

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BALANCING MIXED LABELS: MIXUP MEETS NEURAL COLLAPSE IN IMBALANCED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Minority collapse, where minority classes become indistinguishable, is a significant challenge in imbalanced learning, which is addressed by methods such as Mixup with class-balanced sampling. The minority collapse has been mathematically analyzed using the layer-peeled model (LPM), together with the phenomenon of Neural Collapse (NC). Although the LPM has been employed to study NC behavior under Mixup, no prior work has analyzed minority collapse of Mixup, particularly from the perspective of mixed labels. We investigate this overlooked factor and pose the question: *Is the mixed label balance important for alleviating minority collapse?* Our analysis reveals that (i) mixed labels should be balanced, and (ii) in this setting, interpreting mixed labels as singletons is beneficial. Building on the analysis, we propose a *Balanced Mixed Label Sampler* and a *Mixed-Singleton classifier*, which balance mixed labels and treat them as singleton labels. Through theoretical analysis, visualization, and ablation studies, we demonstrate the effectiveness of our approach. Experiments on standard benchmarks further confirm consistent performance gains, highlighting the importance of balancing mixed labels in imbalanced learning.

1 INTRODUCTION

In imbalanced learning, severe class imbalance often causes a significant degradation of model accuracy, particularly on the minority classes (Liu et al., 2019). One known cause of this performance drop is the phenomenon termed *minority collapse* (Fang et al., 2021), wherein the class vectors of minority classes converge and become nearly identical. To mitigate this issue, a wide range of strategies has been explored, including data augmentation (Zhang et al., 2018; Verma et al., 2019; Shi et al., 2023), calibration technique (Zhong et al., 2021), mixture-of-experts models (Cai et al., 2021; Zhang et al., 2021; Xiang et al., 2020), and class-balanced loss functions (Cao et al., 2019; Cui et al., 2019) or sampling schemes (Kang et al., 2020; Cao et al., 2019; Zhang et al., 2022; Shen & Lin, 2016). Among these approaches, Mixup (Zhang et al., 2018), especially when combined with class-balanced sampling, has been shown to effectively improve the model performance under class-imbalanced conditions.

Meanwhile, Neural Collapse (NC) (Papyan et al., 2020) has emerged as a key framework for analyzing geometric properties of last-layer features and classifier in classification models at the terminal phase of training. Although NC has been studied in both Mixup (Fisher et al., 2024) and imbalanced learning (Liu et al., 2023; Yang et al., 2022) separately, Mixup in imbalanced settings has not been investigated in conjunction with NC. In particular, the balance of mixed labels has received little attention. The only related finding comes from M-lab NC (Li et al., 2024), which observes that even when multi-label samples are imbalanced, NC occurs at the singleton-class level as long as singleton label samples are balanced, with multi-label class emerging as combinations of singletons. However, whether the balance of input samples still hold for mixed labels under Mixup remains unclear. This motivates our central research question: *Could the balance of mixed labels be a critical factor in minority collapse?*

Building on the proof approach of Fang et al. (2021), we first demonstrate that *minority collapse still occurs under Mixup when the frequency of mixed labels are not balanced* (Theorem 1). Although existing class-balanced samplers partially alleviate the minority collapse of Mixup by balancing the frequency of singleton labels, they fail to address it entirely due to the randomness of Mixup. To

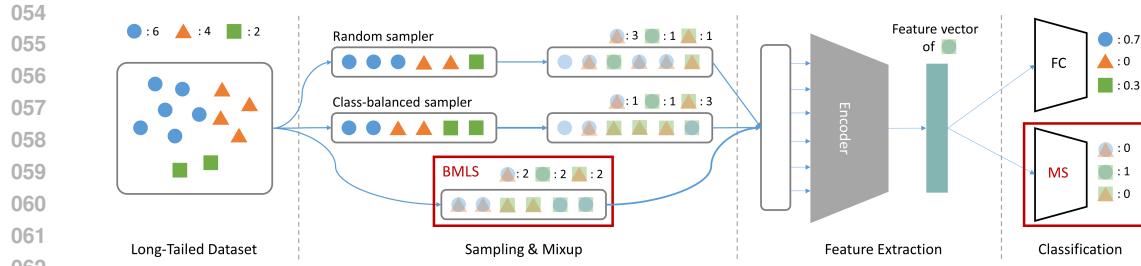


Figure 1: Overview of Balanced Mixed Label Sampler (BMLS) and Mixed-Singleton Classifier (MS)

obtain empirical evidence for this failure, we examined the per-label frequency generated in each epoch and observed an *epoch-wise label imbalance* phenomenon (Figure 2). Furthermore, through a mixed-label frequency control experiment (Figure 3), we empirically verified that this imbalance has a substantial impact on weakening the mitigation of minority collapse under Mixup. To address this issue, we propose **Balanced Mixed Label Sampler** that balances the frequency of mixed labels across epochs (§3). Both theoretically and empirically, we demonstrate that aligning the frequency of mixed labels across epochs mitigates the minority collapse (Proposition 1 and Figure 4). Furthermore, our analysis uncovers that the minority collapse of Mixup is determined solely by the frequency of singleton and mixed labels, independent of the mixup ratio. Leveraging this insight, we introduce **Mixed-Singleton classifier**, which treats mixed labels as singleton labels when learning class vectors (§3). Compared with a conventional singleton classifier implemented as a fully connected layer, our approach achieves superior performance, particularly improving accuracy on minority classes (Table 1).

2 RELATED WORK

In this section, we primarily discuss the novelty of our work. Additional related work that is not mentioned here or requires further detail can be found in Appendix A.

Mixup-based Method. Many attempts have been made to address the challenges of imbalanced learning environments using Mixup (Zhang et al., 2018), which increases the diversity of sampled data and alleviates risk of overfitting on tail classes, including data augmentation, architecture improvements, and calibration methods. (See more references in Appendix A.1.) However, no research has specifically studied on the frequency balance of mixed labels in minority collapse.

Class-balanced Methods. Various class-balanced samplers have been proposed (see more references in Appendix A.2), yet no work has mainly focused on the frequency balance of mixed labels. Additionally, while Logit Adjustment (Menon et al., 2021) and UniMix (Xu et al., 2021) have concentrated on the effect of the class vectors of singleton labels, they did not interpret mixed labels as singletons.

Neural Collapse in Mixup and Imbalanced Learning. NC in imbalanced learning has been studied in Fang et al. (2021). To alleviate the minority collapse, Yang et al. (2022) assumed that the classifier is fixed to the K-simplex ETF and proved that LPM with the classifier satisfies NC properties. Also, the fixed ETF classifier with Mixup has improved the model performance in imbalanced learning. Building on the theorems, Fisher et al. (2024) proved Mixup also satisfies NC properties for both same class and different class. However, Yang et al. (2022) and Fisher et al. (2024) did not consider the minority collapse from the frequency of mixed labels in the LPM with learnable classifiers.

3 METHOD

Notations. Let \mathcal{X} be the dataset with N samples where the number of singleton label classes is K and \mathbb{S} be the set of their feature vectors \mathbf{h} . Then, we formulate them as $\mathcal{X} := \{(\mathbf{x}_i, c_i)\}_{i=1}^N$ where c_i is the class label of the i -th sample x_i and $\mathbb{S} := \{\mathbf{h}_i\}_{i=1}^N$. As a result, we define $\mathbf{y}_i = e^{(c_i)}$ as the one-hot vector of x_i . Then, we denote the subset of \mathbb{S} which has only k -th class feature vectors $\mathbf{h}_{k,i}$ as $\mathbb{S}_k := \{\mathbf{h}_{k,i}\}_{i=1}^{n_k}$ where n_k is the number of k -th class samples and $k \in [K]$. Thus, $N = \sum_{k=1}^K n_k$.

108 **Overview of Mixup.** Mixup randomly permutes input samples and blends them with the ones before
 109 permutation, respectively. Let $\mathcal{I} := [i]_{i=1}^N$ be the indices of \mathcal{X} and $\pi(\mathcal{I}) := [\pi(i)]_{i=1}^N$ be the permuted
 110 one where $\pi(i)$ represents the index number corresponding to i -th element of \mathcal{I} . Therefore, the
 111 index pairs of mixed samples \mathcal{I}^λ is denoted as $\mathcal{I}^\lambda := [(i, \pi(i))]_{i \in \mathcal{I}}$. In this case, we denote $\mathcal{I}_{(a,b)}^\lambda$
 112 as the index pairs of $(c_i, c_{\pi(i)}) = (a, b)$, and $\mathbb{S}_{(a,b)}^\lambda$ as the mixed feature set of (a, b) -label samples.
 113 Therefore, $\mathbb{S}_{(a,b)}^\lambda := \{\lambda \mathbf{h}_{a,i} + (1 - \lambda) \mathbf{h}_{b,j} \mid (i, j) \in \mathcal{I}_{(a,b)}^\lambda\} = \{\mathbf{h}_{(a,b),i}^\lambda\}_{i=1}^{n_{(a,b)}}$ where $(a, b) \in \mathbb{K}^2$,
 114 $n_{(a,b)} = |\mathcal{I}_{(a,b)}^\lambda|$, and $\mathbb{K}^2 = \{(a, b) \mid 1 \leq a \leq K, 1 \leq b \leq K\}$. Thus, $N = \sum_{(a,b) \in \mathbb{K}^2} n_{(a,b)}$.
 115

116 Based on the notations, we perform mixup on each pair defined by \mathcal{I}^λ to create mixed-label samples
 117 by linearly interpolating them:

$$119 \quad \mathbf{x}_i^\lambda = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_{\pi(i)}, \mathbf{y}_i^\lambda = \lambda \mathbf{y}_{c_i} + (1 - \lambda) \mathbf{y}_{c_{\pi(i)}}, \forall (i, \pi(i)) \in \mathcal{I}^\lambda, \quad (1)$$

120 where the mixup ratio $\lambda \in (0, 1)$ is sampled from the beta distribution D_λ , i.e., $\lambda \sim D_\lambda(\alpha, \alpha)$ and α
 121 is a hyperparameter.

122 **Balanced Mixed Label Sampler.** We propose the Balanced Mixed Label Sampler (BMLS), where
 123 the frequency of all mixed-label samples is equal in each epoch as shown in Figure 1. When using
 124 BMLS, the probability of sampling of a (a, b) -label sample is

$$126 \quad P_{(i, \pi(i)) \mid (i, \pi(i)) \in \tilde{\mathcal{I}}^\lambda} = \frac{1}{N}. \quad (2)$$

127 $\tilde{\mathcal{I}}^\lambda$ is the index pairs of samples where the frequency of mixed labels is balanced, i.e., $n_{(a,b)} = n$ for
 128 all $(a, b) \in \mathbb{K}^2$. As done in the class-aware sampler (Shen & Lin, 2016), we remove the randomness
 129 by pre-defining $\tilde{\mathcal{I}}^\lambda$ for every epoch. After generating $\tilde{\mathcal{I}}^\lambda$, we simply replace \mathcal{I}^λ to $\tilde{\mathcal{I}}^\lambda$ in Eq. 1.

130 As proven in Theorem 1 and Proposition 1, we show that *the minority collapse observed in Mixup*
 131 *arises from the imbalanced frequency of mixed-label samples* (The theorems and proofs are deferred
 132 for clarity of exposition). Consequently, the proposed sampler mitigates the minority collapse of
 133 Mixup by performing sampling after pre-balancing the frequency of all label samples, including
 134 mixed labels, as formulated in Eq. 2.

135 **Mixed-Singleton Classifier.** Let $\mathbf{W} \in \mathbb{R}^{K \times p}$ be a classifier of singleton labels, which is a fully-
 136 connected layer. We define the Mixed-Singleton classifier (MS) as

$$137 \quad \mathbf{W}^\lambda = [\lambda \mathbf{w}_a + (1 - \lambda) \mathbf{w}_b]_{(a,b) \in \mathbb{K}^2}, \quad (3)$$

138 where p is the last-layer feature dimension, as shown in Figure 1. We replace the singleton classifier
 139 with MS and perform Mixup with BMLS, where mixed-label samples $\tilde{\mathbf{x}}_i^\lambda$ and their one-hot vectors
 140 $\tilde{\mathbf{y}}_i^\lambda$ are defined as:

$$141 \quad \tilde{\mathbf{x}}_i^\lambda = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_{\pi(i)}, \tilde{\mathbf{y}}_i^\lambda = e^{\mathcal{I}^2(c_i, c_{\pi(i)})}, \forall (i, \pi(i)) \in \tilde{\mathcal{I}}^\lambda, \quad (4)$$

142 where \mathcal{I}^2 denotes the index pairs of \mathbb{K}^2 , and $\mathcal{I}^2(a, b)$ gives the index number of $(a, b) \in \mathbb{K}^2$.

143 During the proof of Theorem 1, we focused on the observation that *oversampling can mitigate the*
 144 *minority collapse of Mixup regardless of the mixup lambda λ* in Eq. 19. Motivated by this, we treated
 145 *each mixed label as a new singleton class*. As a result, the proposed classifier improves the accuracy
 146 on minority classes, thereby strengthening the minority collapse mitigation effect of BMLS.

147 Building on these methods, we generated mixed labels (a, b) only for the case where $a < b$, ensuring
 148 that the existing theorem and proposition still hold, thereby mitigating the limitations of both methods.
 149 The limitation and proof are described in §7 and Appendix C.5.

150 4 THEORETICAL ANALYSIS

151 4.1 PROOF SKETCH

152 We first present a proof sketch that outlines the approach we followed to propose and prove our
 153 theorems. Fang et al. (2021) proved that oversampling mitigates minority collapse when singleton
 154 label samples are imbalanced, following the sequence outlined below. (Gray indicates the part as
 155 defined in Fang et al. (2021).)

162 (1) Define the Layer-Pealed Model. (Eq. 7)
 163 (2) Prove that NC properties are satisfied when the LPM has global optimality in the case where
 164 singleton label samples are balanced. (Theorem 1)
 165 (3) Demonstrate that the LPM suffers from minority collapse in the case where singleton label
 166 samples are imbalanced. (Lemma 1 and Theorem 5)
 167 (4) Show that oversampling alleviates minority collapse in the imbalanced case. (Proposition 1)

168 Our theorem and proof leverages strategies similar to those in Fang et al. (2021), but we extend these
 169 concepts to Mixup focusing on the balance of mixed label samples.

170 In §4.2, (1) we define the Layer-Pealed Model with Mixup (LPM_λ) and omit step (2), which holds
 171 true according to the theorem of Fisher et al. (2024); (3) we prove that in the imbalanced case the
 172 LPM_λ also suffers from minority collapse; and in closing, (4) we show that the Balanced Mixed
 173 Label Sampler (BMLS) alleviates the minority collapse. In §4.3, we extend the LPM_λ by modifying
 174 the classifier: (1) we newly define the Layer-Pealed Model with Mixup and Mixed-Singleton classifier
 175 (LPM_λ -MS); (2) we prove that when this model achieves global optimality, it also satisfies the NC
 176 properties; and finally, following the same reasoning as in §4.2, (3–4) we show that in the imbalanced
 177 case the LPM_λ -MS suffers from minority collapse, and that BMLS is effective to the minority
 178 collapse even in this setting.

180 4.2 BALANCING MIXED LABELS MITIGATE THE MINORITY COLLAPSE OF MIXUP

181 **(1) Problem Settings.** The Layer-Pealed Model (LPM) (Fang et al., 2021) is the optimization
 182 program of simplified neural network, modeled by only last-layer features and classifier. Following
 183 the definition of LPM, we obtain the Layer-Pealed Model with Mixup (LPM_λ):

$$185 \min_{\mathbf{W}, \mathbf{H}^\lambda} \mathbb{E}_\lambda \frac{1}{N} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^{n_k} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) \text{ s.t. } \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k\|^2 \leq E_W, \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}^\lambda\|^2 \leq E_H, \quad (5)$$

188 where $\mathbf{y}_{(a,b)}^\lambda = \lambda \mathbf{e}^{(a)} + (1 - \lambda) \mathbf{e}^{(b)}$. For simplicity, we hereafter denote $\mathbf{W} = [\mathbf{w}_k]_{k=1}^K \in \mathbb{R}^{K \times p}$ for
 189 the weights of the classifier and the positive thresholds $E_W \propto 1/K$ and $E_H \propto 1/K$.

191 We present a convex optimization program that serves as a relaxation of the non-convex LPM_λ
 192 (Eq. 5), leveraging the established result that a quadratically constrained quadratic program can be
 193 transformed into a semidefinite program (Sturm & Zhang, 2003). This formulation is provided as
 194 Eq. 11 in Appendix B.

195 **(2) Satisfying NC properties.** As proven in Fisher et al. (2024), when LPM_λ (Eq. 5) has the global
 196 optimality, NC properties are satisfied. We omit this step.

197 **(3) Minority collapse occurs in LPM_λ .** Now, we are ready for proving that LPM_λ also suffers from
 198 minority collapse. Lemma 1 below relates the solutions of Eq. 11 to that of Eq. 5.

200 **Lemma 1.** *Assume $p \geq K^2 + K$ and the loss function \mathcal{L} is convex in its first argument. Let \mathbf{X}^* be a
 201 minimizer of the convex program (Eq. 11). Define $(\mathbf{W}^*, \mathbf{H}^*)$ as*

$$202 \begin{aligned} 203 & \left[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, (\mathbf{W}^*)^\top \right] = \mathbf{P}(\mathbf{X}^*)^{1/2}, \\ 204 & \mathbf{h}_{k,i}^* = \mathbf{h}_k^*, \text{ for all } i \in \mathcal{I}_k^\lambda, k \in \mathbb{K}^2, \end{aligned} \quad (6)$$

206 where $(\mathbf{X}^*)^{1/2}$ denotes the positive square root of \mathbf{X}^* and $\mathbf{P} \in \mathbb{R}^{p \times (K^2+K)}$ is any partial orthogonal
 207 matrix such that $\mathbf{P}^\top \mathbf{P} = \mathbf{I}_{K^2+K}$. Then, $(\mathbf{W}^*, \mathbf{H}^*)$ is a minimizer of Eq. 5. Moreover, if all
 208 \mathbf{X}^* 's satisfy $\frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}^*(k, k) = E_H$, then all the solutions of Eq. 5 are in the form of Eq. 6.

209 *Proof.* See Appendix C.1 □

211 **Theorem 1.** *Assume $p \geq K$ and $n_A/n_B \rightarrow \infty$, and fix K_A and K_B . Let $(\mathbf{W}^*, \mathbf{H}^*)$ be any global
 212 minimizer of the LPM_λ (Eq. 5). As the imbalance factor $R \equiv n_A/n_B \rightarrow \infty$, we have*

$$214 \lim \mathbf{w}_k^* - \mathbf{w}_{k'}^* = \mathbf{0}_p, \text{ for all } K_A < k < k' \leq K. \quad 215$$

216 *Proof.* See Appendix C.3 □

216 From [Lemma 1](#) and [Theorem 1](#), we demonstrate that LPM_λ also exhibits minority collapse.
 217

218 **(4) Balancing mixed labels mitigates minority collapse in LPM_λ .** To formalize the behavior of a
 219 neural network trained by minimizing a new program with balanced samples including mixed-label
 220 ones through BMLS, we propose that it may perform as if it were trained on a larger dataset containing
 221 n_A examples in the majority class and $w_r n_B$ examples in the minority class. We begin by analyzing
 222 the LPM_λ in the context of BMLS:

$$\begin{aligned} 223 \quad & \min_{\mathbf{W}, \mathbf{H}^\lambda} \frac{1}{N'} \left[\sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) + w_r \sum_{k \in \mathbb{K}_B^2} \sum_{i=1}^{n_B} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) \right] \\ 224 \quad & \text{s.t. } \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k\|^2 \leq E_W, \quad \frac{1}{|\mathbb{K}_A^2|} \sum_{k \in \mathbb{K}_A^2} \frac{1}{n_A} \sum_{i=1}^{n_A} \|\mathbf{h}_{k,i}^\lambda\|^2 + \frac{1}{|\mathbb{K}_B^2|} \sum_{k \in \mathbb{K}_B^2} \frac{1}{n_B} \sum_{i=1}^{n_B} \|\mathbf{h}_{k,i}^\lambda\|^2 \leq E_H, \end{aligned} \quad (7)$$

230 where $N' = n_A |\mathbb{K}_A^2| + w_r n_B |\mathbb{K}_B^2|$

231 The following result supports the intuition that BMLS enhances the size of the minority classes in the
 232 LPM_λ . For simplicity, we omit the superscript λ in [Proposition 1](#).

233 **Proposition 1.** *Assume $p \geq K^2 + K$ and the loss function \mathcal{L} is convex in the first argument. Let \mathbf{X}^*
 234 be any minimizer of the convex program (Eq. 11) with $n_{(1,1)} = n_{(1,2)} = \dots = n_{(K_A, K_A)} = n_A$ and
 235 $n_{(K_A+1, K_A+1)} = n_{(K_A+1, K_A+2)} = \dots = n_{(K, K)} = w_r n_B$. Define $(\mathbf{W}^*, \mathbf{H}^*)$ as*

$$236 \quad \left[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, (\mathbf{W}^*)^\top \right] = \mathbf{P}(\mathbf{X}^*)^{1/2}, \quad (8)$$

$$239 \quad \mathbf{h}_{k_A,i}^* = \mathbf{h}_{k_A}^*, \text{ for all } i \in \mathcal{I}_{k_A}^\lambda, k_A \in \mathbb{K}_A^2, \quad \mathbf{h}_{k_B,i}^* = \mathbf{h}_{k_B}^*, \text{ for all } i \in \mathcal{I}_{k_B}^\lambda, k_B \in \mathbb{K}_B^2,$$

240 where $\mathbf{P} \in \mathbb{R}^{p \times (K^2+K)}$ is any partial orthogonal matrix such that $\mathbf{P}^\top \mathbf{P} = \mathbf{I}_{K^2+K}$. Then,
 241 $(\mathbf{W}^*, \mathbf{H}^*)$ is a global minimizer of the mixed-label balanced LPM_λ (Eq. 7). Moreover, if all \mathbf{X}^* 's
 242 satisfy $\frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \mathbf{X}^*(k, k) = E_H$, then all the solutions of Eq. 7 are in the form of Eq. 8.

244 *Proof.* See [Appendix C.2](#). □

247 In conjunction with [Lemma 1](#), [Proposition 1](#) demonstrates that the number of training examples in
 248 each minority mixed label is effectively $w_r n_B$ instead of n_B in the LPM_λ . In the special case where
 249 $w_r = n_A/n_B \equiv R$, the results indicate that the angles between any pair of class vectors are equal,
 250 regardless of whether they belong to the majority or minority classes.

251 *Remark 1.* According to [Theorem 1](#), Mixup also experiences the minority collapse. Additionally,
 252 as proven in [Proposition 1](#), even when using class-balanced samplers to alleviate label suppression
 253 and learn an unbiased classifier, minority collapse is partially mitigated but not fully resolved, as the
 254 frequency of mixed labels remains imbalanced. For this reason, when using Mixup in imbalanced
 255 learning, the frequency of not only singleton labels but also mixed ones should be balanced.

257 4.3 ENHANCING MINORITY COLLAPSE MITIGATION VIA SINGLETON INTERPRETATION

259 Building on [Theorem 1](#) and [Proposition 1](#), we raise a conjecture: *If mixed labels are interpreted as
 260 singletons, then the mitigation of minority collapse will be enhanced.*

261 The rationale for the conjecture can be summarized as follows: (i) *Difference between Mixup loss
 262 and mixed feature.* In [Proposition 1](#), minority collapse occurs regardless of the mixup ratio λ , as
 263 illustrated in Eq. 19. This is because the total loss derived from features is equivalent to that obtained
 264 without Mixup. However, the behavior of features differs: while the loss is divided between classes
 265 according to the mixup ratio λ , the mixed features are not generally decomposed in this way due
 266 to the non-linearity of the model; (ii) *Similar importance of singleton and mixed labels in minority
 267 collapse.* In addition, the minority collapse of LPM_λ depends not only on the number of singleton
 268 label samples but also on that of mixed-label samples, as if the mixed labels were singletons; (iii)
 269 *Negative impact of Mixup loss on classifier learning.* Furthermore, it has been reported that Mixup
 primarily facilitates representation learning while exerting a minimal or adverse effect on classifier

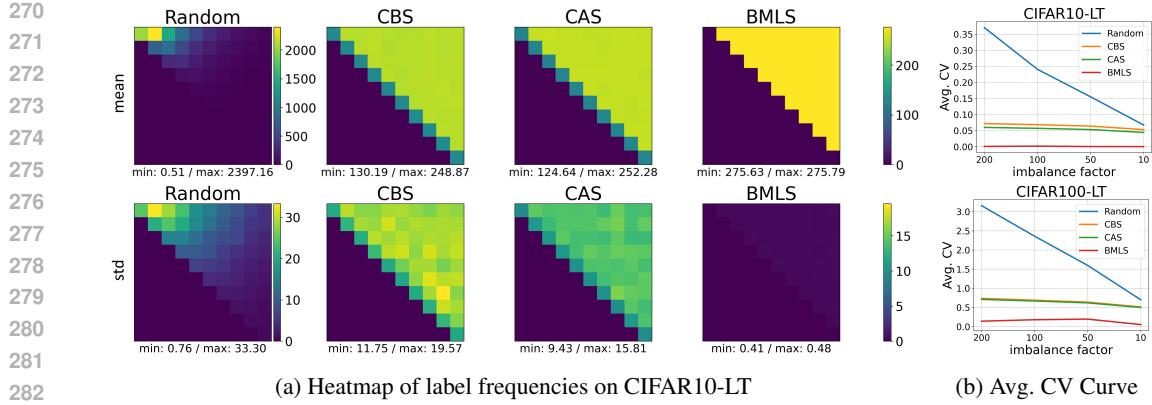


Figure 2: Mean and standard deviation of label frequencies including mixed label across epochs. (a) Higher imbalance factor means higher imbalanced, and (b) the closer Avg. CV is to 0, the more evenly the labels appear across epochs

learning (Zhong et al., 2021). For this reason, *would it not be more effective in alleviating minority collapse to interpret mixed labels as singletons, as this reduces the adverse effect of Mixup?*

(1) Problem Settings. By replacing the classifier as Mixed-Singleton classifier defined in §3, we obtain the LPM_λ with Mixed-Singleton classifier (LPM_λ -MS):

$$\begin{aligned} & \min_{\mathbf{W}^\lambda, \mathbf{H}^\lambda} \mathbb{E}_\lambda \frac{1}{N} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^{n_k} \mathcal{L}(\mathbf{W}^\lambda \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) \\ & \text{s.t. } \frac{1}{|\mathbb{K}^2|} \sum_{k \in \mathbb{K}^2} \|\mathbf{w}_k^\lambda\|^2 \leq E_W, \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}^\lambda\|^2 \leq E_H, \end{aligned} \quad (9)$$

where the only differences are $\mathbf{W}^\lambda = [\lambda \mathbf{w}_a + (1 - \lambda) \mathbf{w}_b]_{(a,b) \in \mathbb{K}^2}$.

