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ABSTRACT

Minority collapse, where minority classes become indistinguishable, is a significant
challenge in imbalanced learning, which is addressed by methods such as Mixup
with class-balanced sampling. The minority collapse has been mathematically
analyzed using the layer-peeled model (LPM), together with the phenomenon of
Neural Collapse (NC). Although the LPM has been employed to study NC behavior
under Mixup, no prior work has analyzed minority collapse of Mixup, particularly
from the perspective of mixed labels. We investigate this overlooked factor and
pose the question: Is the mixed label balance important for alleviating minority
collapse? Our analysis reveals that (i) mixed labels should be balanced, and (ii)
in this setting, interpreting mixed labels as singletons is beneficial. Building on
the analysis, we propose a Balanced Mixed Label Sampler and a Mixed-Singleton
classifier, which balance mixed labels and treat them as singleton labels. Through
theoretical analysis, visualization, and ablation studies, we demonstrate the effec-
tiveness of our approach. Experiments on standard benchmarks further confirm
consistent performance gains, highlighting the importance of balancing mixed
labels in imbalanced learning.

1 INTRODUCTION

In imbalanced learning, severe class imbalance often causes a significant degradation of model
accuracy, particularly on the minority classes (Liu et al., 2019). One known cause of this performance
drop is the phenomenon termed minority collapse (Fang et al., 2021), wherein the class vectors
of minority classes converge and become nearly identical. To mitigate this issue, a wide range of
strategies has been explored, including data augmentation (Zhang et al., 2018; Verma et al., 2019;
Shi et al., 2023), calibration technique (Zhong et al., 2021), mixture-of-experts models (Cai et al.,
2021; Zhang et al., 2021; Xiang et al., 2020), and class-balanced loss functions (Cao et al., 2019;
Cui et al., 2019) or sampling schemes (Kang et al., 2020; Cao et al., 2019; Zhang et al., 2022; Shen
& Lin, 2016). Among these approaches, Mixup (Zhang et al., 2018), especially when combined
with class-balanced sampling, has been shown to effectively improve the model performance under
class-imbalanced conditions.

Meanwhile, Neural Collapse (NC) (Papyan et al., 2020) has emerged as a key framework for analyzing
geometric properties of last-layer features and classifier in classification models at the terminal phase
of training. Although NC has been studied in both Mixup (Fisher et al., 2024) and imbalanced
learning (Liu et al., 2023; Yang et al., 2022) separately, Mixup in imbalanced settings has not been
investigated in conjunction with NC. In particular, the balance of mixed labels has received little
attention. The only related finding comes from M-lab NC (Li et al., 2024), which observes that even
when multi-label samples are imbalanced, NC occurs at the singleton-class level as long as singleton
label samples are balanced, with multi-label class emerging as combinations of singletons. However,
whether the balance of input samples still hold for mixed labels under Mixup remains unclear. This
motivates our central research question: Could the balance of mixed labels be a critical factor in
minority collapse?

Building on the proof approach of Fang et al. (2021), we first demonstrate that minority collapse still
occurs under Mixup when the frequency of mixed labels are not balanced (Theorem 1). Although
existing class-balanced samplers partially alleviate the minority collapse of Mixup by balancing the
frequency of singleton labels, they fail to address it entirely due to the randomness of Mixup. To
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Figure 1: Overview of Balanced Mixed Label Sampler (BMLS) and Mixed-Singleton Classifier (MS)

obtain empirical evidence for this failure, we examined the per-label frequency generated in each
epoch and observed an epoch-wise label imbalance phenomenon (Figure 2). Furthermore, through
a mixed-label frequency control experiment (Figure 3), we empirically verified that this imbalance
has a substantial impact on weakening the mitigation of minority collapse under Mixup. To address
this issue, we propose Balanced Mixed Label Sampler that balances the frequency of mixed labels
across epochs ($3). Both theoretically and empirically, we demonstrate that aligning the frequency of
mixed labels across epochs mitigates the minority collapse (Proposition 1 and Figure 4). Furthermore,
our analysis uncovers that the minority collapse of Mixup is determined solely by the frequency of
singleton and mixed labels, independent of the mixup ratio. Leveraging this insight, we introduce
Mixed-Singleton classifier, which treats mixed labels as singleton labels when learning class vectors
($ 3). Compared with a conventional singleton classifier implemented as a fully connected layer,
our approach achieves superior performance, particularly improving accuracy on minority classes
(Table 1).

2 RELATED WORK

In this section, we primarily discuss the novelty of our work. Additional related work that is not
mentioned here or requires further detail can be found in Appendix A.

Mixup-based Method. Many attempts have been made to address the challenges of imbalanced
learning environments using Mixup (Zhang et al., 2018), which increases the diversity of sampled
data and alleviates risk of overfitting on tail classes, including data augmentation, architecture
improvements, and calibration methods. (See more references in Appendix A.1.) However, no
research has specifically studied on the frequency balance of mixed labels in minority collapse.

Class-balanced Methods. Various class-balanced samplers have been proposed (see more references
in Appendix A.2), yet no work has mainly focused on the frequency balance of mixed labels.
Additionally, while Logit Adjustment (Menon et al., 2021) and UniMix (Xu et al., 2021) have
concentrated on the effect of the class vectors of singleton labels, they did not interpret mixed labels
as singletons.

Neural Collapse in Mixup and Imbalanced Learning. NC in imbalanced learning has been studied
in Fang et al. (2021). To alleviate the minority collapse, Yang et al. (2022) assumed that the classifier
is fixed to the K-simplex ETF and proved that LPM with the classifier satisfies NC properties. Also,
the fixed ETF classifier with Mixup has improved the model performance in imbalanced learning.
Building on the theorems, Fisher et al. (2024) proved Mixup also satisfies NC properties for both
same class and different class. However, Yang et al. (2022) and Fisher et al. (2024) did not consider
the minority collapse from the frequency of mixed labels in the LPM with learnable classifiers.

3 METHOD

Notations. Let X be the dataset with N samples where the number of singleton label classes is K
and S be the set of their feature vectors h. Then, we formulate them as X := [(xi, ci)]

N
i=1 where ci

is the class label of the i-th sample xi and S := {hi}Ni=1. As a result, we define yi = e(ci) as the
one-hot vector of xi. Then, we denote the subset of S which has only k-th class feature vectors hk,i as
Sk := {hk,i}nk

i=1 where nk is the number of k-th class samples and k ∈ [K]. Thus, N =
∑K

k=1 nk.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Overview of Mixup. Mixup randomly permutes input samples and blends them with the ones before
permutation, respectively. Let I := [i]Ni=1 be the indices of X and π(I) := [π(i)]Ni=1 be the permuted
one where π(i) represents the index number corresponding to i-th element of I. Therefore, the
index pairs of mixed samples Iλ is denoted as Iλ := [(i, π(i))]i∈I . In this case, we denote Iλ

(a,b)

as the index pairs of (ci, cπ(i)) = (a, b), and Sλ(a,b) as the mixed feature set of (a, b)-label samples.
Therefore, Sλ(a,b) := {λha,i + (1 − λ)hb,j |(i, j) ∈ Iλ

(a,b)} = {hλ
(a,b),i}

n(a,b)

i=1 where (a, b) ∈ K2,
n(a,b) = |Iλ

(a,b)|, and K2 = {(a, b)|1 ≤ a ≤ K, 1 ≤ b ≤ K}. Thus, N =
∑

(a,b)∈K2 n(a,b).

Based on the notations, we perform mixup on each pair defined by Iλ to create mixed-label samples
by linearly interpolating them:

xλ
i = λxi + (1− λ)xπ(i),y

λ
i = λyci + (1− λ)ycπ(i)

,∀(i, π(i)) ∈ Iλ, (1)

where the mixup ratio λ ∈ (0, 1) is sampled from the beta distribution Dλ, i.e., λ ∼ Dλ(α, α) and α
is a hyperparameter.

Balanced Mixed Label Sampler. We propose the Balanced Mixed Label Sampler (BMLS), where
the frequency of all mixed-label samples is equal in each epoch as shown in Figure 1. When using
BMLS, the probability of sampling of a (a, b)-label sample is

P(i,π(i))|(i,π(i))∈Ĩλ =
1

N
. (2)

Ĩλ is the index pairs of samples where the frequency of mixed labels is balanced, i.e., n(a,b) = n for
all (a, b) ∈ K2. As done in the class-aware sampler (Shen & Lin, 2016), we remove the randomness
by pre-defining Ĩλ for every epoch. After generating Ĩλ, we simply replace Iλ to Ĩλ in Eq. 1.

As proven in Theorem 1 and Proposition 1, we show that the minority collapse observed in Mixup
arises from the imbalanced frequency of mixed-label samples (The theorems and proofs are deferred
for clarity of exposition). Consequently, the proposed sampler mitigates the minority collapse of
Mixup by performing sampling after pre-balancing the frequency of all label samples, including
mixed labels, as formulated in Eq. 2.

Mixed-Singleton Classifier. Let W ∈ RK×p be a classifier of singleton labels, which is a fully-
connected layer. We define the Mixed-Singleton classifier (MS) as

W λ = [λwa + (1− λ)wb](a,b)∈K2 , (3)

where p is the last-layer feature dimension, as shown in Figure 1. We replace the singleton classifier
with MS and perform Mixup with BMLS, where mixed-label samples x̃λ

i and their one-hot vectors
ỹλ
i are defined as:

x̃λ
i = λxi + (1− λ)xπ(i), ỹ

λ
i = eI

2(ci,cπ(i)),∀(i, π(i)) ∈ Ĩλ, (4)

where I2 denotes the index pairs of K2, and I2(a, b) gives the index number of (a, b) ∈ K2.

During the proof of Theorem 1, we focused on the observation that oversampling can mitigate the
minority collapse of Mixup regardless of the mixup lambda λ in Eq. 19. Motivated by this, we treated
each mixed label as a new singleton class. As a result, the proposed classifier improves the accuracy
on minority classes, thereby strengthening the minority collapse mitigation effect of BMLS.

Building on these methods, we generated mixed labels (a, b) only for the case where a < b, ensuring
that the existing theorem and proposition still hold, thereby mitigating the limitations of both methods.
The limitation and proof are described in $7 and Appendix C.5.

4 THEORETICAL ANALYSIS

4.1 PROOF SKETCH

We first present a proof sketch that outlines the approach we followed to propose and prove our
theorems. Fang et al. (2021) proved that oversampling mitigates minority collapse when singleton
label samples are imbalanced, following the sequence outlined below. (Gray indicates the part as
defined in Fang et al. (2021).)

3
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(1) Define the Layer-Peeled Model. (Eq. 7)
(2) Prove that NC properties are satisfied when the LPM has global optimality in the case where

singleton label samples are balanced. (Theorem 1)
(3) Demonstrate that the LPM suffers from minority collapse in the case where singleton label

samples are imbalanced. (Lemma 1 and Theorem 5)
(4) Show that oversampling alleviates minority collapse in the imbalanced case. (Proposition 1)

Our theorem and proof leverages strategies similar to those in Fang et al. (2021), but we extend these
concepts to Mixup focusing on the balance of mixed label samples.

In $4.2, (1) we define the Layer-Peeled Model with Mixup (LPMλ) and omit step (2), which holds
true according to the theorem of Fisher et al. (2024); (3) we prove that in the imbalanced case the
LPMλ also suffers from minority collapse; and in closing, (4) we show that the Balanced Mixed
Label Sampler (BMLS) alleviates the minority collapse. In $4.3, we extend the LPMλ by modifying
the classifier: (1) we newly define the Layer-Peeled Model with Mixup and Mixed-Singleton classifier
(LPMλ-MS); (2) we prove that when this model achieves global optimality, it also satisfies the NC
properties; and finally, following the same reasoning as in $4.2, (3–4) we show that in the imbalanced
case the LPMλ-MS suffers from minority collapse, and that BMLS is effective to the minority
collapse even in this setting.

4.2 BALANCING MIXED LABELS MITIGATE THE MINORITY COLLAPSE OF MIXUP

(1) Problem Settings. The Layer-Peeled Model (LPM) (Fang et al., 2021) is the optimization
program of simplified neural network, modeled by only last-layer features and classifier. Following
the definition of LPM, we obtain the Layer-Peeled Model with Mixup (LPMλ):

min
W ,Hλ

Eλ
1

N

∑
k∈K2

nk∑
i=1

L(Whλ
k,i,y

λ
k ) s.t.

1

K

K∑
k=1

∥wk∥2 ≤ EW ,
1

K2

∑
k∈K2

1

nk

nk∑
i=1

∥∥hλ
k,i

∥∥2 ≤ EH ,

(5)
where yλ

(a,b) = λe(a) + (1− λ)e(b). For simplicity, we hereafter denote W = [wk]
K
k=1 ∈ RK×p for

the weights of the classifier and the positive thresholds EW ∝ 1/K and EH ∝ 1/K.

We present a convex optimization program that serves as a relaxation of the non-convex LPMλ

(Eq. 5), leveraging the established result that a quadratically constrained quadratic program can be
transformed into a semidefinite program (Sturm & Zhang, 2003). This formulation is provided as
Eq. 11 in Appendix B.

(2) Satisfying NC properties. As proven in Fisher et al. (2024), when LPMλ (Eq. 5) has the global
optimality, NC properties are satisfied. We omit this step.

(3) Minority collapse occurs in LPMλ. Now, we are ready for proving that LPMλ also suffers from
minority collapse. Lemma 1 below relates the solutions of Eq. 11 to that of Eq. 5.
Lemma 1. Assume p ≥ K2 +K and the loss function L is convex in its first argument. Let X⋆ be a
minimizer of the convex program (Eq. 11). Define (W ⋆,H⋆) as[

h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K), (W

⋆)⊤
]
= P (X⋆)1/2, (6)

h⋆
k,i = h⋆

k, for all i ∈ Iλ
k , k ∈ K2,

where (X⋆)1/2 denotes the positive square root of X⋆ and P ∈ Rp×(K2+K) is any partial orthog-
onal matrix such that P⊤P = IK2+K . Then, (W ⋆,H⋆) is a minimizer of Eq. 5. Moreover, if all
X⋆’s satisfy 1

K2

∑K2

k=1 X
⋆(k, k) = EH , then all the solutions of Eq. 5 are in the form of Eq. 6.

Proof. See Appendix C.1 □

Theorem 1. Assume p ≥ K and nA/nB → ∞, and fix KA and KB . Let (W ⋆,H⋆) be any global
minimizer of the LPMλ (Eq. 5). As the imbalance factor R ≡ nA/nB → ∞, we have

limw⋆
k −w⋆

k′ = 0p, for all KA < k < k′ ≤ K.

Proof. See Appendix C.3 □
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From Lemma 1 and Theorem 1, we demonstrate that LPMλ also exhibits minority collapse.

(4) Balancing mixed labels mitigates minority collapse in LPMλ. To formalize the behavior of a
neural network trained by minimizing a new program with balanced samples including mixed-label
ones through BMLS, we propose that it may perform as if it were trained on a larger dataset containing
nA examples in the majority class and wrnB examples in the minority class. We begin by analyzing
the LPMλ in the context of BMLS:

min
W ,Hλ

1

N ′

 ∑
k∈K2

A

nA∑
i=1

L(Whλ
k,i,y

λ
k ) + wr

∑
k∈K2

B

nB∑
i=1

L(Whλ
k,i,y

λ
k )

 (7)

s.t.
1

K

K∑
k=1

∥wk∥2 ≤ EW ,
1

|K2
A|
∑
k∈K2

A

1

nA

nA∑
i=1

∥∥hλ
k,i

∥∥2 + 1

|K2
B |

∑
k∈K2

B

1

nB

nB∑
i=1

∥∥hλ
k,i

∥∥2 ≤ EH ,

where N ′ = nA|K2
A|+ wrnB |K2

B |
The following result supports the intuition that BMLS enhances the size of the minority classes in the
LPMλ. For simplicity, we omit the superscript λ in Proposition 1.

Proposition 1. Assume p ≥ K2 +K and the loss function L is convex in the first argument. Let X⋆

be any minimizer of the convex program (Eq. 11) with n(1,1) = n(1,2) = · · · = n(KA,KA) = nA and
n(KA+1,KA+1) = n(KA+1,KA+2) = · · · = n(K,K) = wrnB . Define (W ⋆,H⋆) as[

h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K), (W

⋆)⊤
]
= P (X⋆)1/2, (8)

h⋆
kA,i = h⋆

kA
, for all i ∈ Iλ

kA
, kA ∈ K2

A, h⋆
kB ,i = h⋆

kB
, for all i ∈ Iλ

kB
, kB ∈ K2

B ,

where P ∈ Rp×(K2+K) is any partial orthogonal matrix such that P⊤P = IK2+K . Then,
(W ⋆,H⋆) is a global minimizer of the mixed-label balanced LPMλ (Eq. 7). Moreover, if all X⋆’s
satisfy 1

K2

∑
k∈K2 X⋆(k, k) = EH , then all the solutions of Eq. 7 are in the form of Eq. 8.

