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ABSTRACT

Minority collapse, where minor classes become indistinguishable, is a key challenge
in imbalanced learning, addressed by methods like Mixup with class-balanced
sampling. In parallel, a simplex equiangular tight frame from Neural Collapse (NC)
has emerged as an effective frame in the classifier to mitigate minority collapse.
While NC has been studied in both Mixup and imbalanced learning independently,
its combination remains unexplored, particularly regarding the balance of mixed
labels. We investigate this overlooked factor and pose the question: Is the mixed
label balance important for alleviating minority collapse? Our analysis reveals
that (i) mixed labels should be balanced, and (ii) in this setting, interpreting mixed
labels as singletons is beneficial. Building on the analysis, we propose a balanced
mixed label sampler and a mixed-singleton classifier, which balance mixed labels
and treat them as singleton labels. Through theoretical analysis, visualization, and
ablation studies, we demonstrate the effectiveness of our approach. Experiments on
standard benchmarks further confirm consistent performance gains, highlighting
the importance of balancing mixed labels in imbalanced learning.

1 INTRODUCTION

In imbalanced learning, severe class imbalance often causes a significant degradation of model
accuracy, particularly on the minority classes (Liu et al., 2019). One known cause of this performance
drop is the phenomenon termed minority collapse (Fang et al., 2021), wherein the class vectors
of minority classes converge and become nearly identical. To mitigate this issue, a wide range of
strategies has been explored, including data augmentation (Zhang et al., 2018; Verma et al., 2019; Shi
et al., 2023), calibration technique (Zhong et al., 2021), mixture-of-experts models (Cai et al., 2021;
Zhang et al., 2021; Xiang et al., 2020), and class-balanced loss functions (Cao et al., 2019; Cui et al.,
2019) or sampling schemes (Kang et al., 2020; Cao et al., 2019; Zhang et al., 2022; Shen & Lin,
2016). Among these approaches, Mixup, especially when combined with class-balanced sampling,
has been shown to effectively improve the model performance under class-imbalanced conditions.

Meanwhile, Neural Collapse (NC) (Papyan et al., 2020) has emerged as a key framework for analyzing
geometric properties of last-layer features and classifier in classification models at the terminal phase
of training. Although NC has been studied in both Mixup (Fisher et al., 2024) and imbalanced
learning (Liu et al., 2023; Yang et al., 2022) separately, Mixup in imbalanced settings has not been
investigated in conjunction with NC. In particular, the balance of mixed labels has received little
attention. The only related finding comes from M-lab NC (Li et al., 2024), which observes that even
when multi-label samples are imbalanced, NC occurs at the singleton-class level as long as singleton
label samples are balanced, with multi-label class emerging as combinations of singletons. However,
whether the balance of input samples still hold for mixed labels under Mixup remains unclear. This
motivates our central research question:
Could the balance of mixed labels be a critical factor in minority collapse?

Building on the proof approach of Fang et al. (2021), we first demonstrate that minority collapse still
occurs under Mixup when the mixed-label samples are not balanced. Motivated by this theorem, we
conducted label-variants experiments, which revealed that epoch-wise imbalance in mixed labels
significantly impacts the model performance. To address this issue, we propose a sampler that balances
mixed labels across epochs. Both theoretically and empirically, we show that aligning the balance of
mixed-label samples across epochs mitigates minority collapse. Furthermore, our analysis uncovers
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that minority collapse in Mixup is determined solely by the frequency of singleton and mixed-label
samples, independent of the mixup ratio. Leveraging this insight, we introduce a simple but effective
classifier, which treats mixed labels as singleton labels when learning class vectors. Compared with
a conventional singleton classifier implemented as a fully connected layer, our approach achieves
superior performance, particularly improving accuracy on minority classes.

Our contributions are formally outlined as follows.

« Proposed methods: Balanced Mixed Label Sampler and Mixed-Singleton Classifier ($4).
We propose the Balanced Mixed Label Sampler, which balances the frequency of mixed-label
samples during training, and the Mixed-Singleton Classifier, which learns class vectors by treating
mixed labels as singletons under a mixed-label balanced condition.

* Finding 1: The balance of mixed-label samples is crucial ($5.2). Using a Layer-Peeled Model
with Mixup, we show that ensuring balanced frequencies of mixed-label samples in a singleton-
class imbalanced setting mitigates minority collapse.

¢ Finding 2: Interpreting mixed labels as singletons further alleviates minority collapse ($5.3).
From our analysis, we find that minority collapse in Mixup depends on not only the frequency
of singleton label but also that of mixed-label samples. From our analysis, we find that minority
collapse in Mixup depends not only on the frequency of singleton labels but also on that of
mixed-label samples. Based on this observation, we demonstrate that treating mixed labels as
singletons within the classifier further reduces minority collapse beyond balancing frequencies
alone.

¢ Empirical validation on our analysis and proposed methods ($6). Extensive visualization
and ablation studies confirm the effectiveness of our methods, and experiments on standard
imbalanced learning benchmarks demonstrate consistent performance improvements.

2 RELATED WORK

Due to the paper’s length constraints, this section has been moved to the Appendix A, except for the
discussion of our work’s novelty.

Mixup-based Method. Many attempts have been made to address the challenges of imbalanced
learning environments using Mixup (Zhang et al., 2018), which increases the diversity of sampled
data and alleviates risk of overfitting on tail classes (Zhang et al., 2018), including data augmentation,
architecture improvements, and calibration methods. However, no research has specifically studied
on the balance of mixed labels in minority collapse.

Class-balanced Methods. Various class-balanced samplers have been proposed, yet no work has
mainly focused on the balance of mixed labels. Additionally, while Logit Adjustment (Menon et al.,
2021) and UniMix (Xu et al., 2021) have concentrated on the effect of the class vectors of singleton
labels, they did not interpret mixed labels as singletons.

Neural Collapse in Mixup and Imbalanced Learning. NC in imbalanced learning has been studied
in Fang et al. (2021). To alleviate the minority collapse, Yang et al. (2022) assumed that the classifier
is fixed to the K-simplex ETF and proved that LPM with the classifier satisfies NC properties. Also,
the fixed ETF classifier with Mixup has improved the model performance in imbalanced learning.
Building on the theorems, Fisher et al. (2024) proved Mixup also satisfies NC properties for both
same class and different class. However, Yang et al. (2022) and Fisher et al. (2024) did not consider
the minority collapse from the mixed label balance in the LPM with learnable classifiers.

