DeepSeek-Coder-33B-Instruct 92.3 92.3 92.3 92.3 24.1 28.6 31.3 31.3
Qwen2.5-Coder-32B-Instruct 93.9 93.9 93.9 93.9 29.5 42.9 50.0 51.8

VisCoder2-32B 81.5 84.6 86.2 86.2 42.9 55.4 59.8 61.6
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I.4 ASYMPTOTE & HTML

Table 14: Execution pass rates (%) in Asymptote and HTML under the normal and self-debug
settings. Models that fail initially are allowed up to three rounds of automatic correction. Left

columns show Asymptote results, right columns show HTML results.
[Back to Appendix Contents]

Model Normal Asymptote Self Debug Normal HTML Self Debug
Round 1 Round 2 Round 3 Round 1 Round 2 Round 3

GPT-4.1 21.7 35.9 43.5 46.7 89.8 96.3 97.2 97.2
GPT-4.1-mini 23.9 37.0 42.4 48.9 86.1 99.1 99.1 100

∼ 3B Scale

DeepSeek-Coder-1.3B-Instruct 13.0 17.4 17.4 17.4 36.1 36.1 36.1 36.1
Qwen2.5-Coder-3B-Instruct 18.5 18.5 18.5 18.5 62.0 65.7 70.4 70.4
VisCoder-3B 30.4 31.5 32.6 32.6 79.6 83.3 83.3 83.3

VisCoder2-3B 62.0 63.0 63.0 63.0 93.5 94.4 94.4 94.4

∼ 7B Scale

DeepSeek-Coder-6.7B-Instruct 0.0 1.1 2.2 2.2 22.2 25.0 25.0 25.0
Qwen2.5-Coder-7B-Instruct 13.0 16.3 20.7 20.7 64.8 75.9 76.9 76.9
VisCoder-7B 17.4 26.1 26.1 26.1 75.9 81.5 82.4 82.4

VisCoder2-7B 64.1 68.5 70.7 70.7 82.4 84.3 84.3 84.3

∼ 14B Scale

DeepSeek-Coder-V2-Lite-Instruct 20.7 23.9 26.1 26.1 64.8 76.9 79.6 79.6
Qwen2.5-Coder-14B-Instruct 25.0 32.6 39.1 40.2 83.3 89.8 89.8 89.8

VisCoder2-14B 56.5 64.1 66.3 66.3 90.7 94.4 94.4 94.4

∼ 32B Scale

DeepSeek-Coder-33B-Instruct 21.7 26.1 28.3 29.4 12.0 14.8 14.8 14.8
Qwen2.5-Coder-32B-Instruct 17.4 25.0 31.5 33.7 78.7 88.9 89.8 89.8

VisCoder2-32B 58.7 68.5 71.7 71.7 91.7 92.6 93.5 93.5
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J BREAKDOWN ERROR TYPE RESULTS

J.1 PYTHON

Table 15: Distribution of execution errors for GPT-4.1 and VisCoder2-32B in Python. Each column
shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type GPT-4.1 VisCoder2-32B
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AttributeError 17 12 9 8 15 12 12 10
FileNotFoundError - - - - 1 1 1 1
ImportError 2 2 1 0 2 1 1 1
SchemaValidationError 1 1 1 1 - - - -
KeyError - - - - 3 2 1 0
KeyboardInterrupt 7 7 6 6 9 9 9 9
CellSizeError - - - - 1 1 1 1
DataError - - - - 2 2 2 2
NameError - - - - 2 1 0 0
RuntimeError 2 0 0 0 - - - -
SyntaxError 1 1 1 1 1 1 1 1
TypeError 20 16 14 14 13 7 3 3
ValueError 20 10 4 1 19 10 8 8

Total Errors 70 49 36 31 68 47 39 36

J.2 VEGA-LITE

Table 16: Distribution of execution errors for GPT-4.1 and VisCoder2-32B in Vega-Lite. Each
column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type GPT-4.1 VisCoder2-32B
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

JSONDecodeError 1 0 0 0 - - - -
KeyboardInterrupt 1 0 0 0 1 1 1 1
ParseError 8 2 2 2 2 1 1 1
TypeError 9 4 2 2 2 1 1 1
RenderingError 1 0 0 0 2 2 2 2

Total Errors 20 6 4 4 7 5 5 5

J.3 LILYPOND

Table 17: Distribution of execution errors for GPT-4.1 and VisCoder2-32B in Lilypond. Each
column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type GPT-4.1 VisCoder2-32B
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

FileNotFoundError 1 1 1 1 1 1 1 1
MarkupError 3 2 2 2 4 4 4 4
SyntaxError 25 17 12 12 14 12 10 10
TypeError 2 2 2 2 5 4 2 2

Total Errors 31 25 20 20 24 21 17 17
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J.4 MERMAID

Table 18: Distribution of execution errors for GPT-4.1 and VisCoder2-32B in Mermaid. Each
column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type GPT-4.1 VisCoder2-32B
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

StructureError 2 2 0 0 1 0 0 0
SyntaxError 32 16 7 7 12 10 9 9
TypeError 2 1 1 1 - - - -
UnknownDiagramError 4 1 0 0 1 1 1 1
YAMLException 1 0 0 0 - - - -
LogicError - - - - 1 1 1 1
DiagramLimitError - - - - 1 1 1 1
KeyboardInterrupt - - - - 1 1 1 1

Total Errors 41 20 8 8 17 14 13 13

J.5 SVG

Table 19: Distribution of execution errors for GPT-4.1 and VisCoder2-32B in SVG. Each column
shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type GPT-4.1 VisCoder2-32B
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

SyntaxError 1 1 1 1 4 2 2 2
UnclosedError 2 1 1 1 8 8 7 7

Total Errors 3 2 2 2 12 10 9 9

J.6 LATEX

Table 20: Distribution of execution errors for GPT-4.1 and VisCoder2-32B in LaTeX. Each column
shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type GPT-4.1 VisCoder2-32B
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