Proof. See Appendix C.2. □

In conjunction with Lemma 1, Proposition 1 demonstrates that the number of training examples in
each minority mixed label is effectively wrnB instead of nB in the LPMλ. In the special case where
wr = nA/nB ≡ R, the results indicate that the angles between any pair of class vectors are equal,
regardless of whether they belong to the majority or minority classes.

Remark 1. According to Theorem 1, Mixup also experiences the minority collapse. Additionally,
as proven in Proposition 1, even when using class-balanced samplers to alleviate label suppression
and learn an unbiased classifier, minority collapse is partially mitigated but not fully resolved, as the
frequency of mixed labels remains imbalanced. For this reason, when using Mixup in imbalanced
learning, the frequency of not only singleton labels but also mixed ones should be balanced.

4.3 ENHANCING MINORITY COLLAPSE MITIGATION VIA SINGLETON INTERPRETATION

Building on Theorem 1 and Proposition 1, we raise a conjecture: If mixed labels are interpreted as
singletons, then the mitigation of minority collapse will be enhanced.

The rationale for the conjecture can be summarized as follows: (i) Difference between Mixup loss
and mixed feature. In Proposition 1, minority collapse occurs regardless of the mixup ratio λ, as
illustrated in Eq. 19. This is because the total loss derived from features is equivalent to that obtained
without Mixup. However, the behavior of features differs: while the loss is divided between classes
according to the mixup ratio λ, the mixed features are not generally decomposed in this way due
to the non-linearity of the model; (ii) Similar importance of singleton and mixed labels in minority
collapse. In addition, the minority collapse of LPMλ depends not only on the number of singleton
label samples but also on that of mixed-label samples, as if the mixed labels were singletons; (iii)
Negative impact of Mixup loss on classifier learning. Furthermore, it has been reported that Mixup
primarily facilitates representation learning while exerting a minimal or adverse effect on classifier

5
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(a) Heatmap of label frequencies on CIFAR10-LT (b) Avg. CV Curve

Figure 2: Mean and standard deviation of label frequencies including mixed label across epochs.
(a) Higher imbalance factor means higher imbalanced, and (b) the closer Avg. CV is to 0, the more
evenly the labels appear across epochs

learning (Zhong et al., 2021). For this reason, would it not be more effective in alleviating minority
collapse to interpret mixed labels as singletons, as this reduces the adverse effect of Mixup?

(1) Problem Settings. By replacing the classifier as Mixed-Singleton classifier defined in $3, we
obtain the LPMλ with Mixed-Singleton classifier (LPMλ-MS):

min
Wλ,Hλ

Eλ
1

N

∑
k∈K2

nk∑
i=1

L(W λhλ
k,i,y

λ
k )

s.t.
1

|K2|
∑
k∈K2

∥∥wλ
k

∥∥2 ≤ EW ,
1

K2

∑
k∈K2

1

nk

nk∑
i=1

∥∥hλ
k,i

∥∥2 ≤ EH ,

(9)

where the only differences are W λ = [λwa + (1− λ)wb](a,b)∈K2 .

(2) Satisfying NC properties. In this setting, LPMλ-MS has the same global minimum with that of
the LPM in balanced case where the number of classes is K due to the linear interpolation property
of Wλ

(a,b). (See Eq. 46 proven in Theorem 3.) As a result, the LPMλ-MS also satisfies NC properties.

(3-4) Therefore, we omit steps (3-4) and conclude Theorem 2.

For simplicity, we remove the superscript λ in Theorem 2.

Theorem 2. Assume p ≥ 2K2 and the loss function L is convex in the first argument. Let X⋆

be any minimizer of the convex program with n(1,1) = n(1,2) = · · · = n(KA,KA) = nA and
n(KA+1,KA+1) = n(KA+1,KA+2) = · · · = n(K,K) = wrnB . Define (W ⋆,H⋆) as[

h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K), (W

⋆)⊤
]
= P (X⋆)1/2, (10)

h⋆
k,i = h⋆

k, for all i ∈ Iλ
k , k ∈ K2

A, h⋆
k,i = h⋆

k, for all i ∈ Iλ
k , k ∈ K2

B ,

where P ∈ Rp×2K2

is any partial orthogonal matrix such that P⊤P = I2K2 . Then (W ⋆,H⋆) is a
global minimizer of the mixed-label balanced LPMλ-MS.

Proof. Theorem 2 follows directly from the same arguments applied to oversampling-adjusted LPM
in imbalanced case, which has already been proven in Fang et al. (2021). We omit the proof here. □

Remark 2. As proven in Theorem 2, balancing mixed labels and interpreting them as singletons
allows the LPMλ-MS to operate in the same manner of the LPM. At the same time, it is expected to
preserve the strong feature learning effect of Mixup while potentially reducing its negligible influence
on classifier learning by maintaining mixed-label samples but removing the mixup loss.
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D Ctgy.
Coverage ratio

0.0 0.2 0.4 0.6 0.8 1.0

C10

few 58.74 58.56 58.50 58.51 60.06 65.60
med 68.46 71.09 74.63 77.85 77.10 75.21
many 86.93 92.13 91.79 91.49 91.91 89.59

all 71.08 73.64 74.94 76.14 76.43 76.64

C100

few 7.72 10.28 12.17 12.66 13.16 13.20
med 34.49 39.13 42.95 44.47 46.21 46.97
many 61.26 65.64 66.49 67.85 68.93 67.60

all 36.37 40.31 42.50 43.66 44.81 44.60

Figure 3: Mixed-label frequency control experiments on CIFAR10/100 LT datasets. Coverage ratio
represents the proportion of mixed labels used in training during one epoch compared to the total
number of mixed labels. (e.g., when coverage ratio is 0.6 in CIFAR100-LT, the model trains on mixed
labels consisting of combinations of 60 different classes, which change with each epoch.) (figure)
Test Acc. (%) and Avg. CV over coverage ratio (table) Comparison of test accuracies

Sampler Test Acc. (%) ↑ UG ↑ U ↑
Random 72.91 14.6404 4.2325

CBS 75.86 15.2521 4.4848
CAS 76.60 15.3319 4.4999

BMLS 78.71 15.3379 4.5651

Figure 4: Experiments on CIFAR10-LT dataset for the effectiveness of BMLS to minority collapse.
(figure) Visualization of 2D-projection of class vectors about Many class {0} and Few classes {8, 9}.
Dashed line indicates each class vector and contrast of background means the confidence value, i.e.,
a confidence close to 0.5 indicates that the model is confused between the two classes for the given
sample, and this is represented by darker colors in the figure. (table) Quantitative comparison results.
(UG: Uniformity of all classes, U : Uniformity of {0, 8, 9} classes)

5 EXPERIMENTAL RESULTS

To empirically validate the effectiveness of our analysis and proposed solutions, we conducted
experiments in various imbalanced environments. We used CIFAR10/100-LT, Places-LT, ImageNet-
LT and iNaturalist2018, with five repeated experiments with random seeds in CIFAR10/100-LT and
three in others. The tables presenting the experimental results show the average of test accuracies.
Detailed criteria and descriptions of the evaluation results reported in the table are provided in
Appendix E In all tables, imb refers to the imbalance factor, C10/100 represents the CIFAR10/100-LT
datasets, Clf. refers to the classifier, and BMLSMS denotes the method using both BMLS and MS.
Unless otherwise specified, all experiments include Mixup. Best in bold. Implementation details are
illustrated in Appendix D.

5.1 EMPIRICAL VALIDATION

Epoch-wise Label Imbalance. To demonstrate the empirical evidence of Remark 1, we examine
the mean and standard deviation of label frequencies from various sampler: random sampler, class-
balanced sampler (CBS) (Kang et al., 2020), class-aware sampler (CAS) (Shen & Lin, 2016), and ours
(BMLS), as shown in Figure 2. We use the average of Coefficient of Variation (CV) (Dodge, 2008) as
the metric to measure the dispersion of each label frequency distributions: CV = 1

C

∑C
c=1

σc

µc
, where

the lower CV, the less dispersion, which means labels evenly appear across epochs. After training,
the mean of label frequencies is almost balanced across all samplers, but epoch-wise balance is not.
To empirically validate that the epoch-wise label imbalance is a problem in imbalanced learning, we
do mixed-label frequency control experiments. As shown in Figure 3, the more imbalanced mixed
label appears from epoch to epoch, the lower the performance of models.

The Effect of Balanced Mixed Label Sampler. As shown in Figure 3, epoch-wise imbalance not

7
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Table 1: Experiments on CIFAR10/100-LT datasets with imbalance factor 200 and 100 for effective-
ness of Multi-Singleton Classifier (higher imbalance factor is more imbalanced)

Sampler Dataset Clf.
imb200 imb100

many med few all many med few all

BMLS C10
FC 90.49 74.12 54.43 73.13 88.53 77.84 70.53 78.85
MS 88.94 72.97 62.77 74.70 89.14 76.34 74.63 79.67
diff. -1.55 -1.15 +8.34 +1.57 +0.61 -1.50 +4.10 +0.82

BMLS C100
FC 65.77 41.73 7.19 40.36 68.98 46.13 14.98 45.32
MS 63.24 44.86 11.19 41.71 66.31 49.80 21.80 47.62
diff. -2.53 +3.13 +4.00 +1.35 -2.67 +3.67 +6.82 +2.30

Table 2: Experiments on CIFAR10/100-LT datasets with various imbalance factors. (†: the reported
values are taken from each reference paper. More references in Table 7)

Method
CIFAR10-LT CIFAR100-LT

imbalance factor imbalance factor
200 100 50 10 200 100 50 10

ERM+CAS† N/A 68.40 N/A 86.90 N/A 31.90 N/A 55.00
Mixup† 67.30 72.80 78.60 87.70 38.70 43.00 48.10 58.20
LOM† N/A 74.20 N/A 89.40 N/A 41.50 N/A 59.90
ETF+DR† 71.90 76.50 81.00 87.70 40.90 45.30 50.40 N/A
Remix† N/A 73.00 N/A 88.50 N/A 41.40 N/A 59.50
DBN-mix† 79.58 83.47 86.82 90.87 46.21 51.04 54.93 64.98

Mixup 66.77 72.94 78.64 88.05 39.06 42.88 48.31 63.03
+LOM 70.17 76.63 81.15 89.24 39.61 44.24 49.99 63.90
+CAS 69.90 76.43 81.42 89.24 40.28 44.65 50.07 63.57
+BMLSMS 74.70 79.67 83.46 88.51 41.71 47.62 52.74 64.47

diff. +7.93 +6.73 +4.82 +0.46 +2.65 +4.74 +4.43 +1.44

ETF+DR 71.58 76.82 81.25 87.59 41.20 45.07 50.71 63.08
BMLS+WETFMS+CE 77.73 80.31 84.22 88.26 42.73 47.10 52.44 64.10

diff. +6.15 +3.49 +2.97 +0.67 +1.53 +2.03 +1.73 +1.02

Remix 69.58 75.15 80.41 88.61 41.03 44.95 50.19 63.45
+BMLS 73.95 80.10 83.92 88.62 39.95 46.34 51.53 64.42
+BMLSMS 73.18 78.00 83.70 88.20 40.25 46.82 49.78 63.54

diff. +3.60 +2.85 +3.29 -0.41 -0.78 +1.87 -0.41 +0.09

DBN-mix 77.40 82.40 86.05 91.01 40.71 45.52 50.47 62.68
+BMLSMS 79.73 84.30 87.28 90.93 44.42 49.08 55.41 65.42

diff. +2.33 +1.90 +1.23 -0.08 +3.71 +3.56 +4.94 +2.74

only of singleton labels but also of mixed ones affects model performance. While class-balanced
sampling methods such as CBS and CAS oversamples singleton label samples within each mini-
batch, Mixup ruins the balance of both singleton labels and mixed ones by randomly permuting
input samples and blending them each other. Empirically, we observe that enforcing balance among
mixed labels through BMLS improves model performance, promoting more balanced classifier, as
demonstrated on Figure 4.

The Effect of Mixed-Singleton Classifier. To validate the Mixed-Singleton classifier and support
the conjecture in $4.3, we compared a singleton classifier (FC) and ours (MS). As shown in Table 1,
MS further boosts performance, particularly for few classes. This improvement indicates that MS
facilitates less minority collapse in few classes, and the effect still maintains even though the degree
of imbalance increases.
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Table 3: Experiments on large datasets. (*:use pre-trained model) (More detail results in Table 5)

Method Places-LT Places-LT* ImageNet-LT iNaturalist18
random 22.06 25.90 45.19 64.62
CBS 24.79 37.32 47.49 67.06
CAS 24.26 37.44 47.31 67.55
BMLS 27.33 37.39 48.83 66.98
BMLSMS 27.95 37.81 47.54 56.60

5.2 STANDARD IMBALANCED LEARNING BENCHMARKS

Results and Analysis on Small Datasets. To evaluate the performance of our method, we selected
Mixup, CAS, and LOM—the latter being the most similar to our approach—as baselines. As shown in
Table 2, our proposed method achieves the highest performance on CIFAR10-LT and CIFAR100-LT
across all settings, except for the case with an imbalance factor of 10, where class imbalance is
relatively mild. Furthermore, when classes are categorized into many, medium, and few based on their
sample frequency, and test accuracy is measured accordingly (see Table 8 in Appendix E), BMLS
demonstrates the largest improvement for few classes compared to other baselines. These results
indicate that BMLS mitigates minority collapse more effectively than other class-balanced samplers.

Integration with ETF classifier, Remix, and DBN-mix. To validate the generality of our approach,
its effectiveness across diverse settings, and its compatibility with other Mixup-based methods, we
reproduced several representative techniques: (i) ETF+DR (Yang et al., 2022), an NC-inspired method
that fixes the classifier to a simplex ETF form; (ii) Remix (Chou et al., 2020), which re-balances
the Mixup lambda according to class sample counts; and (iii) DBN-mix (Baik et al., 2024), which
substantially improves imbalanced learning performance through bilateral Mixup and a double-branch
architecture. Then, we applied our proposed method to each of them. All experimental settings are
identical to ours, and detailed descriptions of the reproducibility process and the integration of our
method with each baseline are provided in Appendix D. As shown in Table 2, our proposed methods
significantly improve the performance of prior mixup-based methods by seamlessly integrating them.
Even in DBN-mix experiments, our proposed methods achieve performance that is competitive with
state-of-the-art methods. Through integration experiments with a range of Mixup-based methods, we
demonstrate that our proposed method has the potential to serve as an effective sampler and classifier,
facilitating the development of new state-of-the-art methods. More detailed comparative results for
ETF+DR and Remix can be found in Table 6 (Appendix E) and Table 14 (Appendix F.1), respectively.

Results and Analysis on Large Datasets. In practical experimental settings, both BMLS and MS
exhibit limitations depending on the number of classes K. First, BMLS struggles when K2 is bigger
than the dataset size, as it fails to generate mixed samples uniformly across all mixed-labels in each
epoch. This leads to the same issue seen in traditional class-balanced samplers, we already introduced,
epoch-wise label imbalance. MS, in addition to the issues faced by BMLS, suffers from an exponential
increase in the number of class vectors for mixed labels as K grows. Concurrently, the number of
samples available for learning each class vector decreases significantly, raising the potential for
underfitting. As shown in the results in Table 3, the effect of BMLSMS diminishes as the number of
classes increases (i.e., KPL = 365 < KIN = 1000 < KiNat18 = 8142). However, despite these
limitations, BMLSMS demonstrates superior performance compared to other class-balanced samplers
on Place-LT, and when only BMLS is used on ImageNet-LT, it achieves the highest performance,
while improving the accuracy on few classes. (See Table 9 and Table 10 in Appendix E.) Even in the
most challenging case, iNaturalist2018, using only BMLS still results in competitive performance
compared to other class-balanced samplers.

5.3 ABLATION STUDY

To empirically validate whether our proposed methods effectively address the minority collapse issue
and improve model performance in imbalanced learning environments, we conducted an ablation
study. As shown in Table 4, applying both BMLS and MS together resulted in the largest performance
improvement. Moreover, in scenarios where the number of samples in few classes is extremely small
(e.g., imbalance factors of 200 and 100 in CIFAR100-LT), where both MS and FC face the most
challenging imbalanced condition, MS alone actually outperforms.

9
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Table 4: Ablation study on CIFAR10/100-LT datasets with various imbalance factors including K2

classifier (notated as K2 on the table). The results are the mean of five repeated experiments with
random seeds. Best in bold (CBS: Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS:
Balanced Mixed Label Sampler)

Sampler Clf.
CIFAR10-LT CIFAR100-LT

imbalance factor imbalance factor
200 100 50 10 200 100 50 10

Sampler
random FC 66.77 72.94 78.64 88.05 39.06 42.88 48.31 63.03
BMLS FC 73.13 78.85 83.07 89.46 40.03 45.20 51.99 65.72

Classifier
random MS 53.11 64.08 68.56 80.56 33.42 36.87 41.66 56.71
random K2 34.86 39.01 42.20 51.60 7.90 8.72 9.22 16.41
BMLS MS 74.70 79.67 83.46 88.51 41.71 47.62 52.74 64.47

K2 Classifier. As shown in the results, the K2 classifier performs worse than MS alone, and even
worse than when MS is combined with a random sampler. This degradation occurs because the use of
a K2 classifier drastically reduces the number of samples available to learn each class vector, leading
to underfitting due to insufficient class-vector learning. Through this experiment, we empirically
confirm that the performance improvement of MS is not attributable to increased classifier capacity,
but rather to the effect of the linear interpolation between class vectors induced by mixup ratio λ.