(2) Satisfying NC properties. In this setting, LPM_λ -MS has the same global minimum with that of the LPM in balanced case where the number of classes is K due to the linear interpolation property of $\mathbf{W}_{(a,b)}^\lambda$. (See Eq. 46 proven in Theorem 3.) As a result, the LPM_λ -MS also satisfies NC properties.

(3-4) Therefore, we omit steps (3-4) and conclude Theorem 2.

For simplicity, we remove the superscript λ in Theorem 2.

Theorem 2. Assume $p \geq 2K^2$ and the loss function \mathcal{L} is convex in the first argument. Let \mathbf{X}^* be any minimizer of the convex program with $n_{(1,1)} = n_{(1,2)} = \dots = n_{(K_A, K_A)} = n_A$ and $n_{(K_A+1, K_A+1)} = n_{(K_A+1, K_A+2)} = \dots = n_{(K, K)} = w_r n_B$. Define $(\mathbf{W}^*, \mathbf{H}^*)$ as

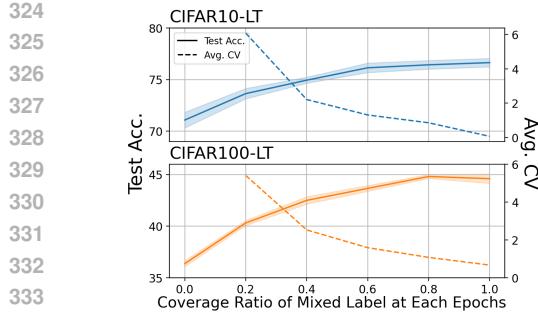
$$\left[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K, K)}^*, (\mathbf{W}^*)^\top \right] = \mathbf{P}(\mathbf{X}^*)^{1/2}, \quad (10)$$

$$\mathbf{h}_{k,i}^* = \mathbf{h}_k^*, \text{ for all } i \in \mathcal{I}_k^\lambda, k \in \mathbb{K}_A^2, \quad \mathbf{h}_{k,i}^* = \mathbf{h}_k^*, \text{ for all } i \in \mathcal{I}_k^\lambda, k \in \mathbb{K}_B^2,$$

where $\mathbf{P} \in \mathbb{R}^{p \times 2K^2}$ is any partial orthogonal matrix such that $\mathbf{P}^\top \mathbf{P} = \mathbf{I}_{2K^2}$. Then $(\mathbf{W}^*, \mathbf{H}^*)$ is a global minimizer of the mixed-label balanced LPM_λ -MS.

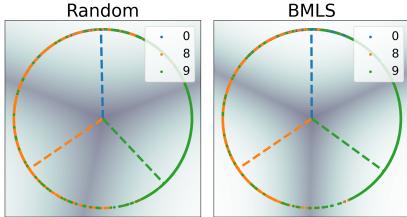
Proof. Theorem 2 follows directly from the same arguments applied to oversampling-adjusted LPM in imbalanced case, which has already been proven in Fang et al. (2021). We omit the proof here. \square

Remark 2. As proven in Theorem 2, balancing mixed labels and interpreting them as singletons allows the LPM_λ -MS to operate in the same manner of the LPM. At the same time, it is expected to preserve the strong feature learning effect of Mixup while potentially reducing its negligible influence on classifier learning by maintaining mixed-label samples but removing the mixup loss.



\mathcal{D}	Ctgy.	Coverage ratio					
		0.0	0.2	0.4	0.6	0.8	1.0
C10	few	58.74	58.56	58.50	58.51	60.06	65.60
	med	68.46	71.09	74.63	77.85	77.10	75.21
	many	86.93	92.13	91.79	91.49	91.91	89.59
	all	71.08	73.64	74.94	76.14	76.43	76.64
C100	few	7.72	10.28	12.17	12.66	13.16	13.20
	med	34.49	39.13	42.95	44.47	46.21	46.97
	many	61.26	65.64	66.49	67.85	68.93	67.60
	all	36.37	40.31	42.50	43.66	44.81	44.60

Figure 3: Mixed-label frequency control experiments on CIFAR10/100 LT datasets. Coverage ratio represents the proportion of mixed labels used in training during one epoch compared to the total number of mixed labels. (e.g., when coverage ratio is 0.6 in CIFAR100-LT, the model trains on mixed labels consisting of combinations of 60 different classes, which change with each epoch.) (figure) Test Acc. (%) and Avg. CV over coverage ratio (table) Comparison of test accuracies



Sampler	Test Acc. (%) \uparrow	$U_G \uparrow$	$U \uparrow$
Random	72.91	14.6404	4.2325
CBS	75.86	15.2521	4.4848
CAS	76.60	15.3319	4.4999
BMLS	78.71	15.3379	4.5651

Figure 4: Experiments on CIFAR10-LT dataset for the effectiveness of BMLS to minority collapse. (figure) Visualization of 2D-projection of class vectors about Many class {0} and Few classes {8, 9}. Dashed line indicates each class vector and contrast of background means the confidence value, i.e., a confidence close to 0.5 indicates that the model is confused between the two classes for the given sample, and this is represented by darker colors in the figure. (table) Quantitative comparison results. (U_G : Uniformity of all classes, U : Uniformity of {0, 8, 9} classes)

5 EXPERIMENTAL RESULTS

To empirically validate the effectiveness of our analysis and proposed solutions, we conducted experiments in various imbalanced environments. We used CIFAR10/100-LT, Places-LT, ImageNet-LT and iNaturalist2018, with five repeated experiments with random seeds in CIFAR10/100-LT and three in others. The tables presenting the experimental results show the average of test accuracies. **Detailed criteria and descriptions of the evaluation results reported in the table are provided in Appendix E** In all tables, imb refers to the imbalance factor, $C10/100$ represents the CIFAR10/100-LT datasets, Clf refers to the classifier, and $BMLS_{MS}$ denotes the method using both BMLS and MS. Unless otherwise specified, all experiments include Mixup. Best in bold. Implementation details are illustrated in [Appendix D](#).

5.1 EMPIRICAL VALIDATION

Epoch-wise Label Imbalance. To demonstrate the empirical evidence of [Remark 1](#), we examine the mean and standard deviation of label frequencies from various sampler: random sampler, class-balanced sampler (CBS) (Kang et al., 2020), class-aware sampler (CAS) (Shen & Lin, 2016), and ours (BMLS), as shown in [Figure 2](#). We use the average of Coefficient of Variation (CV) (Dodge, 2008) as the metric to measure the dispersion of each label frequency distributions: $\bar{CV} = \frac{1}{C} \sum_{c=1}^C \frac{\sigma_c}{\mu_c}$, where the lower \bar{CV} , the less dispersion, which means labels evenly appear across epochs. After training, the mean of label frequencies is almost balanced across all samplers, but epoch-wise balance is not. To empirically validate that the epoch-wise label imbalance is a problem in imbalanced learning, we do mixed-label frequency control experiments. As shown in [Figure 3](#), the more imbalanced mixed label appears from epoch to epoch, the lower the performance of models.

The Effect of Balanced Mixed Label Sampler. As shown in [Figure 3](#), epoch-wise imbalance not

378
379 Table 1: Experiments on CIFAR10/100-LT datasets with imbalance factor 200 and 100 for effective-
380 ness of Multi-Singleton Classifier (higher imbalance factor is more imbalanced)

381 Sampler	382 Dataset	383 Clf.	384 imb200				385 imb100			
			386 many	387 med	388 few	389 all	390 many	391 med	392 few	393 all
383 BMLS	384 C10	385 FC	386 90.49	387 74.12	388 54.43	389 73.13	390 88.53	391 77.84	392 70.53	393 78.85
		385 MS	386 88.94	387 72.97	388 62.77	389 74.70	390 89.14	391 76.34	392 74.63	393 79.67
		385 diff.	386 -1.55	387 -1.15	388 +8.34	389 +1.57	390 +0.61	391 -1.50	392 +4.10	393 +0.82
383 BMLS	384 C100	385 FC	386 65.77	387 41.73	388 7.19	389 40.36	390 68.98	391 46.13	392 14.98	393 45.32
		385 MS	386 63.24	387 44.86	388 11.19	389 41.71	390 66.31	391 49.80	392 21.80	393 47.62
		385 diff.	386 -2.53	387 +3.13	388 +4.00	389 +1.35	390 -2.67	391 +3.67	392 +6.82	393 +2.30

394 Table 2: Experiments on CIFAR10/100-LT datasets with various imbalance factors. (†: the reported
395 values are taken from each reference paper. More references in Table 7)

396 Method	397 CIFAR10-LT				398 CIFAR100-LT			
	399 imbalance factor				400 imbalance factor			
	401 200	402 100	403 50	404 10	405 200	406 100	407 50	408 10
409 ERM+CAS [†]	N/A	68.40	N/A	86.90	N/A	31.90	N/A	55.00
410 Mixup [†]	67.30	72.80	78.60	87.70	38.70	43.00	48.10	58.20
411 LOM [†]	N/A	74.20	N/A	89.40	N/A	41.50	N/A	59.90
412 ETF+DR [†]	71.90	76.50	81.00	87.70	40.90	45.30	50.40	N/A
413 Remix [†]	N/A	73.00	N/A	88.50	N/A	41.40	N/A	59.50
414 DBN-mix [†]	79.58	83.47	86.82	90.87	46.21	51.04	54.93	64.98
415 Mixup	66.77	72.94	78.64	88.05	39.06	42.88	48.31	63.03
416 +LOM	70.17	76.63	81.15	89.24	39.61	44.24	49.99	63.90
417 +CAS	69.90	76.43	81.42	89.24	40.28	44.65	50.07	63.57
418 +BMLS _{MS}	74.70	79.67	83.46	88.51	41.71	47.62	52.74	64.47
419 diff.	+7.93	+6.73	+4.82	+0.46	+2.65	+4.74	+4.43	+1.44
420 ETF+DR	71.58	76.82	81.25	87.59	41.20	45.07	50.71	63.08
421 BMLS+WETF _{MS} +CE	77.73	80.31	84.22	88.26	42.73	47.10	52.44	64.10
422 diff.	+6.15	+3.49	+2.97	+0.67	+1.53	+2.03	+1.73	+1.02
423 Remix	69.58	75.15	80.41	88.61	41.03	44.95	50.19	63.45
424 +BMLS	73.95	80.10	83.92	88.62	39.95	46.34	51.53	64.42
425 +BMLS _{MS}	73.18	78.00	83.70	88.20	40.25	46.82	49.78	63.54
426 diff.	+3.60	+2.85	+3.29	-0.41	-0.78	+1.87	-0.41	+0.09
427 DBN-mix	77.40	82.40	86.05	91.01	40.71	45.52	50.47	62.68
428 +BMLS _{MS}	79.73	84.30	87.28	90.93	44.42	49.08	55.41	65.42
429 diff.	+2.33	+1.90	+1.23	-0.08	+3.71	+3.56	+4.94	+2.74

422 only of singleton labels but also of mixed ones affects model performance. While class-balanced
423 sampling methods such as CBS and CAS oversamples singleton label samples within each mini-
424 batch, Mixup ruins the balance of both singleton labels and mixed ones by randomly permuting
425 input samples and blending them each other. Empirically, we observe that enforcing balance among
426 mixed labels through BMLS improves model performance, promoting more balanced classifier, as
427 demonstrated on Figure 4.

428 **The Effect of Mixed-Singleton Classifier.** To validate the Mixed-Singleton classifier and support
429 the conjecture in §4.3, we compared a singleton classifier (FC) and ours (MS). As shown in Table 1,
430 MS further boosts performance, particularly for few classes. This improvement indicates that MS
431 facilitates less minority collapse in few classes, and the effect still maintains even though the degree
432 of imbalance increases.

432 Table 3: Experiments on large datasets. (*:use pre-trained model) (More detail results in Table 5)
433

Method	Places-LT	Places-LT*	ImageNet-LT	iNaturalist18
random	22.06	25.90	45.19	64.62
CBS	24.79	37.32	47.49	67.06
CAS	24.26	37.44	47.31	67.55
BMLS	27.33	37.39	48.83	66.98
BMLS _{MS}	27.95	37.81	47.54	56.60

440 5.2 STANDARD IMBALANCED LEARNING BENCHMARKS
441442 **Results and Analysis on Small Datasets.** To evaluate the performance of our method, we selected
443 Mixup, CAS, and LOM—the latter being the most similar to our approach—as baselines. As shown in
444 Table 2, our proposed method achieves the highest performance on CIFAR10-LT and CIFAR100-LT
445 across all settings, except for the case with an imbalance factor of 10, where class imbalance is
446 relatively mild. Furthermore, when classes are categorized into *many*, *medium*, and *few* based on their
447 sample frequency, and test accuracy is measured accordingly (see Table 8 in Appendix E), BMLS
448 demonstrates the largest improvement for *few* classes compared to other baselines. These results
449 indicate that BMLS mitigates minority collapse more effectively than other class-balanced samplers.450 **Integration with ETF classifier, Remix, and DBN-mix.** To validate the generality of our approach,
451 its effectiveness across diverse settings, and its compatibility with other Mixup-based methods, we
452 reproduced several representative techniques: (i) ETF+DR (Yang et al., 2022), an NC-inspired method
453 that fixes the classifier to a simplex ETF form; (ii) Remix (Chou et al., 2020), which re-balances
454 the Mixup lambda according to class sample counts; and (iii) DBN-mix (Baik et al., 2024), which
455 substantially improves imbalanced learning performance through bilateral Mixup and a double-branch
456 architecture. Then, we applied our proposed method to each of them. All experimental settings are
457 identical to ours, and detailed descriptions of the reproducibility process and the integration of our
458 method with each baseline are provided in Appendix D. As shown in Table 2, our proposed methods
459 significantly improve the performance of prior mixup-based methods by seamlessly integrating them.
460 Even in DBN-mix experiments, our proposed methods achieve performance that is competitive with
461 state-of-the-art methods. Through integration experiments with a range of Mixup-based methods, we
462 demonstrate that our proposed method has the potential to serve as an effective sampler and classifier,
463 facilitating the development of new state-of-the-art methods. More detailed comparative results for
464 ETF+DR and Remix can be found in Table 6 (Appendix E) and Table 14 (Appendix F.1), respectively.
465466 **Results and Analysis on Large Datasets.** In practical experimental settings, both BMLS and MS
467 exhibit limitations depending on the number of classes K . First, BMLS struggles when K^2 is bigger
468 than the dataset size, as it fails to generate mixed samples uniformly across all mixed-labels in each
469 epoch. This leads to the same issue seen in traditional class-balanced samplers, we already introduced,
470 epoch-wise label imbalance. MS, in addition to the issues faced by BMLS, suffers from an exponential
471 increase in the number of class vectors for mixed labels as K grows. Concurrently, the number of
472 samples available for learning each class vector decreases significantly, raising the potential for
473 underfitting. As shown in the results in Table 3, the effect of BMLS_{MS} diminishes as the number of
474 classes increases (*i.e.*, $K_{PL} = 365 < K_{IN} = 1000 < K_{iNat18} = 8142$). However, despite these
475 limitations, BMLS_{MS} demonstrates superior performance compared to other class-balanced samplers
476 on Place-LT, and when only BMLS is used on ImageNet-LT, it achieves the highest performance,
477 while improving the accuracy on few classes. (See Table 9 and Table 10 in Appendix E.) Even in the
478 most challenging case, iNaturalist2018, using only BMLS still results in competitive performance
479 compared to other class-balanced samplers.
480

5.3 ABLATION STUDY

481 To empirically validate whether our proposed methods effectively address the minority collapse issue
482 and improve model performance in imbalanced learning environments, we conducted an ablation
483 study. As shown in Table 4, applying both BMLS and MS together resulted in the largest performance
484 improvement. Moreover, in scenarios where the number of samples in *few* classes is extremely small
485 (e.g., imbalance factors of 200 and 100 in CIFAR100-LT), where both MS and FC face the most
486 challenging imbalanced condition, MS alone actually outperforms.

486 Table 4: **Ablation study on CIFAR10/100-LT datasets with various imbalance factors including K^2**
 487 **classifier (notated as K^2 on the table).** The results are the mean of five repeated experiments with
 488 random seeds. Best in bold (CBS: Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS:
 489 Balanced Mixed Label Sampler)

Sampler	Clf.	CIFAR10-LT				CIFAR100-LT			
		imbalance factor				imbalance factor			
		200	100	50	10	200	100	50	10
<i>Sampler</i>									
random	FC	66.77	72.94	78.64	88.05	39.06	42.88	48.31	63.03
BMLS	FC	73.13	78.85	83.07	89.46	40.03	45.20	51.99	65.72
<i>Classifier</i>									
random	MS	53.11	64.08	68.56	80.56	33.42	36.87	41.66	56.71
random	K^2	34.86	39.01	42.20	51.60	7.90	8.72	9.22	16.41
BMLS	MS	74.70	79.67	83.46	88.51	41.71	47.62	52.74	64.47

503 **K^2 Classifier.** As shown in the results, the K^2 classifier performs worse than MS alone, and even
 504 worse than when MS is combined with a random sampler. This degradation occurs because the use of
 505 a K^2 classifier drastically reduces the number of samples available to learn each class vector, leading
 506 to underfitting due to insufficient class-vector learning. Through this experiment, we empirically
 507 confirm that the performance improvement of MS is not attributable to increased classifier capacity,
 508 but rather to the effect of the linear interpolation between class vectors induced by mixup ratio λ .

510 6 CONCLUSION

511 The research problem targeted in this study is the issue of minority collapse in imbalanced learning
 512 environments, where class imbalance negatively impacts model performance, particularly for minority
 513 classes. We analyzed the impact of Mixup on this problem and identified two key findings: first, mi-
 514 nority collapse is influenced by the frequency balance of mixed labels, and second, when mixed labels
 515 are balanced, interpreting them as singletons enhances reducing the minority collapse. Based on these
 516 findings, we proposed BMLS and MS as solutions. BMLS balanced mixed-label frequencies more
 517 effectively, while MS leveraged the singleton interpretation to further enhance classifier performance.
 518 These methods demonstrated significant effectiveness in mitigating minority collapse and improving
 519 model performance, particularly for minority class samples. Through experiments, we validated
 520 the utility and versatility of the proposed methods, showing that both BMLS and MS consistently
 521 improved performance compared to existing baselines and demonstrated their applicability across
 522 different datasets and imbalance factors.

524 7 LIMITATIONS AND FUTURE WORK

525 **Scalability.** As observed in the experimental results and analysis for large datasets, both BMLS and
 526 MS suffer from issues related to epoch-wise label imbalance and underfitting class vectors due to the
 527 exponential increase in the number of mixed labels, which is proportional to the number of singleton
 528 labels K . Additionally, in this study, to ensure a fair comparison, we matched the number of samples
 529 learned per epoch to those generated by a random sampler (e.g., in iNaturalist2018, we used 437,513
 530 images, while the number of mixed labels was $K^2 = 66,292,164$ with $K = 8,142$). As explained
 531 in §3, this paper partially addresses the issue by reducing the diversity of mixed labels. However, if
 532 the number of training samples is sufficiently increased without considering the constraint, it could
 533 also serve as a technical solution.

534 **Integration with other methods.** In this study, we extend our methods to Remix, ETF+DR, and
 535 DBN-mix. However, both BMLS and MS are methods that can be used in conjunction with other
 536 Mixup-based methods for imbalanced learning. Through the experiments with the previous methods,
 537 we demonstrated the potential for integration with other methods. We anticipate that future research
 538 will explore these integrations to more effectively mitigate minority collapse.

540 REPRODUCIBILITY STATEMENT
541542 We summarize the reproducibility statement of this paper as follow.
543

544

- 545 • **§3.** To reproduce BMLS and MS, we define notations and provide helpful preliminaries
with a theoretical support in [Appendix C.5](#).
- 546 • **§4.** To prove our theorems such as [Theorem 1](#), [Proposition 1](#), and [Theorem 2](#), we demonstrate
the detailed proofs of them in [Appendix C](#).
- 547 • **§5.** All experiments can be reproduced using our text supplementary materials ([Appendix D](#)),
548 which provide dataset descriptions, model architectures, and hyperparameter settings, as well
549 as our code including configuration files for each experiment. Additionally, experimental
550 requirements, such as necessary libraries, are specified in the README files included with
551 the code.
- 552

553 In addition, our codes can be accessed at *link* (T.B.A)
554556 REFERENCES
557

558 Jae Soon Baik, In Young Yoon, and Jun Won Choi. Dbn-mix: Training dual branch network using
559 bilateral mixup augmentation for long-tailed visual recognition. *Pattern Recognition*, 147:110107,
560 March 2024. ISSN 0031-3203. doi: 10.1016/j.patcog.2023.110107. URL <http://dx.doi.org/10.1016/j.patcog.2023.110107>.

561

562 Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning?
563 In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International
564 Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*,
565 pp. 872–881. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/byrd19a.html>.

566

567 Jiarui Cai, Yizhou Wang, and Jenq-Neng Hwang. Ace: Ally complementary experts for solving long-
568 tailed recognition in one-shot. In *ICCV 2021*, pp. 112–121, 10 2021. doi: 10.1109/ICCV48922.
569 2021.00018.

570

571 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets
572 with label-distribution-aware margin loss. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
573 Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32.
574 Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/621461af90cadfdaf0e8d4cc25129f91-Paper.pdf.

575

576 Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, and Da-Cheng Juan. Remix: Rebalanced
577 mixup. In Adrien Bartoli and Andrea Fusiello (eds.), *Computer Vision – ECCV 2020 Workshops*,
578 pp. 95–110, Cham, 2020. Springer International Publishing. ISBN 978-3-030-65414-6.

579

580 Yin Cui, Yang Song, Chen Sun, Andrew G. Howard, and Serge J. Belongie. Large scale fine-
581 grained categorization and domain-specific transfer learning. *2018 IEEE/CVF Conference
582 on Computer Vision and Pattern Recognition*, pp. 4109–4118, 2018. URL <https://api.semanticscholar.org/CorpusID:43993788>.

583

584 Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. Class-balanced loss based
585 on effective number of samples. *2019 IEEE/CVF Conference on Computer Vision and Pattern
586 Recognition (CVPR)*, pp. 9260–9269, 2019. URL <https://api.semanticscholar.org/CorpusID:58014111>.

587

588 Yadolah Dodge. *Coefficient of Variation*, pp. 95–96. Springer New York, New York, NY, 2008.
589 ISBN 978-0-387-32833-1. doi: 10.1007/978-0-387-32833-1_65. URL https://doi.org/10.1007/978-0-387-32833-1_65.

590

591 Charles Elkan. The foundations of cost-sensitive learning. *Proceedings of the Seventeenth Interna-
592 tional Conference on Artificial Intelligence: 4–10 August 2001; Seattle*, 1, 05 2001.

593

594 Cong Fang, Hangfeng He, Qi Long, and Weijie J. Su. Exploring deep neural networks via layer-
 595 peeled model: Minority collapse in imbalanced training. *Proceedings of the National Academy of*
 596 *Sciences*, 118(43):e2103091118, 2021. doi: 10.1073/pnas.2103091118. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2103091118>.

597

598 Quinn LeBlanc Fisher, Haoming Meng, and Vardan Papyan. Pushing boundaries: Mixup’s influence
 599 on neural collapse. In *The Twelfth International Conference on Learning Representations*, 2024.
 600 URL <https://openreview.net/forum?id=jTSKkcbEsj>.

601

602 Jintong Gao, He Zhao, Zhuo Li, and Dan dan Guo. Enhancing minority classes by mixing: An
 603 adaptative optimal transport approach for long-tailed classification. In *Thirty-seventh Conference on*
 604 *Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=M7FQpId00X>.

605

606

607 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 608 recognition. *CoRR*, abs/1512.03385, 2015. URL <http://arxiv.org/abs/1512.03385>.

609

610 Anubha Kabra, Ayush Chopra, Nikaash Puri, Pinkesh Badjatiya, Sukriti Verma, Piyush Kumar
 611 Gupta, and K Balaji. Mixboost: Synthetic oversampling with boosted mixup for handling extreme
 612 imbalance. *ArXiv*, abs/2009.01571, 2020. URL <https://api.semanticscholar.org/CorpusID:221470234>.

613

614 Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
 615 Kalantidis. Decoupling representation and classifier for long-tailed recognition. In *International*
 616 *Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=r1gRTCVFvB>.

617

618 Jaehyung Kim, Jongheon Jeong, and Jinwoo Shin. M2m: Imbalanced classification via major-to-minor
 619 translation. *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern*
 620 *Recognition*, pp. 13893–13902, 2020. ISSN 1063-6919. doi: 10.1109/CVPR42600.2020.01391.
 621 Publisher Copyright: © 2020 IEEE; 2020 IEEE/CVF Conference on Computer Vision and Pattern
 622 Recognition, CVPR 2020 ; Conference date: 14-06-2020 Through 19-06-2020.

623

624 Kisoo Kwon, Kuhwan Jeong, Sanghyun Park, Sangha Park, Hoshik Lee, Seung-Yeon Kwak, Sungmin
 625 Kim, and Kyunghyun Cho. Extramix: Extrapolatable data augmentation for regression using
 626 generative models, 2023. URL <https://openreview.net/forum?id=NgEuFT-SIgI>.

627

628 Pengyu Li, Xiao Li, Yutong Wang, and Qing Qu. Neural collapse in multi-label learning with
 629 pick-all-label loss. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
 630 Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International*
 631 *Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
 632 28060–28094. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/li24ai.html>.

633

634 Xuantong Liu, Jianfeng Zhang, Tianyang Hu, He Cao, Yuan Yao, and Lujia Pan. Inducing neural
 635 collapse in deep long-tailed learning. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent
 636 (eds.), *Proceedings of The 26th International Conference on Artificial Intelligence and Statistics*,
 637 volume 206 of *Proceedings of Machine Learning Research*, pp. 11534–11544. PMLR, 25–27 Apr
 2023. URL <https://proceedings.mlr.press/v206/liu23i.html>.