KeyboardInterrupt 16 16 16 15 5 5 5 2
PackageError 2 2 1 1 - - - -
RuntimeError 17 9 7 7 27 12 9 6
StructureError 3 2 2 1 6 3 3 3
SyntaxError 5 4 4 4 10 6 4 4
UndefinedError 21 17 15 15 28 26 24 23

Total Errors 64 50 45 43 77 52 45 38
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J.7 ASYMPTOTE

Table 21: Distribution of execution errors for GPT-4.1 and VisCoder2-32B in Asymptote. Each
column shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type GPT-4.1 VisCoder2-32B
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

AmbiguousFunctionCall - - - - 1 1 1 1
AmbiguousUsageError 1 1 1 1 1 1 1 1
CastError 2 1 1 1 - - - -
FunctionSignatureError 28 20 18 16 9 4 3 3
ModuleLoadError 16 15 13 13 2 2 2 2
RuntimeError 1 1 1 1 8 7 6 6
SyntaxError 3 2 1 1 - - - -
VariableError 21 19 17 16 15 12 11 11
KeyboardInterrupt - - - - 2 2 2 2

Total Errors 72 59 52 49 38 29 26 26

J.8 HTML

Table 22: Distribution of execution errors for GPT-4.1 and VisCoder2-32B in HTML. Each column
shows error counts at different self-debugging rounds after initial failure.

[Back to Appendix Contents]

Error Type GPT-4.1 VisCoder2-32B
Normal Round 1 Round 2 Round 3 Normal Round 1 Round 2 Round 3

ConsoleError 1 1 1 1 3 2 2 2
PageError 9 2 1 1 3 3 2 2
RequestFailed 1 1 1 1 3 3 3 3

Total Errors 11 4 3 3 9 8 7 7
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K CASE STUDY

In this section, we present a set of representative examples from VisCoder2-32B to illustrate model
behavior across the eight visualization languages.

K.1 PYTHON: SUCCESSFUL GENERATION

VisCoder2-32B: Python

ID : 1
TASK: Generate a scatter plot to visualize the relationship between sepal width and sepal length
for different species of flowers. The data points are colored according to species, with the size of
each point representing petal length. Additional information about petal width is available when
hovering over the points.
STYLE: The plot features a grid background with evenly spaced horizontal and vertical lines.
Data points are represented as circles of varying sizes, each filled with a distinct color
corresponding to a species. A legend on the right side identifies the species by color. The axes are
labeled with sepal width and sepal length, and the overall layout is clean and organized for easy
interpretation.

Generated Code:
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
from scipy import stats
import plotly.io as pio
pio.renderers.default = "png"

df = pd.read_csv("data.csv")

fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", 
size="petal_length", hover_data=["petal_width"])
fig.show()

Error: null

Rendered Ground Truth

Figure 5: Example of a successful generation in Python (ID: 1). The model generates code that
executes successfully and produces a plot consistent with the ground truth.

[Back to Appendix Contents]
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K.2 PYTHON: SELF-DEBUG RECOVERY

VisCoder2-32B: Python

ID : 69
TASK: Generate a scatter plot to visualize the relationship between two variables, labeled as 'x'
and 'y', from a dataset. The plot is designed to display individual data points, allowing for the
examination of potential correlations or patterns between the measurements. The y-axis values
are formatted to represent millions, providing a clear understanding of the scale.
STYLE: The visual features a title at the top, with axes labeled horizontally and vertically. Data
points are depicted as blue dots, evenly distributed across the plot area. A dashed grid is
present, enhancing readability, and a hover tool is available for interactive data exploration. The
overall layout is clean, with a focus on clarity and accessibility.

Normal Generated Code
import … …
import holoviews as hv
from holoviews import opts

hv.extension('bokeh’)
df = pd.read_csv("… …")

scatter = hv.Scatter(df, 'x', 'y').opts(
title="Scatter Plot of x vs y",
xlabel='x',
ylabel='y (in millions)',
size=5,
color='blue',
tools=['hover'],
show_grid=True,
grid_style={'line_dash': 'dashed', 'line_color': 'gray', 
'line_width': 0.5}
)
scatter.opts(yformatter='%.1fM')
scatter

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code

… …
scatter = hv.Scatter(df, 'x', 
'y').opts(
title="Scatter Plot of x vs y",
xlabel='x',
ylabel='y (in millions)',
size=5,
color='blue',
tools=['hover'],
show_grid=True,
gridstyle={'line_dash': 
'dashed', 'line_color': 'gray', 
'line_width': 0.5}
)
hv.savescatter.opts(yformatter
='%.1fM')
scatter
… …

ValueError: Unexpected option ‘grid_style’ for Scatter type across all extensions.

No Image
Rendered

Figure 6: Example of a failed generation in Python (ID: 69), where the initial code raises a
ValueError and is resolved in the first round of self-debug, resulting in a corrected plot that

matches the intended semantics.
[Back to Appendix Contents]
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K.3 PYTHON: SELF-DEBUG FAILED

VisCoder2-32B: Python

ID : 115
TASK: Generate a visual representation of a vector field using data from a CSV file. Display
points on a coordinate system where each point has an associated vector. The vectors are
represented as arrows originating from each point, indicating direction and magnitude.
STYLE: The plot features a rectangular layout with a title at the top. The background is white
with grid lines. Points are marked with blue dots, and arrows are red with a filled triangular
head. The axes are labeled with numeric scales and titles.