3 PRELIMINARY

3.1 NOTATIONS

Let X be the dataset with IV samples where the number of singleton label classes is K and S be the set
of their feature vectors h. Then, we formulate them as X := [(x;, ¢;)]¥.; where ¢; is the class label
of the i-th sample x; and S := {hl}ﬁ\i1 As aresult, we define y; = e(¢i) ag the one-hot vector of ;.
Then, we denote the subset of S which has only k-th class feature vectors hy, ; as Sg, := {hg; }.*;

where ny, is the number of k-th class samples and k € [K]. Thus, N = Zszl ng.
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Figure 1: Overview of Balanced Mixed Label Sampler (BMLS) and Mixed-Singleton Classifier (MS)

3.2 OVERVIEW OF MIXUP

Mixup randomly permutes input samples and blends them with the ones before permutation, re-
spectively. Let Z := [i]¥ be the indices of X and m(Z) := [r(i)]~; be the permuted one where
(i) represents the index number corresponding to i-th element of Z. Therefore, the index pairs of
mixed samples Z* is denoted as Z* := [(i,7(i))];ez. In this case, we denote I(Aa’b) as the index

pairs of (¢, ¢r(;)) = (a,b), and Si‘a p) as the mixed feature set of (a, b)-label samples. Therefore,
Sfapy 1= DMhas (1= Vo 1(0:5) € Tg )} = Ay gy i3i27" where (a,5) € K2 mi = [T, .

iJi=1

and K? = {(a,b)[1 <a < K, 1<b< K}. Thus, N = 2 (ap)ek2 Narbh)-

Based on the notations, we perform mixup on each pair defined by Z* to create mixed-label samples
by linearly interpolating them:

:BZ)\ = \z; + (]— - )\)wﬂ'(l)’ yz)\ = )\yCi + (1 - A)ycﬂ(i)av(ivﬂ—(i)) € I/\v @))

where the mixup ratio A € (0, 1) is sampled from the beta distribution Dy, i.e., A ~ Dy («, @) and «
is a hyperparameter.

4 PROPOSED METHOD

4.1 BALANCED MIXED LABEL SAMPLER

We propose the Balanced Mixed Label Sampler (BMLS), where the frequency of all mixed-label
samples is equal in each epoch as shown in Figure 1. When using BMLS, the probability of sampling
of a (a, b)-label sample is
1

Plr@Grane = 3 )
T is the index pairs of samples where their mixed-labels are balanced, i.e., N(qp) = n for all
(a,b) € K2. As done in the class-aware sampler (Shen & Lin, 2016), we remove the randomness by
pre-defining Z* for every epoch. After generating 7%, we simply replace Z* to Z* in Eq. |

4.2 MIXED-SINGLETON CLASSIFIER
Let W € RE*P be a classifier of singleton labels, which is a fully-connected layer. We define the
Mixed-Singleton Classifier (MS) as

W = D, + (1= Nwp] g e 3)
where p is the last-layer feature dimension, as shown in Figure 1. We replace the singleton classifier

with MS and perform Mixup with BMLS, where mixed-label samples & and their one-hot vectors
g2 are defined as:

) = A+ (1= N@e, 57 = €7 C000) (i, m(i)) € I, )
where Z? denotes the index pairs of K2, and Z?%(a, b) gives the index number of (a, b) € K2.

Building on these methods, we generated mixed labels (a, b) only for the case where a < b, ensuring
that the existing theorem and proposition still hold, thereby mitigating the limitations of both methods.
The limitation and proof are described in $8 and Appendix C.3.
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5 THEORETICAL ANALYSIS

5.1 PROOF SKETCH

We first present a proof sketch that outlines the approach we followed to propose and prove our
theorems. Fang et al. (2021) proved that oversampling mitigates minority collapse when singleton
label samples are imbalanced, following the sequence outlined below. (Gray indicates the part as
defined in Fang et al. (2021).)

(1) Define the Layer-Peeled Model. (Eq. 7)

(2) Prove that NC properties are satisfied when the LPM has global optimality in the case where
singleton label samples are balanced. (Theorem 1)

(3) Demonstrate that the LPM suffers from minority collapse in the case where singleton label
samples are imbalanced. (Lemma | and Theorem 5)

(4) Show that oversampling alleviates minority collapse in the imbalanced case. (Proposition 1)

Our theorem and proof leverages strategies similar to those in Fang et al. (2021), but we extend these
concepts to Mixup focusing on the balance of mixed label samples.

In $5.2, (1) we define the Layer-Peeled Model with Mixup (LPM)) and omit step (2), which holds
true according to the theorem of Fisher et al. (2024); (3) we prove that in the imbalanced case the
LPM,, also suffers from minority collapse; and in closing, (4) we show that the Balanced Mixed Label
Sampler (BMLS) alleviates the minority collapse. In $5.3, we extend the LPM) by modifying the
classifier: (1) we newly define the Layer-Peeled Model with Mixup and Mixed-Singleton Classifier
(LPM\-MYS); (2) we prove that when this model achieves global optimality, it also satisfies the NC
properties; and finally, following the same reasoning as in $5.2, (3—4) we show that in the imbalanced
case the LPM,-MS suffers from minority collapse, and that BMLS is effective to the minority
collapse even in this setting.

5.2 LABEL IMBALANCE IN MIXUP

Remark 1. According to Theorem 1, which will be described in this section, Mixup also experiences
the minority collapse. Additionally, even when using class-balanced samplers to alleviate label
suppression and learn an unbiased classifier, minority collapse is partially mitigated but not fully
resolved. This is because Mixup blends input samples with a random permutation of them, and as a
result, the balance of samples is disrupted, even when class-balanced samplers are employed. For
this reason, when using Mixup in imbalanced learning, not only singleton labels but also mixed ones
should be balanced, as proven in Proposition 1.

(1) Problem Settings. The Layer-Peeled Model (LPM) (Fang et al., 2021) is the optimization
program of simplified neural network, modeled by only last-layer features and classifier. Following
the definition of LPM, we obtain the Layer-Peeled Model with Mixup (LPM) ):

T2
> D Il < Ea,
per2 'k i1
\ (5)

where y, ;) = Ael® + (1 — \)e®. For simplicity, we hereafter denote W = [wy]K_| € RE*P for
the weights of the classifier and the positive thresholds Ey o< 1/K and Ey « 1/K.

_ 1 i N 1 & ) 1
vg?grlx E)‘N k%z ;‘C(th,ivyk) s.t. X ; lwi]|” < Ew, w2

We present a convex optimization program that serves as a relaxation of the non-convex LPM
(Eq. 5), leveraging the established result that a quadratically constrained quadratic program can be
transformed into a semidefinite program. This formulation is provided as Eq. 11 in Appendix B.