638

639 Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu. Large-scale
 640 long-tailed recognition in an open world. *2019 IEEE/CVF Conference on Computer Vision and*
 641 *Pattern Recognition (CVPR)*, pp. 2532–2541, 2019. URL <https://api.semanticscholar.org/CorpusID:115137311>.

642

643 Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
 644 Sanjiv Kumar. Long-tail learning via logit adjustment. In *International Conference on Learning*
 645 *Representations*, 2021. URL <https://openreview.net/forum?id=37nvvqkCo5>.

646

647 Haolin Pan, Yong Guo, Mianjie Yu, and Jian Chen. Enhanced long-tailed recognition with contrastive
 648 cutmix augmentation, 2024. URL <https://arxiv.org/abs/2407.04911>.

648 Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
 649 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):
 650 24652–24663, 2020. doi: 10.1073/pnas.2015509117. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2015509117>.

652 Seulki Park, Youngkyu Hong, Byeongho Heo, Sangdoo Yun, and Jin Young Choi. The majority
 653 can help the minority: Context-rich minority oversampling for long-tailed classification. 2022
 654 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6877–6886,
 655 2021. URL <https://api.semanticscholar.org/CorpusID:244773284>.

656

657 Jiawei Ren, Cunjun Yu, shunan sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, and hongsheng Li. Balanced
 658 meta-softmax for long-tailed visual recognition. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
 659 can, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 4175–
 660 4186. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/2ba61cc3a8f44143e1f2f13b2b729ab3-Paper.pdf.

661

662 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 663 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 664 challenge. *International journal of computer vision*, 115:211–252, 2015.

665

666 Li Shen and Zhouchen Lin. Relay backpropagation for effective learning of deep convolutional
 667 neural networks. In *ECCV*, volume 9911, pp. 467–482, 10 2016. ISBN 978-3-319-46477-0. doi:
 668 10.1007/978-3-319-46478-7_29.

669

670 Jiang-Xin Shi, Tong Wei, Yuke Xiang, and Yu-Feng Li. How re-sampling helps for long-tail
 671 learning? In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 672 <https://openreview.net/forum?id=PLzCXefcpE>.

673 Jos F. Sturm and Shuzhong Zhang. On cones of nonnegative quadratic functions. *Math. Oper.
 674 Res.*, 28(2):246–267, May 2003. ISSN 0364-765X. doi: 10.1287/moor.28.2.246.14485. URL
 675 <https://doi.org/10.1287/moor.28.2.246.14485>.

676

677 Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
 678 and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
 679 Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International
 680 Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*,
 681 pp. 6438–6447. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/verma19a.html>.

682

683 Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning from multiple experts: Self-paced
 684 knowledge distillation for long-tailed classification. In *Computer Vision – ECCV 2020: 16th
 685 European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V*, pp. 247–263, Berlin,
 686 Heidelberg, 2020. Springer-Verlag. ISBN 978-3-030-58557-0. doi: 10.1007/978-3-030-58558-7-
 687 15. URL https://doi.org/10.1007/978-3-030-58558-7_15.

688

689 Zhengzhuo Xu, Zenghao Chai, and Chun Yuan. Towards calibrated model for long-tailed visual
 690 recognition from prior perspective. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
 691 Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL https://openreview.net/forum?id=vqzAfN-BoA_.

692

693 Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing
 694 neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep
 695 neural network? In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
 696 *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=A6EmxI3_Xc.

697

698 Youngseok Yoon, Sangwoo Hong, Hyungjun Joo, Yao Qin, Haewon Jeong, and Jungwoo Lee.
 699 Mix from failure: Confusion-pairing mixup for long-tailed recognition, 2025. URL <https://arxiv.org/abs/2411.07621>.

700

701 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 CutMix: Regularization strategy to train strong classifiers with localizable features. In *International
 Conference on Computer Vision (ICCV)*, 2019.

702 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 703 risk minimization. In *International Conference on Learning Representations*, 2018. URL <https://openreview.net/forum?id=r1Ddp1-Rb>.

704

705 Shaoyu Zhang, Chen Chen, Xiujuan Zhang, and Silong Peng. Label-occurrence-balanced mixup
 706 for long-tailed recognition. In *ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
 707 Speech and Signal Processing (ICASSP)*, pp. 3224–3228, 2022. doi: 10.1109/ICASSP43922.2022.
 9746299.

708

709 Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi Feng. Self-supervised aggregation of diverse
 710 experts for test-agnostic long-tailed recognition. In *Neural Information Processing Systems*, 2021.
 711 URL <https://api.semanticscholar.org/CorpusID:252684042>.

712

713 Caidan Zhao and Yang Lei. Intra-class cutmix for unbalanced data augmentation. In *Proceed-
 714 ings of the 2021 13th International Conference on Machine Learning and Computing*, ICMLC
 715 '21, pp. 246–251, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
 9781450389310. doi: 10.1145/3457682.3457719. URL <https://doi.org/10.1145/3457682.3457719>.

716

717

718 Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Improving calibration for long-tailed recognition.
 719 In *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16484–
 720 16493, 2021. doi: 10.1109/CVPR46437.2021.01622.

721

722 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
 723 million image database for scene recognition. *IEEE transactions on pattern analysis and machine
 724 intelligence*, 40(6):1452–1464, 2017.

725

726 Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. BBN: Bilateral-branch network with
 727 cumulative learning for long-tailed visual recognition. In *CVPR*, pp. 1–8, 2020.

728

729

730 APPENDIX

731 DETAILS ABOUT LARGE LANGUAGE MODELS IN PAPER WRITING

732 In this paper, the authors used LLMs solely for the purpose of checking mistranslations or grammar.

733 A ADDITIONAL RELATED WORK

734 A.1 MIXUP-BASED METHOD

735 **Data augmentation.** Mixup (Zhang et al., 2018) generates mixed-label samples by interpolating
 736 between input samples, extending training distribution support. Manifold Mixup (Verma et al., 2019)
 737 applies this technique to intermediate layers, regularizing the network by encouraging less confident
 738 predictions. CP-Mix, or Confusion-Pairing Mixup (Yoon et al., 2025), augments samples based on
 739 confusion pairs, addressing data deficiency by enhancing the model’s ability to distinguish frequently
 740 misclassified class pairs. ExtraMix (Kwon et al., 2023) introduces a mixup technique capable of
 741 extrapolation, broadening both feature and label distributions, which minimizes label imbalance more
 742 effectively than traditional methods. CutMix (Yun et al., 2019; Zhao & Lei, 2021; Pan et al., 2024)
 743 focuses on mixed-label sample generation by cutting and pasting image patches, creating a regional
 744 dropout effect. CMO (Park et al., 2021) extends this idea by pasting minority class images onto
 745 majority class backgrounds, enriching minority class samples with context from majority class images.
 746 OTMix (Gao et al., 2023) improves upon this by using Optimal Transport to adaptively combine
 747 majority class backgrounds with minority class foregrounds, ensuring semantically reasonable mixed
 748 images.

749 **Architecture.** BBN (Zhou et al., 2020), SBN, and DBN (Baik et al., 2024) utilize different archi-
 750 tectures to enhance both representation and classifier learning. These methods incorporate bilateral
 751 mixup or decoupling strategies to optimize performance for imbalanced datasets. OTRL (Liu et al.,
 752 2019) uses dynamic meta-embedding and modulated attention to map images into a feature space

756 that respects both closed-world classification and the novelty of the open world, improving the
 757 generalization of imbalanced datasets.
 758

759 **Calibration or two-stage.** UniMix (Xu et al., 2021) balances class distributions by introducing
 760 a novel mixing factor and sampler that favors the minority class. MiSLAS (Zhong et al., 2021)
 761 decouples representation and classifier learning, improving both calibration and performance in
 762 imbalanced data scenarios.
 763

764 While many attempts have been made to address the challenges of imbalanced learning environments
 765 using Mixup, including data augmentation, architecture improvements, and calibration methods, no
 766 research has specifically focused on the balance of mixed labels in such contexts.
 767

768 A.2 CLASS-BALANCED METHODS

769 **Re-balance.** Remix (Chou et al., 2020) applies a higher mixup ratio to minority classes, rebalancing
 770 the data without sampling. Re-weighting (Elkan, 2001; Byrd & Lipton, 2019; Cui et al., 2019)
 771 adjusts the loss function by tuning class weights, with methods like Balanced SoftMax (Ren et al.,
 772 2020) explicitly considering label distribution shifts during optimization. Logit Adj (Menon et al.,
 773 2021) adjusts logits based on label frequencies, promoting a larger margin between rare positive and
 774 dominant negative labels. τ -Norm (Kang et al., 2020) normalizes classifier weight norms according
 775 to class size, rebalancing decision boundaries. LDAM loss (Cao et al., 2019) improves generalization
 776 by replacing standard cross-entropy with a margin-based approach, tailored to handle imbalanced
 777 datasets. cRT (Kang et al., 2020) re-trains the classifier using class-balanced sampling, improving the
 778 model’s generalization ability. LWS (Kang et al., 2020) focuses on re-scaling classifier weights to
 779 ensure a balanced learning process for imbalanced datasets.
 780

781 **Re-/Over-Sampling.** M2M (Kim et al., 2020) augments minority classes by translating samples
 782 from majority classes, enhancing generalization for minority class features. MixBoost (Kabra et al.,
 783 2020) iteratively selects and combines majority and minority class instances to create hybrid samples,
 784 improving model performance. The Meta Sampler (Ren et al., 2020), built on balanced SoftMax,
 785 adapts the sampling rate through meta-learning to alleviate over-balancing issues. CB Sampling (Kang
 786 et al., 2020) ensures that each class has an equal probability of being selected, balancing the dataset
 787 during training. Class-Aware Sampler (CAS) (Shen & Lin, 2016) is more specific method of CB
 788 Sampling, which explicitly ensures the class frequency balance on each mini-batch. Label-Occurrence
 789 Mixup (LOM) (Zhang et al., 2022) uses two CB samplers to sample input pairs, respectively. CSA (Shi
 790 et al., 2023) generates diverse training images for tail classes by maintaining a context bank from
 791 head-class images.
 792

793 Various class-balanced samplers have been proposed, yet no research has specifically focused on the
 794 balance of mixed labels. Additionally, while methods such as Logit Adjustment and UniMix have
 795 concentrated on singleton-labels, they did not interpret mixed labels as singletons.
 796

797 A.3 NEURAL COLLAPSE IN MIXUP AND IMBALANCED LEARNING

798 NC in imbalanced learning has been studied in Fang et al. (2021). To alleviate the minority collapse,
 799 Yang et al. (2022) assumed that the classifier is fixed to the K-simplex ETF and proved that LPM
 800 with the classifier satisfies NC properties. Also, the fixed ETF classifier with Mixup has improved the
 801 model performance in imbalanced learning. Building on the theorems, Fisher et al. (2024) proved
 802 Mixup also satisfies NC properties for both same class and different class. However, Yang et al.
 803 (2022) and Fisher et al. (2024) did not consider the minority collapse from the mixed label balance in
 804 the LPM with learnable classifiers.
 805

806
 807
 808
 809

810 B CONVEX OPTIMIZATION PROGRAM

811
 812 To begin with, defining $\mathbf{h}_k^\lambda = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{h}_{k,i}^\lambda$ as the feature mean of
 813 the \mathbb{S}_k^λ where $k \in \mathbb{K}^2$, we introduce a new decision variable $\mathbf{X} =$
 814 $[\mathbf{h}_{(1,1)}^\lambda, \mathbf{h}_{(1,2)}^\lambda, \dots, \mathbf{h}_{(K,K)}^\lambda, \mathbf{W}^\top]^\top [\mathbf{h}_{(1,1)}^\lambda, \mathbf{h}_{(1,2)}^\lambda, \dots, \mathbf{h}_{(K,K)}^\lambda, \mathbf{W}^\top] \in \mathbb{R}^{(K^2+K) \times (K^2+K)}$. By
 815 definition, \mathbf{X} is positive semi-definite and satisfies
 816

$$817 \quad \frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}(k, k) = \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \|\mathbf{h}_k^\lambda\|^2 \stackrel{a}{\leq} \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}^\lambda\|^2 \leq E_H$$

818 and
 819

$$820 \quad \frac{1}{K} \sum_{k=K^2+1}^{K^2+K} \mathbf{X}(k, k) = \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k\|^2 \leq E_W,$$

821 where $\stackrel{a}{\leq}$ follows from the Cauchy-Schwarz inequality. Thus, we consider the following semi-definite
 822 programming problem:
 823

$$824 \quad \min_{\mathbf{X} \in \mathbb{R}^{(K^2+K) \times (K^2+K)}} \sum_{k \in \mathbb{K}^2} \frac{n_k}{N} \mathcal{L}(\mathbf{z}(k)^\lambda, \mathbf{y}_k^\lambda) \quad (11)$$

$$825 \quad \text{s.t. } \mathbf{X} \succeq 0,$$

$$826 \quad \frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}(k, k) \leq E_H, \quad \frac{1}{K} \sum_{k=K^2+1}^{K^2+K} \mathbf{X}(k, k) \leq E_W,$$

$$827 \quad \text{for all } 1 \leq k \leq K^2,$$

$$828 \quad \mathbf{z}_k = [\mathbf{X}(k, K^2+1), \mathbf{X}(k, K^2+2), \dots, \mathbf{X}(k, K^2+K)]^\top.$$

829 When \mathcal{L} is the cross-entropy loss with softmax function,

$$830 \quad \mathcal{L}(\mathbf{z}^\lambda(k), \mathbf{y}_k^\lambda) = -\lambda \log \left(\frac{\exp(\mathbf{z}^\lambda(a))}{\sum_{k'=1}^K \exp(\mathbf{z}^\lambda(k'))} \right) - (1-\lambda) \log \left(\frac{\exp(\mathbf{z}^\lambda(b))}{\sum_{k'=1}^K \exp(\mathbf{z}^\lambda(k'))} \right),$$

831 where $\mathbf{z}^\lambda(k')$ denotes the k' -th entry of the logit $\mathbf{z}_i^\lambda = \mathbf{W} \mathbf{h}_{k,i}^\lambda$, and $k = (a, b)$.
 832

864 C PROOFS
865866 C.1 PROOF OF LEMMA 1
867868 **Restated Lemma 1.** Assume $p \geq K^2 + K$ and the loss function \mathcal{L} is convex in its first argument.
869 Let \mathbf{X}^* be a minimizer of the convex program (Eq. 11). Define $(\mathbf{W}^*, \mathbf{H}^*)$ as

870
$$\begin{aligned} 871 & \left[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, (\mathbf{W}^*)^\top \right] = \mathbf{P}(\mathbf{X}^*)^{1/2}, \\ 872 & \mathbf{h}_{k,i}^* = \mathbf{h}_k^*, \text{ for all } i \in \mathcal{I}_k^\lambda, k \in \mathbb{K}^2, \end{aligned}$$

873 where $(\mathbf{X}^*)^{1/2}$ denotes the positive square root of \mathbf{X}^* and $\mathbf{P} \in \mathbb{R}^{p \times (K^2+K)}$ is any partial orthogonal
874 matrix such that $\mathbf{P}^\top \mathbf{P} = \mathbf{I}_{K^2+K}$. Then, $(\mathbf{W}^*, \mathbf{H}^*)$ is a minimizer of Eq. 5. Moreover, if all \mathbf{X}^* 's
875 satisfy $\frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}^*(k, k) = E_H$, then all the solutions of Eq. 5 are in the form of Eq. 6.
876877 *Proof.* For any feasible solution $(\mathbf{W}, \mathbf{H}^\lambda)$ for the original program Eq. 5, we define
878

879
$$\mathbf{h}_k^\lambda := \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{h}_{k,i}, k \in \mathbb{K}^2,$$

880 and

881
$$\mathbf{X} := \left[\mathbf{h}_{(1,1)}^\lambda, \mathbf{h}_{(1,2)}^\lambda, \dots, \mathbf{h}_{(K,K)}^\lambda, \mathbf{W}^\top \right]^\top \left[\mathbf{h}_{(1,1)}^\lambda, \mathbf{h}_{(1,2)}^\lambda, \dots, \mathbf{h}_{(K,K)}^\lambda, \mathbf{W}^\top \right].$$

882 Clearly, $\mathbf{X} \succeq 0$. For the other two constraints of Eq. 11, we have

883
$$\frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}(k, k) = \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \|\mathbf{h}_k^\lambda\|^2 \stackrel{a}{\leq} \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}^\lambda\|^2 \stackrel{b}{\leq} E_H$$

884 and

885
$$\frac{1}{K} \sum_{k=K^2+1}^{K^2+K} \mathbf{X}(k, k) = \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k\|^2 \stackrel{c}{\leq} E_W,$$

886 where $\stackrel{a}{\leq}$ applies Jensen's inequality and $\stackrel{b}{\leq}$ and $\stackrel{c}{\leq}$ use that $(\mathbf{W}, \mathbf{H}^\lambda)$ is a feasible solution. So \mathbf{X} is a
887 feasible solution for the convex program Eq. 11. Letting L_0 be the global minimum of Eq. 11, for any
888 feasible solution $(\mathbf{W}, \mathbf{H}^\lambda)$, we obtain

889
$$\begin{aligned} 890 & \frac{1}{N} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^{n_k} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) = \sum_{k \in \mathbb{K}^2} \frac{n_k}{N} \left[\frac{1}{n_k} \sum_{i=1}^{n_k} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) \right] \\ 891 & \stackrel{a}{\geq} \sum_{k \in \mathbb{K}^2} \frac{n_k}{N} \mathcal{L}(\mathbf{W} \mathbf{h}_k^\lambda, \mathbf{y}_k^\lambda) = \sum_{k \in \mathbb{K}^2} \frac{n_k}{N} \mathcal{L}(\mathbf{z}(k)^\lambda, \mathbf{y}_k^\lambda) \geq L_0, \end{aligned} \quad (12)$$

892 where in $\stackrel{a}{\geq}$, we use \mathcal{L} is convex on the first argument, and so $\mathcal{L}(\mathbf{W} \mathbf{h}^\lambda, \mathbf{y}_k^\lambda)$ is convex on \mathbf{h} given \mathbf{W}
893 and $k \in \mathbb{K}^2$.894 For the simplicity of our expressions, we hereafter remove the superscript λ of \mathbf{H}^λ , \mathbf{h}^λ and \mathbf{z}^λ .
895896 On the other hand, considering the solution $(\mathbf{W}^*, \mathbf{H}^*)$ defined in Eq. 6 with \mathbf{X}^* being a minimizer
897 of Eq. 11, we have $\left[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, \mathbf{W}^* \right]^\top \left[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, \mathbf{W}^* \right] = \mathbf{X}^*$
898 ($p \geq K^2 + K$ guarantees the existence of $\left[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, (\mathbf{W}^*)^\top \right]$). We can verify that
899 $(\mathbf{W}^*, \mathbf{H}^*)$ is a feasible solution for Eq. 5 and have

900
$$\frac{1}{N} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^{n_k} \mathcal{L}(\mathbf{W}^* \mathbf{h}_{k,i}^*, \mathbf{y}_k^\lambda) = \sum_{k \in \mathbb{K}^2} \frac{n_k}{N} \mathcal{L}(\mathbf{z}(k)^*, \mathbf{y}_k^\lambda) = L_0, \quad (13)$$

901 where $\mathbf{z}(k)^* = [\mathbf{X}^*(k, K^2 + 1), \mathbf{X}^*(k, K^2 + 2), \dots, \mathbf{X}^*(k, K^2 + K)]^\top$ for $k \in \mathbb{K}^2$.

918 Combining Eq. 12 and Eq. 13, we conclude that L_0 is the global minimum of Eq. 5 and $(\mathbf{W}^*, \mathbf{H}^*)$
 919 is a minimizer.

920 Suppose there is a minimizer $(\mathbf{W}', \mathbf{H}')$ that cannot be written as Eq. 6. Let

$$922 \quad \mathbf{h}'_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{h}'_{k,i}, \quad k \in \mathbb{K}^2,$$

925 and

$$926 \quad \mathbf{X}' = \left[\mathbf{h}'_{(1,1)}, \mathbf{h}'_{(1,2)}, \dots, \mathbf{h}'_{(K,K)}, (\mathbf{W}')^\top \right]^\top \left[\mathbf{h}'_{(1,1)}, \mathbf{h}'_{(1,2)}, \dots, \mathbf{h}'_{(K,K)}, (\mathbf{W}')^\top \right].$$

929 Eq. 12 implies that \mathbf{X}' is a minimizer of Eq. 11. As $(\mathbf{W}', \mathbf{H}')$ cannot be written as Eq. 6 with
 930 $\mathbf{X}^* = \mathbf{X}'$, then there is a $k' \in \mathbb{K}^2$, $i, j \in [n_{k'}]$ with $i \neq j$ such that $\mathbf{h}_{k',i} \neq \mathbf{h}_{k',j}$. We have

$$\begin{aligned} 931 \quad & \frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}'(k, k) = \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \|\mathbf{h}'_k\|^2 \\ 932 \quad & = \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}'_{k,i}\|^2 - \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}'_{k,i} - \mathbf{h}'_k\|^2 \\ 933 \quad & \leq \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}'_{k,i}\|^2 - \frac{1}{K^2} \frac{1}{n_{k'}} (\|\mathbf{h}'_{k',i} - \mathbf{h}'_{k'}\|^2 + \|\mathbf{h}'_{k',j} - \mathbf{h}'_{k'}\|^2) \\ 934 \quad & \leq \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}'_{k,i}\|^2 - \frac{1}{K^2} \frac{1}{2n_{k'}} \|\mathbf{h}'_{k',i} - \mathbf{h}'_{k',j}\|^2 \\ 935 \quad & < E_H. \end{aligned}$$

945 By contraposition, if all \mathbf{X}^* satisfy that $\frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}^*(k, k) = E_H$, then all the solutions of Eq. 5
 946 are in the form of Eq. 6. We complete the proof. \square

947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 C.2 PROOF OF PROPOSITION 1
973

974 **Restated Proposition 1.** Assume $p \geq K^2 + K$ and the loss function \mathcal{L} is convex in the first argument.
975 Let \mathbf{X}^* be any minimizer of the convex program (Eq. 11) with $n_{(1,1)} = n_{(1,2)} = \dots = n_{(K_A, K_A)} =$
976 n_A and $n_{(K_A+1, K_A+1)} = n_{(K_A+1, K_A+2)} = \dots = n_{(K, K)} = w_r n_B$. Define $(\mathbf{W}^*, \mathbf{H}^*)$ as
977

$$978 \quad \left[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, (\mathbf{W}^*)^\top \right] = \mathbf{P}(\mathbf{X}^*)^{1/2}, \\ 979$$

$$980 \quad \mathbf{h}_{k_A, i}^* = \mathbf{h}_{k_A}^*, \text{ for all } i \in \mathcal{I}_{k_A}^\lambda, k_A \in \mathbb{K}_A^2, \mathbf{h}_{k_B, i}^* = \mathbf{h}_{k_B}^*, \text{ for all } i \in \mathcal{I}_{k_B}^\lambda, k_B \in \mathbb{K}_B^2,$$

981 where $\mathbf{P} \in \mathbb{R}^{p \times (K^2+K)}$ is any partial orthogonal matrix such that $\mathbf{P}^\top \mathbf{P} = \mathbf{I}_{K^2+K}$. Then, $(\mathbf{W}^*, \mathbf{H}^*)$
982 is a global minimizer of the mixed-label balanced LPM $_\lambda$ (Eq. 7). Moreover, if all \mathbf{X}^* 's satisfy
983 $\frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \mathbf{X}^*(k, k) = E_H$, then all the solutions of Eq. 7 are in the form of Eq. 8.
984

985 *Proof.* For any feasible solution $(\mathbf{W}, \mathbf{H}^\lambda)$ for the original program Eq. 5, we define
986

$$987 \quad \mathbf{h}_{k_A}^\lambda := \frac{1}{n_A} \sum_{i=1}^{n_A} \mathbf{h}_{k_A, i}, k_A \in \mathbb{K}_A^2, \text{ and } \mathbf{h}_{k_B}^\lambda := \frac{1}{w_r n_B} \sum_{i=1}^{w_r n_B} \mathbf{h}_{k_B, i}, k_B \in \mathbb{K}_B^2,$$

990 and

$$991 \quad \mathbf{X} := \left[\mathbf{h}_{(1,1)}^\lambda, \mathbf{h}_{(1,2)}^\lambda, \dots, \mathbf{h}_{(K,K)}^\lambda, \mathbf{W}^\top \right]^\top \left[\mathbf{h}_{(1,1)}^\lambda, \mathbf{h}_{(1,2)}^\lambda, \dots, \mathbf{h}_{(K,K)}^\lambda, \mathbf{W}^\top \right].$$

993 Clearly, $\mathbf{X} \succeq 0$. For the other two constraints of Eq. 11, we have
994

$$995 \quad \frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}(k, k) = \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \|\mathbf{h}_k^\lambda\|^2 \\ 996 \quad \stackrel{a}{\leq} \frac{1}{K^2} \left(\sum_{k_A \in \mathbb{K}_A^2} \frac{1}{n_A} \sum_{i=1}^{n_A} \|\mathbf{h}_{k_A, i}^\lambda\|^2 + \sum_{k_B \in \mathbb{K}_B^2} \frac{1}{w_r n_B} \sum_{i=1}^{w_r n_B} \|\mathbf{h}_{k_B, i}^\lambda\|^2 \right) \\ 997 \\ 1000 \quad \stackrel{b}{\leq} E_H$$

1003 and

$$1004 \quad \frac{1}{K} \sum_{k=K^2+1}^{K^2+K} \mathbf{X}(k, k) = \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k\|^2 \stackrel{c}{\leq} E_W,$$

1007 where $\stackrel{a}{\leq}$ applies Jensen's inequality and $\stackrel{b}{\leq}$ and $\stackrel{c}{\leq}$ use that $(\mathbf{W}, \mathbf{H}^\lambda)$ is a feasible solution. So \mathbf{X} is a
1008 feasible solution for the convex program Eq. 11. Letting L_0 be the global minimum of Eq. 11, for any
1009 feasible solution $(\mathbf{W}, \mathbf{H}^\lambda)$, we obtain
1010

$$1011 \quad \frac{1}{N} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^{n_k} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) \\ 1012 \quad = \sum_{k_A \in \mathbb{K}_A^2} \frac{n_A}{N} \left[\frac{1}{n_A} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W} \mathbf{h}_{k_A, i}^\lambda, \mathbf{y}_{k_A}^\lambda) \right] + \sum_{k_B \in \mathbb{K}_B^2} \frac{w_r n_B}{N} \left[\frac{1}{w_r n_B} \sum_{i=1}^{w_r n_B} \mathcal{L}(\mathbf{W} \mathbf{h}_{k_B, i}^\lambda, \mathbf{y}_{k_B}^\lambda) \right] \\ 1013 \\ 1014 \quad \stackrel{a}{\geq} \sum_{k_A \in \mathbb{K}_A^2} \frac{n_A}{N} \mathcal{L}(\mathbf{W} \mathbf{h}_{k_A}^\lambda, \mathbf{y}_{k_A}^\lambda) + \sum_{k_B \in \mathbb{K}_B^2} \frac{w_r n_B}{N} \mathcal{L}(\mathbf{W} \mathbf{h}_{k_B}^\lambda, \mathbf{y}_{k_B}^\lambda) \\ 1015 \\ 1016 \quad = \sum_{k_A \in \mathbb{K}_A^2} \frac{n_A}{N} \mathcal{L}(\mathbf{z}(k_A)^\lambda, \mathbf{y}_{k_A}^\lambda) + \sum_{k_B \in \mathbb{K}_B^2} \frac{w_r n_B}{N} \mathcal{L}(\mathbf{z}(k_B)^\lambda, \mathbf{y}_{k_B}^\lambda) \geq L_0, \quad (14)$$

1023 where in $\stackrel{a}{\geq}$, we use \mathcal{L} is convex on the first argument, and so $\mathcal{L}(\mathbf{W} \mathbf{h}^\lambda, \mathbf{y}_k^\lambda)$ is convex on \mathbf{h} given \mathbf{W}
1024 and $k \in \mathbb{K}^2$.
1025

For the simplicity of our expressions, we hereafter remove the superscript λ of \mathbf{H}^λ , \mathbf{h}^λ and \mathbf{z}^λ .