Normal Generated Code
… …
# Interpolate the data
points = … …
values = … …
grid_z0 = griddata(… …)
p = figure(title="Vector Field Plot", … …)
# Create a ColumnDataSource
source = ColumnDataSource(… …)
# Plot the vectors
p.quiver('x', 'y', 'u', 'v', source=source, 
line_color="red", line_width=2,
angle=np.pi/2, length=0.5, line_alpha=0.6, 
line_dash='solid',
line_cap='round', line_join='round', 
line_dash_offset=0,
fill_color="red", fill_alpha=0.6, size=10, 
angle_units="rad")
# Show the plot
… …

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code

… …

# Create a ColumnDataSource
source = … …

# Plot the vectors
p.segment(x0='x', y0='y', 
x1='x'+'u', y1='y'+'v', 
source=source, 
line_color="red", 
line_width=2)

… …

AttributeError: unexpected attribute 'quiver' to figure.

No Image
Rendered

Figure 7: Example of a failed generation in Python (ID: 115), where the initial code raises a
AttributeError and is still failed after three rounds self-debug.

[Back to Appendix Contents]
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K.4 VEGA-LITE: SUCCESSFUL GENERATION

VisCoder2-32B: Vega-Lite

ID : 18
TASK: Create a population pyramid for the US in the year 2000, displaying the distribution of
population by age and gender. The data is filtered to include only the year 2000, and gender is
categorized into 'Male' and 'Female'. The population numbers are adjusted to be negative for
females to allow for a mirrored bar chart effect.
STYLE: The visual consists of horizontal bars stacked in a mirrored fashion, with age groups
sorted in descending order from top to bottom. The left side represents females with purple bars,
while the right side represents males with orange bars. The x-axis shows population numbers in
millions, formatted with an 'M' suffix. A legend at the top indicates the color coding for gender,
and the overall layout is clean with no grid lines.

Generated Code:
{
    "$schema": "… …",
    "description": "Population Pyramid for the US in the Year 2000",
    "data": { "url": "… …" },
    "transform": [… …],
    "width": 400,
    "height": 300,
    "mark": "bar",
    "encoding": {… …},
    "config": {… …}
}

Error: null

Rendered Ground Truth

Figure 8: Example of a successful generation in Vega-Lite (ID: 18). The model generates code that
executes successfully and produces a plot consistent with the ground truth.

[Back to Appendix Contents]
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K.5 VEGA-LITE: SELF-DEBUG RECOVERY

VisCoder2-32B: Vega-Lite

ID : 14
TASK: Create a bar chart that displays the production budget of the movie with the highest US
Gross within each major genre. The x-axis represents the production budget in quantitative
terms, while the y-axis lists the major genres in nominal terms.
STYLE: The chart is oriented horizontally with bars extending from the left to the right. Each bar
corresponds to a different genre, labeled on the left side. The production budget is marked along
the bottom axis, with gridlines aiding in visual comparison. The bars are uniformly colored in
blue, providing a clear contrast against the white background.

Normal Generated Code
{
… …
"transform": [
{
  "aggregate": [{ "op": "max", "field": "US Gross", "as":   
"max_US_Gross" }],
  "groupby": ["Major Genre"]
},
{
  "lookup": "max_US_Gross",
  "from": {
    "data": { "url": "data.csv" },
    "fields": ["US Gross"],
  "values": ["Production Budget"]
  },
  "as": "Production Budget"
}
]
… …

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
"transform": [
{
  "window": [{ "op": "max", 
"field": "US Gross", "as": 
"max_US_Gross" }],
  "groupby": ["Major Genre"],
  "sort": [{ "field": "US 
Gross", "order": 
"descending" }],
  "frame": [null, 0]
},
{ "filter": "datum['US Gross'] 
== datum.max_US_Gross" }
]
}
… …

TypeError: Cannot read properties of undefined (reading 'signal’).

No Image
Rendered

Figure 9: Example of a failed generation in Vega-Lite (ID: 14), where the initial code raises a
TypeError and is resolved in the second round of self-debug, resulting in a corrected plot that

matches the intended semantics.
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K.6 VEGA-LITE: SELF-DEBUG FAILED

VisCoder2-32B: Vega-Lite

ID : 50
TASK: Create a grid of point plots that represents different animals categorized by country.
Each row corresponds to a country, and within each row, different animals are represented by
distinct shapes. The animals are visually encoded using both shape and color to differentiate
between categories such as "cattle," "pigs," and "sheep." The plot does not display axes, focusing
solely on the visual arrangement of shapes to convey the data.
STYLE: The visual consists of a series of rows, each labeled with a country name on the left.
Within each row, animal shapes are arranged horizontally, with each shape filled with a specific
color corresponding to the animal type. The shapes are evenly spaced and sized uniformly,
creating a clean and organized appearance. The absence of axes and legends emphasizes the
visual comparison of animal types across different countries.

Normal Generated Code

{
"$schema": 
"https://vega.github.io/schema/vega-
lite/v6.json
",
"data": { "url": "data.csv"
" },
… …
"config": {

"view": {
"stroke": null

},
"axis": {

"grid": false
},
"legend": null

}
}

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
{
"$schema": 
"https://vega.github.io/schema/vega-
lite/v6.json
",
"data": { "url": "data.csv"
" },
… …
"config": {
    "view": {
      "stroke": null
    },
    "axis": {
      "grid": false
    },
    "legend": null
  }
}

TypeError: Cannot read properties of undefined (reading 'disable’) at Lp.parseLegends

No Image
Rendered

No Image
Rendered

Figure 10: Example of a failed generation in Vega-Lite (ID: 50), where the initial code raises a
TypeError and is still failed after three rounds self-debug.
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K.7 LILYPOND: SUCCESSFUL GENERATION

VisCoder2-32B: LilyPond

ID : 15
Task: Generate a musical score with two sequences of notes. The first sequence is transposed
from C major to D major and uses traditional noteheads. The second sequence uses a different
set of notehead styles, including shapes like crosses, triangles, and diamonds. Both sequences
consist of the notes C, D, E, F, G, A, B, and C, arranged in two measures each.
Style: Create a visual layout with two staves, each containing a series of musical notes. The first
staff uses standard noteheads, while the second staff employs varied geometric shapes for
noteheads. The staves are aligned horizontally, with a treble clef and key signature at the
beginning of each. The measures are evenly spaced, and the overall appearance is clean and
organized, with a small footer crediting the engraving software.