(2) Satisfying NC properties. As proven in Fisher et al. (2024), when LPM, (Eq. 5) has the global
optimality, NC properties are satisfied. We omit this step.

(3) Minority collapse occurs in LPM . Now, we are ready for proving that LPM, also suffers from
minority collapse. Lemma | below relates the solutions of Eq. 11 to that of Eq. 5.

Lemma 1. Assume p > K2 + K and the loss function L is convex in its first argument. Let X* be a
minimizer of the convex program (Eq. 11). Define (W*, H*) as

2(1,1)3 zl,Q)a"-a zK,K)a (W*)T :P(X*)l/zv (6)
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Figure 2: Mean and standard deviation of label frequencies including mixed label across epochs
(higher imbalance factor means higher imbalanced)(The closer Avg. CV is to 0, the more evenly the
labels appear across epochs)

ri=hp, forallie I} k€ K?,

where (X*)l/2 denotes the positive square root of X* and P € RPX(K*+K) g any partial orthog-
onal matrix such that PT P = Iy ;.. Then, (W*, H*) is a minimizer of Eq. 5. Moreover, if all

X*’s satisfy 75 ZkK:zl X*(k,k) = Eq, then all the solutions of Eq. 5 are in the form of Eq. 6.

Proof. See Appendix C.1 (Il

Theorem 1. Assume p > K andna/ng — oo, and fix K4 and Kg. Let (W*, H*) be any global
minimizer of the LPM ) (Eq. 5). As the imbalance factor R = na/np — oo, we have

limwj —wj, =0,, forall Ky <k <k <K.
Proof. See Appendix C.2 ]

From Lemma 1 and Theorem 1, we demonstrate that LPM, also exhibits minority collapse.

(4) Balancing mixed labels mitigates minority collapse in LPM . To formalize the behavior of a
neural network trained by minimizing a new program with balanced samples including mixed-label
ones through BMLS, we propose that it may perform as if it were trained on a larger dataset containing
n 4 examples in the majority class and w,np examples in the minority class. We begin by analyzing
the LPM,, in the context of BMLS:

min —| > ZE (Wh . up) + wry ZL‘ (Wh,;,yp) (7)

W, H> N’ wews, =1 Kewe =1
1 K
st D llwl* < Bw, |K2| > - ZH il K2| > ZHh ill° < Bu,
k=1 keK? k€K%

where N/ = n4|K% | + w,np|K%|

The following result supports the intuition that BMLS enhances the size of the minority classes in the
LPM,. For simplicity, we omit the superscript A in Proposition 1.

Proposition 1. Assume p > K? 4+ K and the loss function L is convex in the first argument. Let

X be any minimizer of the convex program (11) withn 1y = n(1,2) = =+ = N(K 4, K,) = Na and
MK pA+1,Ka+1) = N(Ka+1,Ka+2) = '+ = N(K,K) = Wrnp. Define (W*,H*) as
?1,1)a €1,2)7"'vh€K,K)a (W*)T = P(X*)l/za (®)
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Figure 3: Mixed-label frequency control experiments on CIFAR10/100 LT datasets. Coverage ratio
represents the proportion of mixed labels used in training during one epoch compared to the total
number of mixed labels. (e.g., when coverage ratio is 0.6 in CIFAR100-LT, the model trains on mixed
labels consisting of combinations of 60 different classes, which change with each epoch.) (figure)
Test Acc. (%) and Avg. CV over coverage ratio (table) Comparison of test accuracies

vi=hi, foralli € I} k € K%, hj, = hj, forallic I,k € Ky,

where P € RPX(K°+K) jg any partial orthogonal matrix such that PTP = Ig>_ . Then,
(W™, H*) is a global minimizer of the mixed-label balanced LPM, (Eq. 7). Moreover, if all X*’s
satisfy = > rexe X *(k, k) = Epy, then all the solutions of Eq. 7 are in the form of Eq. 8.

In conjunction with Lemma 1, Proposition 1 demonstrates that the number of training examples
in each minority class is effectively w,np instead of np in the LPM,. In the special case where
w, = na/np = R, the results indicate that the angles between any pair of last-layer classifiers are
equal, regardless of whether they belong to the majority or minority classes.

To demonstrate the empirical evidence of Remark 1, we examine the mean and standard deviation of
label frequencies from various sampler: random sampler, class-balanced sampler (CBS) (Kang et al.,
2020), class-aware sampler (CAS) (Shen & Lin, 2016), and ours (BMLS), as shown in Figure 2. We
use the average of Coefficient of Variation (CV) (Dodge, 2008) as the metric to measure the dispersion

of each label frequency distributions: CV = % Zil %, where the lower CV, the less dispersion,
which means labels evenly appear across epochs. After training, the mean of label frequencies is
almost balanced across all samplers, but epoch-wise balance is not. To empirically validate that
the epoch-wise label imbalance is a problem in imbalanced learning, we do mixed-label frequency
control experiments. As shown in Figure 3, the more imbalanced mixed label appears from epoch to

epoch, the lower the performance of models.

5.3 INTERPRETING MIXED LABELS AS SINGLETONS

Remark 2. As proven in Theorem 2, balancing mixed labels and interpreting them as singletons
allows the LPM -MS to operate in the same manner of the LPM. At the same time, it is expected to
preserve the strong feature learning effect of Mixup while potentially reducing its negligible influence
on classifier learning by maintaining mixed-label samples but removing the mixup loss.

Building on Theorem 1 and Proposition 1, we raise a conjecture: If mixed labels are interpreted as
singletons, then the mitigation of minority collapse will be enhanced.

The rationale for the conjecture can be summarized as follows: (i) Feature-based differences. In
Proposition 1, minority collapse occurs regardless of the mixup ratio A. This is because the total
loss derived from features is equivalent to that obtained without Mixup. However, the behavior of
features differs: while the loss is divided between classes according to the mixup ratio A, the mixed
features are not generally decomposed in this way due to the non-linearity of the model; (ii) Similarity
in terms of sample frequency. In addition, the minority collapse of LPM depends not only on the
number of singleton label samples but also on that of mixed-label samples, as if the mixed labels
were singletons; (iii) Harmful influence on classifier learning. Furthermore, MiSLAS (Zhong et al.,
2021) reports that Mixup primarily facilitates representation learning while exerting a minimal or
adverse effect on classifier learning. For this reason, would it not be more effective in alleviating
minority collapse to interpret mixed labels as singletons, as this reduces the adverse effect of Mixup?