6 CONCLUSION

The research problem targeted in this study is the issue of minority collapse in imbalanced learning
environments, where class imbalance negatively impacts model performance, particularly for minority
classes. We analyzed the impact of Mixup on this problem and identified two key findings: first, mi-
nority collapse is influenced by the frequency balance of mixed labels, and second, when mixed labels
are balanced, interpreting them as singletons enhances reducing the minority collapse. Based on these
findings, we proposed BMLS and MS as solutions. BMLS balanced mixed-label frequencies more
effectively, while MS leveraged the singleton interpretation to further enhance classifier performance.
These methods demonstrated significant effectiveness in mitigating minority collapse and improving
model performance, particularly for minority class¡ samples. Through experiments, we validated
the utility and versatility of the proposed methods, showing that both BMLS and MS consistently
improved performance compared to existing baselines and demonstrated their applicability across
different datasets and imbalance factors.

7 LIMITATIONS AND FUTURE WORK

Scalability. As observed in the experimental results and analysis for large datasets, both BMLS and
MS suffer from issues related to epoch-wise label imbalance and underfitting class vectors due to the
exponential increase in the number of mixed labels, which is proportional to the number of singleton
labels K. Additionally, in this study, to ensure a fair comparison, we matched the number of samples
learned per epoch to those generated by a random sampler (e.g., in iNaturalist2018, we used 437,513
images, while the number of mixed labels was K2 = 66, 292, 164 with K = 8, 142). As explained
in $3, this paper partially addresses the issue by reducing the diversity of mixed labels. However, if
the number of training samples is sufficiently increased without considering the constraint, it could
also serve as a technical solution.

Integration with other methods. In this study, we extend our methods to Remix, ETF+DR, and
DBN-mix. However, both BMLS and MS are methods that can be used in conjunction with other
Mixup-based methods for imbalanced learning. Through the experiments with the previous methods,
we demonstrated the potential for integration with other methods. We anticipate that future research
will explore these integrations to more effectively mitigate minority collapse.
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REPRODUCIBILITY STATEMENT

We summarize the reproducibility statement of this paper as follow.

• $3. To reproduce BMLS and MS, we define notations and provide helpful preliminaries
with a theoretical support in Appendix C.5.

• $4. To prove our theorems such as Theorem 1, Proposition 1, and Theorem 2, we demonstrate
the detailed proofs of them in Appendix C.

• $5. All experiments can be reproduced using our text supplementary materials (Appendix D),
which provide dataset descriptions, model architectures, and hyperparameter settings, as well
as our code including configuration files for each experiment. Additionally, experimental
requirements, such as necessary libraries, are specified in the README files included with
the code.

In addition, our codes can be accessed at link (T.B.A)
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APPENDIX

DETAILS ABOUT LARGE LANGUAGE MODELS IN PAPER WRITING

In this paper, the authors used LLMs solely for the purpose of checking mistranslations or grammar.

A ADDITIONAL RELATED WORK

A.1 MIXUP-BASED METHOD

Data augmentation. Mixup (Zhang et al., 2018) generates mixed-label samples by interpolating
between input samples, extending training distribution support. Manifold Mixup (Verma et al., 2019)
applies this technique to intermediate layers, regularizing the network by encouraging less confident
predictions. CP-Mix, or Confusion-Pairing Mixup (Yoon et al., 2025), augments samples based on
confusion pairs, addressing data deficiency by enhancing the model’s ability to distinguish frequently
misclassified class pairs. ExtraMix (Kwon et al., 2023) introduces a mixup technique capable of
extrapolation, broadening both feature and label distributions, which minimizes label imbalance more
effectively than traditional methods. CutMix (Yun et al., 2019; Zhao & Lei, 2021; Pan et al., 2024)
focuses on mixed-label sample generation by cutting and pasting image patches, creating a regional
dropout effect. CMO (Park et al., 2021) extends this idea by pasting minority class images onto
majority class backgrounds, enriching minority class samples with context from majority class images.
OTMix (Gao et al., 2023) improves upon this by using Optimal Transport to adaptively combine
majority class backgrounds with minority class foregrounds, ensuring semantically reasonable mixed
images.

Architecture. BBN (Zhou et al., 2020), SBN, and DBN (Baik et al., 2024) utilize different archi-
tectures to enhance both representation and classifier learning. These methods incorporate bilateral
mixup or decoupling strategies to optimize performance for imbalanced datasets. OTLR (Liu et al.,
2019) uses dynamic meta-embedding and modulated attention to map images into a feature space
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that respects both closed-world classification and the novelty of the open world, improving the
generalization of imbalanced datasets.

Calibration or two-stage. UniMix (Xu et al., 2021) balances class distributions by introducing
a novel mixing factor and sampler that favors the minority class. MiSLAS (Zhong et al., 2021)
decouples representation and classifier learning, improving both calibration and performance in
imbalanced data scenarios.

While many attempts have been made to address the challenges of imbalanced learning environments
using Mixup, including data augmentation, architecture improvements, and calibration methods, no
research has specifically focused on the balance of mixed labels in such contexts.

A.2 CLASS-BALANCED METHODS

Re-balance. Remix (Chou et al., 2020) applies a higher mixup ratio to minority classes, rebalancing
the data without sampling. Re-weighting (Elkan, 2001; Byrd & Lipton, 2019; Cui et al., 2019)
adjusts the loss function by tuning class weights, with methods like Balanced SoftMax (Ren et al.,
2020) explicitly considering label distribution shifts during optimization. Logit Adj (Menon et al.,
2021) adjusts logits based on label frequencies, promoting a larger margin between rare positive and
dominant negative labels. τ -Norm (Kang et al., 2020) normalizes classifier weight norms according
to class size, rebalancing decision boundaries. LDAM loss (Cao et al., 2019) improves generalization
by replacing standard cross-entropy with a margin-based approach, tailored to handle imbalanced
datasets. cRT (Kang et al., 2020) re-trains the classifier using class-balanced sampling, improving the
model’s generalization ability. LWS (Kang et al., 2020) focuses on re-scaling classifier weights to
ensure a balanced learning process for imbalanced datasets.

Re-/Over-Sampling. M2M (Kim et al., 2020) augments minority classes by translating samples
from majority classes, enhancing generalization for minority class features. MixBoost (Kabra et al.,
2020) iteratively selects and combines majority and minority class instances to create hybrid samples,
improving model performance. The Meta Sampler (Ren et al., 2020), built on balanced SoftMax,
adapts the sampling rate through meta-learning to alleviate over-balancing issues. CB Sampling (Kang
et al., 2020) ensures that each class has an equal probability of being selected, balancing the dataset
during training. Class-Aware Sampler (CAS) (Shen & Lin, 2016) is more specific method of CB
Sampling, which explicitly ensures the class frequency balance on each mini-batch. Label-Occurrence
Mixup (LOM) (Zhang et al., 2022) uses two CB samplers to sample input pairs, respectively. CSA (Shi
et al., 2023) generates diverse training images for tail classes by maintaining a context bank from
head-class images.

Various class-balanced samplers have been proposed, yet no research has specifically focused on the
balance of mixed labels. Additionally, while methods such as Logit Adjustment and UniMix have
concentrated on singleton-labels, they did not interpret mixed labels as singletons.

A.3 NEURAL COLLAPSE IN MIXUP AND IMBALANCED LEARNING

NC in imbalanced learning has been studied in Fang et al. (2021). To alleviate the minority collapse,
Yang et al. (2022) assumed that the classifier is fixed to the K-simplex ETF and proved that LPM
with the classifier satisfies NC properties. Also, the fixed ETF classifier with Mixup has improved the
model performance in imbalanced learning. Building on the theorems, Fisher et al. (2024) proved
Mixup also satisfies NC properties for both same class and different class. However, Yang et al.
(2022) and Fisher et al. (2024) did not consider the minority collapse from the mixed label balance in
the LPM with learnable classifiers.
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B CONVEX OPTIMIZATION PROGRAM

To begin with, defining hλ
k = 1

nk

∑nk

i=1 h
λ
k,i as the feature mean of

the Sλk where k ∈ K2, we introduce a new decision variable X =

[hλ
(1,1),h

λ
(1,2), . . . ,h

λ
(K,K),W

⊤]⊤[hλ
(1,1),h

λ
(1,2), . . . ,h

λ
(K,K),W

⊤] ∈ R(K2+K)×(K2+K). By
definition, X is positive semi-definite and satisfies

1

K2

K2∑
k=1

X(k, k) =
1

K2

∑
k∈K2

∥hλ
k∥2

a
≤ 1

K2

∑
k∈K2

1

nk

nk∑
i=1

∥∥hλ
k,i

∥∥2 ≤ EH

and
1

K

K2+K∑
k=K2+1

X(k, k) =
1

K

K∑
k=1

∥wk∥2 ≤ EW ,

where
a
≤ follows from the Cauchy-Schwarz inequality. Thus, we consider the following semi-definite

programming problem:

min
X∈R(K2+K)×(K2+K)

∑
k∈K2

nk

N
L(z(k)λ,yλ

k )

s.t.X ⪰ 0, (11)

1

K2

K2∑
k=1

X(k, k) ≤ EH ,
1

K

K2+K∑
k=K2+1

X(k, k) ≤ EW ,

for all 1 ≤ k ≤ K2,

zk =
[
X(k,K2 + 1),X(k,K2 + 2), . . . ,X(k,K2 +K)

]⊤
.

When L is the cross-entropy loss with softmax function,

L(zλ(k),yλ
k ) = −λ log

(
exp(zλ(a))∑K

k′=1 exp(z
λ(k′))

)
− (1− λ) log

(
exp(zλ(b))∑K

k′=1 exp(z
λ(k′))

)
,

where zλ(k′) denotes the k′-th entry of the logit zλ
i = Whλ

k,i, and k = (a, b).
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C PROOFS

C.1 PROOF OF LEMMA 1

Restated Lemma 1. Assume p ≥ K2 +K and the loss function L is convex in its first argument.
Let X⋆ be a minimizer of the convex program (Eq. 11). Define (W ⋆,H⋆) as[

h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K), (W

⋆)⊤
]
= P (X⋆)1/2,

h⋆
k,i = h⋆

k, for all i ∈ Iλ
k , k ∈ K2,

where (X⋆)1/2 denotes the positive square root of X⋆ and P ∈ Rp×(K2+K) is any partial orthogonal
matrix such that P⊤P = IK2+K . Then, (W ⋆,H⋆) is a minimizer of Eq. 5. Moreover, if all X⋆’s
satisfy 1

K2

∑K2

k=1 X
⋆(k, k) = EH , then all the solutions of Eq. 5 are in the form of Eq. 6.

Proof. For any feasible solution
(
W ,Hλ

)
for the original program Eq. 5, we define

hλ
k :=

1

nk

nk∑
i=1

hk,i, k ∈ K2,

and
X :=

[
hλ
(1,1),h

λ
(1,2), . . . ,h

λ
(K,K),W

⊤
]⊤ [

hλ
(1,1),h

λ
(1,2), . . . ,h

λ
(K,K),W

⊤
]
.

Clearly, X ⪰ 0. For the other two constraints of Eq. 11, we have

1

K2

K2∑
k=1

X(k, k) =
1

K2

∑
k∈K2

∥hλ
k∥2

a
≤ 1

K2

∑
k∈K2

1

nk

nk∑
i=1

∥∥hλ
k,i

∥∥2 b
≤ EH

and
1

K

K2+K∑
k=K2+1

X(k, k) =
1

K

K∑
k=1

∥wk∥2
c
≤ EW ,

where
a
≤ applies Jensen’s inequality and

b
≤ and

c
≤ use that

(
W ,Hλ

)
is a feasible solution. So X is a

feasible solution for the convex program Eq. 11. Letting L0 be the global minimum of Eq. 11, for any
feasible solution

(
W ,Hλ

)
, we obtain

1

N

∑
k∈K2

nk∑
i=1

L(Whλ
k,i,y

λ
k ) =

∑
k∈K2

nk

N

[
1

nk

nk∑
i=1

L(Whλ
k,i,y

λ
k )

]
a
≥
∑
k∈K2

nk

N
L(Whλ

k ,y
λ
k ) =

∑
k∈K2

nk

N
L(z(k)λ,yλ

k ) ≥ L0, (12)

where in
a
≥, we use L is convex on the first argument, and so L(Whλ,yλ

k ) is convex on h given W
and k ∈ K2.

For the simplicity of our expressions, we hereafter remove the superscript λ of Hλ, hλ and zλ.

On the other hand, considering the solution (W ⋆,H⋆) defined in Eq. 6 with X⋆ being a minimizer

of Eq. 11, we have
[
h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K),W

⊤
]⊤ [

h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K),W

⊤
]
= X⋆

(p ≥ K2 +K guarantees the existence of
[
h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K), (W

⋆)⊤
]
). We can verify that

(W ⋆,H⋆) is a feasible solution for Eq. 5 and have

1

N

∑
k∈K2

nk∑
i=1

L(W ⋆h⋆
k,i,y

λ
k ) =

∑
k∈K2

nk

N
L(z(k)⋆,yλ

k ) = L0, (13)

where z(k)⋆ =
[
X⋆(k,K2 + 1),X⋆(k,K2 + 2), . . . ,X⋆(k,K2 +K)

]⊤
for k ∈ K2.
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Combining Eq. 12 and Eq. 13, we conclude that L0 is the global minimum of Eq. 5 and (W ⋆,H⋆)
is a minimizer.

Suppose there is a minimizer (W ′,H ′) that cannot be written as Eq. 6. Let

h′
k =

1

nk

nk∑
i=1

h′
k,i, k ∈ K2,

and

X ′ =
[
h′
(1,1),h

′
(1,2), . . . ,h

′
(K,K), (W

′)⊤
]⊤ [

h′
(1,1),h

′
(1,2), . . . ,h

′
(K,K), (W

′)⊤
]
.

Eq. 12 implies that X ′ is a minimizer of Eq. 11. As (W ′,H ′) cannot be written as Eq. 6 with
X⋆ = X ′, then there is a k′ ∈ K2, i, j ∈ [nk′ ] with i ̸= j such that hk′,i ̸= hk′,j . We have

1

K2

K2∑
k=1

X ′(k, k) =
1

K2

∑
k∈K2

∥h′
k∥2

=
1

K2

∑
k∈K2

1

nk

nk∑
i=1

∥∥h′
k,i

∥∥2 − 1

K2

∑
k∈K2

1

nk

nk∑
i=1

∥h′
k,i − h′

k∥2

≤ 1

K2

∑
k∈K2

1

nk

nk∑
i=1

∥∥h′
k,i

∥∥2 − 1

K2

1

nk′
(∥h′

k′,i − h′
k′∥2 + ∥h′

k′,j − h′
k′∥2)

≤ 1

K2

∑
k∈K2

1

nk

nk∑
i=1

∥∥h′
k,i

∥∥2 − 1

K2

1

2nk′
∥h′

k′,i − h′
k′,j∥2

<EH .

By contraposition, if all X⋆ satisfy that 1
K2

∑K2

k=1 X
⋆(k, k) = EH , then all the solutions of Eq. 5

are in the form of Eq. 6. We complete the proof. □
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C.2 PROOF OF PROPOSITION 1

Restated Proposition 1. Assume p ≥ K2+K and the loss function L is convex in the first argument.
Let X⋆ be any minimizer of the convex program (Eq. 11) with n(1,1) = n(1,2) = · · · = n(KA,KA) =
nA and n(KA+1,KA+1) = n(KA+1,KA+2) = · · · = n(K,K) = wrnB . Define (W ⋆,H⋆) as[

h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K), (W

⋆)⊤
]
= P (X⋆)1/2,

h⋆
kA,i = h⋆

kA
, for all i ∈ Iλ

kA
, kA ∈ K2

A, h⋆
kB ,i = h⋆

kB
, for all i ∈ Iλ

kB
, kB ∈ K2

B ,

where P ∈ Rp×(K2+K) is any partial orthogonal matrix such that P⊤P = IK2+K . Then, (W ⋆,H⋆)
is a global minimizer of the mixed-label balanced LPMλ (Eq. 7). Moreover, if all X⋆’s satisfy
1

K2

∑
k∈K2 X⋆(k, k) = EH , then all the solutions of Eq. 7 are in the form of Eq. 8.

Proof. For any feasible solution
(
W ,Hλ

)
for the original program Eq. 5, we define

hλ
kA

:=
1

nA

nA∑
i=1

hkA,i, kA ∈ K2
A, and hλ

kB
:=

1

wrnB

wrnB∑
i=1

hkB ,i, kB ∈ K2
B ,

and

X :=
[
hλ
(1,1),h

λ
(1,2), . . . ,h

λ
(K,K),W

⊤
]⊤ [

hλ
(1,1),h

λ
(1,2), . . . ,h

λ
(K,K),W

⊤
]
.