Generated Code:
… …
\\score {
\\new Staff {
\\transpose c' d'
\\relative c' {
c4 d e f | g a b c |

}
\\override NoteHead.style = #'cross
\\relative c' {
c4 d e f | g a b c |

}
\\override NoteHead.style = #'triangle
\\relative c' {
c4 d e f | g a b c |

}
\\override NoteHead.style = #'diamond
\\relative c' {
c4 d e f | g a b c |

}
}
\\layout { }

}
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Error: null

Figure 11: Example of a successful generation in Lilypond (ID: 15). The model generates code
that executes successfully and produces a plot consistent with the ground truth.
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K.8 LILYPOND: SELF-DEBUG RECOVERY

VisCoder2-32B: LilyPond

ID : 13
Task: Generate a musical score with three staves, each containing a sequence of notes. The notes
are arranged in measures, with a time signature indicating a slow tempo. The score includes
rehearsal marks and tempo indications at the beginning of each staff.
Style: Create a vertically aligned layout with three evenly spaced staves. Each staff begins with a
treble clef and includes a tempo marking labeled "Largo" with a metronome setting. Rehearsal
marks are placed prominently. The notes are evenly spaced, and the overall appearance is clean
and organized, with a footer crediting the music engraving software.

SyntaxError: unknown escaped string: `\footer'

Normal Rendered Ground TruthDebug Rendered

Normal Generated Code
… …
\layout { }
\footer {
\markup {
\fill-line {
\null
\italic "Music engraving by LilyPond"
\null

}
}

}
… …

Self-Debug Generated Code
… …
\layout { 

\context {
\Score
\remove "Bar_number_engraver"

}
}
\header {
footerMarkup = \markup {
\fill-line {
\null
\italic "Music engraving by LilyPond"

\null
}

… …

No Image
Rendered

Figure 12: Example of a failed generation in Lilypond (ID: 13), where the initial code raises a
SyntaxError and is resolved in the first round of self-debug, resulting in a corrected plot that

matches the intended semantics.
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K.9 LILYPOND: SELF-DEBUG FAILED

VisCoder2-32B: LilyPond

ID : 48
Task: Generate a musical score with repeated sequences of notes in varying time signatures. The
score is divided into two sections: the first section contains lines with four measures each, and
the second section contains lines with six measures each. Each section is labeled accordingly to
indicate the number of measures per line.
Style: Create a clean and organized layout with a treble clef at the beginning of each staff. The
time signatures change within the repeated sequences, alternating between 5/4, 3/4, and 3/2.
The labels "4 measures per line:" and "6 measures per line:" are italicized and placed at the
beginning of each respective section. The notes are evenly spaced, and the overall appearance is
neat, with clear separation between the sections.

Generated Code:
… …
\\score {
\\new Staff {
\\clef treble
\\mark \\markup { \\italic "4 

measures per line:" }
\\time 5/4
\\repeat volta 2 {
c'4 d'4 e'4 f'4 g'4

}
\\time 3/4
\\repeat volta 2 {
a'4 b'4 c''4

}
\\time 3/2
\\repeat volta 2 {
d''2 e''2

}
}

SyntaxError: unmatched '}'

Normal Rendered Ground TruthDebug Rendered

No Image
Rendered

No Image
Rendered

Self-Debug Generated Code:
… …
\\score {
\\new Staff {
\\clef treble
\\mark \\markup { \\italic "4 

measures per line:" }
\\time 5/4
\\repeat volta 2 {
c'4 d'4 e'4 f'4 g'4

}
\\time 3/4
\\repeat volta 2 {
a'4 b'4 c''4

}
\\time 3/2
\\repeat volta 2 {
d''2 e''2

}
}

Figure 13: Example of a failed generation in Lilypond (ID: 48), where the initial code raises a
TypeError and is still failed after three rounds self-debug.
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K.10 MERMAID: SUCCESSFUL GENERATION

VisCoder2-32B: Mermaid

ID : 19
Task: Generate an entity-relationship diagram illustrating the relationships between three
entities: PERSON, CAR, and HOUSE. The PERSON entity includes attributes for first name, last
name, and age. The CAR entity includes attributes for registration number, make, and model.
The diagram shows a one-to-one relationship between PERSON and CAR, indicating that a
person owns a car. Additionally, there is a one-to-many relationship between PERSON and
HOUSE, indicating that a person can have multiple houses.
Style: The diagram features rectangular boxes for each entity, with the PERSON entity outlined
in red, the CAR entity in purple, and the HOUSE entity in green. Each box contains rows listing
the attributes, with data types specified. Lines connect the entities, with labels indicating the
nature of the relationships. The lines have different end markers to represent the type of
relationship, and the overall layout is clean and organized with a clear visual hierarchy.

Error: null

Rendered Ground Truth

Generated Code:

erDiagram
PERSON||--o{ HOUSE : owns
PERSON||--||CAR : owns
PERSON {

string first_name
string last_name
int age

}
CAR {

string registration_number
string make
string model

}
HOUSE {

string address
int year_built

}

Figure 14: Example of a successful generation in Mermaid (ID: 19). The model generates code
that executes successfully and produces a plot consistent with the ground truth.
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K.11 MERMAID: SELF-DEBUG RECOVERY

VisCoder2-32B: Mermaid

ID : 88
Task: Generate a state diagram illustrating the transitions between three states:
"SomeOtherState," "Your state with spaces in it," and "YetAnotherState." The diagram begins
with an initial state that transitions to both "SomeOtherState" and "Your state with spaces in it."
From "SomeOtherState," the flow continues to "YetAnotherState." Similarly, "Your state with
spaces in it" also transitions to "YetAnotherState." Finally, "YetAnotherState" leads to a final
state.
Style: Create a visual with rounded rectangles representing states, connected by arrows
indicating transitions. The initial and final states are depicted as filled circles. "Your state with
spaces in it" is styled with bold and italic text, while other states have regular text. The layout is
organized with a top-down flow, and the states are outlined with a subtle color.