Under review as a conference paper at ICLR 2026

Random BMLS
— - 0 T~ 0
' l: NG ,'/ i NG Sampler | Test Acc. (%) 1 Uc 1t U~
! L / L Random 72.91 14.6404  4.2325
\ w { ¥ CBS 75.86 152521  4.4848
\ \\\ \ - CAS 76.60 15.3319  4.4999
g B BMLS 78.71 153379 4.5651

Figure 4: Experiments on CIFAR10-LT dataset for the effectiveness of BMLS to minority collapse.
(figure) Visualization of 2D-projection of class vectors about Many class {0} and Few classes {8, 9}.
Dashed line indicates each class vector and contrast of background means the confidence value, i.e.,
a confidence close to 0.5 indicates that the model is confused between the two classes for the given
sample, and this is represented by darker colors in the figure. (table) Quantitative comparison results.
(Ug: Uniformity of all classes, U: Uniformity of {0, 8, 9} classes)

(1) Problem Settings. By replacing the classifier as Mixed-Singleton Classifier defined in $4, we
obtain the LPM, with Mixed-Singleton Classifier (LPM-MS):

ng

. 1
min Ey N Z ZE(W)‘hgﬂv,y,i‘)

w2 H> keK? i=1
1 L 1 1 & ©
2 2
s 2 A B g 2 R < e

where the only differences are W = [Awg + (1 — A)wp)(q,p)ex2 and Eyx o< 1/[K2|.

(2-4). In this setting, LPM,-MS is exactly same to the LPM in imbalanced case when the number of
classes is K. For this reason, we omit steps (2-4) and conclude Theorem 2.

For simplicity, we remove the superscript A in Theorem 2.

Theorem 2. Assume p > 2K? and the loss function L is convex in the first argument. Let X*

be any minimizer of the convex program with n( 1y = N2y = "+ = Nk, K, = Na and
N(Kat+1,Ka+1) = M(Kat1,Ka+2) = = UK, k) = wrnp. Define (W, H*) as
Ly sy Bl ), (WHT| = P(X*)Y2, (10)

ri=hi, foralli € I k € K%, hj,; = hj, foralli € I}k € K3,

where P € RP*2K” jg any partial orthogonal matrix such that PT P = Iyg>. Then (W*, H*) is a
global minimizer of the mixed-label balanced LPM -MS.

Proof. Theorem 2 follows directly from the same arguments applied to oversampling-adjusted LPM
in imbalanced case, which has already been proven in Fang et al. (2021). We omit the proof here. []

6 EXPERIMENTAL RESULTS

To empirically validate the effectiveness of our analysis and proposed solutions, we conducted
experiments in various imbalanced environments. We used CIFAR10/100-LT, Places-LT, ImageNet-
LT and iNaturalist2018, with five repeated experiments with random seeds in CIFAR10/100-LT and
three in others. The tables presenting the experimental results show the average of test accuracies. In
all tables, imb refers to the imbalance factor, C10/100 represents the CIFAR10/100-LT datasets, CIf.
refers to the classifier, and BMLSys denotes the method using both BMLS and MS. Unless otherwise
specified, all experiments include Mixup. Best in bold. Implementation details are illustrated in
Appendix D.

6.1 EMPIRICAL VALIDATION

BMLS. As shown in Figure 3, epoch-wise imbalance not only of singleton labels but also of
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Table 1: Experiments on CIFAR10/100-LT datasets with imbalance factor 200 and 100 for effective-
ness of Multi-Singleton Classifier (higher imbalance factor is more imbalanced)

imb200 imb100

many med few all many med few all

FC 9049  74.12 5443 | 73.13 | 8853 77.84 70.53 | 78.85
MS 88.94 7297 6277 | 7470 | 89.14 7634  74.63 | 79.67
diff. | -1.55 -1.15 4834 | +1.57 | +0.61 -1.50  +4.10 | +0.82
FC 65.77  41.73 7.19 4036 | 68.98  46.13 1498 | 45.32
MS 6324 4486 11.19 | 41.71 | 6631  49.80  21.80 | 47.62
diff. | -2.53  +3.13  +4.00 | +1.35 -2.67  +3.67  +6.82 | +2.30

Sampler  Dataset  CIf.

BMLS C10

BMLS C100

Table 2: Experiments on CIFAR10/100-LT datasets with various imbalance factors (higher imbalance
factor is more imbalanced) (More references in Table 7)

CIFARI0-LT CIFAR100-LT
Method imbalance factor imbalance factor
200 100 50 10 200 100 50 10

Mixup (Zhang et al., 2018) 67.30 72.80 78.60 87.70 38.70 43.00 48.10 58.20
CAS+ERM (Shen & Lin, 2016) N/A 68.40 N/A 86.90 N/A 31.90 N/A 55.00
LOM (Zhang et al., 2022) N/A 74.20 N/A 89.40 N/A 41.50 N/A 59.90
random 66.77 72.94 78.64 88.05 39.06 42.88 48.31 63.03
CBS 70.17 76.63 81.15 89.24 39.61 44.24 49.99 63.90
CAS 69.90 76.43 81.42 89.24 40.28 44.65 50.07 63.57
BMLSys 74.70 79.67 83.46 88.51 41.71 47.62 52.74 64.47

mixed ones affects model performance. While class-balanced sampling methods such as CBS and
CAS oversamples singleton label samples within each mini-batch, Mixup ruins the balance of both
singleton labels and mixed ones by randomly permuting input samples and blending them each other.
Empirically, we observe that enforcing balance among mixed labels through BMLS improves model
performance, promoting more balanced classifier, as demonstrated on Figure 4.

Mixed-Singleton Classifier. To validate the Mixed Singleton Classifier and support the conjecture
in $5.3, we compared a singleton classifier (FC) and a Mixed-Singleton classifier (MS). As shown in
Table 1, MS further boosts performance, particularly for few classes. This improvement indicates that
MS facilitates less minority collapse in few classes, and the effect still maintains even though the
degree of imbalance increases.