Clearly, X ⪰ 0. For the other two constraints of Eq. 11, we have

1

K2

K2∑
k=1

X(k, k) =
1

K2

∑
k∈K2

∥hλ
k∥2

a
≤ 1

K2

 ∑
kA∈K2

A

1

nA

nA∑
i=1

∥∥hλ
kA,i

∥∥2 + ∑
kB∈K2

B

1

wrnB

wrnB∑
i=1

∥∥hλ
kB ,i

∥∥2
b
≤ EH

and
1

K

K2+K∑
k=K2+1

X(k, k) =
1

K

K∑
k=1

∥wk∥2
c
≤ EW ,

where
a
≤ applies Jensen’s inequality and

b
≤ and

c
≤ use that

(
W ,Hλ

)
is a feasible solution. So X is a

feasible solution for the convex program Eq. 11. Letting L0 be the global minimum of Eq. 11, for any
feasible solution

(
W ,Hλ

)
, we obtain

1

N

∑
k∈K2

nk∑
i=1

L(Whλ
k,i,y

λ
k )

=
∑

kA∈K2
A

nA

N

[
1

nA

nA∑
i=1

L(Whλ
kA,i,y

λ
kA

)

]
+

∑
kB∈K2

B

wrnB

N

[
1

wrnB

wrnB∑
i=1

L(Whλ
kB ,i,y

λ
kB

)

]
a
≥

∑
kA∈K2

A

nA

N
L(Whλ

kA
,yλ

kA
) +

∑
kB∈K2

B

wrnB

N
L(Whλ

kB
,yλ

kB
)

=
∑

kA∈K2
A

nA

N
L(z(kA)λ,yλ

kA
) +

∑
kB∈K2

B

wrnB

N
L(z(kB)λ,yλ

kB
) ≥ L0, (14)

where in
a
≥, we use L is convex on the first argument, and so L(Whλ,yλ

k ) is convex on h given W
and k ∈ K2.

For the simplicity of our expressions, we hereafter remove the superscript λ of Hλ, hλ and zλ.
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On the other hand, considering the solution (W ⋆,H⋆) defined in Eq. 6 with X⋆ being a minimizer

of Eq. 11, we have
[
h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K),W

⊤
]⊤ [

h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K),W

⊤
]
= X⋆

(p ≥ K2 +K guarantees the existence of
[
h⋆
(1,1),h

⋆
(1,2), . . . ,h

⋆
(K,K), (W

⋆)⊤
]
). We can verify that

(W ⋆,H⋆) is a feasible solution for Eq. 5 and have

1

N

∑
k∈K2

nk∑
i=1

L(W ⋆h⋆
k,i,y

λ
k ) =

∑
kA∈K2

A

nA

N
L(z(kA)⋆,yλ

kA
) +

∑
kB∈K2

B

wrnB

N
L(z(kB)⋆,yλ

kB
) = L0,

(15)
where z(kA)

⋆ =
[
X⋆(kA,K

2 + 1),X⋆(kA,K
2 + 2), . . . ,X⋆(kA,K

2 +KA)
]⊤

for kA ∈ K2
A

and z(kB)
⋆ =

[
X⋆(kB ,K

2 +KA + 1),X⋆(kB ,K
2 +KA + 2), . . . ,X⋆(kB ,K

2 +K)
]⊤

for
kB ∈ K2

B .

Combining Eq. 14 and Eq. 15, we conclude that L0 is the global minimum of Eq. 5 and (W ⋆,H⋆)
is a minimizer.

Suppose there is a minimizer (W ′,H ′) that cannot be written as Eq. 6. Let

h′
kA

=
1

nA

nA∑
i=1

h′
kA,i, kA ∈ K2

A, and h′
kB

=
1

wrnB

wrnB∑
i=1

h′
kB ,i, kB ∈ K2

B

and

X ′ =
[
h′
(1,1),h

′
(1,2), . . . ,h

′
(K,K), (W

′)⊤
]⊤ [

h′
(1,1),h

′
(1,2), . . . ,h

′
(K,K), (W

′)⊤
]
.

Eq. 14 implies that X ′ is a minimizer of Eq. 11. As (W ′,H ′) cannot be written as Eq. 6 with
X⋆ = X ′, then there is a k′ ∈ K2, i, j ∈ [n′

k] with i ̸= j such that hk′,i ̸= hk′,j . We have

1

K2

K2∑
k=1

X ′(k, k) =
1

K2

∑
k∈K2

∥h′
k∥2

=
1

K2

∑
kA∈K2

A

1

nA

nA∑
i=1

∥∥h′
kA,i

∥∥2 − 1

K2

∑
kA∈K2

A

1

nA

nA∑
i=1

∥h′
kA,i − h′

kA
∥2

+
1

K2

∑
kB∈K2

B

1

wrnB

wrnB∑
i=1

∥∥h′
kB ,i

∥∥2 − 1

K2

∑
kB∈K2

B

1

wrnB

wrnB∑
i=1

∥h′
kB ,i − h′

kB
∥2

≤ 1

K2

∑
kA∈K2

1

nA

nA∑
i=1

∥∥h′
kA,i

∥∥2 − 1

K2

1

nk′
A

(∥h′
k′
A,i − h′

k′
A
∥2 + ∥h′

k′
A,j − h′

k′
A
∥2)

+
1

K2

∑
kB∈K2

B

1

wrnB

wrnB∑
i=1

∥∥h′
kB ,i

∥∥2 − 1

K2

1

nk′
B

(∥h′
k′
B ,i − h′

k′
B
∥2 + ∥h′

k′
B ,j − h′

k′
B
∥2)

≤ 1

K2

∑
kA∈K2

A

1

nA

nA∑
i=1

∥∥h′
kA,i

∥∥2 − 1

K2

1

2nk′
A

∥h′
k′
A,i − h′

k′
A,j∥2

+
1

K2

∑
kB∈K2

B

1

wrnB

wrnB∑
i=1

∥∥h′
kB ,i

∥∥2 − 1

K2

1

2nk′
B

∥h′
k′
B ,i − h′

k′
B ,j∥2

<EH .

By contraposition, if all X⋆ satisfy that 1
K2

∑K2

k=1 X
⋆(k, k) = EH , then all the solutions of Eq. 5

are in the form of Eq. 6. We complete the proof. □
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C.3 PROOF OF THEOREM 1

Restated Theorem 1. Assume p ≥ K and nA/nB → ∞, and fix KA and KB . Let (W ⋆,H⋆) be
any global minimizer of the LPMλ (Eq. 5). As the imbalance factor R ≡ nA/nB → ∞, we have

limw⋆
k −w⋆

k′ = 0p, for all KA < k < k′ ≤ K.

To prove Theorem 1, we first study a limit case where we only learn the classification for partial
classes. We solve the optimization program:

min
W ,Hλ

Eλ∼Dλ

1

|K2
A| · nA

∑
k∈K2

A

nA∑
i=1

L(Whλ
k,i,y

λ
k )

s.t.
1

K

K∑
k=1

∥wk∥2 ≤ EW ,

1

|K2
∪|
∑
k∈K2

∪

1

nk

nk∑
i=1

∥∥hλ
k,i

∥∥2 ≤ EH ,

(16)

where yλ
(a,b) = λya + (1 − λ)yb, K2

A = {(a, b)|1 ≤ a ≤ KA ∧ 1 ≤ b ≤ KA}, K2
B =

{(a, b)|KA + 1 ≤ a ≤ K ∧ KA + 1 ≤ b ≤ K}, K2
∪ = K2

A ∪K2
B and

nk =

 nA if k = (a, b) ∈ K2
A

nB if k = (a, b) ∈ K2
B

0 otherwise
.

For the simplicity of our expressions, we remove the superscript λ of Hλ and hλ.

Lemma 2 characterizes useful properties for the minimizer of Eq. 16.

Lemma 2. Let (W ,H) be a minimizer of Eq. 16. We have hλ
k,i = 0p for all k ∈ K2

B and i ∈ [nB ].
Let L0 be the global minimum of Eq. 16. We have

L0 =
1

|K2
A| · nA

∑
k∈K2

A

nA∑
i=1

L(Whk,i,y
λ
k ).

Then L0 only depends on KA, nA, EH , and EW . Moreover, for any feasible solution (W ′, (H)′), if
there exist k, k′ ∈ K2

B such that ∥wk −wk′∥ = ϵ > 0, we have

1

|K2
A| · nA

∑
k∈K2

A

nA∑
i=1

L(Whk,i,y
λ
k ) ≥ L0 + ϵ′,

where ϵ′ > 0 depends on ϵ, |K2
A|, nA, EH , and EW .

Now we are ready to prove Theorem 1. The proof is based on the contradiction.

Proof of Theorem 1. Consider sequences nℓ
A and nℓ

B with Rℓ := nℓ
A/n

ℓ
B for ℓ = 1, 2, . . . . We have

Rℓ → ∞. For each optimization program indexed by ℓ ∈ N+, we introduce (W ℓ,⋆,Hℓ,⋆) as a
minimizer and separate the objective function into two parts. We consider

Lℓ
(
W ℓ,Hℓ

)
=

|K2
A| · nℓ

A

|K2
A| · nℓ

A + |K2
B | · nℓ

B

Lℓ
A

(
W ℓ,Hℓ

)
+

|K2
B | · nℓ

B

|K2
A| · nℓ

A + |K2
B | · nℓ

B

Lℓ
B

(
W ℓ,Hℓ

)
,

with

Lℓ
A

(
W ℓ,Hℓ

)
:=

1

|K2
A| · nℓ

A

∑
k∈K2

A

nℓ
A∑

i=1

L
(
W ℓhℓ

k,i,y
λ
k

)
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and

Lℓ
B

(
W ℓ,Hℓ

)
:=

1

|K2
B | · nℓ

B

∑
k∈K2

B

nℓ
B∑

i=1

L
(
W ℓhℓ

k,i,y
λ
k

)
.

We define
(
W ℓ,A,Hℓ,A

)
as a minimizer of the optimization program:

min
W ℓ,Hℓ

Lℓ
A

(
W ℓ,Hℓ

)
s.t.

1

K

K∑
k=1

∥∥wℓ
k

∥∥2 ≤ EW ,

1

|K2
A|
∑
k∈K2

A

1

nℓ
A

nℓ
A∑

i=1

∥∥hℓ
k,i

∥∥2 + 1

|K2
B |

∑
k∈K2

B

1

nℓ
B

nℓ
B∑

i=1

∥∥hℓ
k,i

∥∥2 ≤ EH ,

(17)

and
(
W ℓ,B ,Hℓ,B

)
as a minimizer of the optimization program:

min
W ℓ,Hℓ

Lℓ
B

(
W ℓ,Hℓ

)
s.t.

1

K

K∑
k=1

∥∥wℓ
k

∥∥2 ≤ EW ,

1

|K2
A|
∑
k∈K2

A

1

nℓ
A

nℓ
A∑

i=1

∥∥hℓ
k,i

∥∥2 + 1

|K2
B |

∑
k∈K2

B

1

nℓ
B

nℓ
B∑

i=1

∥∥hℓ
k,i

∥∥2 ≤ EH .

(18)

Note that Programs Eq. 17 and Eq. 18 and their minimizers have been studied in Lemma 2. We define:

LA := Lℓ
A

(
W ℓ,A,Hℓ,A

)
and LB := Lℓ

B

(
W ℓ,B ,Hℓ,B

)
.

Then Lemma 2 implies that LA and LB only depend on |K2
A|, KB , EH , and EW , and are independent

of ℓ. Moreover, since hℓ,A
k,i = 0p for all k ∈ K2

B and i ∈ [nB ], we have

Lℓ
B

(
W ℓ,A,Hℓ,A

)
= λ · log(K) + (1− λ) · log(K) = log(K). (19)

Now we prove Theorem 1 by contradiction. Suppose there exists a pair (k, k′) such that
limℓ→∞ wℓ,⋆

k −wℓ,⋆
k′ ̸= 0p. Then there exists ϵ > 0 such that for a subsequence {(waℓ,⋆,haℓ,⋆)}∞ℓ=1

and an index ℓ0 when ℓ ≥ ℓ0, we have
∥∥W aℓ,⋆

k −W aℓ,⋆
k′

∥∥ ≥ ϵ. Now we figure out a contradiction
by estimating the objective function value on (W aℓ,⋆,Haℓ,⋆). In fact, because (W aℓ,⋆,Haℓ,⋆) is a
minimizer of Lℓ(W ℓ,Hℓ), we have

Laℓ (W aℓ,⋆,Haℓ,⋆) ≤ Laℓ
(
W aℓ,A,Haℓ,A

)
Eq. 19
=

|K2
A| · n

aℓ

A

|K2
A| · n

aℓ

A + |K2
B | · n

aℓ

B

LA +
|K2

B | · n
aℓ

B

|K2
A| · n

aℓ

A + |K2
B | · n

aℓ

B

log(K)

= LA +
1

KRRaℓ + 1
(log(K)− LA)

ℓ→∞→ LA, (20)

where we define KR := |K2
A|/|K2

B | and use Rℓ = nℓ
A/n

ℓ
B .

However, when ℓ > ℓ0, because
∥∥waℓ,⋆

k −waℓ,⋆
k′

∥∥ ≥ ϵ > 0, Lemma 2 implies that

Laℓ

A (W aℓ,⋆,Haℓ,⋆) ≥ LA + ϵ2,
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where ϵ2 > 0 only depends on ϵ, |K2
A|, KB , EH , and EW , and is independent of ℓ. We obtain

Laℓ (W aℓ,⋆,Haℓ,⋆) =
|K2

A| · n
aℓ

A

|K2
A| · n

aℓ

A + |K2
B | · n

aℓ

B

Laℓ

A (W aℓ,⋆,Haℓ,⋆)

+
|K2

B | · n
aℓ

B

|K2
A| · n

aℓ

A + |K2
B | · n

aℓ

B

Laℓ

B (W aℓ,⋆,Haℓ,⋆)

a
≥

|K2
A| · n

aℓ

A

|K2
A| · n

aℓ

A + |K2
B | · n

aℓ

B

Laℓ

A (W aℓ,⋆,Haℓ,⋆)

+
|K2

B | · n
aℓ

B

|K2
A| · n

aℓ

A + |K2
B | · n

aℓ

B

Laℓ

B

(
W aℓ,B ,Haℓ,B

)
=

|K2
A| · n

aℓ

A

|K2
A| · n

aℓ

A + |K2
B | · n

aℓ

B

(LA + ϵ2) +
|K2

B | · n
aℓ

B

|K2
A| · n

aℓ

A + |K2
B | · n

aℓ

B

LB

= LA + ϵ2 +
1

KRRaℓ + 1
(LB − LA − ϵ2)

ℓ→∞→ LA + ϵ2, (21)

where
a
≥ uses

(
W aℓ,B ,Haℓ,B

)
is the minimizer of Eq. 18. Thus we meet contradiction by comparing

Eq. 20 with Eq. 21 and achieve Theorem 1. □

Proof of Lemma 2. For any constants Ca > 0, Cb > 0, and Cc > 0, define

C ′
a :=

Ca

Ca + (KA − 1)Cb +KBCc
∈ (0, 1)

C ′
b :=

Cb

Ca + (KA − 1)Cb +KBCc
∈ (0, 1)

C ′
c :=

Cc

Ca + (KA − 1)Cb +KBCc
∈ (0, 1)

Cd :=− C ′
a log(C

′
a)− C ′

b(KA − 1) log(C ′
b)−KBC

′
c log(C

′
c)

Ce :=
KACb

KACb +KBCc
∈ (0, 1)

Cf :=
KBCb

KACb +KBCc
∈ (0, 1)

Cg :=
KACb +KBCc

Ca + (KA − 1)Cb +KBCc
> 0.

Using a similar argument as Theorem 3, we show in Lemma 3 (see the end of the proof), for any
feasible solution (W ,H) of Eq. 16, the objective value of Eq. 16 can be bounded from below by:

1

|K2
A|nA

∑
k∈K2

A

nA∑
i=1

L(Wh(a,b),i,y(a,b))

a
≥ − Cg

KA

√
KEH

√√√√KA∑
k=1

∥CewA + CfwB −wk∥2 + Cd

b
≥ − Cg

KA

√
KEH

√√√√KEW −KA

(
1/KR − C2

f −
C4

f

Ce(2− Ce)

)
∥wB∥2 −

K∑
k=KA+1

∥wk −wB∥2 + Cd

(22)

where wA := 1
KA

∑KA

k=1 wk, wB := 1
KB

∑K
k=KA+1 wk, and KR := KA

KB
. Moreover, the equality in

a
≥ holds only if hk,i = 0p for all k ∈ [KA + 1 : K] and i ∈ [nB ].
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Though Ca, Cb, and Cc can be any positive numbers, we need to carefully pick them to exactly reach
the global minimum of Eq. 16. In the following, we separately consider three cases according to the
values of KA, KB , and EHEW .