1026 On the other hand, considering the solution $(\mathbf{W}^*, \mathbf{H}^*)$ defined in Eq. 6 with \mathbf{X}^* being a minimizer
 1027 of Eq. 11, we have $[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, \mathbf{W}^\top]^\top [\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, \mathbf{W}^\top] = \mathbf{X}^*$
 1028 ($p \geq K^2 + K$ guarantees the existence of $[\mathbf{h}_{(1,1)}^*, \mathbf{h}_{(1,2)}^*, \dots, \mathbf{h}_{(K,K)}^*, (\mathbf{W}^*)^\top]$). We can verify that
 1029 $(\mathbf{W}^*, \mathbf{H}^*)$ is a feasible solution for Eq. 5 and have
 1030

$$1032 \frac{1}{N} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^{n_k} \mathcal{L}(\mathbf{W}^* \mathbf{h}_{k,i}^*, \mathbf{y}_k^\lambda) = \sum_{k_A \in \mathbb{K}_A^2} \frac{n_A}{N} \mathcal{L}(\mathbf{z}(k_A)^*, \mathbf{y}_{k_A}^\lambda) + \sum_{k_B \in \mathbb{K}_B^2} \frac{w_r n_B}{N} \mathcal{L}(\mathbf{z}(k_B)^*, \mathbf{y}_{k_B}^\lambda) = L_0, \quad (15)$$

1035 where $\mathbf{z}(k_A)^* = [\mathbf{X}^*(k_A, K^2 + 1), \mathbf{X}^*(k_A, K^2 + 2), \dots, \mathbf{X}^*(k_A, K^2 + K_A)]^\top$ for $k_A \in \mathbb{K}_A^2$
 1036 and $\mathbf{z}(k_B)^* = [\mathbf{X}^*(k_B, K^2 + K_A + 1), \mathbf{X}^*(k_B, K^2 + K_A + 2), \dots, \mathbf{X}^*(k_B, K^2 + K)]^\top$ for
 1037 $k_B \in \mathbb{K}_B^2$.
 1038

1039 Combining Eq. 14 and Eq. 15, we conclude that L_0 is the global minimum of Eq. 5 and $(\mathbf{W}^*, \mathbf{H}^*)$
 1040 is a minimizer.
 1041

1042 Suppose there is a minimizer $(\mathbf{W}', \mathbf{H}')$ that cannot be written as Eq. 6. Let
 1043

$$1044 \mathbf{h}'_{k_A} = \frac{1}{n_A} \sum_{i=1}^{n_A} \mathbf{h}'_{k_A,i}, \quad k_A \in \mathbb{K}_A^2, \quad \text{and} \quad \mathbf{h}'_{k_B} = \frac{1}{w_r n_B} \sum_{i=1}^{w_r n_B} \mathbf{h}'_{k_B,i}, \quad k_B \in \mathbb{K}_B^2$$

1046 and
 1047

$$1048 \mathbf{X}' = [\mathbf{h}'_{(1,1)}, \mathbf{h}'_{(1,2)}, \dots, \mathbf{h}'_{(K,K)}, (\mathbf{W}')^\top]^\top [\mathbf{h}'_{(1,1)}, \mathbf{h}'_{(1,2)}, \dots, \mathbf{h}'_{(K,K)}, (\mathbf{W}')^\top].$$

1049 Eq. 14 implies that \mathbf{X}' is a minimizer of Eq. 11. As $(\mathbf{W}', \mathbf{H}')$ cannot be written as Eq. 6 with
 1050 $\mathbf{X}^* = \mathbf{X}'$, then there is a $k' \in \mathbb{K}^2$, $i, j \in [n'_k]$ with $i \neq j$ such that $\mathbf{h}_{k',i} \neq \mathbf{h}_{k',j}$. We have
 1051

$$\begin{aligned} 1052 \frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}'(k, k) &= \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \|\mathbf{h}'_k\|^2 \\ 1053 &= \frac{1}{K^2} \sum_{k_A \in \mathbb{K}_A^2} \frac{1}{n_A} \sum_{i=1}^{n_A} \|\mathbf{h}'_{k_A,i}\|^2 - \frac{1}{K^2} \sum_{k_A \in \mathbb{K}_A^2} \frac{1}{n_A} \sum_{i=1}^{n_A} \|\mathbf{h}'_{k_A,i} - \mathbf{h}'_{k_A}\|^2 \\ 1054 &\quad + \frac{1}{K^2} \sum_{k_B \in \mathbb{K}_B^2} \frac{1}{w_r n_B} \sum_{i=1}^{w_r n_B} \|\mathbf{h}'_{k_B,i}\|^2 - \frac{1}{K^2} \sum_{k_B \in \mathbb{K}_B^2} \frac{1}{w_r n_B} \sum_{i=1}^{w_r n_B} \|\mathbf{h}'_{k_B,i} - \mathbf{h}'_{k_B}\|^2 \\ 1055 &\leq \frac{1}{K^2} \sum_{k_A \in \mathbb{K}_A^2} \frac{1}{n_A} \sum_{i=1}^{n_A} \|\mathbf{h}'_{k_A,i}\|^2 - \frac{1}{K^2} \frac{1}{n_{k'_A}} (\|\mathbf{h}'_{k'_A,i} - \mathbf{h}'_{k'_A}\|^2 + \|\mathbf{h}'_{k'_A,j} - \mathbf{h}'_{k'_A}\|^2) \\ 1056 &\quad + \frac{1}{K^2} \sum_{k_B \in \mathbb{K}_B^2} \frac{1}{w_r n_B} \sum_{i=1}^{w_r n_B} \|\mathbf{h}'_{k_B,i}\|^2 - \frac{1}{K^2} \frac{1}{n_{k'_B}} (\|\mathbf{h}'_{k'_B,i} - \mathbf{h}'_{k'_B}\|^2 + \|\mathbf{h}'_{k'_B,j} - \mathbf{h}'_{k'_B}\|^2) \\ 1057 &\leq \frac{1}{K^2} \sum_{k_A \in \mathbb{K}_A^2} \frac{1}{n_A} \sum_{i=1}^{n_A} \|\mathbf{h}'_{k_A,i}\|^2 - \frac{1}{K^2} \frac{1}{2n_{k'_A}} \|\mathbf{h}'_{k'_A,i} - \mathbf{h}'_{k'_A,j}\|^2 \\ 1058 &\quad + \frac{1}{K^2} \sum_{k_B \in \mathbb{K}_B^2} \frac{1}{w_r n_B} \sum_{i=1}^{w_r n_B} \|\mathbf{h}'_{k_B,i}\|^2 - \frac{1}{K^2} \frac{1}{2n_{k'_B}} \|\mathbf{h}'_{k'_B,i} - \mathbf{h}'_{k'_B,j}\|^2 \\ 1059 &\quad < E_H. \end{aligned}$$

1060 By contraposition, if all \mathbf{X}^* satisfy that $\frac{1}{K^2} \sum_{k=1}^{K^2} \mathbf{X}^*(k, k) = E_H$, then all the solutions of Eq. 5
 1061 are in the form of Eq. 6. We complete the proof. \square
 1062

1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 C.3 PROOF OF THEOREM 1
10811082 Restated Theorem 1. Assume $p \geq K$ and $n_A/n_B \rightarrow \infty$, and fix K_A and K_B . Let $(\mathbf{W}^*, \mathbf{H}^*)$ be
1083 any global minimizer of the LPM_λ (Eq. 5). As the imbalance factor $R \equiv n_A/n_B \rightarrow \infty$, we have
1084

1085
$$\lim \mathbf{w}_k^* - \mathbf{w}_{k'}^* = \mathbf{0}_p, \text{ for all } K_A < k < k' \leq K.$$

1086

1087 To prove Theorem 1, we first study a limit case where we only learn the classification for partial
1088 classes. We solve the optimization program:
1089

1090
$$\begin{aligned} \min_{\mathbf{W}, \mathbf{H}^\lambda} \mathbb{E}_{\lambda \sim D_\lambda} & \frac{1}{|\mathbb{K}_A^2| \cdot n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) \\ \text{s.t.} & \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k\|^2 \leq E_W, \\ & \frac{1}{|\mathbb{K}_U^2|} \sum_{k \in \mathbb{K}_U^2} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}^\lambda\|^2 \leq E_H, \end{aligned} \quad (16)$$

1091
1092
1093
1094
1095
1096
1097
1098

1099 where $\mathbf{y}_{(a,b)}^\lambda = \lambda \mathbf{y}_a + (1 - \lambda) \mathbf{y}_b$, $\mathbb{K}_A^2 = \{(a,b) | 1 \leq a \leq K_A \wedge 1 \leq b \leq K_A\}$, $\mathbb{K}_B^2 =$
1100 $\{(a,b) | K_A + 1 \leq a \leq K \wedge K_A + 1 \leq b \leq K\}$, $\mathbb{K}_U^2 = \mathbb{K}_A^2 \cup \mathbb{K}_B^2$ and
1101

1102
$$n_k = \begin{cases} n_A & \text{if } k = (a,b) \in \mathbb{K}_A^2 \\ n_B & \text{if } k = (a,b) \in \mathbb{K}_B^2 \\ 0 & \text{otherwise} \end{cases}.$$

1103
1104
1105

1106 For the simplicity of our expressions, we remove the superscript λ of \mathbf{H}^λ and \mathbf{h}^λ .
11071108 Lemma 2 characterizes useful properties for the minimizer of Eq. 16.
11091110 Lemma 2. Let (\mathbf{W}, \mathbf{H}) be a minimizer of Eq. 16. We have $\mathbf{h}_{k,i}^\lambda = \mathbf{0}_p$ for all $k \in \mathbb{K}_B^2$ and $i \in [n_B]$.
1111 Let L_0 be the global minimum of Eq. 16. We have

1112
$$L_0 = \frac{1}{|\mathbb{K}_A^2| \cdot n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}, \mathbf{y}_k^\lambda).$$

1113
1114

1115 Then L_0 only depends on K_A , n_A , E_H , and E_W . Moreover, for any feasible solution $(\mathbf{W}', (\mathbf{H}')')$, if
1116 there exist $k, k' \in \mathbb{K}_B^2$ such that $\|\mathbf{w}_k - \mathbf{w}_{k'}\| = \epsilon > 0$, we have

1117
$$\frac{1}{|\mathbb{K}_A^2| \cdot n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W} \mathbf{h}_{k,i}, \mathbf{y}_k^\lambda) \geq L_0 + \epsilon',$$

1118
1119

1120 where $\epsilon' > 0$ depends on ϵ , $|\mathbb{K}_A^2|$, n_A , E_H , and E_W .
11211122 Now we are ready to prove Theorem 1. The proof is based on the contradiction.
11231124 Proof of Theorem 1. Consider sequences n_A^ℓ and n_B^ℓ with $R^\ell := n_A^\ell/n_B^\ell$ for $\ell = 1, 2, \dots$. We have
1125 $R^\ell \rightarrow \infty$. For each optimization program indexed by $\ell \in \mathbb{N}_+$, we introduce $(\mathbf{W}^{\ell,*}, \mathbf{H}^{\ell,*})$ as a
1126 minimizer and separate the objective function into two parts. We consider
1127

1128
$$\mathcal{L}^\ell(\mathbf{W}^\ell, \mathbf{H}^\ell) = \frac{|\mathbb{K}_A^2| \cdot n_A^\ell}{|\mathbb{K}_A^2| \cdot n_A^\ell + |\mathbb{K}_B^2| \cdot n_B^\ell} \mathcal{L}_A^\ell(\mathbf{W}^\ell, \mathbf{H}^\ell) + \frac{|\mathbb{K}_B^2| \cdot n_B^\ell}{|\mathbb{K}_A^2| \cdot n_A^\ell + |\mathbb{K}_B^2| \cdot n_B^\ell} \mathcal{L}_B^\ell(\mathbf{W}^\ell, \mathbf{H}^\ell),$$

1129
1130

1131 with

1132
$$\mathcal{L}_A^\ell(\mathbf{W}^\ell, \mathbf{H}^\ell) := \frac{1}{|\mathbb{K}_A^2| \cdot n_A^\ell} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A^\ell} \mathcal{L}(\mathbf{W}^\ell \mathbf{h}_{k,i}^\ell, \mathbf{y}_k^\lambda)$$

1133

1134 and

1136

$$\mathcal{L}_B^\ell(\mathbf{W}^\ell, \mathbf{H}^\ell) := \frac{1}{|\mathbb{K}_B^2| \cdot n_B^\ell} \sum_{k \in \mathbb{K}_B^2} \sum_{i=1}^{n_B^\ell} \mathcal{L}(\mathbf{W}^\ell \mathbf{h}_{k,i}^\ell, \mathbf{y}_k^\lambda).$$

1137

1138

1139 We define $(\mathbf{W}^{\ell,A}, \mathbf{H}^{\ell,A})$ as a minimizer of the optimization program:

1140

$$\begin{aligned} \min_{\mathbf{W}^\ell, \mathbf{H}^\ell} \quad & \mathcal{L}_A^\ell(\mathbf{W}^\ell, \mathbf{H}^\ell) \\ \text{s.t.} \quad & \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k^\ell\|^2 \leq E_W, \\ & \frac{1}{|\mathbb{K}_A^2|} \sum_{k \in \mathbb{K}_A^2} \frac{1}{n_A^\ell} \sum_{i=1}^{n_A^\ell} \|\mathbf{h}_{k,i}^\ell\|^2 + \frac{1}{|\mathbb{K}_B^2|} \sum_{k \in \mathbb{K}_B^2} \frac{1}{n_B^\ell} \sum_{i=1}^{n_B^\ell} \|\mathbf{h}_{k,i}^\ell\|^2 \leq E_H, \end{aligned} \quad (17)$$

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151 and $(\mathbf{W}^{\ell,B}, \mathbf{H}^{\ell,B})$ as a minimizer of the optimization program:

1152

$$\begin{aligned} \min_{\mathbf{W}^\ell, \mathbf{H}^\ell} \quad & \mathcal{L}_B^\ell(\mathbf{W}^\ell, \mathbf{H}^\ell) \\ \text{s.t.} \quad & \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k^\ell\|^2 \leq E_W, \\ & \frac{1}{|\mathbb{K}_A^2|} \sum_{k \in \mathbb{K}_A^2} \frac{1}{n_A^\ell} \sum_{i=1}^{n_A^\ell} \|\mathbf{h}_{k,i}^\ell\|^2 + \frac{1}{|\mathbb{K}_B^2|} \sum_{k \in \mathbb{K}_B^2} \frac{1}{n_B^\ell} \sum_{i=1}^{n_B^\ell} \|\mathbf{h}_{k,i}^\ell\|^2 \leq E_H. \end{aligned} \quad (18)$$

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162 Note that Programs Eq. 17 and Eq. 18 and their minimizers have been studied in Lemma 2. We define:

1163

$$L_A := \mathcal{L}_A^\ell(\mathbf{W}^{\ell,A}, \mathbf{H}^{\ell,A}) \quad \text{and} \quad L_B := \mathcal{L}_B^\ell(\mathbf{W}^{\ell,B}, \mathbf{H}^{\ell,B}).$$

1164

1165

1166 Then Lemma 2 implies that L_A and L_B only depend on $|\mathbb{K}_A^2|$, K_B , E_H , and E_W , and are independent of ℓ . Moreover, since $\mathbf{h}_{k,i}^{\ell,A} = \mathbf{0}_p$ for all $k \in \mathbb{K}_B^2$ and $i \in [n_B]$, we have

1167

$$\mathcal{L}_B^\ell(\mathbf{W}^{\ell,A}, \mathbf{H}^{\ell,A}) = \lambda \cdot \log(K) + (1 - \lambda) \cdot \log(K) = \log(K). \quad (19)$$

1168

1169

1170

1171 Now we prove Theorem 1 by contradiction. Suppose there exists a pair (k, k') such that $\lim_{\ell \rightarrow \infty} \mathbf{w}_k^{\ell,*} - \mathbf{w}_{k'}^{\ell,*} \neq \mathbf{0}_p$. Then there exists $\epsilon > 0$ such that for a subsequence $\{(\mathbf{w}^{\ell,*}, \mathbf{h}^{\ell,*})\}_{\ell=1}^\infty$ and an index ℓ_0 when $\ell \geq \ell_0$, we have $\|\mathbf{W}_k^{\ell,*} - \mathbf{W}_{k'}^{\ell,*}\| \geq \epsilon$. Now we figure out a contradiction by estimating the objective function value on $(\mathbf{W}^{\ell,*}, \mathbf{H}^{\ell,*})$. In fact, because $(\mathbf{W}^{\ell,*}, \mathbf{H}^{\ell,*})$ is a minimizer of $\mathcal{L}^\ell(\mathbf{W}^\ell, \mathbf{H}^\ell)$, we have

1172

$$\begin{aligned} \mathcal{L}^{\ell,*}(\mathbf{W}^{\ell,*}, \mathbf{H}^{\ell,*}) & \leq \mathcal{L}^{\ell,*}(\mathbf{W}^{a_\ell,A}, \mathbf{H}^{a_\ell,A}) \\ & \stackrel{\text{Eq. 19}}{=} \frac{|\mathbb{K}_A^2| \cdot n_A^{a_\ell}}{|\mathbb{K}_A^2| \cdot n_A^{a_\ell} + |\mathbb{K}_B^2| \cdot n_B^{a_\ell}} L_A + \frac{|\mathbb{K}_B^2| \cdot n_B^{a_\ell}}{|\mathbb{K}_A^2| \cdot n_A^{a_\ell} + |\mathbb{K}_B^2| \cdot n_B^{a_\ell}} \log(K) \\ & = L_A + \frac{1}{K_R R^{a_\ell} + 1} (\log(K) - L_A) \xrightarrow{\ell \rightarrow \infty} L_A, \end{aligned} \quad (20)$$

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184 where we define $K_R := |\mathbb{K}_A^2|/|\mathbb{K}_B^2|$ and use $R^\ell = n_A^\ell/n_B^\ell$.

1185

1186 However, when $\ell > \ell_0$, because $\|\mathbf{w}_k^{\ell,*} - \mathbf{w}_{k'}^{\ell,*}\| \geq \epsilon > 0$, Lemma 2 implies that

1187

$$\mathcal{L}_A^{a_\ell}(\mathbf{W}^{a_\ell,*}, \mathbf{H}^{a_\ell,*}) \geq L_A + \epsilon_2,$$

1188 where $\epsilon_2 > 0$ only depends on ϵ , $|\mathbb{K}_A^2|$, K_B , E_H , and E_W , and is independent of ℓ . We obtain
1189

$$\begin{aligned}
1190 \mathcal{L}^{a_\ell}(\mathbf{W}^{a_\ell, \star}, \mathbf{H}^{a_\ell, \star}) &= \frac{|\mathbb{K}_A^2| \cdot n_A^{a_\ell}}{|\mathbb{K}_A^2| \cdot n_A^{a_\ell} + |\mathbb{K}_B^2| \cdot n_B^{a_\ell}} \mathcal{L}_A^{a_\ell}(\mathbf{W}^{a_\ell, \star}, \mathbf{H}^{a_\ell, \star}) \\
1191 &\quad + \frac{|\mathbb{K}_B^2| \cdot n_B^{a_\ell}}{|\mathbb{K}_A^2| \cdot n_A^{a_\ell} + |\mathbb{K}_B^2| \cdot n_B^{a_\ell}} \mathcal{L}_B^{a_\ell}(\mathbf{W}^{a_\ell, \star}, \mathbf{H}^{a_\ell, \star}) \\
1192 &\stackrel{a}{\geq} \frac{|\mathbb{K}_A^2| \cdot n_A^{a_\ell}}{|\mathbb{K}_A^2| \cdot n_A^{a_\ell} + |\mathbb{K}_B^2| \cdot n_B^{a_\ell}} \mathcal{L}_A^{a_\ell}(\mathbf{W}^{a_\ell, \star}, \mathbf{H}^{a_\ell, \star}) \\
1193 &\quad + \frac{|\mathbb{K}_B^2| \cdot n_B^{a_\ell}}{|\mathbb{K}_A^2| \cdot n_A^{a_\ell} + |\mathbb{K}_B^2| \cdot n_B^{a_\ell}} \mathcal{L}_B^{a_\ell}(\mathbf{W}^{a_\ell, B}, \mathbf{H}^{a_\ell, B}) \\
1194 &= \frac{|\mathbb{K}_A^2| \cdot n_A^{a_\ell}}{|\mathbb{K}_A^2| \cdot n_A^{a_\ell} + |\mathbb{K}_B^2| \cdot n_B^{a_\ell}} (L_A + \epsilon_2) + \frac{|\mathbb{K}_B^2| \cdot n_B^{a_\ell}}{|\mathbb{K}_A^2| \cdot n_A^{a_\ell} + |\mathbb{K}_B^2| \cdot n_B^{a_\ell}} L_B \\
1195 &= L_A + \epsilon_2 + \frac{1}{K_R R^{a_\ell} + 1} (L_B - L_A - \epsilon_2) \xrightarrow{\ell \rightarrow \infty} L_A + \epsilon_2, \tag{21}
\end{aligned}$$

1204 where $\stackrel{a}{\geq}$ uses $(\mathbf{W}^{a_\ell, B}, \mathbf{H}^{a_\ell, B})$ is the minimizer of Eq. 18. Thus we meet contradiction by comparing
1205 Eq. 20 with Eq. 21 and achieve Theorem 1. \square
1206

1207 *Proof of Lemma 2.* For any constants $C_a > 0$, $C_b > 0$, and $C_c > 0$, define
1208

$$\begin{aligned}
1209 C'_a &:= \frac{C_a}{C_a + (K_A - 1)C_b + K_B C_c} \in (0, 1) \\
1210 C'_b &:= \frac{C_b}{C_a + (K_A - 1)C_b + K_B C_c} \in (0, 1) \\
1211 C'_c &:= \frac{C_c}{C_a + (K_A - 1)C_b + K_B C_c} \in (0, 1) \\
1212 C_d &:= -C'_a \log(C'_a) - C'_b (K_A - 1) \log(C'_b) - K_B C'_c \log(C'_c) \\
1213 C_e &:= \frac{K_A C_b}{K_A C_b + K_B C_c} \in (0, 1) \\
1214 C_f &:= \frac{K_B C_b}{K_A C_b + K_B C_c} \in (0, 1) \\
1215 C_g &:= \frac{K_A C_b + K_B C_c}{C_a + (K_A - 1)C_b + K_B C_c} > 0.
\end{aligned}$$

1226 Using a similar argument as Theorem 3, we show in Lemma 3 (see the end of the proof), for any
1227 feasible solution (\mathbf{W}, \mathbf{H}) of Eq. 16, the objective value of Eq. 16 can be bounded from below by:
1228

$$\begin{aligned}
1229 \frac{1}{|\mathbb{K}_A^2| n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W} \mathbf{h}_{(a,b),i}, \mathbf{y}_{(a,b)}) \\
1230 &\stackrel{a}{\geq} -\frac{C_g}{K_A} \sqrt{K E_H} \sqrt{\sum_{k=1}^{K_A} \|C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k\|^2 + C_d} \\
1231 &\stackrel{b}{\geq} -\frac{C_g}{K_A} \sqrt{K E_H} \sqrt{K E_W - K_A \left(1/K_R - C_f^2 - \frac{C_f^4}{C_e(2 - C_e)}\right) \|\mathbf{w}_B\|^2 - \sum_{k=K_A+1}^K \|\mathbf{w}_k - \mathbf{w}_B\|^2 + C_d}
\end{aligned} \tag{22}$$

1232 where $\mathbf{w}_A := \frac{1}{K_A} \sum_{k=1}^{K_A} \mathbf{w}_k$, $\mathbf{w}_B := \frac{1}{K_B} \sum_{k=K_A+1}^K \mathbf{w}_k$, and $K_R := \frac{K_A}{K_B}$. Moreover, the equality in
1233 $\stackrel{a}{\geq}$ holds only if $\mathbf{h}_{k,i} = \mathbf{0}_p$ for all $k \in [K_A + 1 : K]$ and $i \in [n_B]$.
1234

Though C_a , C_b , and C_c can be any positive numbers, we need to carefully pick them to exactly reach the global minimum of Eq. 16. In the following, we separately consider three cases according to the values of K_A , K_B , and $E_H E_W$.

(Case 1) Consider the case when $K_A = 1$. We pick $C_a := \exp\left(\sqrt{K_B(1+K_B)E_H E_W}\right)$, $C_b := 1$, and $C_c := \exp\left(-\sqrt{(1+K_B)E_H E_W/K_B}\right)$.