6.2 STANDARD IMBALANCED LEARNING BENCHMARKS

Results and Analysis on Small Datasets. To eval- Table 3: Experiments on large datasets.
uate the performance of our method, we selected (PL: Places-LT, *:use pre-trained model, IN:
Mixup, CAS, and LOM—the latter being the most ImageNet-LT, iNat18: iNaturalist2018)

similar to our approach—as baselines. As shown

in Table 2, our proposed method achieves the high- i‘:ﬁ;‘;‘;ﬁ' 251(‘)6 2?;6 4;% lgf_lélzg
est performance on CIFAR10-LT and CIFAR100-LT CBS 2479 | 3732 | 4749 | 67.06
across all settings, except for the case with an imbal- s | B T | e | s
ance factor of 10, where class imbalance is relatively BMLSys | 27.95 | 37.81 | 4754 | 56.60

mild. Furthermore, when classes are categorized into

many, medium, and few based on their sample frequency, and test accuracy is measured accordingly
(cf. Table 8 Appendix G), BMLS demonstrates the largest improvement for few classes compared to
other baselines. These results indicate that BMLS mitigates minority collapse more effectively than
other class-balanced samplers.

Results and Analysis on Large Datasets. In practical experimental settings, both BMLS and MS
exhibit limitations depending on the number of classes K. First, BMLS struggles when K? is
bigger than the dataset size, as it fails to generate mixed samples uniformly across all classes in
each epoch. This leads to the same issue seen in traditional class-balanced samplers, we already
introduced, epoch-wise label imbalance. MS, in addition to the issues faced by BMLS, suffers from
an exponential increase in the number of class vectors for mixed labels as K grows. Concurrently,
the number of samples available for learning each class vector decreases significantly, raising the
potential for underfitting. As shown in the results in Table 3, the effect of BMLS+MS diminishes as
the number of classes increases (e.g., Kpy, = 365 < K;n = 1000 < K;nqt18 = 8142). However,



Under review as a conference paper at ICLR 2026

despite these limitations, BMLS+MS demonstrates superior performance compared to other class-
balanced samplers on Place-LT, and when only BMLS is used on ImageNet-LT, it achieves the highest
performance, while improving the accuracy on few classes (cf. Tables 9 and 10 in Appendix G).
Even in the most challenging case, iNaturalist2018, using only BMLS still results in competitive
performance compared to other class-balanced samplers.

6.3 ABLATION STUDY AND SYNERGY WITH FIXED ETF CLASSIFIER

Ablation Study (Table 4 in Appendix E.) To empirically validate whether our proposed methods
effectively address the minority collapse issue and improve model performance in imbalanced learning
environments, we conducted an ablation study. As shown in Table 4, applying both BMLS and MS
together resulted in the largest performance improvement. Moreover, in scenarios where the number
of samples in few classes is extremely small (e.g., imbalance factors of 200 and 100 in CIFAR100-LT),
where both MS and FC face the same issue about underfitting, MS alone actually outperforms.

Synergy with Fixed ETF Classifier (Table 5 in Appendix F.) In Yang et al. (2022), it was proven
that by fixing the classifier as a K-simplex ETF, NC is satisfied regardless of class balance, and
that using this fixed ETF classifier along with a specialized loss (Dot-Ridge; DR) improves model
performance in imbalanced learning environments. Leveraging the advantages of the fixed ETF
classifier, we hypothesized that our method could produce synergies with this approach, and we
conducted experiments applying our method to this framework. As shown in Table 5, our proposed
methods significantly enhance the performance of the original ETF approach through seamless
integration. Notably, even when the original method was used without any modifications for our
approach on CIFAR10-LT, we observed an improvement in model performance.

7 CONCLUSION

The research problem targeted in this study is the issue of minority collapse in imbalanced learning
environments, where class imbalance negatively impacts model performance, particularly for minority
classes. We analyzed the impact of Mixup on this problem and identified two key findings: first, mi-
nority collapse is influenced by the frequency balance of mixed labels, and second, when mixed labels
are balanced, interpreting them as singletons enhances reducing the minority collapse. Based on these
findings, we proposed BMLS and MS as solutions. BMLS balanced mixed-label frequencies more
effectively, while MS leveraged class vector interpretation to further enhance classifier performance.
These methods demonstrated significant effectiveness in mitigating minority collapse and improving
model performance, particularly for minority class samples. Through experiments, we validated
the utility and versatility of the proposed methods, showing that both BMLS and MS consistently
improved performance compared to existing baselines and demonstrated their applicability across
different datasets and imbalance factors.

8 LIMITATIONS AND FUTURE WORK

Scalability. As observed in the experimental results and analysis for large datasets, both BMLS and
MS suffer from issues related to epoch-wise label imbalance and underfitting class vectors due to the
exponential increase in the number of mixed labels, which is proportional to the number of singleton
labels K. Additionally, in this study, to ensure a fair comparison, we matched the number of samples
learned per epoch to those generated by a random sampler (e.g., in iNaturalist2018, we used 437,513
images, while the number of mixed labels was K2 = 66, 292, 164 with K = 8, 142). As explained
in $4, this paper partially addresses the issue by reducing the diversity of mixed labels. However, if
the number of training samples is sufficiently increased without considering the constraint, it could
also serve as a technical solution.

Integration with other methods. In this study, we only extend our methods to the fixed ETF
classifier inspired by neural collapse. However, both BMLS and MS are methods that can be used in
conjunction with other Mixup-based methods for imbalanced learning. Through the experiments with
the fixed ETF classifier extension, we demonstrated the potential for integration with other methods.
We anticipate that future research will explore these integrations to more effectively mitigate minority
collapse.
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REPRODUCIBILITY STATEMENT

We summarize the reproducibility statement of this paper as follow.

* $4. To reproduce BMLS and MS, we define notations and provide helpful preliminaries ($3)
with a theoretical support in Appendix C.3.

* $5. To prove our theorems such as Theorem 1, Proposition 1, and Theorem 2, we demonstrate
the detailed proofs of them in Appendix C.

* $6. All experiments can be reproduced using our text supplementary materials (Appendix D),
which provide dataset descriptions, model architectures, and hyperparameter settings, as well
as our code including configuration files for each experiment. Additionally, experimental
requirements, such as necessary libraries, are specified in the README files included with
the code.

In addition, our codes can be accessed at link (T.B.A)
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APPENDIX

DETAILS ABOUT LARGE LANGUAGE MODELS IN PAPER WRITING

In this paper, the authors used LLMs solely for the purpose of checking mistranslations or grammar.