Normal Generated Code
stateDiagram-v2
classDef stateDefault
fill:#f9f9f9,stroke:#333,stroke-width:1px
classDef stateText font-weight:bold,font-
style:italic,font-size:14px

[*] --> SomeOtherState
[*] --> Your state with spaces in it
SomeOtherState --> YetAnotherState
Your state with spaces in it --> YetAnotherState
YetAnotherState --> [*]

state SomeOtherState
state "Your state with spaces in it"<<stateText>>
state YetAnotherState

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated 
Code

… …
[*] --> SomeOtherState
[*] -->
Your_state_with_spaces_i
n_it

SomeOtherState -->
YetAnotherState

Your_state_with_spac
es_in_it -->
YetAnotherState

YetAnotherState -->
[*]
… …

SyntaxError : Parse error on line 12: … with spaces in it" <<stateText>>

No Image
Rendered

Figure 15: Example of a failed generation in Mermaid (ID: 88), where the initial code raises a
SyntaxError and is resolved in the second round of self-debug, resulting in a corrected plot that

matches the intended semantics.
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K.12 MERMAID: SELF-DEBUG FAILED

VisCoder2-32B: Mermaid

ID : 80
Task: Generate a sequence diagram illustrating interactions between participants named Alice,
Bob, Carl, and an actor named Donald. The diagram depicts a conversation where Alice greets
Bob, and they exchange pleasantries. Alice then introduces Carl, who subsequently greets
Donald. The diagram also shows the destruction of Carl and Bob, with Alice commenting on the
number of participants and Bob agreeing.
Style: The visual consists of horizontal arrows connecting labeled rectangular boxes
representing participants, with a stick figure symbolizing the actor. The boxes and arrows are
aligned vertically, showing the flow of communication. Messages are displayed as text along the
arrows, and the destruction of participants is marked by an 'x' on the arrows. The layout is clean,
with a light color scheme and clear separation between interactions.

Normal Generated Code

sequenceDiagram
participant Alice
participant Bob
Alice->>Bob: Hello Bob, how are you?
Bob-->>Alice: I am good thanks!
Bob--x Alice: By the way, how are you?
Bob-x Alice: I am good thanks!
Note right of Bob: Bob thinks a long<br/>long time, 
so long<br/>that he needs<br/>to split the text 
over<br/>several lines
Bob-->Alice: Checking with John… …
… …

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code

sequenceDiagram
participant Alice
participant Bob
Alice->>Bob: Hello Bob, how are you?
Bob-->>Alice: I am good thanks!
Bob--x Alice: By the way, how are you?
Bob-x Alice: I am good thanks!
… …

AttributeError: '_idat' object has no attribute 'fileno'

No Image
Rendered

No Image
Rendered

Figure 16: Example of a failed generation in Mermaid (ID: 80), where the initial code raises a
AttributeError and is still failed after three rounds self-debug.
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K.13 SVG: SUCCESSFUL GENERATION

VisCoder2-32B: SVG

ID : 52
TASK: Generate a five-pointed star shape using a polygon. The star is defined by a series of
connected points that form its structure.
STYLE: The star is filled with a bright green color and outlined with a thick purple border. The
background is black, making the star stand out prominently. The overall appearance is bold and
vibrant, with a strong contrast between the star and its outline.

Generated Code:
<svg width="200" height="200" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,10 40,198 190,78 10,78 160,198" fill="lime" stroke="purple" 
stroke-width="10" />
</svg>

Error: null

Rendered Ground Truth

Figure 17: Example of a successful generation in SVG (ID: 52). The model generates code that
executes successfully and produces a plot consistent with the ground truth.
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K.14 SVG: SELF-DEBUG RECOVERY

VisCoder2-32B: SVG

ID : 42
TASK: Generate a flowchart illustrating the process for producing a W3C Recommendation.
The flowchart includes stages such as Working Draft (WD), Candidate Recommendation (CR),
Proposed Recommendation (PR), and W3C Recommendation (REC). It also includes decision
points and possible transitions between these stages, such as advancing to the next stage,
returning to a previous stage, or publishing as a note. Each stage and decision point is labeled
with descriptive text.
STYLE: Create a visual with elliptical nodes representing different stages, connected by arrows
indicating the flow of the process. The nodes are labeled with abbreviations like WD, CR, PR,
and REC, and are filled with white. Text annotations provide additional context for each
transition, using a small font size. Arrows are solid or dashed, with varying colors to indicate
different types of transitions. Some elements are partially transparent to indicate optional paths.
The layout is horizontal, with nodes aligned in a sequence from left to right.

Normal Generated Code
… …
.arrow.aqua {}
.arrow.aqua.dashed {}
.arrow.fuchsia {}
.arrow.fuchsia.dashed {}
.arrow.navy {}
.arrow.navy.dashed {}
}
}
… …

Normal Rendered

Ground TruthDebug Rendered

Self-Debug Generated Code

<svg … … >
<style type="text/css">
… …</style>
<defs>… …</defs>
<g transform="scale(0.5)">
<ellipse … … />
<text x="540" y="620" font-
size="12"> … … </text>
</g>
</svg>

ExpatError: no element found: line 362, column 18.