(Case 1) Consider the case when KA = 1. We pick Ca := exp
(√

KB(1 +KB)EHEW

)
, Cb :=

1, and Cc := exp
(
−
√
(1 +KB)EHEW /KB

)
.

Then, from
a
≥ in Eq. 22, we have

1

|K2
A|nA

∑
k∈K2

A

nA∑
i=1

L(Wh(a,b),i,y(a,b))

a
≥− CgCf

√
KEH

√
∥w1 −wB∥2 + Cd

=− CgCf

√
KEH

√
∥w1∥2 − 2w⊺

1wB + ∥wB∥2 + Cd

b
≥− CgCf

√
KEH

√
(1 + 1/KB)(∥w1∥2 +KB∥wB∥2) + Cd

c
≥− CgCf

√
KEH

√√√√(1 + 1/KB)

(
KEW −

K∑
k=2

∥wk −wB∥2
)

+ Cd

c
≥− CgCf

√
KEH

√
(1 + 1/KB)KEW + Cd := L1

(23)

where
a
≥ uses Ce + Cf = 1,

b
≥ follows from −2ab ≤ a2 + b2, i.e., −2w⊺

1wB ≤ (1/KB)∥w1∥2 +
KB∥wB∥2, and

c
≥ follows from

∑K
k=2∥wk∥2 = KB∥wB∥2+

∑K
k=2∥wk−wB∥2 and the constraint

that
∑K

k=1∥wk∥2 ≤ KEW .

On the other hand, when (M ,H) satisfies that

w1 =
√
KBEWu, wk = −

√
1

KBEW
u, k ∈ [2 : K],

h1,i =
√
(1 +KB)EHu, i ∈ [nA], hk,i = 0p k ∈ [2 : K], i ∈ [nB ],

where u is any unit vector, the inequalities in Eq. 23 reduces to equalities. So, L1 is the global

minimum of Eq. 16. Moreover, L1 is achieved only if
a
≥ in Eq. 22 reduces to equality. From Lemma 3,

we have that any minimizer satisfies that hk,i = 0p for all k ∈ [KA + 1 : K] and i ∈ [nB ].

Finally, for any feasible solution (W ′,H ′), if there exist k, k′ ∈ [KA + 1 : K] such that ∥wk −
wk′∥ = ε > 0, we have

K∑
k=KA+1

∥wk −wB∥2 ≥ ∥wk −wB∥2 + ∥wk′ −wB∥2 ≥ ∥wk −wk′∥2

2
= ε2/2. (24)

It follows from
c
≥ in Eq. 23 that

1

|K2
A|nA

∑
k∈K2

A

nA∑
i=1

L(Wh(a,b),i,y(a,b))

≥− CgCf

√
KEH

√
(1 + 1/KB)(KEW − ε2/2) + Cd := L1 + ε1, (25)

with ε1 > 0 depending on ε, KA, KB , EH , and EW .

(Case 2) Consider the case when KA > 1 and exp
(
(1 + 1/KR)

√
EHEW /(KA − 1)

)
<√

1 +KR + 1. Let us pick Ca := exp
(
(1 + 1/KR)

√
EHEW

)
, Ca :=

exp
(
− 1

KA−1 (1 + 1/KR)
√
EHEW

)
, and Cc := 1.
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Following from
b
≥ in Eq. 22, we know if 1/KR − C2

f − C4
f

Ce(2−Ce)
> 0, then

1

|K2
A|nA

∑
k∈K2

A

nA∑
i=1

L(Wh(a,b),i,y(a,b)) ≥ −Cg(1 + 1/KR)
√
EHEW + Cd := L2 (26)

In fact, we do have 1/KR − C2
f − C4

f

Ce(2−Ce)
> 0 because

1/KR > C2
f +

C4
f

Ce(2− Ce)

a⇐⇒ Cf <

√
1

1 +KR

b⇐⇒ Cb

Cc
>

1√
1 +KR + 1

⇐⇒ exp
(
(1 + 1/KR)

√
EHEW /(KA − 1)

)
<
√
1 +KR + 1.

where in a⇐⇒ , Ce + Cf = 1, and in b⇐⇒ , Cf = KBCc

KACb+KBCc
.

On the other hand, when (W ,H) satisfies that

[w1, ...,wKA
] =

√
EW

EH
[h1, ...hKA

]
⊺
=
√
(1 + 1/KR)EW (M∗

A)
⊺,

hk,i = hk, k ∈ [KA], i ∈ [nA],

hk,i = wk = 0p, k ∈ [KA + 1 : K], i ∈ [nB ],

where (M∗
A) is a KA-simplex ETF, Eq. 26 reduces to equality. So, L2 is the global minimum of

Eq. 16. Moreover, L2 is achieved only if
a
≥ in Eq. 22 reduces to equality. From Lemma 3, we have

that any minimizer satisfies that hk,i = 0p for all k ∈ [KA + 1 : K] and i ∈ [nB ].

Finally, for any feasible solution (W ′,H ′), if there exist k, k′ ∈ [KA + 1 : K] such that ∥wk −

wk′∥ = ε > 0, plugging Eq. 24 into
b
≥ in Eq. 22, we have

1

|K2
A|nA

∑
k∈K2

A

nA∑
i=1

L(Wh(a,b),i,y(a,b))

≥− Cg

KA

√
KEH

√
KEW − ε2/2) + Cd := L2 + ε2, (27)

with ε2 > 0 depending on ε, KA, KB , EH , and EW .

(Case 3) Consider the case when KA > 1 and exp
(
(1 + 1/KR)

√
EHEW /(KA − 1)

)
≥√

1 +KR + 1. Let C ′
f := 1√

1+KR
and C ′

e = 1− C ′
f . For x ∈ [0, 1], we define:

gN (x) :=

√
(1 +KR)EW

KRx2 +KR(1 +KR)(1− x)2
,

ga(x) := exp

gN (x)
√
(1 +KR)EH/KR

x2 +
(
1 +

C′
e

C′
f

)2
(1− x)2

[
x2 +

(
1 +

C ′
e

C ′
f

)
(1− x)2

],

gb(x) := exp

gN (x)
√

(1 +KR)EH/KR

x2 +
(
1 +

C′
e

C′
f

)2
(1− x)2

[
− 1

KA − 1
x2 +

(
1 +

C ′
e

C ′
f

)
(1− x)2

],

gb(x) := exp

gN (x)
√
(1 +KR)EH/KR

x2 +
(
1 +

C′
e

C′
f

)2
(1− x)2

[
−

(
1 +

C ′
e

C ′
f

)
KR(1− x)2

],
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Let x0 ∈ [0, 1] be a root of the equation

gb(x)/gc(x) =
1/C ′

f − 1

KR
.

We first show that the solution x0 exists. First of all, one can directly verify then x ∈ [0, 1],

gb(x)/gc(x) is continuous. It suffices to prove that (A) gb(0)/gc(0) ≥
1/C′

f−1

KR
and (B) gb(1)/gc(1) ≤

1/C′
f−1

KR
.

(A) When x = 0, we have gb(x)/gc(x) ≥ exp (0) = 1. At the same time,
1/C′

f−1

KR
=

√
1+KR−1
KR

=

1√
1+KR+1

≤ 1. Thus, gb(0)/gc(0) ≥ exp (0) = 1 ≥ 1/C′
f−1

KR
is achieved.

(B) When x = 1, we have gN (1) =
√

(1 + 1/KR)EW . So,

gb(1)/gc(1) = exp
(
−(1 + 1/KR)

√
EHEW /(KA − 1)

) a
≤ 1√

1 +KR + 1
=

1/C ′
f − 1

KR
,

where
a
≤ is obtained by the condition that

exp
(
(1 + 1/KR)

√
EHEW /(KA − 1)

)
≥
√
1 +KR + 1.

Now, we pick Ca := ga(x0), Cb := gb(x0), and Cc := gc(x0), because Cb

Cc
=

1/C′
f−1

KR
, we have

Ce = C ′
e, Cf = C ′

f , and 1/KR = C2
f +

C4
f

Ce(2−Ce)
. Then, it follows from

b
≥ in Eq. 22 that

1

|K2
A|nA

∑
k∈K2

A

nA∑
i=1

L(Wh(a,b),i,y(a,b)) ≥ −Cg(1 + 1/KR)
√
EHEW + Cd := L2. (28)

On the other hand, consider the solution (W ,H) that satisfies

wk = gN (x0)PA

[
x0√

(KA − 1)KA

(KAyk − 1KA
+

1− x0√
KA

1KA

]
, k ∈ [KA],

wk =− Ce(2− Ce)

C2
fKA

PA

KA∑
k=1

wk, k ∈ [KA + 1 : K],

hk,i =

√
(1 + 1/KR)EH

∥wi +
Ce

CfKA

∑KA

k=1 wk∥
PA

[
wi

Ce

CfKA

KA∑
k=1

wk

]
, k ∈ [KA], i ∈ [nA]

hk,i = 0p, k ∈ [KA + 1 : K], i ∈ [nB ],

where yk ∈ RK is the one-hot vector of the k-th class label and PA ∈ Rp×KA is a partial orthogonal
matrix such that P ⊺

APA = IKA
. We have exp (h⊺

k,iwk) = ga(x0) for i ∈ [nA] and k ∈ [KA],
exp (h⊺

k,iwk′) = gb(x0) for i ∈ [nA] and k, k′ ∈ [KA] such that k ̸= k′, and exp (h⊺
k,iwk′) =

gc(x0) for i ∈ [nA], k ∈ [KA], and k′ ∈ [KA + 1 : K]. Moreover, (W ,H) can achieve the
equality in Eq. 28. Finally, following the same argument as (Case 2), we have that (1) L2 is the
global minimum of Eq. 16; (2) any minimizer satisfies that hk,i = 0p for all k ∈ [KA + 1 : K]
and i ∈ [nB ]; (3) for any feasible solution (W ′,H ′), if there exist k, k′ ∈ [KA + 1 : K] such that
∥wk −wk′∥ = ε > 0, then Eq. 26 holds.

Combining the three cases, we obtain Lemma 2, completing the proof. □
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Lemma 3. For any constants Ca > 0, Cb > 0, and Cc > 0, define

C ′
a :=

Ca

Ca + (KA − 1)Cb +KBCc
∈ (0, 1)

C ′
b :=

Cb

Ca + (KA − 1)Cb +KBCc
∈ (0, 1)

C ′
c :=

Cc

Ca + (KA − 1)Cb +KBCc
∈ (0, 1)

Cd :=− C ′
a log(C

′
a)− C ′

b(KA − 1) log(C ′
b)−KBC

′
c log(C

′
c)

Ce :=
KACb

KACb +KBCc
∈ (0, 1)

Cf :=
KBCb

KACb +KBCc
∈ (0, 1)

Cg :=
KACb +KBCc

Ca + (KA − 1)Cb +KBCc
> 0.

For any feasible solution (W ,H) of Eq. 16, the objective value of Eq. 16 can be bounded from below
by:

1

|K2
A|nA

∑
k∈K2

A

nA∑
i=1

L(Wh(a,b),i,y(a,b))

a
≥ − Cg

KA

√
KEH

√√√√KA∑
k=1

∥CewA + CfwB −wk∥2 + Cd

b
≥ − Cg

KA

√
KEH

√√√√KEW −KA

(
1/KR − C2

f −
C4

f

Ce(2− Ce)

)
∥wB∥2 −

K∑
k=KA+1

∥wk −wB∥2 + Cd

(29)

where wA := 1
KA

∑KA

k=1 wk, wB := 1
KB

∑K
k=KA+1 wk, and KR := KA

KB
. Moreover, the equality in

a
≥ holds only if hk,i = 0p for all k ∈ [KA + 1 : K] and i ∈ [nB ].

Remark 3. Note that the case hk,i = 0p does not imply that network activations all die for the classes
k ∈ [KA + 1 : K]. This is because our analysis does not include the bias term for simplicity.

Proof of Lemma 3. For (a, b) ∈ K2
A and i ∈ [n(a,b)], we introduce z(a,b),i = Whλ

(a,b),i. Because
that C ′

a + (KA − 1)C ′
b +KBC

′
c = 1, C ′

a > 0, C ′
b > 0, and C ′

c > 0, by the concavity of log(·), we
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have

− λ log

(
exp(z(a,b),i(a))∑K

k′=1 exp(z(a,b),i(k
′))

)
− (1− λ) log

(
exp(z(a,b),i(b))∑K

k′=1 exp(z(a,b),i(k
′))

)
=− λz(a,b),i(a)− (1− λ)z(a,b),i(b)

+ λ log

C ′
a

(
exp(z(a,b),i(a))

C ′
a

)
+

KA∑
k′=1,k′ ̸=a

C ′
b

(
exp(zk,i(k

′))

C ′
b

)
+

K∑
k′=KA+1

C ′
c

(
exp(zk,i(k

′))

C ′
c

)
+ (1− λ) log

C ′
a

(
exp(z(a,b),i(b))

C ′
a

)
+

KA∑
k′=1,k′ ̸=b

C ′
b

(
exp(zk,i(k

′))

C ′
b

)
+

K∑
k′=KA+1

C ′
c

(
exp(zk,i(k

′))

C ′
c

)
≥− λz(a,b),i(a)− (1− λ)z(a,b),i(b) + C ′

a

(
λz(a,b),i(a) + (1− λ)z(a,b),i(b)

)
+ C ′

b

λ

KA∑
k′=1,k′ ̸=a

z(a,b),i(k
′) + (1− λ)

KA∑
k′=1,k′ ̸=b

z(a,b),i(k
′)

+ C ′
c

K∑
k′=KA+1

z(a,b),i(k
′) + Cd

=CgCe

(
1

KA

KA∑
k′=1

z(a,b),i(k
′)− λz(a,b),i(a)− (1− λ)z(a,b),i(b)

)

+ CgCf

(
1

KB

K∑
k′=KA+1

z(a,b),i(k
′)− λz(a,b),i(a)− (1− λ)z(a,b),i(b)

)
+ Cd.

(30)

Therefore, integrating Eq. 30 with (a, b) ∈ K2
A and i ∈ [nA], recalling that wA = 1

KA

∑KA

k=1 wk and

wB = 1
KB

∑K
k=KA+1 wk, we have

1

|K2
A|nA

∑
(a,b)∈K2

A

nA∑
i=1

L(Whλ
(a,b),i,y(a,b))

≥ 1

|K2
A|nA

∑
(a,b)∈K2

A

nA∑
i=1

Cg

(
Ce (λ(ha,iwA − ha,iwa) + (1− λ)(hb,iwA − hb,iwb))
+Cf (λ(ha,iwB − ha,iwa) + (1− λ)(hb,iwB − hb,iwb))

)

a
=

1

KAnA

KA∑
k=1

nA∑
i=1

Cg [Ce(hk,iwA − hk,iwk) + Cf (hk,iwB − hk,iwk)] + Cd

b
=

Cg

KA

KA∑
k=1

h⊺
k,i(CewA + CfwB −wk) + Cd, (31)

where in a
=, we use

∑
(a,b)∈K2

A
hλ
(a,b),i = KA

∑KA

k=1 hk,i, and in b
=, we introduce hk :=

1
nk

∑nk

i=1 hk,i for k ∈ [K] and use Ce + Cf = 1. Then, it is sufficient to bound
∑KA

k=1 h
⊺
k(CewA +

CfwB −wk). By the Cauchy-Schwarz inequality, we have

KA∑
k=1

h⊺
k(CewA + CfwB −wk) ≥ −

√√√√KA∑
k=1

∥hk∥2

√√√√KA∑
k=1

∥CewA + CfwB −wk∥2

a
≥ −

√√√√KA∑
k=1

1

nk

nk∑
i=1

∥hk,i∥2

√√√√KA∑
k=1

∥CewA + CfwB −wk∥2

b
≥ −

√
KEH

√√√√KA∑
k=1

∥CewA + CfwB −wk∥2, (32)
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where
a
≥ follows from Jensen’s inequality ∥hk∥2 ≤ frac1nk

∑nk

i=1∥hk,i∥2 for k ∈ [KA], and
b
≥ uses

the constraint that
∑K

k=1
1
nk

∑nk

i=1∥hk,i∥2 ≤ EH . Moreover, we have
∑K

k=1
1
nk

∑nk

i=1∥hk,i∥2 =

EH only if hk,i = 0p for all k ∈ [KA + 1,K]. Plugging Eq. 32 to Eq. 31, we obtain
a
≥ in Eq. 29.