A  ADDITIONAL RELATED WORK

A.1 MIXUP-BASED METHOD

(Data augmentation.) Mixup (Zhang et al., 2018) generates mixed-label samples by interpolating
between input samples, extending training distribution support. Manifold Mixup (Verma et al., 2019)
applies this technique to intermediate layers, regularizing the network by encouraging less confident
predictions. CP-Mix, or Confusion-Pairing Mixup (Yoon et al., 2025), augments samples based on
confusion pairs, addressing data deficiency by enhancing the model’s ability to distinguish frequently
misclassified class pairs. ExtraMix (Kwon et al., 2023) introduces a mixup technique capable of
extrapolation, broadening both feature and label distributions, which minimizes label imbalance more
effectively than traditional methods. CutMix (Yun et al., 2019; Zhao & Lei, 2021; Pan et al., 2024)
focuses on mixed-label sample generation by cutting and pasting image patches, creating a regional
dropout effect. CMO (Park et al., 2021) extends this idea by pasting minority class images onto
majority class backgrounds, enriching minority class samples with context from majority class images.
OTMix (Gao et al., 2023) improves upon this by using Optimal Transport to adaptively combine
majority class backgrounds with minority class foregrounds, ensuring semantically reasonable mixed
images. (Architecture.) BBN (Zhou et al., 2020), SBN, and DBN (Baik et al., 2024) utilize different
architectures to enhance both representation and classifier learning. These methods incorporate
bilateral mixup or decoupling strategies to optimize performance for imbalanced datasets. OTLR (Liu
et al., 2019) uses dynamic meta-embedding and modulated attention to map images into a feature
space that respects both closed-world classification and the novelty of the open world, improving
the generalization of imbalanced datasets. (Calibration or two-stage.) UniMix (Xu et al., 2021)
balances class distributions by introducing a novel mixing factor and sampler that favors the minority
class. MiSLAS (Zhong et al., 2021) decouples representation and classifier learning, improving both
calibration and performance in imbalanced data scenarios.
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While many attempts have been made to address the challenges of imbalanced learning environments
using Mixup, including data augmentation, architecture improvements, and calibration methods, no
research has specifically focused on the balance of mixed labels in such contexts.

A.2 CLASS-BALANCED METHODS

(Re-balance.) Remix (Chou et al., 2020) applies a higher mixup ratio to minority classes, rebalancing
the data without sampling. Re-weighting (Elkan, 2001; Byrd & Lipton, 2019; Cui et al., 2019)
adjusts the loss function by tuning class weights, with methods like Balanced SoftMax (Ren et al.,
2020) explicitly considering label distribution shifts during optimization. Logit Adj (Menon et al.,
2021) adjusts logits based on label frequencies, promoting a larger margin between rare positive
and dominant negative labels. 7-Norm (Kang et al., 2020) normalizes classifier weight norms
according to class size, rebalancing decision boundaries. LDAM loss (Cao et al., 2019) improves
generalization by replacing standard cross-entropy with a margin-based approach, tailored to handle
imbalanced datasets. cRT (Kang et al., 2020) re-trains the classifier using class-balanced sampling,
improving the model’s generalization ability. LWS (Kang et al., 2020) focuses on re-scaling classifier
weights to ensure a balanced learning process for imbalanced datasets. (Re-/Over-Sampling.)
M2M (Kim et al., 2020) augments minority classes by translating samples from majority classes,
enhancing generalization for minority class features. MixBoost (Kabra et al., 2020) iteratively selects
and combines majority and minority class instances to create hybrid samples, improving model
performance. The Meta Sampler (Ren et al., 2020), built on balanced SoftMax, adapts the sampling
rate through meta-learning to alleviate over-balancing issues. CB Sampling (Kang et al., 2020)
ensures that each class has an equal probability of being selected, balancing the dataset during
training. Class-Aware Sampler (CAS) (Shen & Lin, 2016) is more specific method of CB Sampling,
which explicitly ensures the class frequency balance on each mini-batch. Label-Occurrence Mixup
(LOM) (Zhang et al., 2022) uses two CB samplers to sample input pairs, respectively. CSA (Shi
et al., 2023) generates diverse training images for tail classes by maintaining a context bank from
head-class images.

Various class-balanced samplers have been proposed, yet no research has specifically focused on the
balance of mixed labels. Additionally, while methods such as Logit Adjustment and UniMix have
concentrated on singleton-labels, they did not interpret mixed labels as singletons.

A.3 NEURAL COLLAPSE IN MIXUP AND IMBALANCED LEARNING

NC in imbalanced learning has been studied in Fang et al. (2021). To alleviate the minority collapse,
Yang et al. (2022) assumed that the classifier is fixed to the K-simplex ETF and proved that LPM
with the classifier satisfies NC properties. Also, the fixed ETF classifier with Mixup has improved the
model performance in imbalanced learning. Building on the theorems, Fisher et al. (2024) proved
Mixup also satisfies NC properties for both same class and different class. However, Yang et al.
(2022) and Fisher et al. (2024) did not consider the minority collapse from the mixed label balance in
the LPM with learnable classifiers.

B CONVEX OPTIMIZATION PROGRAM

To begin with, defining h) = %k S hg’ ;, as the feature mean of
the Sz where k S K2, we introduce a new decision variable X =
Ry Bdoys - bk iy WTTTRG 1) Ry - Bk i W € RETHE)X(K°+K) - By

definition, X is positive semi-definite and satisfies

K2

1 1 a1 1 &
7 DX k) = 5 SR € 5 3 =S I < Ba
k=1 keK? keK2 =1
and
1 K%+ K 1 K
2
= ST X(kk) = ?Zuwk” < Ew,
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where % follows from the Cauchy-Schwarz inequality. Thus, we consider the following semi-definite
programming problem:

min Z %ﬁ(z(k)’\,y,;\)

X eR(K2+EK)x(K2+K)

kekz2
st. X >0, (11)
K? 1 K%+ K
KQZka <Bu, 5 ) X(kk) < Ew,
k=1 k=K2+1

for all k € K2,
z = [X(k, K2+ 1), X(k, K> +2),..., X(l, K>+ K)] "
When L is the cross-entropy loss with softmax function,
L), 9) = —Alog ( _exp(z(@) ) (1 N)log < _exp(z(8) ) |
> k=1 exp(z*(K)) > w—1 exp(z* (k)
where z* (k') denotes the k’-th entry of the logit z;* = Why, ;, and k = (a,b).