Then, from \geq^a in Eq. 22, we have

$$\begin{aligned}
 & \frac{1}{|\mathbb{K}_A^2|n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W}\mathbf{h}_{(a,b),i}, \mathbf{y}_{(a,b)}) \\
 & \stackrel{a}{\geq} -C_g C_f \sqrt{K E_H} \sqrt{\|\mathbf{w}_1 - \mathbf{w}_B\|^2} + C_d \\
 & = -C_g C_f \sqrt{K E_H} \sqrt{\|\mathbf{w}_1\|^2 - 2\mathbf{w}_1^\top \mathbf{w}_B + \|\mathbf{w}_B\|^2} + C_d \\
 & \stackrel{b}{\geq} -C_g C_f \sqrt{K E_H} \sqrt{(1+1/K_B)(\|\mathbf{w}_1\|^2 + K_B \|\mathbf{w}_B\|^2)} + C_d \\
 & \stackrel{c}{\geq} -C_g C_f \sqrt{K E_H} \sqrt{(1+1/K_B)\left(KE_W - \sum_{k=2}^K \|\mathbf{w}_k - \mathbf{w}_B\|^2\right)} + C_d \\
 & \stackrel{c}{\geq} -C_g C_f \sqrt{K E_H} \sqrt{(1+1/K_B)KE_W} + C_d := L_1
 \end{aligned} \tag{23}$$

where \geq^a uses $C_e + C_f = 1$, \geq^b follows from $-2ab \leq a^2 + b^2$, i.e., $-2\mathbf{w}_1^\top \mathbf{w}_B \leq (1/K_B)\|\mathbf{w}_1\|^2 + K_B \|\mathbf{w}_B\|^2$, and \geq^c follows from $\sum_{k=2}^K \|\mathbf{w}_k\|^2 = K_B \|\mathbf{w}_B\|^2 + \sum_{k=2}^K \|\mathbf{w}_k - \mathbf{w}_B\|^2$ and the constraint that $\sum_{k=1}^K \|\mathbf{w}_k\|^2 \leq KE_W$.

On the other hand, when (\mathbf{M}, \mathbf{H}) satisfies that

$$\begin{aligned}
 \mathbf{w}_1 &= \sqrt{K_B E_W} \mathbf{u}, \quad \mathbf{w}_k = -\sqrt{\frac{1}{K_B E_W}} \mathbf{u}, \quad k \in [2 : K], \\
 \mathbf{h}_{1,i} &= \sqrt{(1+K_B)E_H} \mathbf{u}, \quad i \in [n_A], \quad \mathbf{h}_{k,i} = \mathbf{0}_p \quad k \in [2 : K], \quad i \in [n_B],
 \end{aligned}$$

where \mathbf{u} is any unit vector, the inequalities in Eq. 23 reduces to equalities. So, L_1 is the global minimum of Eq. 16. Moreover, L_1 is achieved only if \geq^a in Eq. 22 reduces to equality. From Lemma 3, we have that any minimizer satisfies that $\mathbf{h}_{k,i} = \mathbf{0}_p$ for all $k \in [K_A + 1 : K]$ and $i \in [n_B]$.

Finally, for any feasible solution $(\mathbf{W}', \mathbf{H}')$, if there exist $k, k' \in [K_A + 1 : K]$ such that $\|\mathbf{w}_k - \mathbf{w}_{k'}\| = \varepsilon > 0$, we have

$$\sum_{k=K_A+1}^K \|\mathbf{w}_k - \mathbf{w}_B\|^2 \geq \|\mathbf{w}_k - \mathbf{w}_B\|^2 + \|\mathbf{w}_{k'} - \mathbf{w}_B\|^2 \geq \frac{\|\mathbf{w}_k - \mathbf{w}_{k'}\|^2}{2} = \varepsilon^2/2. \tag{24}$$

It follows from \geq^c in Eq. 23 that

$$\begin{aligned}
 & \frac{1}{|\mathbb{K}_A^2|n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W}\mathbf{h}_{(a,b),i}, \mathbf{y}_{(a,b)}) \\
 & \geq -C_g C_f \sqrt{K E_H} \sqrt{(1+1/K_B)(KE_W - \varepsilon^2/2)} + C_d := L_1 + \varepsilon_1,
 \end{aligned} \tag{25}$$

with $\varepsilon_1 > 0$ depending on ε , K_A , K_B , E_H , and E_W .

(Case 2) Consider the case when $K_A > 1$ and $\exp\left((1+1/K_R)\sqrt{E_H E_W}/(K_A - 1)\right) < \sqrt{1+K_R} + 1$. Let us pick $C_a := \exp\left((1+1/K_R)\sqrt{E_H E_W}\right)$, $C_b := \exp\left(-\frac{1}{K_A-1}(1+1/K_R)\sqrt{E_H E_W}\right)$, and $C_c := 1$.

1296
1297

Following from \geq^b in Eq. 22, we know if $1/K_R - C_f^2 - \frac{C_f^4}{C_e(2-C_e)} > 0$, then

1298
1299
1300

$$\frac{1}{|\mathbb{K}_A^2|n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W}\mathbf{h}_{(a,b),i}, \mathbf{y}_{(a,b)}) \geq -C_g(1 + 1/K_R)\sqrt{E_H E_W} + C_d := L_2 \quad (26)$$

1301
1302

In fact, we do have $1/K_R - C_f^2 - \frac{C_f^4}{C_e(2-C_e)} > 0$ because

1303
1304

$$1/K_R > C_f^2 + \frac{C_f^4}{C_e(2-C_e)}$$

1305
1306

$$\Leftrightarrow C_f < \sqrt{\frac{1}{1+K_R}}$$

1307
1308

$$\Leftrightarrow \frac{C_b}{C_c} > \frac{1}{\sqrt{1+K_R}+1}$$

1309
1310

$$\Leftrightarrow \exp\left((1+1/K_R)\sqrt{E_H E_W}/(K_A-1)\right) < \sqrt{1+K_R} + 1.$$

1311
1312

where in \Leftrightarrow^a , $C_e + C_f = 1$, and in \Leftrightarrow^b , $C_f = \frac{K_B C_c}{K_A C_b + K_B C_c}$.

1313
1314

On the other hand, when (\mathbf{W}, \mathbf{H}) satisfies that

1315
1316

$$[\mathbf{w}_1, \dots, \mathbf{w}_{K_A}] = \sqrt{\frac{E_W}{E_H}} [\mathbf{h}_1, \dots, \mathbf{h}_{K_A}]^\top = \sqrt{(1+1/K_R)E_W} (\mathbf{M}_A^*)^\top,$$

1317
1318

$$\mathbf{h}_{k,i} = \mathbf{h}_k, \quad k \in [K_A], \quad i \in [n_A],$$

1319
1320

$$\mathbf{h}_{k,i} = \mathbf{0}_p, \quad k \in [K_A+1 : K], \quad i \in [n_B],$$

1321
1322

where (\mathbf{M}_A^*) is a K_A -simplex ETF, Eq. 26 reduces to equality. So, L_2 is the global minimum of Eq. 16. Moreover, L_2 is achieved only if \geq^a in Eq. 22 reduces to equality. From Lemma 3, we have that any minimizer satisfies that $\mathbf{h}_{k,i} = \mathbf{0}_p$ for all $k \in [K_A+1 : K]$ and $i \in [n_B]$.

1323
1324

Finally, for any feasible solution $(\mathbf{W}', \mathbf{H}')$, if there exist $k, k' \in [K_A+1 : K]$ such that $\|\mathbf{w}_k - \mathbf{w}_{k'}\| = \varepsilon > 0$, plugging Eq. 24 into \geq^b in Eq. 22, we have

1325
1326

$$\begin{aligned} & \frac{1}{|\mathbb{K}_A^2|n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W}\mathbf{h}_{(a,b),i}, \mathbf{y}_{(a,b)}) \\ & \geq -\frac{C_g}{K_A} \sqrt{K E_H} \sqrt{K E_W - \varepsilon^2/2} + C_d := L_2 + \varepsilon_2, \end{aligned} \quad (27)$$

1330
1331

with $\varepsilon_2 > 0$ depending on $\varepsilon, K_A, K_B, E_H$, and E_W .

1332
1333

(Case 3) Consider the case when $K_A > 1$ and $\exp\left((1+1/K_R)\sqrt{E_H E_W}/(K_A-1)\right) \geq \sqrt{1+K_R} + 1$. Let $C'_f := \frac{1}{\sqrt{1+K_R}}$ and $C'_e = 1 - C'_f$. For $x \in [0, 1]$, we define:

1334
1335

$$g_N(x) := \sqrt{\frac{(1+K_R)E_W}{K_R x^2 + K_R(1+K_R)(1-x)^2}},$$

1336
1337

$$g_a(x) := \exp\left(\frac{g_N(x)\sqrt{(1+K_R)E_H/K_R}}{x^2 + \left(1 + \frac{C'_e}{C'_f}\right)^2(1-x)^2} \left[x^2 + \left(1 + \frac{C'_e}{C'_f}\right)(1-x)^2\right]\right),$$

1338
1339

$$g_b(x) := \exp\left(\frac{g_N(x)\sqrt{(1+K_R)E_H/K_R}}{x^2 + \left(1 + \frac{C'_e}{C'_f}\right)^2(1-x)^2} \left[-\frac{1}{K_A-1}x^2 + \left(1 + \frac{C'_e}{C'_f}\right)(1-x)^2\right]\right),$$

1340
1341

$$g_b(x) := \exp\left(\frac{g_N(x)\sqrt{(1+K_R)E_H/K_R}}{x^2 + \left(1 + \frac{C'_e}{C'_f}\right)^2(1-x)^2} \left[-\left(1 + \frac{C'_e}{C'_f}\right)K_R(1-x)^2\right]\right),$$

1342
1343

1344
1345

1346
1347

1348
1349

1350 Let $x_0 \in [0, 1]$ be a root of the equation
 1351

$$1352 \quad 1353 \quad g_b(x)/g_c(x) = \frac{1/C'_f - 1}{K_R}. \\ 1354$$

1355 We first show that the solution x_0 exists. First of all, one can directly verify then $x \in [0, 1]$,
 1356 $g_b(x)/g_c(x)$ is continuous. It suffices to prove that (A) $g_b(0)/g_c(0) \geq \frac{1/C'_f - 1}{K_R}$ and (B) $g_b(1)/g_c(1) \leq$
 1357 $\frac{1/C'_f - 1}{K_R}$.
 1358

1359 (A) When $x = 0$, we have $g_b(x)/g_c(x) \geq \exp(0) = 1$. At the same time, $\frac{1/C'_f - 1}{K_R} = \frac{\sqrt{1+K_R}-1}{K_R} =$
 1360 $\frac{1}{\sqrt{1+K_R}+1} \leq 1$. Thus, $g_b(0)/g_c(0) \geq \exp(0) = 1 \geq \frac{1/C'_f - 1}{K_R}$ is achieved.
 1361

1362 (B) When $x = 1$, we have $g_N(1) = \sqrt{(1+1/K_R)E_W}$. So,
 1363

$$1364 \quad 1365 \quad g_b(1)/g_c(1) = \exp\left(-(1+1/K_R)\sqrt{E_H E_W}/(K_A - 1)\right) \stackrel{a}{\leq} \frac{1}{\sqrt{1+K_R}+1} = \frac{1/C'_f - 1}{K_R}, \\ 1366$$

1367 where $\stackrel{a}{\leq}$ is obtained by the condition that
 1368

$$1369 \quad \exp\left((1+1/K_R)\sqrt{E_H E_W}/(K_A - 1)\right) \geq \sqrt{1+K_R} + 1.$$

1370 Now, we pick $C_a := g_a(x_0)$, $C_b := g_b(x_0)$, and $C_c := g_c(x_0)$, because $\frac{C_b}{C_c} = \frac{1/C'_f - 1}{K_R}$, we have
 1371 $C_e = C'_e$, $C_f = C'_f$, and $1/K_R = C_f^2 + \frac{C_f^4}{C_e(2-C_e)}$. Then, it follows from $\stackrel{b}{\geq}$ in Eq. 22 that
 1372

$$1373 \quad 1374 \quad \frac{1}{|\mathbb{K}_A^2|n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W}\mathbf{h}_{(a,b),i}, \mathbf{y}_{(a,b)}) \geq -C_g(1+1/K_R)\sqrt{E_H E_W} + C_d := L_2. \quad (28)$$

1375 On the other hand, consider the solution (\mathbf{W}, \mathbf{H}) that satisfies
 1376

$$1377 \quad 1378 \quad \mathbf{w}_k = g_N(x_0)\mathbf{P}_A \left[\frac{x_0}{\sqrt{(K_A - 1)K_A}} (\mathbf{K}_A \mathbf{y}_k - \mathbf{1}_{K_A} + \frac{1 - x_0}{\sqrt{K_A}} \mathbf{1}_{K_A}) \right], \quad k \in [K_A], \\ 1379 \quad 1380 \quad \mathbf{w}_k = -\frac{C_e(2 - C_e)}{C_f^2 K_A} \mathbf{P}_A \sum_{k=1}^{K_A} \mathbf{w}_k, \quad k \in [K_A + 1 : K], \\ 1381 \quad 1382 \quad \mathbf{h}_{k,i} = \frac{\sqrt{(1+1/K_R)E_H}}{\|\mathbf{w}_i + \frac{C_e}{C_f K_A} \sum_{k=1}^{K_A} \mathbf{w}_k\|} \mathbf{P}_A \left[\mathbf{w}_i \frac{C_e}{C_f K_A} \sum_{k=1}^{K_A} \mathbf{w}_k \right], \quad k \in [K_A], i \in [n_A] \\ 1383 \quad 1384 \quad \mathbf{h}_{k,i} = \mathbf{0}_p, \quad k \in [K_A + 1 : K], i \in [n_B],$$

1385 where $\mathbf{y}_k \in \mathbb{R}^K$ is the one-hot vector of the k -th class label and $\mathbf{P}_A \in \mathbb{R}^{p \times K_A}$ is a partial orthogonal
 1386 matrix such that $\mathbf{P}_A^\top \mathbf{P}_A = \mathbf{I}_{K_A}$. We have $\exp(\mathbf{h}_{k,i}^\top \mathbf{w}_k) = g_a(x_0)$ for $i \in [n_A]$ and $k \in [K_A]$,
 1387 $\exp(\mathbf{h}_{k,i}^\top \mathbf{w}_{k'}) = g_b(x_0)$ for $i \in [n_A]$ and $k, k' \in [K_A]$ such that $k \neq k'$, and $\exp(\mathbf{h}_{k,i}^\top \mathbf{w}_{k'}) =$
 1388 $g_c(x_0)$ for $i \in [n_A]$, $k \in [K_A]$, and $k' \in [K_A + 1 : K]$. Moreover, (\mathbf{W}, \mathbf{H}) can achieve the
 1389 equality in Eq. 28. Finally, following the same argument as (Case 2), we have that (1) L_2 is the
 1390 global minimum of Eq. 16; (2) any minimizer satisfies that $\mathbf{h}_{k,i} = \mathbf{0}_p$ for all $k \in [K_A + 1 : K]$
 1391 and $i \in [n_B]$; (3) for any feasible solution $(\mathbf{W}', \mathbf{H}')$, if there exist $k, k' \in [K_A + 1 : K]$ such that
 1392 $\|\mathbf{w}_k - \mathbf{w}_{k'}\| = \varepsilon > 0$, then Eq. 26 holds.
 1393

1394 Combining the three cases, we obtain Lemma 2, completing the proof. \square
 1395

Lemma 3. For any constants $C_a > 0$, $C_b > 0$, and $C_c > 0$, define

$$\begin{aligned}
C'_a &:= \frac{C_a}{C_a + (K_A - 1)C_b + K_B C_c} \in (0, 1) \\
C'_b &:= \frac{C_b}{C_a + (K_A - 1)C_b + K_B C_c} \in (0, 1) \\
C'_c &:= \frac{C_c}{C_a + (K_A - 1)C_b + K_B C_c} \in (0, 1) \\
C_d &:= -C'_a \log(C'_a) - C'_b (K_A - 1) \log(C'_b) - K_B C'_c \log(C'_c) \\
C_e &:= \frac{K_A C_b}{K_A C_b + K_B C_c} \in (0, 1) \\
C_f &:= \frac{K_B C_b}{K_A C_b + K_B C_c} \in (0, 1) \\
C_g &:= \frac{K_A C_b + K_B C_c}{C_a + (K_A - 1)C_b + K_B C_c} > 0.
\end{aligned}$$

For any feasible solution (\mathbf{W}, \mathbf{H}) of Eq. 16, the objective value of Eq. 16 can be bounded from below by:

$$\begin{aligned}
& \frac{1}{|\mathbb{K}_A^2|n_A} \sum_{k \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W}\mathbf{h}_{(a,b),i}, \mathbf{y}_{(a,b)}) \\
& \stackrel{a}{\geq} -\frac{C_g}{K_A} \sqrt{KE_H} \sqrt{\sum_{k=1}^{K_A} \|C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k\|^2 + C_d} \\
& \stackrel{b}{\geq} -\frac{C_g}{K_A} \sqrt{KE_H} \sqrt{KE_W - K_A \left(1/K_R - C_f^2 - \frac{C_f^4}{C_e(2-C_e)} \right) \|\mathbf{w}_B\|^2 - \sum_{k=K_A+1}^K \|\mathbf{w}_k - \mathbf{w}_B\|^2 + C_d}
\end{aligned} \tag{29}$$

where $\mathbf{w}_A := \frac{1}{K_A} \sum_{k=1}^{K_A} \mathbf{w}_k$, $\mathbf{w}_B := \frac{1}{K_B} \sum_{k=K_A+1}^K \mathbf{w}_k$, and $K_R := \frac{K_A}{K_B}$. Moreover, the equality in $\sum_a \geq$ holds only if $\mathbf{h}_{k,i} = \mathbf{0}_p$ for all $k \in [K_A + 1 : K]$ and $i \in [n_B]$.

Remark 3. Note that the case $\mathbf{h}_{k,i} = \mathbf{0}_p$ does not imply that network activations all die for the classes $k \in [K_A + 1 : K]$. This is because our analysis does not include the bias term for simplicity.

Proof of Lemma 3. For $(a, b) \in \mathbb{K}_A^2$ and $i \in [n_{(a,b)}]$, we introduce $z_{(a,b),i} = Wh_{(a,b),i}^\lambda$. Because that $C'_a + (K_A - 1)C'_b + K_B C'_c = 1$, $C'_a > 0$, $C'_b > 0$, and $C'_c > 0$, by the concavity of $\log(\cdot)$, we

1458

have

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

$$\begin{aligned}
& -\lambda \log \left(\frac{\exp(\mathbf{z}_{(a,b),i}(a))}{\sum_{k'=1}^K \exp(\mathbf{z}_{(a,b),i}(k'))} \right) - (1-\lambda) \log \left(\frac{\exp(\mathbf{z}_{(a,b),i}(b))}{\sum_{k'=1}^K \exp(\mathbf{z}_{(a,b),i}(k'))} \right) \\
& = -\lambda \mathbf{z}_{(a,b),i}(a) - (1-\lambda) \mathbf{z}_{(a,b),i}(b) \\
& \quad + \lambda \log \left(C'_a \left(\frac{\exp(\mathbf{z}_{(a,b),i}(a))}{C'_a} \right) + \sum_{k'=1, k' \neq a}^{K_A} C'_b \left(\frac{\exp(\mathbf{z}_{k,i}(k'))}{C'_b} \right) + \sum_{k'=K_A+1}^K C'_c \left(\frac{\exp(\mathbf{z}_{k,i}(k'))}{C'_c} \right) \right) \\
& \quad + (1-\lambda) \log \left(C'_a \left(\frac{\exp(\mathbf{z}_{(a,b),i}(b))}{C'_a} \right) + \sum_{k'=1, k' \neq b}^{K_A} C'_b \left(\frac{\exp(\mathbf{z}_{k,i}(k'))}{C'_b} \right) + \sum_{k'=K_A+1}^K C'_c \left(\frac{\exp(\mathbf{z}_{k,i}(k'))}{C'_c} \right) \right) \\
& \geq -\lambda \mathbf{z}_{(a,b),i}(a) - (1-\lambda) \mathbf{z}_{(a,b),i}(b) + C'_a (\lambda \mathbf{z}_{(a,b),i}(a) + (1-\lambda) \mathbf{z}_{(a,b),i}(b)) \\
& \quad + C'_b \left(\lambda \sum_{k'=1, k' \neq a}^{K_A} \mathbf{z}_{(a,b),i}(k') + (1-\lambda) \sum_{k'=1, k' \neq b}^{K_A} \mathbf{z}_{(a,b),i}(k') \right) + C'_c \sum_{k'=K_A+1}^K \mathbf{z}_{(a,b),i}(k') + C_d \\
& = C_g C_e \left(\frac{1}{K_A} \sum_{k'=1}^{K_A} \mathbf{z}_{(a,b),i}(k') - \lambda \mathbf{z}_{(a,b),i}(a) - (1-\lambda) \mathbf{z}_{(a,b),i}(b) \right) \\
& \quad + C_g C_f \left(\frac{1}{K_B} \sum_{k'=K_A+1}^K \mathbf{z}_{(a,b),i}(k') - \lambda \mathbf{z}_{(a,b),i}(a) - (1-\lambda) \mathbf{z}_{(a,b),i}(b) \right) + C_d.
\end{aligned} \tag{30}$$

Therefore, integrating Eq. 30 with $(a, b) \in \mathbb{K}_A^2$ and $i \in [n_A]$, recalling that $\mathbf{w}_A = \frac{1}{K_A} \sum_{k=1}^{K_A} \mathbf{w}_k$ and $\mathbf{w}_B = \frac{1}{K_B} \sum_{k=K_A+1}^K \mathbf{w}_k$, we have

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

$$\begin{aligned}
& \frac{1}{|\mathbb{K}_A^2| n_A} \sum_{(a,b) \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} \mathcal{L}(\mathbf{W} \mathbf{h}_{(a,b),i}^\lambda, \mathbf{y}_{(a,b)}) \\
& \geq \frac{1}{|\mathbb{K}_A^2| n_A} \sum_{(a,b) \in \mathbb{K}_A^2} \sum_{i=1}^{n_A} C_g \left(C_e (\lambda (\mathbf{h}_{a,i} \mathbf{w}_A - \mathbf{h}_{a,i} \mathbf{w}_a) + (1-\lambda) (\mathbf{h}_{b,i} \mathbf{w}_A - \mathbf{h}_{b,i} \mathbf{w}_b)) \right. \\
& \quad \left. + C_f (\lambda (\mathbf{h}_{a,i} \mathbf{w}_B - \mathbf{h}_{a,i} \mathbf{w}_a) + (1-\lambda) (\mathbf{h}_{b,i} \mathbf{w}_B - \mathbf{h}_{b,i} \mathbf{w}_b)) \right) \\
& \stackrel{a}{=} \frac{1}{K_A n_A} \sum_{k=1}^{K_A} \sum_{i=1}^{n_A} C_g [C_e (\mathbf{h}_{k,i} \mathbf{w}_A - \mathbf{h}_{k,i} \mathbf{w}_k) + C_f (\mathbf{h}_{k,i} \mathbf{w}_B - \mathbf{h}_{k,i} \mathbf{w}_k)] + C_d \\
& \stackrel{b}{=} \frac{C_g}{K_A} \sum_{k=1}^{K_A} \mathbf{h}_{k,i}^\top (C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k) + C_d,
\end{aligned} \tag{31}$$

where in $\stackrel{a}{=}$, we use $\sum_{(a,b) \in \mathbb{K}_A^2} \mathbf{h}_{(a,b),i}^\lambda = K_A \sum_{k=1}^{K_A} \mathbf{h}_{k,i}$, and in $\stackrel{b}{=}$, we introduce $\mathbf{h}_k := \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{h}_{k,i}$ for $k \in [K]$ and use $C_e + C_f = 1$. Then, it is sufficient to bound $\sum_{k=1}^{K_A} \mathbf{h}_k^\top (C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k)$. By the Cauchy-Schwarz inequality, we have

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

$$\begin{aligned}
\sum_{k=1}^{K_A} \mathbf{h}_k^\top (C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k) & \geq - \sqrt{\sum_{k=1}^{K_A} \|\mathbf{h}_k\|^2} \sqrt{\sum_{k=1}^{K_A} \|C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k\|^2} \\
& \stackrel{a}{\geq} - \sqrt{\sum_{k=1}^{K_A} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}\|^2} \sqrt{\sum_{k=1}^{K_A} \|C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k\|^2} \\
& \stackrel{b}{\geq} - \sqrt{K E_H} \sqrt{\sum_{k=1}^{K_A} \|C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k\|^2},
\end{aligned} \tag{32}$$

1512 where \geq^a follows from Jensen's inequality $\|\mathbf{h}_k\|^2 \leq \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}\|^2$ for $k \in [K_A]$, and \geq^b uses
 1513 the constraint that $\sum_{k=1}^K \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}\|^2 \leq E_H$. Moreover, we have $\sum_{k=1}^K \frac{1}{n_k} \sum_{i=1}^{n_k} \|\mathbf{h}_{k,i}\|^2 =$
 1514 E_H only if $\mathbf{h}_{k,i} = \mathbf{0}_p$ for all $k \in [K_A + 1, K]$. Plugging Eq. 32 to Eq. 31, we obtain \geq^a in Eq. 29.
 1515

1516 We then bound $\sum_{k=1}^{K_A} \|C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k\|^2$. First, we have
 1517

$$\begin{aligned}
 & \frac{1}{K_A} \sum_{k=1}^{K_A} \|C_e \mathbf{w}_A + C_f \mathbf{w}_B - \mathbf{w}_k\|^2 \\
 &= \frac{1}{K_A} \sum_{k=1}^{K_A} \|\mathbf{w}_k\|^2 - 2 \frac{1}{K_A} \sum_{k=1}^{K_A} \mathbf{w}_k \cdot (C_e \mathbf{w}_A + C_f \mathbf{w}_B) + \|C_e \mathbf{w}_A + C_f \mathbf{w}_B\|^2 \\
 &\stackrel{a}{=} \frac{1}{K_A} \sum_{k=1}^{K_A} \|\mathbf{w}_k\|^2 - 2C_f^2 \mathbf{w}_A^\top \mathbf{w}_B - C_e(2 - C_e) \|\mathbf{w}_A\|^2 + C_f^2 \|\mathbf{w}_B\|^2
 \end{aligned} \tag{33}$$

1518 where $\stackrel{a}{=}$ uses $\sum_{k=1}^{K_A} \mathbf{w}_k = K_A \mathbf{w}_A$. Then, using the constraint that $\sum_{k=1}^{K_A} \|\mathbf{w}_k\|^2 \leq K E_W$ yields
 1519 that

$$\begin{aligned}
 & \frac{1}{K_A} \sum_{k=1}^{K_A} \|\mathbf{w}_k\|^2 - 2C_f^2 \mathbf{w}_A^\top \mathbf{w}_B - C_e(2 - C_e) \|\mathbf{w}_A\|^2 + C_f^2 \|\mathbf{w}_B\|^2 \\
 &\leq \frac{K}{K_A} E_W - \frac{1}{K_A} \sum_{k=K_A+1}^K K \|\mathbf{w}_k\|^2 - C_e(2 - C_e) \|\mathbf{w}_A\|^2 + \frac{C_f^2}{C_e(2 - C_e)} \|\mathbf{w}_B\|^2 + \left(C_f^2 + \frac{C_f^4}{C_e(2 - C_e)} \right) \|\mathbf{w}_B\|^2 \\
 &\stackrel{a}{=} \frac{K}{K_A} E_W - \left(1/K_R - C_f^2 - \frac{C_f^4}{C_e(2 - C_e)} \right) \|\mathbf{w}_B\|^2 - \frac{1}{K_A} \sum_{k=K_A+1}^K \|\mathbf{w}_k - \mathbf{w}_B\|^2,
 \end{aligned} \tag{34}$$

1520 where $\stackrel{a}{=}$ applies $\sum_{k=K_A+1}^K K \|\mathbf{w}_k\|^2 = K_B \|\mathbf{w}_B\|^2 + \sum_{k=K_A+1}^K K \|\mathbf{w}_k - \mathbf{w}_B\|^2$. Plugging Eq. 33
 1521 and Eq. 34 into \geq^a in Eq. 29, we obtain \geq^b in Eq. 29, completing the proof. \square
 1522

1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566

C.4 PROOF OF THEOREM 3

1567

1568 **Definition 1.** A K -simplex ETF is a collection of points in \mathbb{R}^p specified by the columns of the matrix

1569

1570

1571

$$\mathbf{M}^* = \sqrt{\frac{K}{K-1}} \mathbf{P} \left(\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right)$$

1572

1573

where $\mathbf{I}_K \in \mathbb{R}^{K \times K}$ is the identity matrix, $\mathbf{1}_K$ is the ones vector, and $\mathbf{P} \in \mathbb{R}^{p \times K}$ ($p \geq K$) is a partial orthogonal matrix such that $\mathbf{P}^\top \mathbf{P} = \mathbf{I}_K$.