We then bound
∑KA

k=1∥CewA + CfwB −wk∥2. First, we have

1

KA

KA∑
k=1

∥CewA + CfwB −wk∥2

=
1

KA

KA∑
k=1

∥wk∥2 − 2
1

KA

KA∑
k=1

wk · (CewA + CfwB) + ∥CewA + CfwB∥2

a
=

1

KA

KA∑
k=1

∥wk∥2 − 2C2
fw

⊺
AwB − Ce(2− Ce)∥wA∥2 + C2

f∥wB∥2

(33)

where a
= uses

∑KA

k=1 wA = KAwA. Then, using the constraint that
∑KA

k=1∥wA∥2 ≤ KEW yields
that

1

KA

KA∑
k=1

∥wk∥2 − 2C2
fw

⊺
AwB − Ce(2− Ce)∥wA∥2 + C2

f∥wB∥2

≤ K

KA
EW − 1

KA

∑
k=KA+1

K∥wk∥2 − Ce(2− Ce)∥wA +
C2

f

Ce(2− Ce)
wB∥2 +

(
C2

f +
C4

f

Ce(2− Ce)

)
∥wB∥2

a
=

K

KA
EW −

(
1/KR − C2

f −
C4

f

Ce(2− Ce)

)
∥wB∥2 −

1

KA

K∑
k=KA+1

∥wk −wB∥2,

(34)

where a
= applies

∑
k=KA+1 K∥wk∥2 = KB∥wB∥2 +

∑
k=KA+1 K∥wk −wB∥2. Plugging Eq. 33

and Eq. 34 into
a
≥ in Eq. 29, we obtain

b
≥ in Eq. 29, completing the proof. □
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C.4 PROOF OF THEOREM 3

Definition 1. A K-simplex ETF is a collection of points in Rp specified by the columns of the matrix

M⋆ =

√
K

K − 1
P

(
IK − 1

K
1K1⊺

K

)
where IK ∈ RK×K is the identity matrix, 1K is the ones vector, and P ∈ Rp×K (p ≥ K) is a
partial orthogonal matrix such that P ⊺P = IK .
Theorem 3. In the balanced case, although (W λ,Hλ) are linearly dependent on (W ,H) in Eq. 9,

any global minimizer W ⋆ ≡ [w⋆
1 , ...,w

⋆
K ], H⋆ ≡

[
h⋆
k,i : 1 ≤ k ≤ K, 1 ≤ i ≤ n

]
of Eq. 9 with the

cross-entropy loss obeys
h⋆
k,i = Cw⋆

k = C ′m⋆
k (35)

for all 1 ≤ i ≤ n, 1 ≤ k ≤ K, where the constants C =
√
EH/EW , C ′ =

√
EH , and the matrix

[m⋆
1, ...,m

⋆
K ] forms a K-simplex ETF specified in Definition 1

Because there are multiplication of variables in the objective functions, Eq. 9 is non-convex. Thus,
the KKT condition is not sufficient for optimality. To prove Theorem 3, we directly determine the
global minimum of Eq. 9. During this procedure, one key step is to show that minimizing Eq. 9 is
equivalent to minimize a symmetric quadratic function:

n∑
i=1

[(∑
k∈K2

hλ
k,i

)⊺(∑
k∈K2

wλ
k

)
−K2

∑
k∈K2

hλ⊺
k,iw

λ
k

]
under suitable conditions. The detail is shown below.

Proof. By the concavity of log(·), for any z ∈ RK2

, k ∈ [K2], constants Ca, Cb > 0, letting
Cc =

Cb

(Ca+Cb)(K2−1) , we have

− log

(
z(k)∑K2

k′=1 z(k
′)

)
= − log(z(k)) + log

 K2∑
k′=1

z(k′)


= − log(z(k)) + log

 Ca

Ca + Cb

(
(Ca + Cb)z(k)

Ca

)
+ Cc

K2∑
k′=1,k′ ̸=k

z(k′)

Cc

 .

(36)

Recognizing the equality
Ca

Ca + Cb
+ Cc + · · ·+ Cc︸ ︷︷ ︸

K2−1

=
Ca

Ca + Cb
+ (K2 − 1)

Cb

(Ca + Cb)(K2 − 1)
= 1

and the concavity of log(·), we see that the Jensen inequality gives

log

 Ca

Ca + Cb

(
(Ca + Cb)z(k)

Ca

)
+ Cc

K2∑
k′=1,k′ ̸=k

z(k′)

Cc


≥ Ca

Ca + Cb
log

(
(Ca + Cb)z(k)

Ca

)
+ Cc

K2∑
k′=1,k′ ̸=k

log

(
z(k′)

Cc

)
. (37)

Plugging this inequality into Eq. 36, we get

− log

(
z(k)∑K2

k′=1 z(k
′)

)
≥− log(z(k)) +

Ca

Ca + Cb
log

(
(Ca + Cb)z(k)

Ca

)
+ Cc

K2∑
k′=1,k′ ̸=k

log

(
z(k′)

Cc

)

=− Ca

Ca + Cb

log(z(k))− 1

K2 − 1

K2∑
k′=1,k′ ̸=k

log(z(k′))

+ Cd,
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where the constant Cd := Ca

Ca+Cb
log
(

Ca+Cb

Ca

)
+ Cb

Ca+Cb
log(1/Cc). Note that in Eq. 36, Ca and

Cb can be any positive numbers. To prove Theorem 3, we set Ca := exp(
√
EHEW ) and Cb :=

exp(−
√
EHEW /(K2 − 1)), which shall lead to the tightest lower bound for the objective of Eq. 9.

Applying Eq. 36 to the objective, we have

1

N

∑
k∈K2

n∑
i=1

L(W λhλ
k,i,y

λ
k )

≥ Cb

(Ca + Cb)N(K2 − 1)

n∑
i=1

[(∑
k∈K2

hλ
k,i

)⊺(∑
k∈K2

wλ
k

)
−K2

∑
k∈K2

hλ⊺
k,iw

λ
k

]
+ Cd. (38)

Defining h̄λ
i := 1

K2

∑
k∈K2 hλ

k,i for i ∈ [n], it follows from the simple inequality 2ab ≤ a2 + b2 that

n∑
i=1

[(∑
k∈K2

hλ
k,i

)⊺(∑
k∈K2

wλ
k

)
−K2

∑
k∈K2

hλ⊺
k,iw

λ
k

]

= K2
n∑

i=1

∑
k∈K2

(h̄λ
i − hλ

k,i)
⊺wλ

k

≥ −K2

2

∑
k∈K2

n∑
i=1

∥h̄λ
i − hλ

k,i∥2/Ce −
CeN

2

∑
k∈K2

∥wλ
k∥2, (39)

where we pick Ce :=
√
EH/EW . The two terms in the right hand side of Eq. 39 can be bounded via

the constrains of Eq. 9. Specifically, we have

CeN

2

∑
k∈K2

∥wλ
k∥2 ≤ K2N

√
EHEW

2
, (40)

and

K2

2

∑
k∈K2

n∑
i=1

∥h̄λ
i − hλ

k,i∥2/Ce
a
=

K4

2Ce

N∑
i=1

(
1

K2

∑
k∈K2

∥hλ
k,i∥2 − ∥h̄λ

i ∥2
)

≤ K2

2Ce

∑
k∈K2

N∑
i=1

∥hλ
k,i∥2 ≤ K2N

√
EHEW

2
, (41)

where a
= uses the fact that E∥a− E[a]∥2 = E∥a∥2 − ∥E[a]∥2. Thus, plugging Eq. 39, Eq. 40, and

Eq. 41 into Eq. 38, we have

1

N

∑
k∈K2

n∑
i=1

L(W λhλ
k,i,y

λ
k ) ≥ − Cb

(Ca + Cb)

K2
√
EHEW

K2 − 1
+ Cd := L0. (42)

Now, we check the conditions that reduce Eq. 42 to an equality.

By the strict concavity of log(·), Eq. 37 reduces to an equality only if

(Ca + Cb)z(k)

Ca
=

z(k′)

Cc

for k′ ̸= k. Therefore, Eq. 38 reduces to an equality only if

(Ca + Cb)h
λ⊺
k,iw

λ
k

Ca
=

hλ⊺
k,iw

λ
k′

Cc
.

Recognizing Cc =
Cb

(Ca+Cb)(K2−1) and taking the logarithm of both sides of the above equation, we
obtain

hλ⊺
k,iw

λ
k = hλ⊺

k,iw
λ
k′ + log

(
Ca(K

2 − 1)

Cb

)
,
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for all (k, i, k′) ∈ {(k, i, k′) : k ∈ K2, k′ ∈ K2, k′ ̸= k, i ∈ [n]}. Eq. 39 becomes equality if and
only if

h̄λ
i − hλ

k,i = −Cew
λ
k , k ∈ K2, i ∈ [n].

By the definition of wλ
k and hλ

k,i, h̄λ
i = 1

K2

∑
k∈K2 hλ

k,i = 1
K

∑K
k=1 hk,i. Defining h̄i :=

1
K

∑K
k=1 hk,i and plugging this equality into the above equation, we get

h̄i − λha,i − (1− λ)hb,i = −Ce (λwa + (1− λ)wb) (43)

For a ̸= b ̸= c, we define

h̄i − λha,i − (1− λ)hc,i =− Ce (λwa + (1− λ)wc) (44)

h̄i − λhb,i − (1− λ)hc,i =− Ce (λwb + (1− λ)wc) (45)

From the sum of Eq. 44 and Eq. 45, we get

ha,i = hb,i + Ce(wa −wb).

Plugging this equality to Eq. 43, we get

h̄i − hb,i = −Cewb,

which is the same result of the balanced case where the number of classes is K. As a result, Eq. 39
becomes equality if and only if

h̄i − hk,i = −Cewk, k ∈ K2, i ∈ [n]. (46)

The remainder of the proof is identical to that in (Fisher et al., 2024). However, for the sake of clarity,
we present it here in full rather than omitting it.

Applying Lemma 4 shown in the below, we have (W ,H), which satisfies Eq. 35.

Reversely, it is easy to verify that Eq. 42 reduces to equality when (W ,H) admits Eq. 35. So, L0

is the global minimum of Eq. 9 and Eq. 35 is the unique form for the minimizers. We complete the
proof of Theorem 3. □

Lemma 4. Suppose (W ,H) satisfies

h̄i − hk,i = −
√

EH

EW
wk, k ∈ [K], i ∈ [n], (47)

and
1

K

K∑
k=1

1

n

n∑
i=1

∥hk,i∥2 = EH ,
1

K

K∑
k=1

∥wk∥2 = EW , h̄i = 0p, i ∈ [n], (48)

where h̄i := 1
K

∑K
k=1 hk,i with i ∈ [n]. Moreover, there exists a constant C such that for all

{(k, i, k′) : k ∈ [K], k′ ∈ [K], k′ ̸= k, i ∈ [n]}, we have

hk,i ·wk = hk,i ·wk′ + C. (49)

Then, (W ,H) satisfies Eq. 35.

Proof. Combining Eq. 47 with the last equality in Eq. 48, we have

W =

√
EW

EH
[h1, ...,hK ]

⊺
, hk,i = hk, k ∈ [K], i ∈ [n].

Thus, it remains to show
W =

√
EW (M∗)⊺, (50)

where M∗ is a K-simplex ETF.

Plugging hk = hk,i =
√

EW

EH
wk into Eq. 49, we have, for all (k, k′) ∈ {(k, k′) : k ∈ [K], k′ ∈

[K], k′ ̸= k}, √
EW

EH
∥wk∥2 = hk,i ·wk = hk,i ·wk′ + C =

√
EW

EH
wkwk′ + C,
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and √
EW

EH
∥wk′∥2 = hk′,i ·wk′ = hk′,i ·wk + C =

√
EW

EH
wk′wk + C.

Therefore, from 1
K

∑K
k=1∥wk∥2 = EW , we have ∥wk∥ =

√
EW and hkwk′ = C ′ :=

√
EHEW −

C.

Furthermore, recalling that h̄i = 0p for i ∈ [n], we have
∑K

k=1 hk = 0p, which further yields∑K
k=1 hk ·wk′ = 0 for k′ ∈ [K]. Then, it follows from hkwk′ = C ′ and hkwk =

√
EHEW that

hkwk′ = −
√
EHEW /(K − 1). Thus, we obtain

WW ⊺ =

√
EW

EH
W [h1, ...,hK ] = EW

[
K

K − 1

(
IK − 1

K
1K1⊺

K

)]
,

which implies Eq. 50. We complete the proof. □
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C.5 PROOF OF PROPOSITION 2

To prove that only mixed labels (a, b) for the case where a < b ensures Theorem 1 and Proposition 1,
we demonstrate that the following statement is true.
Proposition 2. Let K< be the mixed label set where a < b for all (a, b) ∈ K2 and W λ

K< be the
partial matrix of W λ which has class vectors for mixed labels (a, b) ∈ K<.

Then, W is a K-simplex ETF if W λ
K< is a |K<|-simplex ETF.

For the simplicity, we remove the subscript K< of W λ
K< and wλ

K< in the following proof.

Proof. Let f(x;α, β) be the probability density function of Beta distribution Dλ(α, β). For the
mixup ratio λ sampled from Dλ(α, α), we have

wλ
(a,b) =Eλ (λwa + (1− λ)wb)

a
=
1

2
Eλ ((λwa + (1− λ)wb) + ((1− λ)wa + λwb))

=
1

2
(wa +wb) , (51)

where in a
=, we use f(λ;α, α) = f(1− λ;α, α).

From the definition of a simplex ETF, we get∑
(a,b)∈K<

wλ
(a,b) = 0 (52)

Plugging the equality of Eq. 51 into Eq. 52, we have

∑
(a,b)∈K<

wλ
(a,b) =

K − 1

2

K∑
i=1

wi = 0

∴ wi =−
K∑
j ̸=i

wj , ∀ i ∈ [K] (53)

From the definition of K<, we can get < i, j, k > for all i ∈ [K], satisfying

wi = wλ
{i,j} −wλ

{j,k} +wλ
{i,k}, (54)

where {a, b} = (a, b) if a < b otherwise (b, a) and i ̸= j ̸= k.

Now, we show that w⊤
i wi′ = − 1

K−1 is true for all i ̸= i′

w⊤
i wi′

Eq. 54
=

(
wλ

{i,j} −wλ
{j,k} +wλ

{i,k}

)⊤ (
wλ

{i′,j′} −wλ
{j′,k′} +wλ

{i′,k′}

)
a
= − 1

K − 1
(55)

where in a
=, we use the property of the simplex ETF, i.e.,

(
wλ

(a,b)

)⊤
wλ

(a′,b′) = − 1
K−1 for all

(a, b) ̸= (a′, b′). We complete the proof. □
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D EXPERIMENTAL SETUP

Implementation Details. Our experiments follow the setups of Zhong et al. (2021) and Zhou
et al. (2020) for CIFAR10-LT, ImageNet-LT, Places-LT, and iNaturalist2018 and Yang et al. (2022)
for CIFAR100-LT. We employ ResNet32 for CIFAR10-LT, doubling the feature dimensions for
CIFAR100-LT. For ImageNet-LT and iNaturalist2018, we use ResNet50, and for Places-LT, use
ResNet152, respectively. To reproduce baseline comparisons, we adopt the same hyperparameter
settings as in Zhong et al. (2021) and Zhou et al. (2020).

Datasets. Following Zhong et al. (2021); Zhou et al. (2020), we use the long-tailed variants of
CIFAR10, CIFAR100, ImageNet (Russakovsky et al., 2015), Places365 (Zhou et al., 2017), and
iNaturalist2018 (Cui et al., 2018).

CIFAR10-LT. 10 imbalanced classes, subsampled at exponentially decreasing rates from CI-
FAR10 (Zhong et al., 2021).

CIFAR100-LT. 100 imbalanced classes, constructed analogously to CIFAR10-LT.

ImageNet-LT. Derived from ImageNet for large-scale object classification. Class frequencies follow a
Pareto distribution (α = 5) with cardinalities from 5 to 1,280, totaling 115.8K images across 1,000
classes.

Places-LT. An extended version of Places, with class sizes ranging from 5 to 4,980, yielding 184.5K
images from 365 classes.

iNaturalist2018. A large-scale real-world species classification dataset with extreme label imbalance,
comprising 437,513 images from 8,142 categories.

Architectures. For CIFAR10-LT, we use ResNet32 (Zhong et al., 2021) with three residual blocks,
producing feature dimensions of 16, 32, and 64, respectively. CIFAR100-LT doubles these dimensions.
Differing from the standard ResNet architecture used for ImageNet, the ResNet32’s first convolutional
layer has a kernel size, stride, and padding of 3, 1, and 1, respectively. ResNet50 and 152 follow He
et al. (2015).

Hyperparameters. For CIFAR10/100-LT, models are trained with mini-batch size 128 using SGD
with momentum 0.9 and weight decay 2e-4 for 200 epochs. The learning rate is linearly warmed
up from 0.02 and decayed by 0.1 at epochs 160 and 180. For ImageNet-LT and Places-LT, models
are trained with SGD (momentum 0.9, weight decay 5e-4) and a cosine annealing scheduler. Mixup
alpha is set per dataset: α = 1.0 for CIFAR10/100-LT, α = 0.2 for others.

ETF+DR (Yang et al., 2022). In Yang et al. (2022), it was proven that by fixing the classifier as a
K-simplex ETF, NC is satisfied regardless of class balance, and that using this fixed ETF classifier
along with a specialized loss (Dot-Regression; DR) improves model performance in imbalanced
learning environments. Leveraging the advantages of the fixed ETF classifier, we hypothesized that
our method could produce synergies with this approach, and we conducted experiments applying our
method to this framework. However, a scale factor is necessary for the fixed ETF classifier, due to
class vectors should be normalized. For this reason, we make a modified version of the fixed ETF
classifier to apply our methods, named as fixed Mixed-Singleton Weighted ETF classifier (MS-WETF).