C PROOFS

C.1 PROOFS OF LEMMA | AND PROPOSITION |1

Proof of Lemma 1. For any feasible solution (W, H A) for the original program Eq. 5, we define
1 &
hy = —) hy;, keK?,
. ; ,

and
T
X i= (B kg Blses W | Ry bz s W
Clearly, X = 0. For the other two constraints of Eq. 11, we have

2
1 ol 1 5 b
72 2 X (kb = 7 > Ik < K2 > nkZHh ill” < Bu
k=1

keKk?2 kek?

and

K
1 c
X (k, k) = ?Z [wl* < Ew,

a b c
where < applies Jensen’s inequality and < and < use that (W, H ’\) is a feasible solution. So X is a
feasible solution for the convex program Eq. 11. Letting L be the global minimum of Eq. 11, for any
feasible solution (W, H ’\), we obtain

ng

ng | 1
*ZZE thmyk = ZW ;ZL(thwyk)
keK?2 i—1 heK2 k=1
a n
>3 FLWhLY) = 3 TLEM W) = Lo, (12)
keK? keK?

where in > we use L is convex on the first argument, and so £L(W h*, ) is convex on h given W
and k € K2.

For the simplicity of our expressions, we hereafter remove the superscript A of H*, h* and 2*.

On the other hand, considering the solution (W™*, H*) defined in Eq. 6 with X * being a minimizer
T

of Eq. 11, we have [y 1), B 0)s- i W | By By B W] = X

15
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(p > K? + K guarantees the existence of [hfm), h?1,2)’ ey h?KyK), (W*)T} ). We can verify that
(W*, H*) is a feasible solution for Eq. 5 and have

1 ok N
¥ 2 DLW Ry = D L L(=(R) ) = Lo, (13)
keKk? i=1 kek?2

where z(k)* = [X*(k, K2+ 1), X*(k, K2 42),..., X*(k, K2 + K) ] for k € K2.

Combining Eq. 12 and Eq. 13, we conclude that Ly is the global minimum of Eq. 5 and (W™, H*)
is a minimizer.

Suppose there is a minimizer (W', H') that cannot be written as Eq. 6. Let

1 &
=—> hj, keK?
kizh
and

T
X' = [ 1(1,1)’ 21,2)7 R ZK,K)v (W/)T} [h/(l,l)ﬂ h/(1,2)v e h/(K,K)v (WI)T} .

Eq. 12 implies that X’ is a minimizer of Eq. 11. As (W', H') cannot be written as Eq. 6 with
X* = X', thenthereis a k' € K2, 4, € [n}] with i # j such that hy ; # hy ;. We have

KZ
K2ZX (k. k) 22Hh &
k=1 kek?
<D~ ZH Ml - Y Zuh A
k€K2 =1 kE]K2
<H Y ZH Boall” = oot s = B IP + B = B )

k€K2 i=1
Nk

1
< nkZH Beall” = g g s = i 1

kekK2
<Fy.

By contraposition, if all X * satisfy that % Zf:zl X*(k,k) = Ep, then all the solutions of Eq. 5
are in the form of Eq. 6. We complete the proof. (]

Proposition | can be obtained by the same argument. We omit the proof here.

C.2 PROOF OF THEOREM 1

To prove Theorem 1, we first study a limit case where we only learn the classification for partial
classes. We solve the optimization program'

V%/I?E}XEANDA | na Z Z‘C th 'L?yk
kek? i=1
1 K
2

1 K N(a,b)
K2Z > |
a=1b=1 1=1
where y?‘avb) =M+ (1 =Ny, K4 = {(a,b)|]1 < a < Ka A 1<b< Kph, K% =
a,b)|Kag+1<a< K AN Kjpg+1<b< K}, and
{(a,b)|
na if (a,b) € K4
N(a,b) = np if (a,b) S K2B
0 otherwise

< FEy,

T (a,b)

16
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For the simplicity of our expressions, we remove the superscript A of H* and h*.

Lemma 2 characterizes useful properties for the minimizer of Eq. 14.

Lemma 2. Let (W, H) be a minimizer of Eq. 14. We have hy, ; = 0, for all k € K% and i € [n].
Let L be the global minimum of Eq. 14. We have

Lo = |K2 Z ZE Whii, yp)-

keK2 =1

Epy, and Ew. Moreover, for any feasible solution (W', (H)'),
wi, — wyr || = € > 0, we have

Then Lg only depends on
if there exist k, k' € K% such that |

— > S EWhioud) = Lot €.
| | nAke]K22 1

Ey, and Evyy.

where ¢ > 0 depends on ¢,

Now we are ready to prove Theorem 1. The proof is based on the contradiction.

Proof of Theorem 1. Consider sequences n’y and n'; with R := n’, /n’; for £ = 1,2,.... We have
R’ — 0. For each optimization program indexed by ¢ € N, we introduce (W*%*, H**) as a
minimizer and separate the objective function into two parts. We consider

K2| - n’ IK%| - nt
£€ WZ H@ ‘ A A ﬁ@ WZ,HZ B B E@ WE,HZ ,
( )= K| ny + (K] -n ( )+ K| ny + (K] -n ( )
with
Ly WLH) = S Zz (W'hi ;. 07)
" keKk?, i=1
and
Ly(WEH) = > Zz: (W'hi, . yp) -
" keK?, i=1
We define (We A HY A) as a minimizer of the optimization program:
Wi, La (WHHY)
1 & 2
s.t. — w? < Ew,
K;H q .

|K2| Z ZH IHH |K2\ Z ZHh’ HQSEH7

keK2 kEKZ, B i=1
and (W*5B H*%B) as a minimizer of the optimization program:
min  L§ (W H")

We H!

1 & 0112
e 2 Ikl < B

(16)

\K2| 2w ZH \K2| > T ZH” I° < Ex.

ke]K? =1 keKz =1
Note that Programs Eq. 15 and Eq. 16 and their minimizers have been studied in Lemma 2. We define:

Ly:=LY (WA HY)  and Lp =LY (WHE HEB).

17
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Then Lemma 2 implies that L 4 and L g only depend on |K§‘ |, Kp, Ex, and Eyy, and are independent
of £. Moreover, since hi”? =0, forall k € K% and i € [ng], we have

Ly (WhA HY) = X log(K) + (1 — ) - log(K) = log(K). (17)

Now we prove Theorem | by contradiction. Suppose there exists a pair (k,k’) such that
limy_, o wi* — wp* # 0,. Then there exists € > 0 such that for a subsequence { (w®*, h**)}7° |
and an index ¢y when ¢ > {,, we have || W;"* — W,?f’* H > €. Now we figure out a contradiction
by estimating the objective function value on (W &> H%*)_ In fact, because (W *¢* H%*) is a

minimizer of £/(W*, H*), we have
Lae (Wag,*’Hag,*) S L (Wag,A Hag,A)
E‘Ll7 lK ‘ L |K |
K4|-n% + |K |-n TR + |K |-n

log( )

1 f—)oo
=1L ——— (log(K) — L L 1
A+ KnRo + 1 (og( )—La) = La, (18)

where we define K := |K?|/|K%]| and use R = n', /n%.