No Image Rendered

Figure 18: Example of a failed generation in SVG (ID: 42), where the initial code raises a
ExPatError and is resolved in the first round of self-debug, resulting in a corrected plot that

matches the intended semantics.
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K.15 SVG: SELF-DEBUG FAILED

VisCoder2-32B: SVG

ID : 12
TASK: Create a horizontal bar chart to compare the usage of different media types by gender.
The chart displays five categories: Internet, TV, Newspaper, Magazine, and Radio. Each
category has two bars representing data for females and males. The x-axis shows numerical
values from 0 to 3, indicating the level of usage or preference, while the y-axis lists the media
types.
STYLE: The chart has a white background with a light gray area for the graph. The bars are
colored with semi-transparent red for females and blue for males. Dashed vertical lines serve as
grid lines for reference. Labels for the x-axis are centered below the axis, and y-axis labels are
rotated vertically. Data values are displayed on the bars. A legend on the right identifies the
colors for female and male data. The title "Question 7" is centered at the top.

Normal Generated Code
… …
<path … … />
<path … … />
<path … … /></g><g … … >
<text aria-label="medium: Internet; 
percentage: 2" role="graphics-symbol" 
aria-roledescription="text mark" text-
anchor="start" 
transform="translate(135.33333333333331,1
2.5

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
<path … … />
<path … … />
<path … … /></g><g … … >
<text aria-label="medium: 
Internet; percentage: 2" 
role="graphics-symbol" aria-
roledescription="text mark" 
text-anchor="start" 
transform="translate(135.33333
333333331,12.5

ParseError: unclosed token: line 1, column 14401

No Image
Rendered

No Image
Rendered

Figure 19: Example of a failed generation in SVG (ID: 12), where the initial code raises a
ParseError and is still failed after three rounds self-debug.
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K.16 LATEX: SUCCESSFUL GENERATION

VisCoder2-32B: LaTeX

ID : 33
Task: Generate a bar chart comparing the population of two groups labeled 'Far' and 'Near' over
a series of years. The x-axis represents the years, and the y-axis represents the population size.
Each year has two bars, one for each group, showing their respective population values.
Style: Create a vertical bar chart with distinct colors for each group: blue for 'Far' and red for
'Near'. The bars are slightly separated to enhance clarity. The y-axis label is rotated vertically on
the left side. Data values are displayed above each bar in corresponding colors. A legend is
positioned below the chart, centered, indicating which color corresponds to each group. The
chart has a clean, simple layout with no gridlines.

Generated Code:
… …
\begin{tikzpicture}
\begin{axis}[
width=12cm,
height=8cm,
xlabel=Year,
ylabel=Population,
ybar,
bar width=15pt,
ymajorgrids=true,
xtick=data,
xticklabels from table={\datatable}{Year},
legend style={at={(0.5,-0.15)}, anchor=north, legend columns=-1},
nodes near coords,
nodes near coords align={vertical},
every node near coord/.append style={font=\tiny},

]
… …

Error: null

Rendered Ground Truth

Figure 20: Example of a successful generation in LaTeX (ID: 33). The model generates code that
executes successfully and produces a plot consistent with the ground truth.
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K.17 LATEX: SELF-DEBUG RECOVERY

VisCoder2-32B: LaTeX

ID : 37
Task: Generate a scatter plot using data from a CSV file, where the x-axis represents sample
indices and the y-axis represents random values. The plot displays individual data points as
marks without connecting lines.
Style: The plot features blue circular markers distributed across the graph. The axes are labeled
with numerical values, and the grid is not visible. The layout is compact, with data points
densely packed, especially along several horizontal bands.

Normal Generated Code
\usepackage{pgfplots}\pgfplotstableread[col 
sep=comma]{

sample_index,random_value
0.0,0.34476
... ... 
399.0,0.27358
}\datatable
\documentclass[border=10pt]{standalone}
\usepackage{pgfplots}
\usepackage{pgfplotstable}

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
\begin{tikzpicture}

\begin{axis}[
xlabel=Sample Index,
ylabel=Random Value,
only marks,
mark=*,
mark size=1pt,
mark options={blue},
grid=major,
grid 

style={dashed,gray!30}
]

… …

NameError: LaTeX rendering failed: ! LaTeX Error: \usepackage before \documentclass.

No Image
Rendered

Figure 21: Example of a failed generation in LaTeX (ID: 37), where the initial code raises a
NameError and is resolved in the second round of self-debug, resulting in a corrected plot that

matches the intended semantics.
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K.18 LATEX: SELF-DEBUG FAILED

VisCoder2-32B: LaTeX

ID : 97
Task: Generate a schematic diagram of an electrical circuit featuring a voltage source labeled
V_s, an inductor labeled L_x, a capacitor labeled C_1, and another inductor labeled L_m on the
primary side. The circuit includes a transformer with a turns ratio N_1:N_2 , a diode, a capacitor
labeled C_2 , and a resistor labeled R on the secondary side. The output voltage is denoted as
v_o(t) .
Style: Create a clean and organized layout with components aligned horizontally. The circuit
elements are connected with straight lines, and labels are placed near each component for clarity.
The transformer is depicted with coils and a turns ratio label. The diagram uses a simple,
monochrome style with a consistent line thickness and small font size for labels.

Normal Generated Code
… …
\begin{circuitikz}[scale=0.8]

\draw (0,0) 
to[vsource, l=$V_s$] (0,4) 
to[L, l=$L_x$] (4,4)
to[C, l=$C_1$] (4,0) -- (0,0);

\draw (4,4) -- (6,4)
to[cute inductor, l=$L_m$] (6,0) -- (4,0);

\draw (6,4) -- (8,4)
to[transformer core] (8,0) -- (6,0);

\draw (9,3.5) to[diode] (11,3.5)
to[C, l=$C_2$] (11,0.5) -- (9,0.5)
to[R, l=$R$] (9,3.5);

\draw (11,3.5) -- (12,3.5)
node[right] {$v_o(t)$};

\node[above] at (7,4) {$N_1:N_2$};
\end{circuitikz}
\end{document}
… …

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
\begin{circuitikz}[scale=0.8]
\draw (0,0) 
to[vsource, l=$V_s$] (0,4) 
to[L, l=$L_x$] (4,4)
to[C, l=$C_1$] (4,0) -- (0,0);

\draw (4,4) -- (6,4)
to[cute inductor, l=$L_m$] (6,0) -- (4,0);

\draw (6,4) -- (8,4)
to[transformer core] (8,0) -- (6,0);

\draw (9,3.5) to[diode] (11,3.5)
to[C, l=$C_2$] (11,0.5) -- (9,0.5)
to[R, l=$R$] (9,3.5);

\draw (11,3.5) -- (12,3.5)
node[right] {$v_o(t)$};

\node[above] at (7,4) {$N_1:N_2$};
\end{circuitikz}
\end{document}
… …

NameError: ! Package circuitikz Error: Unknown circuitikz element `vsource'.