The scale of class vectors is important for softmax cross-entropy loss. Thus, we remove the scale
factor and add learnable parameter s ∈ RK to control the scale of each class vectors.

WWETF = s ·WETF

Then, we make WWETF as Mixed-Singleton classifier

W λ
MS-WETF, (a,b) = [λwWETF,a + (1− λ)wWETF,b](a,b)∈K2

Remix (Chou et al., 2020). In (Chou et al., 2020), they pointed out that using the same mixing factor
λ for mixed samples in both last-layer features and their respective labels does not make sense under
the imbalanced learning environments. As a result, Remix has been proposed to disentangle λ as
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below:

x̃RM =λxxi + (1− λx)xπ(i),

ỹRM =λyyci + (1− λy)ycπ(i)
,∀(i, π(i)) ∈ Iλ,

where λx is sampled from the beta distribution and λy is defined as below:

λy =

 0 ni/nπ(i) ≥ κ and λ < τ ;
1 ni/nπ(i) ≤ 1/κ and 1− λ < τ ;
λ otherwise

Here ni and nπ(i) denote the number of samples in the corresponding class from xi and xπ(i). κ and
τ are two hyperparameters in Remix, and we used the same values as those employed in the original
Remix implementation: κ = 3 and τ = 0.5.

Unlike Remix, which controls the mixing factor λ, our method controls only the sample and label
pairs. Owing to this independence from Remix, integrating our method with Remix simply requires
replacing the original index pair set Iλ with the balanced mixed-label pair set Ĩλ obtained through
BMLS. Also, when initializing the MS classifier, we used λy from the same way to Remix.

DBN-mix (Baik et al., 2024). DBN-mix is a method that expands bilateral mixup (which is from
BBN-mix (Zhou et al., 2020)) to double branches while one input sample xi comes from random
sampler and the other xj comes from class-balanced sampler. Therefore, there are two mixed samples
generated in each mini-batch as below:

x̃cb =λxi + (1− λ)xj ,

x̃rb =(1− λ)xi + λxj ,

ỹcb =λyi + (1− λ)yj ,

ỹrb =(1− λ)yi + λyj ,

where the mixed samples x̃cb and x̃rb are trained by their respective different classifiers.

In this setting, the loss from each branch L is computed separately as shown below, and the final loss
Ltotal is obtained by taking their weighted sum via a hyperparameter γ.

Ltotal = γ · L
(
p̃cb, ỹcb)+ (1− γ) · L

(
p̃rb, ỹrb) ,

where p̃ is the logit of the mixed sample x̃ and L denotes the cross-entropy loss. This loss is then
used to train the classifiers of each branch and the shared backbone in an end-to-end manner.

In DBN-mix, two different samples—each drawn from a different sampler—are mixed together,
which causes the mixed-label balance to break in both branches even if the class-balanced sampler is
replaced with BMLS. To address this, we employ two samplers in parallel and configure each branch
as follows:

x̃cb =λxi + (1− λ)xπ(i),

x̃rb =λxj + (1− λ)xπ(j),

ỹcb =λyi + (1− λ)yπ(i),

ỹrb =λyj + (1− λ)yπ(j),

for all (i, π(i)) ∈ Iλ and (j, π(j)) ∈ Ĩλ, which denote a random sampler and BMLS, respectively.

In our experiments, we empirically identified appropriate values for the hyperparameter γ. As a result,
we set γ = 0.9 for CIFAR10-LT and γ = 0.5 for CIFAR100-LT.
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E ADDITIONAL EXPERIMENTAL RESULTS

According to Liu et al. (2019), we also calculate top-1 test accuracy of three disjoint set: many,
medium, and few classes. The classes included in each set for the respective datasets are described in
Table 5. In the tables of experimental results about many, medium, and few classes, we report the
mean and std of top-1 test accuracies as meanstd.

Table 5: The classes in Many/Medium/Few class sets.

CIFAR10-LT CIFAR100-LT Places-LT ImageNet-LT iNaturalist2018
Many [0,2] [0,35] [0, 130] [0, 389] [0, 841]

Medium [3,6] [36,70] [131, 287] [390, 835] [842, 4542]
Few [7,9] [71,99] [288, 364] [835, 999] [4543, 8141]

Table 6: Extension to the fixed ETF classifier on CIFAR10/100-LT datasets with various imbalance
factors. The results are the mean of five repeated experiments with random seeds. Best in bold (†: the
reported values are taken from Yang et al. (2022))

Sampler Clf. L
CIFAR10-LT CIFAR100-LT

imbalance factor imbalance factor
200 100 50 10 200 100 50 10

random ETF CE† 60.06 67.00 77.20 87.00 N/A N/A N/A N/A
random ETF DR† 71.90 76.50 81.00 87.70 40.90 45.30 50.40 N/A
random ETF DR 71.58 76.82 81.25 87.59 41.20 45.07 50.71 63.08

CBS ETF DR 69.35 75.46 81.15 88.38 38.78 42.96 48.84 62.01
CAS ETF DR 69.17 76.16 80.81 88.61 38.91 43.18 49.05 62.50

BMLS ETF DR 77.77 80.38 84.30 87.91 39.54 43.60 49.54 62.06
diff. +6.19 +3.56 +3.05 +0.32 -1.66 -1.47 -1.17 -1.02

BMLS MS-WETF CE 77.73 80.31 84.22 88.26 42.73 47.10 52.44 64.10
diff. +6.15 +3.49 +2.97 +0.67 +1.53 +2.03 +1.73 +1.02
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Table 7: Comparison experiments of samplers on the CIFAR10/100-LT dataset with various imbalance
factors. The results are the mean of five repeated experiments with random seeds. Best in bold (CBS:
Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler)

Method
CIFAR10-LT CIFAR100-LT

imbalance factor imbalance factor
200 100 50 10 200 100 50 10

mixup
Mixup (Zhang et al., 2018) 67.30 72.80 78.60 87.70 38.70 43.00 48.10 58.20
Remix (Zhang et al., 2022) N/A 73.00 N/A 88.50 N/A 41.40 N/A 59.50
Remix+RS (Chou et al., 2020) N/A 76.23 N/A 87.70 N/A 41.13 N/A 58.62
CMO (Park et al., 2021) N/A N/A N/A N/A N/A 43.90 48.30 59.50
SBN-mix (Baik et al., 2024) 69.87 76.33 81.04 89.84 40.30 45.07 50.39 62.37
OTMix (Gao et al., 2023) N/A 78.30 83.40 90.20 N/A 46.40 50.70 61.60
ETF+CE (Yang et al., 2022) 60.06 67.00 77.20 87.00 N/A N/A N/A N/A
ETF+DR (Yang et al., 2022) 71.90 76.50 81.00 87.70 40.90 45.30 50.40 N/A
2-stage or extra network
BBN-mix (Zhou et al., 2020) N/A 79.82 82.18 88.32 N/A 42.56 47.02 59.12
DBN-mix (Baik et al., 2024) 79.58 83.47 86.82 90.87 46.21 51.04 54.93 64.98
UniMix (Xu et al., 2021) 78.48 82.75 84.32 89.66 42.07 45.45 51.11 61.25
MiSLAS (Zhong et al., 2021) N/A 82.10 85.70 90.00 N/A 47.00 52.30 63.20
CP-Mix (Yoon et al., 2025) 78.34 82.44 85.08 89.87 43.56 48.20 52.12 61.91
class-balance loss
CB+RS (Cao et al., 2019) N/A 70.55 N/A 86.79 N/A 33.44 N/A 55.06
CB+RW (Cui et al., 2019) N/A 72.37 N/A 86.54 N/A 33.99 N/A 57.12
CB+Focal (Cui et al., 2019) N/A 74.57 N/A 87.10 N/A 36.02 N/A 57.99
LDAM (Cao et al., 2019) N/A 73.35 N/A 86.96 N/A 39.60 N/A 56.91
LDAM+DRW (Cao et al., 2019) N/A 77.03 N/A 88.16 N/A 42.04 N/A 58.71
class-balance sampling
CAS (Shen & Lin, 2016) N/A 68.40 N/A 86.90 N/A 31.90 N/A 55.00
LOM (Zhang et al., 2022) N/A 74.20 N/A 89.40 N/A 41.50 N/A 59.90
CAS+DRW (Shen & Lin, 2016) N/A 73.50 N/A 87.70 N/A 41.50 N/A 57.60
LOM+DRW (Zhang et al., 2022) N/A 78.70 N/A 89.60 N/A 46.20 N/A 61.10
reproduced results and our method
Mixup 66.77 72.94 78.64 88.05 39.06 42.88 48.31 63.03
+LOM 70.17 76.63 81.15 89.24 39.61 44.24 49.99 63.90
+CAS 69.90 76.43 81.42 89.24 40.28 44.65 50.07 63.57
+BMLSMS 74.70 79.67 83.46 88.51 41.71 47.62 52.74 64.47

diff. +7.93 +6.73 +4.82 +0.46 +2.65 +4.74 +4.43 +1.44

ETF+DR 71.58 76.82 81.25 87.59 41.20 45.07 50.71 63.08
BMLS+WETFMS+CE 77.73 80.31 84.22 88.26 42.73 47.10 52.44 64.10

diff. +6.15 +3.49 +2.97 +0.67 +1.53 +2.03 +1.73 +1.02

Remix 69.58 75.15 80.41 88.61 41.03 44.95 50.19 63.45
+BMLS 73.95 80.10 83.92 88.62 39.95 46.34 51.53 64.42
+BMLSMS 73.18 78.00 83.70 88.20 40.25 46.82 49.78 63.54

diff. +3.60 +2.85 +3.29 -0.41 -0.78 +1.87 -0.41 +0.09

DBN-mix 77.40 82.40 86.05 91.01 40.71 45.52 50.47 62.68
+BMLSMS 79.73 84.30 87.28 90.93 44.42 49.08 55.41 65.42

diff. +2.33 +1.90 +1.23 -0.08 +3.71 +3.56 +4.94 +2.74
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Table 8: Experimental results on Many/Medium/Few classes in the CIFAR10/100-LT datasets.

Method Clf.
CIFAR10-LT CIFAR100-LT

many med few all many med few all
im

b
20

0
random FC 91.173.65 69.992.25 38.096.32 66.770.76 71.160.52 35.220.20 3.850.47 39.060.23

CBS FC 82.632.72 69.293.79 58.893.94 70.170.51 65.920.51 39.440.96 7.150.50 39.610.50
CAS FC 85.653.74 67.673.86 57.144.43 69.900.77 66.320.55 40.540.59 7.620.28 40.280.29

BMLS FC 90.490.26 74.121.21 54.432.25 73.130.67 65.290.45 41.330.76 7.090.37 40.030.38
BMLS MS 88.940.32 72.970.83 62.771.30 74.700.45 63.240.57 44.860.42 11.190.76 41.710.36

im
b

10
0

random FC 93.392.42 74.052.03 50.995.40 72.940.68 72.090.21 41.100.40 8.770.42 42.880.15
CBS FC 90.892.45 74.312.99 65.465.76 76.630.41 67.070.74 46.290.72 13.430.37 44.240.14
CAS FC 90.542.86 75.541.95 63.516.26 76.430.60 68.280.35 46.470.34 13.120.25 44.650.26

BMLS FC 88.531.01 77.840.25 70.531.27 78.850.34 68.380.27 46.890.33 14.370.88 45.200.33
BMLS MS 89.140.63 76.340.62 74.630.69 79.670.21 66.310.26 49.800.57 21.800.40 47.620.25

im
b

50

random FC 95.250.23 78.520.54 62.191.04 78.640.57 73.720.18 48.620.23 16.400.93 48.310.28
CBS FC 91.573.17 79.621.58 72.784.05 81.150.48 68.800.46 52.970.28 23.060.56 49.990.13
CAS FC 92.780.43 79.280.46 72.890.96 81.420.27 69.160.61 52.710.34 23.180.41 50.070.27

BMLS FC 91.860.40 81.320.36 76.631.05 83.070.43 69.770.55 54.550.28 26.830.67 51.990.26
BMLS MS 89.450.15 79.290.54 83.030.50 83.460.36 67.060.51 55.300.84 31.881.39 52.740.55

im
b

10

random FC 94.790.55 85.380.27 84.861.23 88.050.27 76.060.32 64.100.63 45.560.57 63.030.17
CBS FC 93.950.78 86.040.57 88.810.28 89.240.37 72.420.64 65.760.45 51.080.69 63.900.37
CAS FC 94.140.23 86.340.24 88.210.43 89.240.18 72.590.49 65.200.47 50.400.66 63.570.26

BMLS FC 91.170.40 87.040.26 90.980.59 89.460.19 71.050.70 68.930.66 55.240.47 65.720.29
BMLS MS 91.630.60 84.920.63 90.180.56 88.510.19 71.610.21 65.671.20 54.171.49 64.470.24

Table 9: Experimental results on Many/Medium/Few classes in the Places-LT datasets.

Method Clf.
Places-LT Places-LT (FT)

many med few all many med few all
random FC 42.020.76 15.790.54 0.860.12 22.060.50 43.790.29 20.450.27 6.590.26 25.900.06

CBS FC 38.651.97 22.601.20 5.690.52 24.790.13 41.310.09 39.980.17 25.110.11 37.320.07
CAS FC 40.680.33 20.080.53 4.860.50 24.260.22 41.350.08 40.060.06 25.460.17 37.440.04

BMLS FC 38.430.21 27.800.12 7.470.26 27.330.17 34.650.04 43.790.05 29.000.08 37.390.01
BMLS MS 39.390.32 27.010.40 10.390.12 27.950.26 41.330.09 40.140.00 27.050.15 37.810.01

Table 10: Experimental results on Many/Medium/Few classes in the ImageNet-LT and iNaturalist2018
datasets.

Method Clf.
ImageNet-LT iNaturalist2018

many med few all many med few all
random FC 67.760.43 38.720.50 9.330.28 45.190.43 77.550.39 66.660.38 59.490.38 64.620.31

CBS FC 62.460.91 44.551.10 20.000.92 47.490.99 63.250.22 68.360.15 66.630.18 67.060.04
CAS FC 63.040.31 43.830.34 19.530.40 47.310.33 63.990.63 68.800.02 67.100.08 67.550.09

BMLS FC 62.350.69 46.530.43 23.080.54 48.830.55 64.442.52 68.330.37 66.190.87 66.980.19
BMLS MS 59.030.89 45.871.01 24.860.92 47.540.94 51.730.83 57.150.14 57.180.28 56.600.18

Table 11: Experimental results of the ablation study on Many/Medium/Few classes in the
CIFAR10/100-LT datasets. The results are the mean of five repeated experiments with random
seeds.

Method Clf.
CIFAR10-LT CIFAR100-LT

many med few all many med few all

im
b

20
0

random FC 91.173.65 69.992.25 38.096.32 66.770.76 71.160.52 35.220.20 3.850.47 39.060.23
random MS 88.590.19 53.771.07 16.741.04 53.110.58 64.590.75 28.430.49 0.750.15 33.420.37
BMLS FC 90.490.26 74.121.21 54.432.25 73.130.67 65.290.45 41.330.76 7.090.37 40.030.38
BMLS MS 88.940.32 72.970.83 62.771.30 74.700.45 63.240.57 44.860.42 11.190.76 41.710.36

im
b

10
0

random FC 93.392.42 74.052.03 50.995.40 72.940.68 72.090.21 41.100.40 8.770.42 42.880.15
random MS 89.470.46 62.242.21 41.153.22 64.081.59 67.290.31 33.840.61 2.780.32 36.870.24
BMLS FC 88.531.01 77.840.25 70.531.27 78.850.34 68.380.27 46.890.33 14.370.88 45.200.33
BMLS MS 89.140.63 76.340.62 74.630.69 79.670.21 66.310.26 49.800.57 21.800.40 47.620.25

im
b

50

random FC 95.250.23 78.520.54 62.191.04 78.640.57 73.720.18 48.620.23 16.400.93 48.310.28
random MS 90.040.63 64.801.76 52.111.06 68.560.50 68.280.69 42.170.89 8.000.52 41.660.42
BMLS FC 91.860.40 81.320.36 76.631.05 83.070.43 69.770.55 54.550.28 26.830.67 51.990.26
BMLS MS 89.450.15 79.290.54 83.030.50 83.460.36 67.060.51 55.300.84 31.881.39 52.740.55

im
b

10

random FC 94.790.55 85.380.27 84.861.23 88.050.27 76.060.32 64.100.63 45.560.57 63.030.17
random MS 91.540.43 76.311.02 75.251.44 80.560.76 71.910.35 57.380.90 37.030.72 56.710.48
BMLS FC 91.170.40 87.040.26 90.980.59 89.460.19 71.050.70 68.930.66 55.240.47 65.720.29
BMLS MS 91.630.60 84.920.63 90.180.56 88.510.19 71.610.21 65.671.20 54.171.49 64.470.24
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Table 12: Experimental results of extension to the fixed ETF Classifier on Many/Medium/Few classes
in the CIFAR10-LT dataset. The results are the mean of five repeated experiments with random seeds.