1574

1575

1576

Theorem 3. In the balanced case, although $(\mathbf{W}^\lambda, \mathbf{H}^\lambda)$ are linearly dependent on (\mathbf{W}, \mathbf{H}) in Eq. 9, any global minimizer $\mathbf{W}^* \equiv [\mathbf{w}_1^*, \dots, \mathbf{w}_K^*]$, $\mathbf{H}^* \equiv [\mathbf{h}_{k,i}^* : 1 \leq k \leq K, 1 \leq i \leq n]$ of Eq. 9 with the cross-entropy loss obeys

1577

$$\mathbf{h}_{k,i}^* = C \mathbf{w}_k^* = C' \mathbf{m}_k^* \quad (35)$$

1578

1579

1580

for all $1 \leq i \leq n$, $1 \leq k \leq K$, where the constants $C = \sqrt{E_H/E_W}$, $C' = \sqrt{E_H}$, and the matrix $[\mathbf{m}_1^*, \dots, \mathbf{m}_K^*]$ forms a K -simplex ETF specified in Definition 1

1581

1582

1583

Because there are multiplication of variables in the objective functions, Eq. 9 is non-convex. Thus, the KKT condition is not sufficient for optimality. To prove Theorem 3, we directly determine the global minimum of Eq. 9. During this procedure, one key step is to show that minimizing Eq. 9 is equivalent to minimize a symmetric quadratic function:

1584

1585

1586

1587

1588

$$\sum_{i=1}^n \left[\left(\sum_{k \in \mathbb{K}^2} \mathbf{h}_{k,i}^\lambda \right)^\top \left(\sum_{k \in \mathbb{K}^2} \mathbf{w}_k^\lambda \right) - K^2 \sum_{k \in \mathbb{K}^2} \mathbf{h}_{k,i}^{\lambda \top} \mathbf{w}_k^\lambda \right]$$

under suitable conditions. The detail is shown below.

1589

1590

1591

Proof. By the concavity of $\log(\cdot)$, for any $\mathbf{z} \in \mathbb{R}^{K^2}$, $k \in [K^2]$, constants $C_a, C_b > 0$, letting $C_c = \frac{C_b}{(C_a + C_b)(K^2 - 1)}$, we have

1592

1593

1594

1595

1596

1597

1598

1599

1600

$$\begin{aligned} -\log \left(\frac{\mathbf{z}(k)}{\sum_{k'=1}^{K^2} \mathbf{z}(k')} \right) &= -\log(\mathbf{z}(k)) + \log \left(\sum_{k'=1}^{K^2} \mathbf{z}(k') \right) \\ &= -\log(\mathbf{z}(k)) + \log \left(\frac{C_a}{C_a + C_b} \left(\frac{(C_a + C_b)\mathbf{z}(k)}{C_a} \right) + C_c \sum_{k'=1, k' \neq k}^{K^2} \frac{\mathbf{z}(k')}{C_c} \right). \end{aligned} \quad (36)$$

1601

Recognizing the equality

1602

1603

1604

$$\frac{C_a}{C_a + C_b} + \underbrace{C_c + \dots + C_c}_{K^2 - 1} = \frac{C_a}{C_a + C_b} + (K^2 - 1) \frac{C_b}{(C_a + C_b)(K^2 - 1)} = 1$$

1605

1606

and the concavity of $\log(\cdot)$, we see that the Jensen inequality gives

1607

1608

1609

1610

1611

1612

1613

$$\begin{aligned} \log \left(\frac{C_a}{C_a + C_b} \left(\frac{(C_a + C_b)\mathbf{z}(k)}{C_a} \right) + C_c \sum_{k'=1, k' \neq k}^{K^2} \frac{\mathbf{z}(k')}{C_c} \right) \\ \geq \frac{C_a}{C_a + C_b} \log \left(\frac{(C_a + C_b)\mathbf{z}(k)}{C_a} \right) + C_c \sum_{k'=1, k' \neq k}^{K^2} \log \left(\frac{\mathbf{z}(k')}{C_c} \right). \end{aligned} \quad (37)$$

1614

Plugging this inequality into Eq. 36, we get

1615

1616

1617

1618

1619

$$\begin{aligned} -\log \left(\frac{\mathbf{z}(k)}{\sum_{k'=1}^{K^2} \mathbf{z}(k')} \right) &\geq -\log(\mathbf{z}(k)) + \frac{C_a}{C_a + C_b} \log \left(\frac{(C_a + C_b)\mathbf{z}(k)}{C_a} \right) + C_c \sum_{k'=1, k' \neq k}^{K^2} \log \left(\frac{\mathbf{z}(k')}{C_c} \right) \\ &= -\frac{C_a}{C_a + C_b} \left[\log(\mathbf{z}(k)) - \frac{1}{K^2 - 1} \sum_{k'=1, k' \neq k}^{K^2} \log(\mathbf{z}(k')) \right] + C_d, \end{aligned}$$

1620 where the constant $C_d := \frac{C_a}{C_a+C_b} \log\left(\frac{C_a+C_b}{C_a}\right) + \frac{C_b}{C_a+C_b} \log(1/C_c)$. Note that in Eq. 36, C_a and
 1621 C_b can be any positive numbers. To prove Theorem 3, we set $C_a := \exp(\sqrt{E_H E_W})$ and $C_b :=$
 1622 $\exp(-\sqrt{E_H E_W}/(K^2 - 1))$, which shall lead to the tightest lower bound for the objective of Eq. 9.
 1623 Applying Eq. 36 to the objective, we have

$$\begin{aligned} 1625 \quad & \frac{1}{N} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^n \mathcal{L}(\mathbf{W}^\lambda \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) \\ 1626 \quad & \geq \frac{C_b}{(C_a + C_b)N(K^2 - 1)} \sum_{i=1}^n \left[\left(\sum_{k \in \mathbb{K}^2} \mathbf{h}_{k,i}^\lambda \right)^\top \left(\sum_{k \in \mathbb{K}^2} \mathbf{w}_k^\lambda \right) - K^2 \sum_{k \in \mathbb{K}^2} \mathbf{h}_{k,i}^{\lambda\top} \mathbf{w}_k^\lambda \right] + C_d. \quad (38) \end{aligned}$$

1631 Defining $\bar{\mathbf{h}}_i^\lambda := \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \mathbf{h}_{k,i}^\lambda$ for $i \in [n]$, it follows from the simple inequality $2ab \leq a^2 + b^2$ that
 1632

$$\begin{aligned} 1633 \quad & \sum_{i=1}^n \left[\left(\sum_{k \in \mathbb{K}^2} \mathbf{h}_{k,i}^\lambda \right)^\top \left(\sum_{k \in \mathbb{K}^2} \mathbf{w}_k^\lambda \right) - K^2 \sum_{k \in \mathbb{K}^2} \mathbf{h}_{k,i}^{\lambda\top} \mathbf{w}_k^\lambda \right] \\ 1634 \quad & = K^2 \sum_{i=1}^n \sum_{k \in \mathbb{K}^2} (\bar{\mathbf{h}}_i^\lambda - \mathbf{h}_{k,i}^\lambda)^\top \mathbf{w}_k^\lambda \\ 1635 \quad & \geq -\frac{K^2}{2} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^n \|\bar{\mathbf{h}}_i^\lambda - \mathbf{h}_{k,i}^\lambda\|^2 / C_e - \frac{C_e N}{2} \sum_{k \in \mathbb{K}^2} \|\mathbf{w}_k^\lambda\|^2, \quad (39) \\ 1636 \quad & \end{aligned}$$

1642 where we pick $C_e := \sqrt{E_H/E_W}$. The two terms in the right hand side of Eq. 39 can be bounded via
 1643 the constraints of Eq. 9. Specifically, we have

$$\frac{C_e N}{2} \sum_{k \in \mathbb{K}^2} \|\mathbf{w}_k^\lambda\|^2 \leq \frac{K^2 N \sqrt{E_H E_W}}{2}, \quad (40)$$

1644 and

$$\begin{aligned} 1645 \quad & \frac{K^2}{2} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^n \|\bar{\mathbf{h}}_i^\lambda - \mathbf{h}_{k,i}^\lambda\|^2 / C_e \stackrel{a}{=} \frac{K^4}{2C_e} \sum_{i=1}^N \left(\frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \|\mathbf{h}_{k,i}^\lambda\|^2 - \|\bar{\mathbf{h}}_i^\lambda\|^2 \right) \\ 1646 \quad & \leq \frac{K^2}{2C_e} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^N \|\mathbf{h}_{k,i}^\lambda\|^2 \leq \frac{K^2 N \sqrt{E_H E_W}}{2}, \quad (41) \\ 1647 \quad & \end{aligned}$$

1655 where $\stackrel{a}{=}$ uses the fact that $\mathbb{E}\|\mathbf{a} - \mathbb{E}[\mathbf{a}]\|^2 = \mathbb{E}\|\mathbf{a}\|^2 - \|\mathbb{E}[\mathbf{a}]\|^2$. Thus, plugging Eq. 39, Eq. 40, and
 1656 Eq. 41 into Eq. 38, we have
 1657

$$\frac{1}{N} \sum_{k \in \mathbb{K}^2} \sum_{i=1}^n \mathcal{L}(\mathbf{W}^\lambda \mathbf{h}_{k,i}^\lambda, \mathbf{y}_k^\lambda) \geq -\frac{C_b}{(C_a + C_b)} \frac{K^2 \sqrt{E_H E_W}}{K^2 - 1} + C_d := L_0. \quad (42)$$

1661 Now, we check the conditions that reduce Eq. 42 to an equality.

1662 By the strict concavity of $\log(\cdot)$, Eq. 37 reduces to an equality only if
 1663

$$\frac{(C_a + C_b)z(k)}{C_a} = \frac{z(k')}{C_c}$$

1664 for $k' \neq k$. Therefore, Eq. 38 reduces to an equality only if
 1665

$$\frac{(C_a + C_b)\mathbf{h}_{k,i}^{\lambda\top} \mathbf{w}_k^\lambda}{C_a} = \frac{\mathbf{h}_{k,i}^{\lambda\top} \mathbf{w}_{k'}^\lambda}{C_c}.$$

1666 Recognizing $C_c = \frac{C_b}{(C_a + C_b)(K^2 - 1)}$ and taking the logarithm of both sides of the above equation, we
 1667 obtain

$$\mathbf{h}_{k,i}^{\lambda\top} \mathbf{w}_k^\lambda = \mathbf{h}_{k,i}^{\lambda\top} \mathbf{w}_{k'}^\lambda + \log\left(\frac{C_a(K^2 - 1)}{C_b}\right),$$

1674 for all $(k, i, k') \in \{(k, i, k') : k \in \mathbb{K}^2, k' \in \mathbb{K}^2, k' \neq k, i \in [n]\}$. Eq. 39 becomes equality if and
 1675 only if

$$\bar{\mathbf{h}}_i^\lambda - \mathbf{h}_{k,i}^\lambda = -C_e \mathbf{w}_k^\lambda, \quad k \in \mathbb{K}^2, i \in [n].$$

1676 By the definition of \mathbf{w}_k^λ and $\mathbf{h}_{k,i}^\lambda$, $\bar{\mathbf{h}}_i^\lambda = \frac{1}{K^2} \sum_{k \in \mathbb{K}^2} \mathbf{h}_{k,i}^\lambda = \frac{1}{K} \sum_{k=1}^K \mathbf{h}_{k,i}$. Defining $\bar{\mathbf{h}}_i :=$
 1677 $\frac{1}{K} \sum_{k=1}^K \mathbf{h}_{k,i}$ and plugging this equality into the above equation, we get

$$\bar{\mathbf{h}}_i - \lambda \mathbf{h}_{a,i} - (1 - \lambda) \mathbf{h}_{b,i} = -C_e (\lambda \mathbf{w}_a + (1 - \lambda) \mathbf{w}_b) \quad (43)$$

1682 For $a \neq b \neq c$, we define

$$\bar{\mathbf{h}}_i - \lambda \mathbf{h}_{a,i} - (1 - \lambda) \mathbf{h}_{c,i} = -C_e (\lambda \mathbf{w}_a + (1 - \lambda) \mathbf{w}_c) \quad (44)$$

$$\bar{\mathbf{h}}_i - \lambda \mathbf{h}_{b,i} - (1 - \lambda) \mathbf{h}_{c,i} = -C_e (\lambda \mathbf{w}_b + (1 - \lambda) \mathbf{w}_c) \quad (45)$$

1686 From the sum of Eq. 44 and Eq. 45, we get

$$\mathbf{h}_{a,i} = \mathbf{h}_{b,i} + C_e (\mathbf{w}_a - \mathbf{w}_b).$$

1689 Plugging this equality to Eq. 43, we get

$$\bar{\mathbf{h}}_i - \mathbf{h}_{b,i} = -C_e \mathbf{w}_b,$$

1690 which is the same result of the balanced case where the number of classes is K . As a result, Eq. 39
 1691 becomes equality if and only if

$$\bar{\mathbf{h}}_i - \mathbf{h}_{k,i} = -C_e \mathbf{w}_k, \quad k \in \mathbb{K}^2, i \in [n]. \quad (46)$$

1695 The remainder of the proof is identical to that in (Fisher et al., 2024). However, for the sake of clarity,
 1696 we present it here in full rather than omitting it.

1698 Applying Lemma 4 shown in the below, we have (\mathbf{W}, \mathbf{H}) , which satisfies Eq. 35.

1699 Reversely, it is easy to verify that Eq. 42 reduces to equality when (\mathbf{W}, \mathbf{H}) admits Eq. 35. So, L_0
 1700 is the global minimum of Eq. 9 and Eq. 35 is the unique form for the minimizers. We complete the
 1701 proof of Theorem 3. \square

1702 **Lemma 4.** Suppose (\mathbf{W}, \mathbf{H}) satisfies

$$\bar{\mathbf{h}}_i - \mathbf{h}_{k,i} = -\sqrt{\frac{E_H}{E_W}} \mathbf{w}_k, \quad k \in [K], i \in [n], \quad (47)$$

1703 and

$$\frac{1}{K} \sum_{k=1}^K \frac{1}{n} \sum_{i=1}^n \|\mathbf{h}_{k,i}\|^2 = E_H, \quad \frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k\|^2 = E_W, \quad \bar{\mathbf{h}}_i = \mathbf{0}_p, \quad i \in [n], \quad (48)$$

1704 where $\bar{\mathbf{h}}_i := \frac{1}{K} \sum_{k=1}^K \mathbf{h}_{k,i}$ with $i \in [n]$. Moreover, there exists a constant C such that for all
 1705 $\{(k, i, k') : k \in [K], k' \in [K], k' \neq k, i \in [n]\}$, we have

$$\mathbf{h}_{k,i} \cdot \mathbf{w}_k = \mathbf{h}_{k,i} \cdot \mathbf{w}_{k'} + C. \quad (49)$$

1714 Then, (\mathbf{W}, \mathbf{H}) satisfies Eq. 35.

1716 *Proof.* Combining Eq. 47 with the last equality in Eq. 48, we have

$$\mathbf{W} = \sqrt{\frac{E_W}{E_H}} [\mathbf{h}_1, \dots, \mathbf{h}_K]^\top, \quad \mathbf{h}_{k,i} = \mathbf{h}_k, \quad k \in [K], i \in [n].$$

1720 Thus, it remains to show

$$\mathbf{W} = \sqrt{E_W} (\mathbf{M}^*)^\top, \quad (50)$$

1722 where \mathbf{M}^* is a K -simplex ETF.

1724 Plugging $\mathbf{h}_k = \mathbf{h}_{k,i} = \sqrt{\frac{E_W}{E_H}} \mathbf{w}_k$ into Eq. 49, we have, for all $(k, k') \in \{(k, k') : k \in [K], k' \in [K], k' \neq k\}$,

$$\sqrt{\frac{E_W}{E_H}} \|\mathbf{w}_k\|^2 = \mathbf{h}_{k,i} \cdot \mathbf{w}_k = \mathbf{h}_{k,i} \cdot \mathbf{w}_{k'} + C = \sqrt{\frac{E_W}{E_H}} \mathbf{w}_k \mathbf{w}_{k'} + C,$$

1728 and

1729
$$\sqrt{\frac{E_W}{E_H}} \|\mathbf{w}_{k'}\|^2 = \mathbf{h}_{k',i} \cdot \mathbf{w}_{k'} = \mathbf{h}_{k',i} \cdot \mathbf{w}_k + C = \sqrt{\frac{E_W}{E_H}} \mathbf{w}_{k'} \mathbf{w}_k + C.$$
 1730

1731 Therefore, from $\frac{1}{K} \sum_{k=1}^K \|\mathbf{w}_k\|^2 = E_W$, we have $\|\mathbf{w}_k\| = \sqrt{E_W}$ and $\mathbf{h}_k \mathbf{w}_{k'} = C' := \sqrt{E_H E_W} - C$. 17321733 Furthermore, recalling that $\bar{\mathbf{h}}_i = \mathbf{0}_p$ for $i \in [n]$, we have $\sum_{k=1}^K \mathbf{h}_k = \mathbf{0}_p$, which further yields 1734 $\sum_{k=1}^K \mathbf{h}_k \cdot \mathbf{w}_{k'} = 0$ for $k' \in [K]$. Then, it follows from $\mathbf{h}_k \mathbf{w}_{k'} = C'$ and $\mathbf{h}_k \mathbf{w}_k = \sqrt{E_H E_W}$ that 1735 $\mathbf{h}_k \mathbf{w}_{k'} = -\sqrt{E_H E_W}/(K-1)$. Thus, we obtain 1736

1737
$$\mathbf{W} \mathbf{W}^\top = \sqrt{\frac{E_W}{E_H}} \mathbf{W} [\mathbf{h}_1, \dots, \mathbf{h}_K] = E_W \left[\frac{K}{K-1} \left(\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right) \right],$$
 1738

1739 which implies Eq. 50. We complete the proof. \square 1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782 C.5 PROOF OF PROPOSITION 2
1783

1784 To prove that only mixed labels (a, b) for the case where $a < b$ ensures Theorem 1 and Proposition 1,
1785 we demonstrate that the following statement is true.

1786 **Proposition 2.** *Let $\mathbb{K}^<$ be the mixed label set where $a < b$ for all $(a, b) \in \mathbb{K}^2$ and $\mathbf{W}_{\mathbb{K}^<}^\lambda$ be the
1787 partial matrix of \mathbf{W}^λ which has class vectors for mixed labels $(a, b) \in \mathbb{K}^<$.*

1788 *Then, \mathbf{W} is a K -simplex ETF if $\mathbf{W}_{\mathbb{K}^<}^\lambda$ is a $|\mathbb{K}^<|$ -simplex ETF.*

1790 For the simplicity, we remove the subscript $\mathbb{K}^<$ of $\mathbf{W}_{\mathbb{K}^<}^\lambda$ and $\mathbf{w}_{\mathbb{K}^<}^\lambda$ in the following proof.
1791

1792 *Proof.* Let $f(x; \alpha, \beta)$ be the probability density function of Beta distribution $D_\lambda(\alpha, \beta)$. For the
1793 mixup ratio λ sampled from $D_\lambda(\alpha, \alpha)$, we have
1794

$$\begin{aligned} \mathbf{w}_{(a,b)}^\lambda &= \mathbb{E}_\lambda (\lambda \mathbf{w}_a + (1 - \lambda) \mathbf{w}_b) \\ &\stackrel{a}{=} \frac{1}{2} \mathbb{E}_\lambda ((\lambda \mathbf{w}_a + (1 - \lambda) \mathbf{w}_b) + ((1 - \lambda) \mathbf{w}_a + \lambda \mathbf{w}_b)) \\ &= \frac{1}{2} (\mathbf{w}_a + \mathbf{w}_b), \end{aligned} \quad (51)$$

1800 where in $\stackrel{a}{=}$, we use $f(\lambda; \alpha, \alpha) = f(1 - \lambda; \alpha, \alpha)$.
1801

1802 From the definition of a simplex ETF, we get
1803

$$\sum_{(a,b) \in \mathbb{K}^<} \mathbf{w}_{(a,b)}^\lambda = 0 \quad (52)$$

1804 Plugging the equality of Eq. 51 into Eq. 52, we have
1805

$$\begin{aligned} \sum_{(a,b) \in \mathbb{K}^<} \mathbf{w}_{(a,b)}^\lambda &= \frac{K-1}{2} \sum_{i=1}^K \mathbf{w}_i = 0 \\ \therefore \mathbf{w}_i &= - \sum_{j \neq i}^K \mathbf{w}_j, \quad \forall i \in [K] \end{aligned} \quad (53)$$

1806 From the definition of $\mathbb{K}^<$, we can get $< i, j, k >$ for all $i \in [K]$, satisfying
1807

$$\mathbf{w}_i = \mathbf{w}_{\{i,j\}}^\lambda - \mathbf{w}_{\{j,k\}}^\lambda + \mathbf{w}_{\{i,k\}}^\lambda, \quad (54)$$

1808 where $\{a, b\} = (a, b)$ if $a < b$ otherwise (b, a) and $i \neq j \neq k$.
1809

1810 Now, we show that $\mathbf{w}_i^\top \mathbf{w}_{i'} = -\frac{1}{K-1}$ is true for all $i \neq i'$
1811

$$\begin{aligned} \mathbf{w}_i^\top \mathbf{w}_{i'} &\stackrel{Eq. 54}{=} \left(\mathbf{w}_{\{i,j\}}^\lambda - \mathbf{w}_{\{j,k\}}^\lambda + \mathbf{w}_{\{i,k\}}^\lambda \right)^\top \left(\mathbf{w}_{\{i',j'\}}^\lambda - \mathbf{w}_{\{j',k'\}}^\lambda + \mathbf{w}_{\{i',k'\}}^\lambda \right) \\ &\stackrel{a}{=} -\frac{1}{K-1} \end{aligned} \quad (55)$$

1812 where in $\stackrel{a}{=}$, we use the property of the simplex ETF, i.e., $\left(\mathbf{w}_{(a,b)}^\lambda \right)^\top \mathbf{w}_{(a',b')}^\lambda = -\frac{1}{K-1}$ for all
1813 $(a, b) \neq (a', b')$. We complete the proof. \square
1814

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836 **D EXPERIMENTAL SETUP**
1837

1838 **Implementation Details.** Our experiments follow the setups of Zhong et al. (2021) and Zhou
1839 et al. (2020) for CIFAR10-LT, ImageNet-LT, Places-LT, and iNaturalist2018 and Yang et al. (2022)
1840 for CIFAR100-LT. We employ ResNet32 for CIFAR10-LT, doubling the feature dimensions for
1841 CIFAR100-LT. For ImageNet-LT and iNaturalist2018, we use ResNet50, and for Places-LT, use
1842 ResNet152, respectively. To reproduce baseline comparisons, we adopt the same hyperparameter
1843 settings as in Zhong et al. (2021) and Zhou et al. (2020).

1844 **Datasets.** Following Zhong et al. (2021); Zhou et al. (2020), we use the long-tailed variants of
1845 CIFAR10, CIFAR100, ImageNet (Russakovsky et al., 2015), Places365 (Zhou et al., 2017), and
1846 iNaturalist2018 (Cui et al., 2018).

1847 *CIFAR10-LT.* 10 imbalanced classes, subsampled at exponentially decreasing rates from CI-
1848 FAR10 (Zhong et al., 2021).

1849 *CIFAR100-LT.* 100 imbalanced classes, constructed analogously to CIFAR10-LT.

1850 *ImageNet-LT.* Derived from ImageNet for large-scale object classification. Class frequencies follow a
1851 Pareto distribution ($\alpha = 5$) with cardinalities from 5 to 1,280, totaling 115.8K images across 1,000
1852 classes.

1853 *Places-LT.* An extended version of Places, with class sizes ranging from 5 to 4,980, yielding 184.5K
1854 images from 365 classes.

1855 *iNaturalist2018.* A large-scale real-world species classification dataset with extreme label imbalance,
1856 comprising 437,513 images from 8,142 categories.