No Image
Rendered

No Image
Rendered

Figure 22: Example of a failed generation in LaTeX (ID: 97), where the initial code raises a
NameError and is still failed after three rounds self-debug.
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K.19 ASYMPTOTE: SUCCESSFUL GENERATION

VisCoder2-32B: Asymptote

ID : 31
Task: Generate a line graph with data points marked along the line. The graph plots a series of
points connected by straight lines, with markers at each data point. The x-axis is labeled with "x"
and the y-axis with "y", both featuring tick marks for reference.
Style: Create a simple and clean visual with a rectangular frame. The data points are marked
with circles, some filled and some outlined, depending on their position. The axes have evenly
spaced tick marks, and the labels are positioned outside the frame. The overall layout is balanced
and minimalistic, emphasizing clarity and readability.

Error: null

Rendered Ground Truth

Generated Code:
import graph;

size(200);
pair[] f={(5,5),(40,20),(55,51),(90,30)};

draw(graph(f),marker(scale(0.8mm)*unitcircle,FillDraw));

xaxis("x",Bottom,LeftTicks);
yaxis("y",Left,RightTicks);

Figure 23: Example of a successful generation in Asymptote (ID: 31). The model generates code
that executes successfully and produces a plot consistent with the ground truth.
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K.20 ASYMPTOTE: SELF-DEBUG RECOVERY

VisCoder2-32B: Asymptote

ID : 53
Task: Generate a logarithmic plot of the identity function over the range of x-values from 5 to 20.
The x-axis represents mass in solar units, labeled as "$M\/M_\odot$", and the y-axis represents
frequency in Hertz, labeled as "$\nu_{\rm upp}$ [Hz]". The plot displays a straight line
indicating a direct proportionality between the two variables on a logarithmic scale.
Style: Create a rectangular plot with a horizontal orientation. The x-axis is marked with ticks at
intervals of 6, 10, 12, 14, 16, and 18, while the y-axis is marked with ticks ranging from 1 to 100.
The plot uses a clean, minimalist style with a single line and clear labels for both axes. The layout
is simple, focusing on the relationship between the two variables without additional
embellishments.

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code

import graph;

size(200,150);
real[] 
x={5,6,7,8,9,10,11,12,13,14,15,16,17
,18,19,20};
real[] 
y={1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16};

draw(graph(x,y));
xaxis("$M/M_\odot$",BottomTop,LeftTi
cks);
yaxis("$\nu_{\rm upp}$ 
[Hz]",LeftRight,RightTicks);

NameError: draw(graph(x,y),LogScale,LogScale): no matching variable 'LogScale'

Normal Generated Code

import graph;
size(200,150);
real[] 
x={5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20};
real[] 
y={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

draw(graph(x,y),LogScale,LogScale);
xaxis("$M/M_\odot$",BottomTop,LeftTicks);
yaxis("$\nu_{\rmupp}$[Hz]",LeftRight,RightTicks);

No Image
Rendered

Figure 24: Example of a failed generation in Asymptote (ID: 53), where the initial code raises a
NameError and is resolved in the third round of self-debug, resulting in a corrected plot that

matches the intended semantics.
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K.21 ASYMPTOTE: SELF-DEBUG FAILED

VisCoder2-32B: Asymptote

ID : 79
Task: Generate a visual comparison of interpolation methods over a specified range. The plot
includes three curves: a Lagrange interpolation represented by a dashed line, a natural spline
shown in red, and a monotone spline depicted in blue. The x-axis is labeled with values from
1997 to 2002, while the y-axis ranges from 20 to 40. Data points are marked along the curves.
Style: Create a clean and organized layout featuring a large square plot area. The x-axis and y-
axis are clearly labeled with regular tick marks. The legend is positioned below the plot,
providing clear differentiation between the interpolation methods using distinct colors and line
styles. Data points are indicated with small gray dots, enhancing the visual clarity of the curves.

Normal Generated Code
… …
real a=1997, b=2002;
int n=5;
real[] xpt=a+sequence(n+1)*(b-a)/n;
real[] ypt={31,36,26,22,21,24};
horner h=diffdiv(xpt,ypt);
fhorner L=fhorner(h);

guide gL=graph(L,a,b,500);
draw(gL,dashed);
dot(gL,red);

real[] ypt2={31,36,26,22,21,24};
spline s2=spline(xpt,ypt2,Spline(natural));
guide gs2=graph(s2,a,b,500);
draw(gs2,red);

real[] ypt3={31,36,26,22,21,24};
spline s3=spline(xpt,ypt3,Spline(monotone));
guide gs3=graph(s3,a,b,500);
draw(gs3,blue);
… …

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
real a=1997, b=2002;
int n=5;
real[] xpt=a+sequence(n+1)*(b-
a)/n;
real[] 
ypt={31,36,26,22,21,24};

guide gL=graph(new real(real 
x) {
return ypt[0] + (x-

xpt[0])*(ypt[1]-
ypt[0])/(xpt[1]-xpt[0]);
}, a, b, 500);
draw(gL,dashed);
dot(gL,red);
… …

TypeError: horner h=diffdiv(xpt,ypt): no type of name 'horner'