Method Clf. L CIFAR10-LT
many med few all

im
b

20
0

random ETF DR 84.130.64 73.890.92 55.941.24 71.580.39

CBS ETF DR 81.053.12 69.262.29 57.774.75 69.350.38

CAS ETF DR 87.676.09 72.170.94 46.676.61 69.170.67

BMLS ETF DR 84.520.47 74.150.36 75.850.66 77.770.13

BMLS MS-WETF CE 85.410.71 74.960.45 73.740.72 77.730.32

im
b

10
0

random ETF DR 83.750.92 75.420.30 71.750.95 76.820.20

CBS ETF DR 88.893.19 74.462.41 63.376.15 75.460.37

CAS ETF DR 91.030.54 75.970.44 61.552.15 76.160.56

BMLS ETF DR 88.850.16 77.510.39 75.740.42 80.380.23

BMLS MS-WETF CE 86.710.88 76.280.69 79.271.39 80.310.43

im
b

50

random ETF DR 85.450.50 78.600.28 80.590.42 81.250.18

CBS ETF DR 91.411.07 79.151.05 73.571.93 81.150.37

CAS ETF DR 91.021.68 79.261.09 72.682.07 80.810.22

BMLS ETF DR 88.170.24 80.210.19 85.870.20 84.300.07

BMLS MS-WETF CE 87.010.89 80.360.67 86.590.29 84.220.43

im
b

10

random ETF DR 89.670.52 83.810.28 90.540.39 87.590.18

CBS ETF DR 92.790.23 85.140.38 88.280.41 88.380.25

CAS ETF DR 92.870.28 85.330.60 88.720.22 88.610.21

BMLS ETF DR 88.760.93 85.081.00 90.830.79 87.910.24

BMLS MS-WETF CE 91.270.32 85.890.20 88.400.42 88.260.04

Table 13: Experimental results of extension to the fixed ETF Classifier on Many/Medium/Few classes
in the CIFAR100-LT dataset. The results are the mean of five repeated experiments with random
seeds.

Method Clf. L CIFAR100-LT
many med few all

im
b

20
0

random ETF DR 68.230.59 42.050.52 6.630.29 41.200.18

CBS ETF DR 63.901.17 38.980.81 7.360.77 38.780.25

CAS ETF DR 64.100.66 38.860.68 7.680.31 38.910.43

BMLS ETF DR 63.810.48 39.090.69 9.940.54 39.540.45

BMLS MS-WETF CE 65.580.70 45.260.54 11.320.52 42.730.41

im
b

10
0

random ETF DR 69.850.40 47.220.35 11.720.81 45.070.25

CBS ETF DR 65.430.88 44.780.94 12.880.91 42.960.25

CAS ETF DR 66.040.40 44.730.34 12.930.35 43.180.18

BMLS ETF DR 65.590.18 44.490.45 15.210.49 43.600.22

BMLS MS-WETF CE 63.440.32 51.150.87 21.920.72 47.100.47

im
b

50

random ETF DR 70.560.39 53.520.65 22.690.70 50.710.24

CBS ETF DR 67.730.54 51.150.13 22.590.50 48.840.16

CAS ETF DR 67.870.55 51.580.62 22.630.78 49.050.36

BMLS ETF DR 66.210.58 51.020.49 27.060.59 49.540.39

BMLS MS-WETF CE 67.020.90 54.660.62 31.660.41 52.440.40

im
b

10

random ETF DR 72.760.29 64.480.50 49.390.36 63.080.21

CBS ETF DR 70.890.43 63.730.42 48.900.49 62.010.19

CAS ETF DR 71.130.45 63.890.34 50.120.45 62.500.27

BMLS ETF DR 68.951.20 64.830.71 50.181.26 62.060.22

BMLS MS-WETF CE 68.810.40 64.950.46 57.240.28 64.100.25
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F ADDITIONAL EXPERIMENTAL RESULTS FOR REBUTTAL

This page provided additional experimental results for rebuttal. These contents will be included in the
main paper or appendix depending on the review.

F.1 COMPARISON EXPERIMENTS FOR REMIX

Table 14: Comparison experiments of Remix on CIFAR10/100-LT datasets with various imbalance
factors. The results are the mean of five repeated experiments with random seeds. Best in bold (CBS:
Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler, †: the
reported values are taken from Chou et al. (2020), which used different experimental settings. ∗: the
reproduced result of Remix on our experimental settings.)

Method
CIFAR10-LT CIFAR100-LT

imbalance factor imbalance factor
200 100 50 10 200 100 50 10

Remix† N/A 75.36 N/A 88.15 N/A 41.94 N/A 59.36
Remix†

RS N/A 76.23 N/A 87.70 N/A 41.13 N/A 58.62
Remix* 69.58 75.15 80.41 88.61 41.03 44.95 50.19 63.45
+CBS 71.39 76.72 82.03 89.39 39.95 43.72 49.46 63.49
+CAS 71.36 77.28 82.00 89.37 40.21 44.91 49.83 63.26
+BMLS 73.95 80.10 83.92 88.62 39.95 46.34 51.53 64.42
+BMLSMS 73.18 78.00 83.70 88.20 40.25 46.82 49.78 63.54

Table 15: Experimental results of Remix on Many/Medium/Few classes in the CIFAR10/100-LT
datasets. The results are the mean of five repeated experiments with random seeds. (†: the reported
values are taken from Chou et al. (2020), which used different experimental settings. ∗: the reproduced
result of Remix on our experimental settings.)

Method
CIFAR10-LT CIFAR100-LT

many med few all many med few all

im
b

20
0

Remix† N/A N/A N/A N/A N/A N/A N/A N/A
Remix†RS N/A N/A N/A N/A N/A N/A N/A N/A
Remix* 92.313.87 71.401.23 44.437.91 69.580.99 70.430.23 39.831.02 5.990.42 41.030.31
+CBS 90.151.32 72.191.88 51.565.63 71.390.87 63.481.25 41.620.83 8.701.00 39.950.17
+CAS 88.354.44 71.631.52 54.028.11 71.360.91 64.440.36 41.060.71 9.110.24 40.210.35
+BMLS 80.437.52 73.661.38 67.867.14 73.950.48 61.383.17 42.970.88 9.704.35 39.950.55
+BMLSMS 89.470.44 72.170.54 58.231.19 73.180.22 64.880.30 40.370.77 9.550.46 40.250.32

im
b

10
0

Remix† N/A N/A N/A 75.36 N/A N/A N/A 41.94
Remix†RS N/A N/A N/A 76.23 N/A N/A N/A 41.13
Remix* 93.700.60 76.230.67 55.171.41 75.150.23 71.160.41 45.580.85 11.670.80 44.950.37
+CBS 91.310.63 76.541.27 62.371.84 76.720.62 64.420.30 46.740.62 14.380.32 43.720.29
+CAS 90.760.81 76.720.85 64.551.22 77.280.43 66.210.43 47.480.34 15.360.80 44.910.20
+BMLS 89.232.64 77.781.46 74.051.18 80.100.36 64.880.47 48.860.46 20.280.46 46.340.29
+BMLSMS 91.250.64 74.780.75 69.051.84 78.000.36 67.210.47 48.920.20 18.970.77 46.820.30

im
b

50

Remix† N/A N/A N/A N/A N/A N/A N/A N/A
Remix†RS N/A N/A N/A N/A N/A N/A N/A N/A
Remix* 94.250.49 79.200.31 68.161.33 80.410.25 72.030.51 51.730.15 21.220.84 50.190.24
+CBS 91.470.71 79.680.52 75.731.57 82.030.34 67.050.30 52.470.59 23.980.31 49.460.26
+CAS 92.080.32 79.890.64 74.721.14 82.000.48 67.880.63 52.420.24 24.280.33 49.830.20
+BMLS 90.630.44 81.300.33 80.701.15 83.920.38 64.890.40 53.630.57 32.410.53 51.530.40
+BMLSMS 89.710.49 80.090.57 82.490.87 83.700.16 67.161.86 51.460.82 26.171.78 49.780.43

im
b

10

Remix† N/A N/A N/A 88.15 N/A N/A N/A 59.36
Remix†RS N/A N/A N/A 87.70 N/A N/A N/A 58.62
Remix* 94.850.65 85.440.43 86.590.42 88.610.18 75.030.58 63.770.40 48.700.85 63.450.40
+CBS 93.750.19 85.790.55 89.830.43 89.390.17 70.470.50 65.900.38 51.910.57 63.490.16
+CAS 93.640.72 86.180.61 89.360.84 89.370.24 70.720.43 65.450.41 51.370.63 63.260.10
+BMLS 89.750.43 85.660.17 91.450.22 88.620.11 69.281.67 68.321.15 53.681.36 64.420.30
+BMLSMS 92.260.17 84.590.34 88.950.21 88.200.15 70.590.42 65.110.32 52.880.61 63.540.26
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F.2 ABLATION STUDY INCLUDING K2 CLASSIFIER

Table 16: Ablation study on CIFAR10/100-LT datasets with various imbalance factors including K2

classifier (notated as K2 on the table). The results are the mean of five repeated experiments with
random seeds. Best in bold (CBS: Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS:
Balanced Mixed Label Sampler)

Sampler Clf.
CIFAR10-LT CIFAR100-LT

imbalance factor imbalance factor
200 100 50 10 200 100 50 10

Sampler
random FC 66.77 72.94 78.64 88.05 39.06 42.88 48.31 63.03
BMLS FC 73.13 78.85 83.07 89.46 40.03 45.20 51.99 65.72

Classifier
random MS 53.11 64.08 68.56 80.56 33.42 36.87 41.66 56.71
BMLS K2 34.86 39.01 42.20 51.60 7.90 8.72 9.22 16.41
BMLS MS 74.70 79.67 83.46 88.51 41.71 47.62 52.74 64.47

Table 17: Experimental results of the ablation study including K2 classifier (notated as K2 on the
table) on Many/Medium/Few classes in the CIFAR10/100-LT datasets. The results are the mean of
five repeated experiments with random seeds.

Method Clf.
CIFAR10-LT CIFAR100-LT

many med few all many med few all

im
b

20
0

Sampler
random FC 91.173.65 69.992.25 38.096.32 66.770.76 71.160.52 35.220.20 3.850.47 39.060.23
BMLS FC 90.490.26 74.121.21 54.432.25 73.130.67 65.290.45 41.330.76 7.090.37 40.030.38
Classifier
random MS 88.590.19 53.771.07 16.741.04 53.110.58 64.590.75 28.430.49 0.750.15 33.420.37
BMLS K2 67.9411.93 29.796.92 8.555.98 34.860.92 14.690.75 6.910.63 0.670.17 7.900.13
BMLS MS 88.940.32 72.970.83 62.771.30 74.700.45 63.240.57 44.860.42 11.190.76 41.710.36

im
b

10
0

Sampler
random FC 93.392.42 74.052.03 50.995.40 72.940.68 72.090.21 41.100.40 8.770.42 42.880.15
BMLS FC 88.531.01 77.840.25 70.531.27 78.850.34 68.380.27 46.890.33 14.370.88 45.200.33
Classifier
random MS 89.470.46 62.242.21 41.153.22 64.081.59 67.290.31 33.840.61 2.780.32 36.870.24
BMLS K2 58.353.36 34.315.73 25.935.20 39.010.90 14.150.60 9.360.75 1.210.12 8.720.43
BMLS MS 89.140.63 76.340.62 74.630.69 79.670.21 66.310.26 49.800.57 21.800.40 47.620.25

im
b

50

Sampler
random FC 95.250.23 78.520.54 62.191.04 78.640.57 73.720.18 48.620.23 16.400.93 48.310.28
BMLS FC 91.860.40 81.320.36 76.631.05 83.070.43 69.770.55 54.550.28 26.830.67 51.990.26
Classifier
random MS 90.040.63 64.801.76 52.111.06 68.560.50 68.280.69 42.170.89 8.000.52 41.660.42
BMLS K2 59.757.70 37.920.59 30.377.19 42.200.89 13.251.08 10.400.49 2.810.96 9.220.39
BMLS MS 89.450.15 79.290.54 83.030.50 83.460.36 67.060.51 55.300.84 31.881.39 52.740.55

im
b

10

Sampler
random FC 94.790.55 85.380.27 84.861.23 88.050.27 76.060.32 64.100.63 45.560.57 63.030.17
BMLS FC 91.170.40 87.040.26 90.980.59 89.460.19 71.050.70 68.930.66 55.240.47 65.720.29
Classifier
random MS 91.540.43 76.311.02 75.251.44 80.560.76 71.910.35 57.380.90 37.030.72 56.710.48
BMLS K2 57.781.43 46.292.03 52.521.76 51.600.99 17.091.33 17.710.71 13.970.83 16.410.51
BMLS MS 91.630.60 84.920.63 90.180.56 88.510.19 71.610.21 65.671.20 54.171.49 64.470.24
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F.3 AN EMPIRICAL STUDY ON MIXUP ALPHA

Figure 5: The change of test accuracy of each sampler on CIFAR10/100-LT (imb: 100)

Table 18: Ablation study on CIFAR10/100-LT datasets (imbalance factor: 100) with various mixup
alpha values. The results are the mean of five repeated experiments with random seeds. Best in bold
(CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler)

Method
CIFAR10-LT CIFAR100-LT
mixup alpha mixup alpha

0.2 0.5 1.0 2.0 4.0 0.2 0.5 1.0 2.0 4.0
random 72.48 72.72 72.94 72.41 71.83 42.77 42.64 42.88 42.80 42.78
CAS 74.69 75.39 76.43 76.59 76.04 42.74 44.54 44.65 44.21 43.46
BMLS 79.95 79.74 78.85 78.59 76.33 42.86 45.06 45.20 44.33 43.96
BMLSMS 80.16 79.52 79.67 79.61 79.53 46.24 47.21 47.62 46.73 45.84

Table 19: Experimental results of Remix on Many/Medium/Few classes in the CIFAR10/100-LT
datasets. The results are the mean of five repeated experiments with random seeds. (†: the reported
values are taken from Chou et al. (2020), which used different experimental settings. ∗: the reproduced
result of Remix on our experimental settings.)

Method
CIFAR10-LT CIFAR100-LT

many med few all many med few all

α
=

0
.2

random 92.901.54 72.282.47 52.344.80 72.480.14 71.690.65 41.390.71 8.510.68 42.770.57
CAS 89.054.00 72.293.03 63.537.84 74.690.56 66.310.40 43.650.57 12.390.45 42.740.22
BMLS 89.730.57 76.840.54 74.331.83 79.950.49 65.511.01 43.530.93 13.920.71 42.860.78
BMLSMS 87.150.79 75.390.72 79.531.80 80.160.52 64.730.50 48.930.62 20.060.24 46.240.24

α
=

0
.5

random 91.533.38 73.063.07 53.476.92 72.720.52 72.420.10 40.620.90 8.120.78 42.640.54
CAS 91.742.24 74.912.60 59.664.84 75.390.34 68.630.25 45.830.33 13.080.71 44.540.33
BMLS 90.960.58 78.390.40 70.342.05 79.740.70 67.860.68 46.460.31 15.061.23 45.060.36
BMLSMS 88.881.02 75.650.56 75.311.21 79.520.29 64.131.12 50.410.82 22.340.45 47.210.33

α
=

1
.0

random 93.392.42 74.052.03 50.995.40 72.940.68 72.090.21 41.100.40 8.770.42 42.880.15
CAS 90.542.86 75.541.95 63.516.26 76.430.60 68.280.35 46.470.34 13.120.25 44.650.26
BMLS 88.531.01 77.840.25 70.531.27 78.850.34 68.380.27 46.890.33 14.370.88 45.200.33
BMLSMS 89.140.63 76.340.62 74.630.69 79.670.21 66.310.26 49.800.57 21.800.40 47.620.25

α
=

2
.0

random 93.970.29 73.290.41 49.651.54 72.410.27 71.920.39 41.450.71 8.300.23 42.800.32
CAS 88.303.08 75.952.20 65.745.88 76.590.53 66.380.68 47.040.27 13.270.46 44.210.21
BMLS 88.170.57 77.241.02 70.801.53 78.590.24 66.731.07 47.300.71 12.920.89 44.330.51
BMLSMS 84.220.41 74.660.72 81.590.31 79.610.35 65.151.60 49.531.26 20.470.41 46.730.24

α
=

4
.0

random 93.180.30 71.640.97 50.750.43 71.830.40 71.840.31 41.720.37 7.990.76 42.780.19
CAS 87.373.19 75.202.05 65.846.09 76.040.72 64.180.54 47.250.25 13.151.00 43.460.17
BMLS 86.592.05 77.490.78 64.522.86 76.330.30 64.020.24 47.230.53 15.090.48 43.960.32
BMLSMS 86.570.79 73.880.86 80.030.89 79.530.17 61.201.02 50.701.28 20.890.55 45.840.17
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