1857 **Architectures.** For CIFAR10-LT, we use ResNet32 (Zhong et al., 2021) with three residual blocks,
1858 producing feature dimensions of 16, 32, and 64, respectively. CIFAR100-LT doubles these dimensions.
1859 Differing from the standard ResNet architecture used for ImageNet, the ResNet32’s first convolutional
1860 layer has a kernel size, stride, and padding of 3, 1, and 1, respectively. ResNet50 and 152 follow He
1861 et al. (2015).

1862 **Hyperparameters.** For CIFAR10/100-LT, models are trained with mini-batch size 128 using SGD
1863 with momentum 0.9 and weight decay 2e-4 for 200 epochs. The learning rate is linearly warmed
1864 up from 0.02 and decayed by 0.1 at epochs 160 and 180. For ImageNet-LT and Places-LT, models
1865 are trained with SGD (momentum 0.9, weight decay 5e-4) and a cosine annealing scheduler. Mixup
1866 alpha is set per dataset: $\alpha = 1.0$ for CIFAR10/100-LT, $\alpha = 0.2$ for others.

1867 **ETF+DR** (Yang et al., 2022). In Yang et al. (2022), it was proven that by fixing the classifier as a
1868 K -simplex ETF, NC is satisfied regardless of class balance, and that using this fixed ETF classifier
1869 along with a specialized loss (Dot-Regression; DR) improves model performance in imbalanced
1870 learning environments. Leveraging the advantages of the fixed ETF classifier, we hypothesized that
1871 our method could produce synergies with this approach, and we conducted experiments applying our
1872 method to this framework. **However, a scale factor is necessary for the fixed ETF classifier, due to**
1873 **class vectors should be normalized.** For this reason, we make a modified version of the fixed ETF
1874 classifier to apply our methods, named as *fixed Mixed-Singleton Weighted ETF classifier (MS-WETF)*.
1875

1876 The scale of class vectors is important for softmax cross-entropy loss. Thus, we remove the scale
1877 factor and add learnable parameter $s \in \mathbb{R}^K$ to control the scale of each class vectors.

$$W_{\text{WETF}} = s \cdot W_{\text{ETF}}$$

1878 Then, we make W_{WETF} as Mixed-Singleton classifier

$$W_{\text{MS-WETF}, (a,b)}^\lambda = [\lambda w_{\text{WETF},a} + (1 - \lambda) w_{\text{WETF},b}]_{(a,b) \in \mathbb{K}^2}$$

1879 **Remix** (Chou et al., 2020). In (Chou et al., 2020), they pointed out that using the same mixing factor
1880 λ for mixed samples in both last-layer features and their respective labels does not make sense under
1881 the imbalanced learning environments. As a result, Remix has been proposed to disentangle λ as

1890 below:

1891

$$\tilde{\mathbf{x}}^{\text{RM}} = \lambda_x \mathbf{x}_i + (1 - \lambda_x) \mathbf{x}_{\pi(i)},$$

1892

$$\tilde{\mathbf{y}}^{\text{RM}} = \lambda_y \mathbf{y}_{c_i} + (1 - \lambda_y) \mathbf{y}_{c_{\pi(i)}}, \forall (i, \pi(i)) \in \mathcal{I}^\lambda,$$

1893

1894 where λ_x is sampled from the beta distribution and λ_y is defined as below:

1895

$$\lambda_y = \begin{cases} 0 & n_i/n_{\pi(i)} \geq \kappa \text{ and } \lambda < \tau; \\ 1 & n_i/n_{\pi(i)} \leq 1/\kappa \text{ and } 1 - \lambda < \tau; \\ \lambda & \text{otherwise} \end{cases}$$

1896

1900 Here n_i and $n_{\pi(i)}$ denote the number of samples in the corresponding class from \mathbf{x}_i and $\mathbf{x}_{\pi(i)}$. κ and
1901 τ are two hyperparameters in Remix, and we used the same values as those employed in the original
1902 Remix implementation: $\kappa = 3$ and $\tau = 0.5$.

1903 Unlike Remix, which controls the mixing factor λ , our method controls only the sample and label
1904 pairs. Owing to this independence from Remix, integrating our method with Remix simply requires
1905 replacing the original index pair set \mathcal{I}^λ with the balanced mixed-label pair set $\tilde{\mathcal{I}}^\lambda$ obtained through
1906 BMLS. Also, when initializing the MS classifier, we used λ_y from the same way to Remix.

1907 **DBN-mix** (Baik et al., 2024). DBN-mix is a method that expands bilateral mixup (which is from
1908 BBN-mix (Zhou et al., 2020)) to double branches while one input sample \mathbf{x}_i comes from random
1909 sampler and the other \mathbf{x}_j comes from class-balanced sampler. Therefore, there are two mixed samples
1910 generated in each mini-batch as below:

1911

$$\tilde{\mathbf{x}}^{\text{cb}} = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_j,$$

1912

$$\tilde{\mathbf{x}}^{\text{rb}} = (1 - \lambda) \mathbf{x}_i + \lambda \mathbf{x}_j,$$

1913

$$\tilde{\mathbf{y}}^{\text{cb}} = \lambda \mathbf{y}_i + (1 - \lambda) \mathbf{y}_j,$$

1914

$$\tilde{\mathbf{y}}^{\text{rb}} = (1 - \lambda) \mathbf{y}_i + \lambda \mathbf{y}_j,$$

1915

1916 where the mixed samples $\tilde{\mathbf{x}}^{\text{cb}}$ and $\tilde{\mathbf{x}}^{\text{rb}}$ are trained by their respective different classifiers.

1917 In this setting, the loss from each branch \mathcal{L} is computed separately as shown below, and the final loss
1918 $\mathcal{L}_{\text{total}}$ is obtained by taking their weighted sum via a hyperparameter γ .

1919

$$\mathcal{L}_{\text{total}} = \gamma \cdot \mathcal{L}(\tilde{\mathbf{p}}^{\text{cb}}, \tilde{\mathbf{y}}^{\text{cb}}) + (1 - \gamma) \cdot \mathcal{L}(\tilde{\mathbf{p}}^{\text{rb}}, \tilde{\mathbf{y}}^{\text{rb}}),$$

1920

1921 where $\tilde{\mathbf{p}}$ is the logit of the mixed sample $\tilde{\mathbf{x}}$ and \mathcal{L} denotes the cross-entropy loss. This loss is then
1922 used to train the classifiers of each branch and the shared backbone in an end-to-end manner.

1923 In DBN-mix, two different samples—each drawn from a different sampler—are mixed together,
1924 which causes the mixed-label balance to break in both branches even if the class-balanced sampler is
1925 replaced with BMLS. To address this, we employ two samplers in parallel and configure each branch
1926 as follows:

1927

$$\tilde{\mathbf{x}}^{\text{cb}} = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_{\pi(i)},$$

1928

$$\tilde{\mathbf{x}}^{\text{rb}} = \lambda \mathbf{x}_j + (1 - \lambda) \mathbf{x}_{\pi(j)},$$

1929

$$\tilde{\mathbf{y}}^{\text{cb}} = \lambda \mathbf{y}_i + (1 - \lambda) \mathbf{y}_{\pi(i)},$$

1930

$$\tilde{\mathbf{y}}^{\text{rb}} = \lambda \mathbf{y}_j + (1 - \lambda) \mathbf{y}_{\pi(j)},$$

1931

1932 for all $(i, \pi(i)) \in \mathcal{I}^\lambda$ and $(j, \pi(j)) \in \tilde{\mathcal{I}}^\lambda$, which denote a random sampler and BMLS, respectively.

1933 In our experiments, we empirically identified appropriate values for the hyperparameter γ . As a result,
1934 we set $\gamma = 0.9$ for CIFAR10-LT and $\gamma = 0.5$ for CIFAR100-LT.

1935
1936
1937
1938
1939
1940
1941
1942
1943

1944 E ADDITIONAL EXPERIMENTAL RESULTS

1945
 1946 According to Liu et al. (2019), we also calculate top-1 test accuracy of three disjoint set: many,
 1947 medium, and few classes. The classes included in each set for the respective datasets are described in
 1948 **Table 5**. In the tables of experimental results about many, medium, and few classes, we report the
 1949 mean and std of top-1 test accuracies as $mean_{std}$.
 1950

1951 Table 5: The classes in Many/Medium/Few class sets.
 1952

	CIFAR10-LT	CIFAR100-LT	Places-LT	ImageNet-LT	iNaturalist2018
Many	[0,2]	[0,35]	[0, 130]	[0, 389]	[0, 841]
Medium	[3,6]	[36,70]	[131, 287]	[390, 835]	[842, 4542]
Few	[7,9]	[71,99]	[288, 364]	[835, 999]	[4543, 8141]

1953
 1954 Table 6: Extension to the fixed ETF classifier on CIFAR10/100-LT datasets with various imbalance
 1955 factors. The results are the mean of five repeated experiments with random seeds. Best in bold (†: the
 1956 reported values are taken from Yang et al. (2022))
 1957

Sampler	Clf.	\mathcal{L}	CIFAR10-LT				CIFAR100-LT			
			imbalance factor				imbalance factor			
			200	100	50	10	200	100	50	10
random	ETF	CE [†]	60.06	67.00	77.20	87.00	N/A	N/A	N/A	N/A
random	ETF	DR [†]	71.90	76.50	81.00	87.70	40.90	45.30	50.40	N/A
random	ETF	DR	71.58	76.82	81.25	87.59	41.20	45.07	50.71	63.08
CBS	ETF	DR	69.35	75.46	81.15	88.38	38.78	42.96	48.84	62.01
CAS	ETF	DR	69.17	76.16	80.81	88.61	38.91	43.18	49.05	62.50
BMLS	ETF	DR	77.77	80.38	84.30	87.91	39.54	43.60	49.54	62.06
		diff.	+6.19	+3.56	+3.05	+0.32	-1.66	-1.47	-1.17	-1.02
BMLS	MS-WETF	CE	77.73	80.31	84.22	88.26	42.73	47.10	52.44	64.10
		diff.	+6.15	+3.49	+2.97	+0.67	+1.53	+2.03	+1.73	+1.02

1998
1999
2000
2001
2002
2003

Table 7: Comparison experiments of samplers on the CIFAR10/100-LT dataset with various imbalance factors. The results are the mean of five repeated experiments with random seeds. Best in bold (CBS: Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler)

Method	CIFAR10-LT				CIFAR100-LT			
	imbalance factor				imbalance factor			
	200	100	50	10	200	100	50	10
<i>mixup</i>								
Mixup (Zhang et al., 2018)	67.30	72.80	78.60	87.70	38.70	43.00	48.10	58.20
Remix (Zhang et al., 2022)	N/A	73.00	N/A	88.50	N/A	41.40	N/A	59.50
Remix+RS (Chou et al., 2020)	N/A	76.23	N/A	87.70	N/A	41.13	N/A	58.62
CMO (Park et al., 2021)	N/A	N/A	N/A	N/A	N/A	43.90	48.30	59.50
SBN-mix (Baik et al., 2024)	69.87	76.33	81.04	89.84	40.30	45.07	50.39	62.37
OTMix (Gao et al., 2023)	N/A	78.30	83.40	90.20	N/A	46.40	50.70	61.60
ETF+CE (Yang et al., 2022)	60.06	67.00	77.20	87.00	N/A	N/A	N/A	N/A
ETF+DR (Yang et al., 2022)	71.90	76.50	81.00	87.70	40.90	45.30	50.40	N/A
<i>2-stage or extra network</i>								
BBN-mix (Zhou et al., 2020)	N/A	79.82	82.18	88.32	N/A	42.56	47.02	59.12
DBN-mix (Baik et al., 2024)	79.58	83.47	86.82	90.87	46.21	51.04	54.93	64.98
UniMix (Xu et al., 2021)	78.48	82.75	84.32	89.66	42.07	45.45	51.11	61.25
MiSLAS (Zhong et al., 2021)	N/A	82.10	85.70	90.00	N/A	47.00	52.30	63.20
CP-Mix (Yoon et al., 2025)	78.34	82.44	85.08	89.87	43.56	48.20	52.12	61.91
<i>class-balance loss</i>								
CB+RS (Cao et al., 2019)	N/A	70.55	N/A	86.79	N/A	33.44	N/A	55.06
CB+RW (Cui et al., 2019)	N/A	72.37	N/A	86.54	N/A	33.99	N/A	57.12
CB+Focal (Cui et al., 2019)	N/A	74.57	N/A	87.10	N/A	36.02	N/A	57.99
LDAM (Cao et al., 2019)	N/A	73.35	N/A	86.96	N/A	39.60	N/A	56.91
LDAM+DRW (Cao et al., 2019)	N/A	77.03	N/A	88.16	N/A	42.04	N/A	58.71
<i>class-balance sampling</i>								
CAS (Shen & Lin, 2016)	N/A	68.40	N/A	86.90	N/A	31.90	N/A	55.00
LOM (Zhang et al., 2022)	N/A	74.20	N/A	89.40	N/A	41.50	N/A	59.90
CAS+DRW (Shen & Lin, 2016)	N/A	73.50	N/A	87.70	N/A	41.50	N/A	57.60
LOM+DRW (Zhang et al., 2022)	N/A	78.70	N/A	89.60	N/A	46.20	N/A	61.10
<i>reproduced results and our method</i>								
Mixup	66.77	72.94	78.64	88.05	39.06	42.88	48.31	63.03
+LOM	70.17	76.63	81.15	89.24	39.61	44.24	49.99	63.90
+CAS	69.90	76.43	81.42	89.24	40.28	44.65	50.07	63.57
+BMLS _{MS}	74.70	79.67	83.46	88.51	41.71	47.62	52.74	64.47
diff.	+7.93	+6.73	+4.82	+0.46	+2.65	+4.74	+4.43	+1.44
ETF+DR	71.58	76.82	81.25	87.59	41.20	45.07	50.71	63.08
BMLS+WETF _{MS} +CE	77.73	80.31	84.22	88.26	42.73	47.10	52.44	64.10
diff.	+6.15	+3.49	+2.97	+0.67	+1.53	+2.03	+1.73	+1.02
Remix	69.58	75.15	80.41	88.61	41.03	44.95	50.19	63.45
+BMLS	73.95	80.10	83.92	88.62	39.95	46.34	51.53	64.42
+BMLS _{MS}	73.18	78.00	83.70	88.20	40.25	46.82	49.78	63.54
diff.	+3.60	+2.85	+3.29	-0.41	-0.78	+1.87	-0.41	+0.09
DBN-mix	77.40	82.40	86.05	91.01	40.71	45.52	50.47	62.68
+BMLS _{MS}	79.73	84.30	87.28	90.93	44.42	49.08	55.41	65.42
diff.	+2.33	+1.90	+1.23	-0.08	+3.71	+3.56	+4.94	+2.74

2050
2051

Table 8: Experimental results on Many/Medium/Few classes in the CIFAR10/100-LT datasets.

	Method	Clf.	CIFAR10-LT				CIFAR100-LT			
			many	med	few	all	many	med	few	all
imb 200	random	FC	91.17 _{3.65}	69.99 _{2.25}	38.09 _{6.32}	66.77 _{0.76}	71.16 _{0.52}	35.22 _{0.20}	3.85 _{0.47}	39.06 _{0.23}
	CBS	FC	82.63 _{2.72}	69.29 _{3.79}	58.89 _{3.94}	70.17 _{0.51}	65.92 _{0.51}	39.44 _{0.96}	7.15 _{0.50}	39.61 _{0.50}
	CAS	FC	85.65 _{3.74}	67.67 _{3.86}	57.14 _{4.43}	69.90 _{0.77}	66.32 _{0.55}	40.54 _{0.59}	7.62 _{0.28}	40.28 _{0.29}
	BMLS	FC	90.49 _{0.26}	74.12 _{1.21}	54.43 _{2.25}	73.13 _{0.67}	65.29 _{0.45}	41.33 _{0.76}	7.09 _{0.37}	40.03 _{0.38}
	BMLS	MS	88.94 _{0.32}	72.97 _{0.83}	62.77 _{1.30}	74.70 _{0.45}	63.24 _{0.57}	44.86 _{0.42}	11.19 _{0.76}	41.71 _{0.36}
imb 100	random	FC	93.39 _{2.42}	74.05 _{2.03}	50.99 _{5.40}	72.94 _{0.68}	72.09 _{0.21}	41.10 _{0.40}	8.77 _{0.42}	42.88 _{0.15}
	CBS	FC	90.89 _{2.45}	74.31 _{2.99}	65.46 _{5.76}	76.63 _{0.41}	67.07 _{0.74}	46.29 _{0.72}	13.43 _{0.37}	44.24 _{0.14}
	CAS	FC	90.54 _{2.86}	75.54 _{1.95}	63.51 _{6.26}	76.43 _{0.60}	68.28 _{0.35}	46.47 _{0.34}	13.12 _{0.25}	44.65 _{0.26}
	BMLS	FC	88.53 _{1.01}	77.84 _{0.25}	70.53 _{1.27}	78.85 _{0.34}	68.38 _{0.27}	46.89 _{0.33}	14.37 _{0.88}	45.20 _{0.33}
	BMLS	MS	89.14 _{0.63}	76.34 _{0.62}	74.63 _{0.69}	79.67 _{0.21}	66.31 _{0.26}	49.80 _{0.57}	21.80 _{0.40}	47.62 _{0.25}
imb 50	random	FC	95.25 _{0.23}	78.52 _{0.54}	62.19 _{1.04}	78.64 _{0.57}	73.72 _{0.18}	48.62 _{0.23}	16.40 _{0.93}	48.31 _{0.28}
	CBS	FC	91.57 _{3.17}	79.62 _{1.58}	72.78 _{4.05}	81.15 _{0.48}	68.80 _{0.46}	52.97 _{0.28}	23.06 _{0.56}	49.99 _{0.13}
	CAS	FC	92.78 _{0.43}	79.28 _{0.46}	72.89 _{0.96}	81.42 _{0.27}	69.16 _{0.61}	52.71 _{0.34}	23.18 _{0.41}	50.07 _{0.27}
	BMLS	FC	91.86 _{0.40}	81.32 _{0.36}	76.63 _{1.05}	83.07 _{0.43}	69.77 _{0.55}	54.55 _{0.28}	26.83 _{0.67}	51.99 _{0.26}
	BMLS	MS	89.45 _{0.15}	79.29 _{0.54}	83.03 _{0.50}	83.46 _{0.36}	67.06 _{0.51}	55.30 _{0.84}	31.88 _{1.39}	52.74 _{0.55}
imb 10	random	FC	94.79 _{0.55}	85.38 _{0.27}	84.86 _{1.23}	88.05 _{0.27}	76.06 _{0.32}	64.10 _{0.63}	45.56 _{0.57}	63.03 _{0.17}
	CBS	FC	93.95 _{0.78}	86.04 _{0.57}	88.81 _{0.28}	89.24 _{0.37}	72.42 _{0.64}	65.76 _{0.45}	51.08 _{0.69}	63.90 _{0.37}
	CAS	FC	94.14 _{0.23}	86.34 _{0.24}	88.21 _{0.43}	89.24 _{0.18}	72.59 _{0.49}	65.20 _{0.47}	50.40 _{0.66}	63.57 _{0.26}
	BMLS	FC	91.17 _{0.40}	87.04 _{0.26}	90.98 _{0.59}	89.46 _{0.19}	71.05 _{0.70}	68.93 _{0.66}	55.24 _{0.47}	65.72 _{0.29}
	BMLS	MS	91.63 _{0.60}	84.92 _{0.63}	90.18 _{0.56}	88.51 _{0.19}	71.61 _{0.21}	65.67 _{1.20}	54.17 _{1.49}	64.47 _{0.24}

Table 9: Experimental results on Many/Medium/Few classes in the Places-LT datasets.

Method	Clf.	Places-LT				Places-LT (FT)			
		many	med	few	all	many	med	few	all
random	FC	42.02 _{0.76}	15.79 _{0.54}	0.86 _{0.12}	22.06 _{0.50}	43.79 _{0.29}	20.45 _{0.27}	6.59 _{0.26}	25.90 _{0.06}
	CBS	38.65 _{1.97}	22.60 _{1.20}	5.69 _{0.52}	24.79 _{0.13}	41.31 _{0.09}	39.98 _{0.17}	25.11 _{0.11}	37.32 _{0.07}
	CAS	40.68 _{0.33}	20.08 _{0.53}	4.86 _{0.50}	24.26 _{0.22}	41.35 _{0.08}	40.06 _{0.06}	25.46 _{0.17}	37.44 _{0.04}
	BMLS	38.43 _{0.21}	27.80 _{0.12}	7.47 _{0.26}	27.33 _{0.17}	34.65 _{0.04}	43.79 _{0.05}	29.00 _{0.08}	37.39 _{0.01}
	MS	39.39 _{0.32}	27.01 _{0.40}	10.39 _{0.12}	27.95 _{0.26}	41.33 _{0.09}	40.14 _{0.00}	27.05 _{0.15}	37.81 _{0.01}

Table 10: Experimental results on Many/Medium/Few classes in the ImageNet-LT and iNaturalist2018 datasets.

Method	Clf.	ImageNet-LT				iNaturalist2018			
		many	med	few	all	many	med	few	all
random	FC	67.76 _{0.43}	38.72 _{0.50}	9.33 _{0.28}	45.19 _{0.43}	77.55 _{0.39}	66.66 _{0.38}	59.49 _{0.38}	64.62 _{0.31}
	CBS	62.46 _{0.91}	44.55 _{1.10}	20.00 _{0.92}	47.49 _{0.99}	63.25 _{0.22}	68.36 _{0.15}	66.63 _{0.18}	67.06 _{0.04}
	CAS	63.04 _{0.31}	43.83 _{0.34}	19.53 _{0.40}	47.31 _{0.33}	63.99 _{0.63}	68.80 _{0.02}	67.10 _{0.08}	67.55 _{0.09}
	BMLS	62.35 _{0.69}	46.53 _{0.43}	23.08 _{0.54}	48.83 _{0.55}	64.44 _{2.52}	68.33 _{0.37}	66.19 _{0.87}	66.98 _{0.19}
	MS	59.03 _{0.89}	45.87 _{1.01}	24.86 _{0.92}	47.54 _{0.94}	51.73 _{0.83}	57.15 _{0.14}	57.18 _{0.28}	56.60 _{0.18}

Table 11: Experimental results of the ablation study on Many/Medium/Few classes in the CIFAR10/100-LT datasets. The results are the mean of five repeated experiments with random seeds.

	Method	Clf.	CIFAR10-LT				CIFAR100-LT			
			many	med	few	all	many	med	few	all
imb 200	random	FC	91.17 _{3.65}	69.99 _{2.25}	38.09 _{6.32}	66.77 _{0.76}	71.16 _{0.52}	35.22 _{0.20}	3.85 _{0.47}	39.06 _{0.23}
	random	MS	88.59 _{0.19}	53.77 _{1.07}	16.74 _{1.04}	53.11 _{0.58}	64.59 _{0.75}	28.43 _{0.49}	0.75 _{0.15}	33.42 _{0.37}
	BMLS	FC	90.49 _{0.26}	74.12 _{1.21}	54.43 _{2.25}	73.13 _{0.67}	65.29 _{0.45}	41.33 _{0.76}	7.09 _{0.37}	40.03 _{0.38}
	BMLS	MS	88.94 _{0.32}	72.97 _{0.83}	62.77 _{1.30}	74.70 _{0.45}	63.24 _{0.57}	44.86 _{0.42}	11.19 _{0.76}	41.71 _{0.36}
	random	FC	93.39 _{2.42}	74.05 _{2.03}	50.99 _{5.40}	72.94 _{0.68}	72.09 _{0.21}	41.10 _{0.40}	8.77 _{0.42}	42.88 _{0.15}
imb 100	random	MS	89.47 _{0.46}	62.24 _{2.21}	41.15 _{3.22}	64.08 _{1.59}	67.29 _{0.31}	33.84 _{0.61}	2.78 _{0.32}	36.87 _{0.24}
	BMLS	FC	88.53 _{1.01}	77.84 _{0.25}	70.53 _{1.27}	78.85 _{0.34}	68.38 _{0.27}	46.89 _{0.33}	14.37 _{0.88}	45.20 _{0.33}
	BMLS	MS	89.14 _{0.63}	76.34 _{0.62}	74.63 _{0.69}	79.67 _{0.21}	66.31 _{0.26}	49.80 _{0.57}	21.80 _{0.40}	47.62 _{0.25}
	random	FC	95.25 _{0.23}	78.52 _{0.54}	62.19 _{1.04}	78.64 _{0.57}	73.72 _{0.18}	48.62 _{0.23}	16.40 _{0.93}	48.31 _{0.28}
	random	MS	90.04 _{0.63}	64.80 _{1.76}	52.11 _{1.06}	68.56 _{0.50}	68.28 _{0.69}	42.17 _{0.89}	8.00 _{0.52}	41.66 _{0.42}
imb 50	BMLS	FC	91.86 _{0.40}	81.32 _{0.36}	76.63 _{1.05}	83.07 _{0.43}	69.77 _{0.55}	54.55 _{0.28}	26.83 _{0.67}	51.99 _{0.26}
	BMLS	MS	89.45 _{0.15}	79.29 _{0.54}	83.03 _{0.50}	83.46 _{0.36}	67.06 _{0.51}	55.30 _{0.84}	31.88 _{1.39}	52.74 _{0.55}
	random	FC	94.79 _{0.55}	85.38 _{0.27}	84.86 _{1.23}	88.05 _{0.27}	76.06 _{0.32}	64.10 _{0.63}	45.56 _{0.57}	63.03 _{0.17}
	random	MS	91.54 _{0.43}	76.31 _{1.02}	75.25 _{1.44}	80.56 _{0.76}	71.91 _{0.35}	57.38 _{0.90}	37.03 _{0.72}	56.71 _{0.48}
	BMLS	FC	91.17 _{0.40}	87.04 _{0.26}	90.98 _{0.59}	89.46 _{0.19}	71.05 _{0.70}	68.93 _{0.66}	55.24 _{0.47}	65.72 _{0.29}
	BMLS	MS	91.63 _{0.60}	84.92 _{0.63}	90.18 _{0.56}	88.51 _{0.19}	71.61 _{0.21}	65.67 _{1.20}	54.17 _{1.49}	64.47 _{0.24}

Table 12: Experimental results of extension to the fixed ETF Classifier on Many/Medium/Few classes in the CIFAR10-LT dataset. The results are the mean of five repeated experiments with random seeds.