No Image
Rendered

No Image
Rendered

Figure 25: Example of a failed generation in Asymptote (ID: 79), where the initial code raises a
TypeError and is still failed after three rounds self-debug.
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K.22 HTML: SUCCESSFUL GENERATION

VisCoder2-32B: HTML

ID : 6
Task: Generate a pie chart to display the distribution of various science fiction categories. The
chart segments represent different categories, such as "Dune," "Neuromancer," "Hyperion,"
"Ender's Game," "The Martian," and "Miscellaneous," with each segment sized according to its
value. The chart includes labels showing the category name and its percentage of the total.
STYLE: Create a centered layout with a light gray background. The pie chart is placed within a
white, rounded rectangle with a subtle shadow, providing a clean and modern look. The title,
"Science Fiction Categories Distribution," is centered above the chart in a bold, dark gray font.
The legend is positioned to the right of the pie chart, with category names in a smaller font size,
each colored to match its corresponding pie segment. Labels on the pie chart are bold and
positioned outside the segments for clarity.

Generated Code:
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Plotly Pie Chart</title>
<script src=""></script>
<style>… …</style>
</head>
<body>
<div id=“chart”>
</div>
<script>… …</script>
</body>
</html>

Error: null

Rendered Ground Truth

Figure 26: Example of a successful generation in HTML (ID: 6). The model generates code that
executes successfully and produces a plot consistent with the ground truth.
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K.23 HTML: SELF-DEBUG RECOVERY

VisCoder2-32B: HTML

ID : 9
Task: Generate a radial bar chart to visualize the number of GitHub stars for various AntV
projects. Each bar represents a project, with the length corresponding to the star count. The bars
are color-coded based on the number of stars, with different colors indicating different ranges of
star counts. The chart includes a central annotation displaying the total number of stars across all
projects.
Style: Create a circular chart with a white background and a subtle shadow effect. The bars are
arranged in a radial pattern, with rounded ends and varying colors. The chart is centered on the
page, with a title above it. Inside the chart, there is a central text area with a GitHub icon, the
word "AntV," and the total star count in blue. The overall layout is clean and balanced, with a
modern aesthetic.

Normal Generated Code
… …
<script>
… …
annotations: [
{… …},
{
  type: 'image‘,
  start: ['50%', '50%‘],
  src:     
'https://gw.alipayobjects.com/zos/basement_prod/6f38e5a2-
0a1a-4a0e-8b07-6e3a5a7b7b7a.svg‘,
  width: 64,
  height: 64,
  offsetY: -120
}
]
});
plot.render();
</script>
</body>
</html>

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
< annotations: [
{
  type: 'text‘,
  position: ['50%', '50%‘],
  content: 'AntV<br/>GitHub 
Stars‘,
  style: {
  fontSize: 24,
  fill: '#333‘,
  textAlign: 'center‘,
  textBaseline: 'middle‘
  }
}
]
… …
</script>
</body>
</html>

ImportError: HTML Request failed: https://......7a.svg (404 Not Found).

No Image
Rendered

Figure 27: Example of a failed generation in HTML (ID: 9), where the initial code raises a
ImportError and is resolved in the first round of self-debug, resulting in a corrected plot that

matches the intended semantics.
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K.24 HTML: SELF-DEBUG FAILED

VisCoder2-32B: HTML

ID : 85
Task: Generate a calendar heatmap to visualize daily website traffic analytics for the year 2023.
Each day is represented by a square, with the color intensity indicating the volume of unique
visitors. The data includes variations based on weekly patterns, monthly multipliers, and special
events or holidays that affect traffic levels.
Style: Create a centered layout with a light background and a white container featuring rounded
corners and a shadow effect. The title and subtitle are displayed at the top in bold and smaller
text, respectively. The calendar heatmap is positioned below, with months labeled at the top and
days of the week indicated. A color gradient bar at the bottom illustrates the traffic intensity,
with darker colors representing higher traffic. Additional text explains the color coding.

Normal Generated Code
… …

constctx=document.getElementById('calendarHeatmap').getContext('2d
');
newChart(ctx, {
type: 'calendar',
data: {
datasets: [{
label: 'Unique Visitors',
data: calendarData,
backgroundColor: 'rgba(54, 162, 235, 0.7)',
borderColor: 'rgba(54, 162, 235, 1)',
borderWidth: 1,
color: {
min: 0,
max: 1000,
empty: '#eee'

}
}]

},

Normal Rendered Ground TruthDebug Rendered

Self-Debug Generated Code
… …
<title>Calendar Heatmap -
2023 Website 
Traffic</title>
<scriptsrc="https://cdn.jsd
elivr.net/npm/chart.js"></s
cript>
<scriptsrc="https://cdn.jsd
elivr.net/npm/chartjs-
adapter-date-fns"></script>
<scriptsrc="https://cdn.jsd
elivr.net/npm/chartjs-
chart-
calendar@1.0.0/dist/chartjs
-chart-
calendar.min.js"></script>
… …

TypeError: HTML rendering error: "calendar" is not a registered controller.

No Image
Rendered

No Image
Rendered

Figure 28: Example of a failed generation in HTML (ID: 85), where the initial code raises a
TypeError and is still failed after three rounds self-debug.
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L LLM USAGE

Large Language Models (LLMs) were used to assist with language editing and polishing of the
manuscript. Specifically, we used an LLM to refine wording, improve readability, and enhance
clarity in several sections.

The LLM was not involved in research ideation, methodology, data analysis, or experimental design.
All technical ideas, analyses, and conclusions were developed and validated by the authors; the tool
was limited to editorial support.

The authors take full responsibility for the content of the manuscript, including any text edited
with LLM assistance. We verified suggested edits for accuracy and originality, ensured compliance
with ethical guidelines, and noted that LLMs are not listed as authors. We disclose this usage in
accordance with ICLR’s policies on LLM assistance and attribution.
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