	Method	Clf.	\mathcal{L}	CIFAR10-LT			
				many	med	few	all
imb 200	random	ETF	DR	84.13 _{0.64}	73.89 _{0.92}	55.94 _{1.24}	71.58 _{0.39}
	CBS	ETF	DR	81.05 _{3.12}	69.26 _{2.29}	57.77 _{4.75}	69.35 _{0.38}
	CAS	ETF	DR	87.67 _{6.09}	72.17 _{0.94}	46.67 _{6.61}	69.17 _{0.67}
	BMLS	ETF	DR	84.52 _{0.47}	74.15 _{0.36}	75.85 _{0.66}	77.77 _{0.13}
	BMLS	MS-WETF	CE	85.41 _{0.71}	74.96 _{0.45}	73.74 _{0.72}	77.73 _{0.32}
imb 100	random	ETF	DR	83.75 _{0.92}	75.42 _{0.30}	71.75 _{0.95}	76.82 _{0.20}
	CBS	ETF	DR	88.89 _{3.19}	74.46 _{2.41}	63.37 _{6.15}	75.46 _{0.37}
	CAS	ETF	DR	91.03 _{0.54}	75.97 _{0.44}	61.55 _{2.15}	76.16 _{0.56}
	BMLS	ETF	DR	88.85 _{0.16}	77.51 _{0.39}	75.74 _{0.42}	80.38 _{0.23}
	BMLS	MS-WETF	CE	86.71 _{0.88}	76.28 _{0.69}	79.27 _{1.39}	80.31 _{0.43}
imb 50	random	ETF	DR	85.45 _{0.50}	78.60 _{0.28}	80.59 _{0.42}	81.25 _{0.18}
	CBS	ETF	DR	91.41 _{1.07}	79.15 _{1.05}	73.57 _{1.93}	81.15 _{0.37}
	CAS	ETF	DR	91.02 _{1.68}	79.26 _{1.09}	72.68 _{2.07}	80.81 _{0.22}
	BMLS	ETF	DR	88.17 _{0.24}	80.21 _{0.19}	85.87 _{0.20}	84.30 _{0.07}
	BMLS	MS-WETF	CE	87.01 _{0.89}	80.36 _{0.67}	86.59 _{0.29}	84.22 _{0.43}
imb 10	random	ETF	DR	89.67 _{0.52}	83.81 _{0.28}	90.54 _{0.39}	87.59 _{0.18}
	CBS	ETF	DR	92.79 _{0.23}	85.14 _{0.38}	88.28 _{0.41}	88.38 _{0.25}
	CAS	ETF	DR	92.87 _{0.28}	85.33 _{0.60}	88.72 _{0.22}	88.61 _{0.21}
	BMLS	ETF	DR	88.76 _{0.93}	85.08 _{1.00}	90.83 _{0.79}	87.91 _{0.24}
	BMLS	MS-WETF	CE	91.27 _{0.32}	85.89 _{0.20}	88.40 _{0.42}	88.26 _{0.04}

Table 13: Experimental results of extension to the fixed ETF Classifier on Many/Medium/Few classes in the CIFAR100-LT dataset. The results are the mean of five repeated experiments with random seeds.

	Method	Clf.	\mathcal{L}	CIFAR100-LT			
				many	med	few	all
imb 200	random	ETF	DR	68.23 _{0.59}	42.05 _{0.52}	6.63 _{0.29}	41.20 _{0.18}
	CBS	ETF	DR	63.90 _{1.17}	38.98 _{0.81}	7.36 _{0.77}	38.78 _{0.25}
	CAS	ETF	DR	64.10 _{0.66}	38.86 _{0.68}	7.68 _{0.31}	38.91 _{0.43}
	BMLS	ETF	DR	63.81 _{0.48}	39.09 _{0.69}	9.94 _{0.54}	39.54 _{0.45}
	BMLS	MS-WETF	CE	65.58 _{0.70}	45.26 _{0.54}	11.32 _{0.52}	42.73 _{0.41}
imb 100	random	ETF	DR	69.85 _{0.40}	47.22 _{0.35}	11.72 _{0.81}	45.07 _{0.25}
	CBS	ETF	DR	65.43 _{0.88}	44.78 _{0.94}	12.88 _{0.91}	42.96 _{0.25}
	CAS	ETF	DR	66.04 _{0.40}	44.73 _{0.34}	12.93 _{0.35}	43.18 _{0.18}
	BMLS	ETF	DR	65.59 _{0.18}	44.49 _{0.45}	15.21 _{0.49}	43.60 _{0.22}
	BMLS	MS-WETF	CE	63.44 _{0.32}	51.15 _{0.87}	21.92 _{0.72}	47.10 _{0.47}
imb 50	random	ETF	DR	70.56 _{0.39}	53.52 _{0.65}	22.69 _{0.70}	50.71 _{0.24}
	CBS	ETF	DR	67.73 _{0.54}	51.15 _{0.13}	22.59 _{0.50}	48.84 _{0.16}
	CAS	ETF	DR	67.87 _{0.55}	51.58 _{0.62}	22.63 _{0.78}	49.05 _{0.36}
	BMLS	ETF	DR	66.21 _{0.58}	51.02 _{0.49}	27.06 _{0.59}	49.54 _{0.39}
	BMLS	MS-WETF	CE	67.02 _{0.90}	54.66 _{0.62}	31.66 _{0.41}	52.44 _{0.40}
imb 10	random	ETF	DR	72.76 _{0.29}	64.48 _{0.50}	49.39 _{0.36}	63.08 _{0.21}
	CBS	ETF	DR	70.89 _{0.43}	63.73 _{0.42}	48.90 _{0.49}	62.01 _{0.19}
	CAS	ETF	DR	71.13 _{0.45}	63.89 _{0.34}	50.12 _{0.45}	62.50 _{0.27}
	BMLS	ETF	DR	68.95 _{1.20}	64.83 _{0.71}	50.18 _{1.26}	62.06 _{0.22}
	BMLS	MS-WETF	CE	68.81 _{0.40}	64.95 _{0.46}	57.24 _{0.28}	64.10 _{0.25}

2160 F ADDITIONAL EXPERIMENTAL RESULTS FOR REBUTTAL

2162 This page provided additional experimental results for rebuttal. These contents will be included in the
 2163 main paper or appendix depending on the review.

2165 F.1 COMPARISON EXPERIMENTS FOR REMIX

2167 **Table 14: Comparison experiments of Remix on CIFAR10/100-LT datasets with various imbalance**
 2168 **factors. The results are the mean of five repeated experiments with random seeds. Best in bold (CBS:**
 2169 **Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler, \dagger : the**
 2170 **reported values are taken from Chou et al. (2020), which used different experimental settings. $*$: the**
 2171 **reproduced result of Remix on our experimental settings.)**

Method	CIFAR10-LT				CIFAR100-LT			
	imbalance factor				imbalance factor			
	200	100	50	10	200	100	50	10
Remix \dagger	N/A	75.36	N/A	88.15	N/A	41.94	N/A	59.36
Remix \dagger _{RS}	N/A	76.23	N/A	87.70	N/A	41.13	N/A	58.62
Remix $*$	69.58	75.15	80.41	88.61	41.03	44.95	50.19	63.45
+CBS	71.39	76.72	82.03	89.39	39.95	43.72	49.46	63.49
+CAS	71.36	77.28	82.00	89.37	40.21	44.91	49.83	63.26
+BMLS	73.95	80.10	83.92	88.62	39.95	46.34	51.53	64.42
+BMLS _{MS}	73.18	78.00	83.70	88.20	40.25	46.82	49.78	63.54

2184 **Table 15: Experimental results of Remix on Many/Medium/Few classes in the CIFAR10/100-LT**
 2185 **datasets. The results are the mean of five repeated experiments with random seeds. (\dagger : the reported**
 2186 **values are taken from Chou et al. (2020), which used different experimental settings. $*$: the reproduced**
 2187 **result of Remix on our experimental settings.)**

Method	CIFAR10-LT				CIFAR100-LT			
	many	med	few	all	many	med	few	all
imb 200	Remix \dagger	N/A						
	Remix \dagger _{RS}	N/A						
	Remix $*$	92.31 _{3.87}	71.40 _{1.23}	44.43 _{7.91}	69.58 _{0.99}	70.43 _{0.23}	39.83 _{1.02}	5.99 _{0.42}
	+CBS	90.15 _{1.32}	72.19 _{1.88}	51.56 _{5.63}	71.39 _{0.87}	63.48 _{1.25}	41.62 _{0.83}	8.70 _{1.00}
	+CAS	88.35 _{4.44}	71.63 _{1.52}	54.02 _{8.11}	71.36 _{0.91}	64.44 _{0.36}	41.06 _{0.71}	9.11 _{0.24}
	+BMLS	80.43 _{7.52}	73.66 _{1.38}	67.86 _{7.14}	73.95 _{0.48}	61.38 _{3.17}	42.97 _{0.88}	9.70 _{4.35}
imb 100	+BMLS _{MS}	89.47 _{0.44}	72.17 _{0.54}	58.23 _{1.19}	73.18 _{0.22}	64.88 _{0.30}	40.37 _{0.77}	9.55 _{0.46}
	Remix \dagger	N/A	N/A	N/A	75.36	N/A	N/A	N/A
	Remix \dagger _{RS}	N/A	N/A	N/A	76.23	N/A	N/A	N/A
	Remix $*$	93.70 _{0.60}	76.23 _{0.67}	55.17 _{1.41}	75.15 _{0.23}	71.16 _{0.41}	45.58 _{0.85}	11.67 _{0.80}
	+CBS	91.31 _{0.63}	76.54 _{1.27}	62.37 _{1.84}	76.72 _{0.62}	64.42 _{0.30}	46.74 _{0.62}	14.38 _{0.32}
	+CAS	90.76 _{0.81}	76.72 _{0.85}	64.55 _{1.22}	77.28 _{0.43}	66.21 _{0.43}	47.48 _{0.34}	15.36 _{0.80}
imb 50	+BMLS	89.23 _{2.64}	77.78 _{1.46}	74.05 _{1.18}	80.10 _{0.36}	64.88 _{0.47}	48.86 _{0.46}	20.28 _{0.46}
	+BMLS _{MS}	91.25 _{0.64}	74.78 _{0.75}	69.05 _{1.84}	78.00 _{0.36}	67.21 _{0.47}	48.92 _{0.20}	18.97 _{0.77}
	Remix \dagger	N/A						
	Remix \dagger _{RS}	N/A						
	Remix $*$	94.25 _{0.49}	79.20 _{0.31}	68.16 _{1.33}	80.41 _{0.25}	72.03 _{0.51}	51.73 _{0.15}	21.22 _{0.84}
	+CBS	91.47 _{0.71}	79.68 _{0.52}	75.73 _{1.57}	82.03 _{0.34}	67.05 _{0.30}	52.47 _{0.59}	23.98 _{0.31}
imb 10	+CAS	92.08 _{0.32}	79.89 _{0.64}	74.72 _{1.14}	82.00 _{0.48}	67.88 _{0.63}	52.42 _{0.24}	24.28 _{0.33}
	+BMLS	90.63 _{0.44}	81.30 _{0.33}	80.70 _{1.15}	83.92 _{0.38}	64.89 _{0.40}	53.63 _{0.57}	32.41 _{0.53}
	+BMLS _{MS}	89.71 _{0.49}	80.09 _{0.57}	82.49 _{0.87}	83.70 _{0.16}	67.16 _{1.86}	51.46 _{0.82}	26.17 _{1.78}
	Remix \dagger	N/A	N/A	N/A	88.15	N/A	N/A	N/A
	Remix \dagger _{RS}	N/A	N/A	N/A	87.70	N/A	N/A	N/A
	Remix $*$	94.85 _{0.65}	85.44 _{0.43}	86.59 _{0.42}	88.61 _{0.18}	75.03 _{0.58}	63.77 _{0.40}	48.70 _{0.85}
imb 10	+CBS	93.75 _{0.19}	85.79 _{0.55}	89.83 _{0.43}	89.39 _{0.17}	70.47 _{0.50}	65.90 _{0.38}	51.91 _{0.57}
	+CAS	93.64 _{0.72}	86.18 _{0.61}	89.36 _{0.84}	89.37 _{0.24}	70.72 _{0.43}	65.45 _{0.41}	51.37 _{0.63}
	+BMLS	89.75 _{0.43}	85.66 _{0.17}	91.45 _{0.22}	88.62 _{0.11}	69.28 _{1.67}	68.32 _{1.15}	53.68 _{1.36}
	+BMLS _{MS}	92.26 _{0.17}	84.59 _{0.34}	88.95 _{0.21}	88.20 _{0.15}	70.59 _{0.42}	65.11 _{0.32}	52.88 _{0.61}

2214 **F.2 ABLATION STUDY INCLUDING K2 CLASSIFIER**
2215

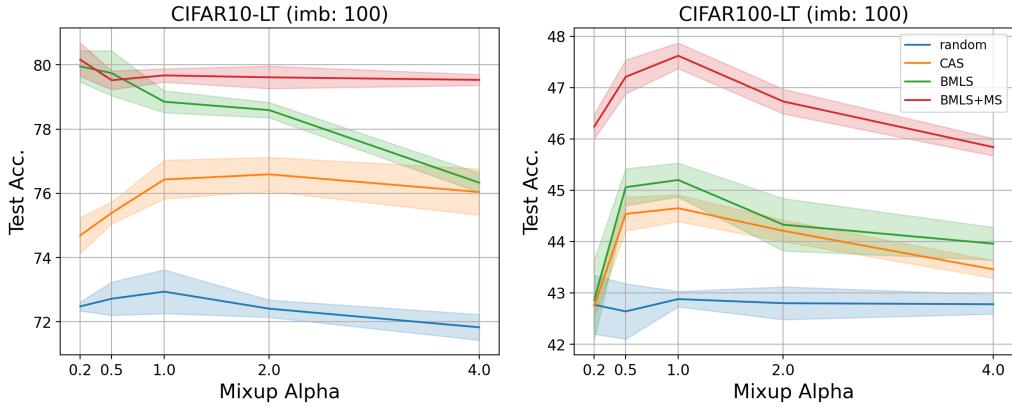
2216 Table 16: Ablation study on CIFAR10/100-LT datasets with various imbalance factors including K^2
2217 classifier (notated as K^2 on the table). The results are the mean of five repeated experiments with
2218 random seeds. Best in bold (CBS: Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS:
2219 Balanced Mixed Label Sampler)
2220

Sampler	Clf.	CIFAR10-LT				CIFAR100-LT			
		imbalance factor				imbalance factor			
		200	100	50	10	200	100	50	10
<i>Sampler</i>									
random	FC	66.77	72.94	78.64	88.05	39.06	42.88	48.31	63.03
BMLS	FC	73.13	78.85	83.07	89.46	40.03	45.20	51.99	65.72
<i>Classifier</i>									
random	MS	53.11	64.08	68.56	80.56	33.42	36.87	41.66	56.71
BMLS	K^2	34.86	39.01	42.20	51.60	7.90	8.72	9.22	16.41
BMLS	MS	74.70	79.67	83.46	88.51	41.71	47.62	52.74	64.47

2231
2232 Table 17: Experimental results of the ablation study including K^2 classifier (notated as K^2 on the
2233 table) on Many/Medium/Few classes in the CIFAR10/100-LT datasets. The results are the mean of
2234 five repeated experiments with random seeds.
2235

	Method	Clf.	CIFAR10-LT				CIFAR100-LT			
			many	med	few	all	many	med	few	all
<i>Sampler</i>										
imb 200	random	FC	91.17 _{3.65}	69.99 _{2.25}	38.09 _{6.32}	66.77 _{0.76}	71.16 _{0.52}	35.22 _{0.20}	3.85 _{0.47}	39.06 _{0.23}
	BMLS	FC	90.49 _{0.26}	74.12 _{1.21}	54.43 _{2.25}	73.13 _{0.67}	65.29 _{0.45}	41.33 _{0.76}	7.09 _{0.37}	40.03 _{0.38}
<i>Classifier</i>										
imb 200	random	MS	88.59 _{0.19}	53.77 _{1.07}	16.74 _{1.04}	53.11 _{0.58}	64.59 _{0.75}	28.43 _{0.49}	0.75 _{0.15}	33.42 _{0.37}
	BMLS	K^2	67.94 _{11.93}	29.79 _{6.92}	8.55 _{5.98}	34.86 _{0.92}	14.69 _{0.75}	6.91 _{0.63}	0.67 _{0.17}	7.90 _{0.13}
	BMLS	MS	88.94 _{0.32}	72.97 _{0.83}	62.77 _{1.30}	74.70 _{0.45}	63.24 _{0.57}	44.86 _{0.42}	11.19 _{0.76}	41.71 _{0.36}
<i>Sampler</i>										
imb 100	random	FC	93.39 _{2.42}	74.05 _{2.03}	50.99 _{5.40}	72.94 _{0.68}	72.09 _{0.21}	41.10 _{0.40}	8.77 _{0.42}	42.88 _{0.15}
	BMLS	FC	88.53 _{1.01}	77.84 _{0.25}	70.53 _{1.27}	78.85 _{0.34}	68.38 _{0.27}	46.89 _{0.33}	14.37 _{0.88}	45.20 _{0.33}
<i>Classifier</i>										
imb 100	random	MS	89.47 _{0.46}	62.24 _{2.21}	41.15 _{3.22}	64.08 _{1.59}	67.29 _{0.31}	33.84 _{0.61}	2.78 _{0.32}	36.87 _{0.24}
	BMLS	K^2	58.35 _{3.36}	34.31 _{5.73}	25.93 _{5.20}	39.01 _{0.90}	14.15 _{0.60}	9.36 _{0.75}	1.21 _{0.12}	8.72 _{0.43}
	BMLS	MS	89.14 _{0.63}	76.34 _{0.62}	74.63 _{0.69}	79.67 _{0.21}	66.31 _{0.26}	49.80 _{0.57}	21.80 _{0.40}	47.62 _{0.25}
<i>Sampler</i>										
imb 50	random	FC	95.25 _{0.23}	78.52 _{0.54}	62.19 _{1.04}	78.64 _{0.57}	73.72 _{0.18}	48.62 _{0.23}	16.40 _{0.93}	48.31 _{0.28}
	BMLS	FC	91.86 _{0.40}	81.32 _{0.36}	76.63 _{1.05}	83.07 _{0.43}	69.77 _{0.55}	54.55 _{0.28}	26.83 _{0.67}	51.99 _{0.26}
<i>Classifier</i>										
imb 50	random	MS	90.04 _{0.63}	64.80 _{1.76}	52.11 _{1.06}	68.56 _{0.50}	68.28 _{0.69}	42.17 _{0.89}	8.00 _{0.52}	41.66 _{0.42}
	BMLS	K^2	59.75 _{7.70}	37.92 _{0.59}	30.37 _{7.19}	42.20 _{0.89}	13.25 _{1.08}	10.40 _{0.49}	2.81 _{0.96}	9.22 _{0.39}
	BMLS	MS	89.45 _{0.15}	79.29 _{0.54}	83.03 _{0.50}	83.46 _{0.36}	67.06 _{0.51}	55.30 _{0.84}	31.88 _{1.39}	52.74 _{0.55}
<i>Sampler</i>										
imb 10	random	FC	94.79 _{0.55}	85.38 _{0.27}	84.86 _{1.23}	88.05 _{0.27}	76.06 _{0.32}	64.10 _{0.63}	45.56 _{0.57}	63.03 _{0.17}
	BMLS	FC	91.17 _{0.40}	87.04 _{0.26}	90.98 _{0.59}	89.46 _{0.19}	71.05 _{0.70}	68.93 _{0.66}	55.24 _{0.47}	65.72 _{0.29}
<i>Classifier</i>										
imb 10	random	MS	91.54 _{0.43}	76.31 _{1.02}	75.25 _{1.44}	80.56 _{0.76}	71.91 _{0.35}	57.38 _{0.90}	37.03 _{0.72}	56.71 _{0.48}
	BMLS	K^2	57.78 _{1.43}	46.29 _{2.03}	52.52 _{1.76}	51.60 _{0.99}	17.09 _{1.33}	17.71 _{1.71}	13.97 _{0.83}	16.41 _{0.51}
	BMLS	MS	91.63 _{0.60}	84.92 _{0.63}	90.18 _{0.56}	88.51 _{0.19}	71.61 _{0.21}	65.67 _{1.20}	54.17 _{1.49}	64.47 _{0.24}

2261
2262
2263
2264
2265
2266
2267

2268 F.3 AN EMPIRICAL STUDY ON MIXUP ALPHA
22692284 Figure 5: The change of test accuracy of each sampler on CIFAR10/100-LT (imb: 100)
22852286 Table 18: Ablation study on CIFAR10/100-LT datasets (imbalance factor: 100) with various mixup
2287 alpha values. The results are the mean of five repeated experiments with random seeds. Best in bold
2288 (CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler)
2289

Method	CIFAR10-LT					CIFAR100-LT				
	mixup alpha					mixup alpha				
	0.2	0.5	1.0	2.0	4.0	0.2	0.5	1.0	2.0	4.0
random	72.48	72.72	72.94	72.41	71.83	42.77	42.64	42.88	42.80	42.78
CAS	74.69	75.39	76.43	76.59	76.04	42.74	44.54	44.65	44.21	43.46
BMLS	79.95	79.74	78.85	78.59	76.33	42.86	45.06	45.20	44.33	43.96
BMLS _{MS}	80.16	79.52	79.67	79.61	79.53	46.24	47.21	47.62	46.73	45.84

2298 Table 19: Experimental results of Remix on Many/Medium/Few classes in the CIFAR10/100-LT
2299 datasets. The results are the mean of five repeated experiments with random seeds. (†: the reported
2300 values are taken from Chou et al. (2020), which used different experimental settings. *: the reproduced
2301 result of Remix on our experimental settings.)
2302

	Method	CIFAR10-LT				CIFAR100-LT			
		many	med	few	all	many	med	few	all
$\alpha = 0.2$	random	92.90 _{1.54}	72.28 _{2.47}	52.34 _{4.80}	72.48 _{0.14}	71.69 _{0.65}	41.39 _{0.71}	8.51 _{0.68}	42.77 _{0.57}
	CAS	89.05 _{4.00}	72.29 _{3.03}	63.53 _{7.84}	74.69 _{0.56}	66.31 _{0.40}	43.65 _{0.57}	12.39 _{0.45}	42.74 _{0.22}
	BMLS	89.73 _{0.57}	76.84 _{0.54}	74.33 _{1.83}	79.95 _{0.49}	65.51 _{1.01}	43.53 _{0.93}	13.92 _{0.71}	42.86 _{0.78}
	BMLS _{MS}	87.15 _{0.79}	75.39 _{0.72}	79.53 _{1.80}	80.16 _{0.52}	64.73 _{0.50}	48.93 _{0.62}	20.06 _{0.24}	46.24 _{0.24}
$\alpha = 0.5$	random	91.53 _{3.38}	73.06 _{3.07}	53.47 _{6.92}	72.72 _{0.52}	72.42 _{0.10}	40.62 _{0.90}	8.12 _{0.78}	42.64 _{0.54}
	CAS	91.74 _{2.24}	74.91 _{2.60}	59.66 _{4.84}	75.39 _{0.34}	68.63 _{0.25}	45.83 _{0.33}	13.08 _{0.71}	44.54 _{0.33}
	BMLS	90.96 _{0.58}	78.39 _{0.40}	70.34 _{2.05}	79.74 _{0.70}	67.86 _{0.68}	46.46 _{0.31}	15.06 _{1.23}	45.06 _{0.36}
	BMLS _{MS}	88.88 _{1.02}	75.65 _{0.56}	75.31 _{1.21}	79.52 _{0.29}	64.13 _{1.12}	50.41 _{0.82}	22.34 _{0.45}	47.21 _{0.33}
$\alpha = 1.0$	random	93.39 _{2.42}	74.05 _{2.03}	50.99 _{5.40}	72.94 _{0.68}	72.09 _{0.21}	41.10 _{0.40}	8.77 _{0.42}	42.88 _{0.15}
	CAS	90.54 _{2.86}	75.54 _{1.95}	63.51 _{6.26}	76.43 _{0.60}	68.28 _{0.35}	46.47 _{0.34}	13.12 _{0.25}	44.65 _{0.26}
	BMLS	88.53 _{1.01}	77.84 _{0.25}	70.53 _{1.27}	78.85 _{0.34}	68.38 _{0.27}	46.89 _{0.33}	14.37 _{0.88}	45.20 _{0.33}
	BMLS _{MS}	89.14 _{0.63}	76.34 _{0.62}	74.63 _{0.69}	79.67 _{0.21}	66.31 _{0.26}	49.80 _{0.57}	21.80 _{0.40}	47.62 _{0.25}
$\alpha = 2.0$	random	93.97 _{0.29}	73.29 _{0.41}	49.65 _{1.54}	72.41 _{0.27}	71.92 _{0.39}	41.45 _{0.71}	8.30 _{0.23}	42.80 _{0.32}
	CAS	88.30 _{3.08}	75.95 _{2.20}	65.74 _{5.88}	76.59 _{0.53}	66.38 _{0.68}	47.04 _{0.27}	13.27 _{0.46}	44.21 _{0.21}
	BMLS	88.17 _{0.57}	77.24 _{1.02}	70.80 _{1.53}	78.59 _{0.24}	66.73 _{1.07}	47.30 _{0.71}	12.92 _{0.89}	44.33 _{0.51}
	BMLS _{MS}	84.22 _{0.41}	74.66 _{0.72}	81.59 _{0.31}	79.61 _{0.35}	65.15 _{1.60}	49.53 _{1.26}	20.47 _{0.41}	46.73 _{0.24}
$\alpha = 4.0$	random	93.18 _{0.30}	71.64 _{0.97}	50.75 _{0.43}	71.83 _{0.40}	71.84 _{0.31}	41.72 _{0.37}	7.99 _{0.76}	42.78 _{0.19}
	CAS	87.37 _{3.19}	75.20 _{2.05}	65.84 _{6.09}	76.04 _{0.72}	64.18 _{0.54}	47.25 _{0.25}	13.15 _{1.00}	43.46 _{0.17}
	BMLS	86.59 _{2.05}	77.49 _{0.78}	64.52 _{2.86}	76.33 _{0.30}	64.02 _{0.24}	47.23 _{0.53}	15.09 _{0.48}	43.96 _{0.32}
	BMLS _{MS}	86.57 _{0.79}	73.88 _{0.86}	80.03 _{0.89}	79.53 _{0.17}	61.20 _{1.02}	50.70 _{1.28}	20.89 _{0.55}	45.84 _{0.17}