5% Qg%

However, when ¢ > /, because ||wa —w, || > € > 0, Lemma 2 implies that
LY (WX H"*) > Ly + e,

where €2 > 0 only depends on ¢, |K?4 |, Kg, Eg, and Eyy, and is independent of £. We obtain

e — 3 511 . s W, B
—_— 'Ei L o E——
g T lﬁilﬂK | L (Wt O
- 5, |+ S ———
K K
=R | |+|K gy Lat e g, ‘ |+|K B
:LA+€2+;(LB—LA—€2) 2% La+ e, (19)

KR + 1

a
where > uses (W% HB) is the minimizer of Eq. 16. Thus we meet contradiction by comparing
Eq. 18 with Eq. 19 and achieve Theorem 1.

Proof of Lemma 2. The proof of Lemma 2 is the same as Lemma 5 in Fang et al. (2021) regardless of
A, as demonstrated in Eq. 17; hence, we omit the details and refer the reader to Fang et al. (2021) O

C.3 PROOF OF OUR METHOD

To prove that only mixed labels (a, b) for the case where a < b ensures Theorem 1 and Proposition 1,
we demonstrate that the following statement is true.

Proposition 2. Let K< be the mixed label set where a < b for all (a,b) € K2 and WH£‘< be the
partial matrix of W which has class vectors for mixed labels (a,b) € K<.

Then, W is a K -simplex ETF if W< is a |K<|-simplex ETF.

For the simplicity, we remove the subscript K< of Wné< and w§< in the following proof.

18
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Proof. Let f(x;a, 3) be the probability density function of Beta distribution D) («, ). For the
mixup ratio A sampled from D («a, o), we have

w(, ) =Ex (Awa + (1 — \wy)
£ 2B (v + (1= Nwn) + (1= N + Au))

1
L w, wy). 0)

where in =, we use f(\; o, @) = f(1 — A\, ).

From the definition of a simplex ETF, we get

> wl,, =0 1)

(a,b)eK<

Plugging the equality of Eq. 20 into Eq. 21, we have

K
K—1
Do Wy =g D wi=0
(a,b)eK< i=1
K
Lowp ==Y w;, Vi€ K] (22)

J#i
From the definition of K<, we can get < i, j, k > for all 7 € [K], satisfying
Wi = W)~ Wiy + Wi (23)
where {a,b} = (a,b) if a < b otherwise (b, a) and i # j # k.

_1

Now, we show that w, w; = — is true for all 5 # 4/

K—1
wlw, "= (w?i,j} — Wiy + "”?i,k})T (“’?i/,j'} — Wiy + “’fi/,k%)
a 1
- TK-1 @4)
where in £, we use the property of the simplex ETF, i.e., (w?a’b))T w(’\a,’b,) = — 4+ for all
(a,b) # (a’,b"). We complete the proof. O
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D EXPERIMENTAL SETUP

Implementation Details. Our experiments follow the setups of Zhong et al. (2021) and Zhou
et al. (2020) for CIFAR10-LT, ImageNet-LT, Places-LT, and iNaturalist2018 and Yang et al. (2022)
for CIFAR100-LT. We employ ResNet32 for CIFAR10-LT, doubling the feature dimensions for
CIFAR100-LT. For ImageNet-LT and iNaturalist2018, we use ResNet50, and for Places-LT, use
ResNet152, respectively. To reproduce baseline comparisons, we adopt the same hyperparameter
settings as in Zhong et al. (2021) and Zhou et al. (2020).

Datasets. Following Zhong et al. (2021); Zhou et al. (2020), we use the long-tailed variants of
CIFAR10, CIFAR100, ImageNet (Russakovsky et al., 2015), Places365 (Zhou et al., 2017), and
iNaturalist2018 (Cui et al., 2018).

CIFARIO-LT. 10 imbalanced classes, subsampled at exponentially decreasing rates from CI-
FAR10 (Zhong et al., 2021).

CIFARI100-LT. 100 imbalanced classes, constructed analogously to CIFAR10-LT.

ImageNet-LT. Derived from ImageNet for large-scale object classification. Class frequencies follow a
Pareto distribution (o« = 5) with cardinalities from 5 to 1,280, totaling 115.8K images across 1,000
classes.

Places-LT. An extended version of Places, with class sizes ranging from 5 to 4,980, yielding 184.5K
images from 365 classes.

iNaturalist2018. A large-scale real-world species classification dataset with extreme label imbalance,
comprising 437,513 images from 8,142 categories.

Architectures. For CIFAR10-LT, we use ResNet32 (Zhong et al., 2021) with three residual blocks,
producing feature dimensions of 16, 32, and 64, respectively. CIFAR100-LT doubles these dimensions.
Differing from the standard ResNet architecture used for ImageNet, the ResNet32’s first convolutional
layer has a kernel size, stride, and padding of 3, 1, and 1, respectively. ResNet50 and 152 follow He
etal. (2015).

Hyperparameters. For CIFAR10/100-LT, models are trained with mini-batch size 128 using SGD
with momentum 0.9 and weight decay 2e-4 for 200 epochs. The learning rate is linearly warmed
up from 0.02 and decayed by 0.1 at epochs 160 and 180. For ImageNet-LT and Places-LT, models
are trained with SGD (momentum 0.9, weight decay Se-4) and a cosine annealing scheduler. Mixup
alpha is set per dataset: o = 1.0 for CIFAR10/100-LT, o = 0.2 for others.

20



Under review as a conference paper at ICLR 2026

E ABLATION STUDY

Table 4: Ablation study on CIFAR10/100-LT datasets with various imbalance factors. The results
are the mean of five repeated experiments with random seeds. Best in bold (CBS: Class-Balanced
Sampler, CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler)

CIFAR10-LT CIFAR100-LT
Sampler CIf. imbalance factor imbalance factor

200 100 50 10 200 100 50 10
random FC | 66.77 | 72.94 | 78.64 | 88.05 | 39.06 | 42.88 | 48.31 | 63.03
random MS | 53.11 | 64.08 | 68.56 | 80.56 | 33.42 | 36.87 | 41.66 | 56.71
BMLS FC | 73.13 | 78.85 | 83.07 | 89.46 | 40.03 | 45.20 | 51.99 | 65.72
BMLS MS | 74.70 | 79.67 | 83.46 | 88.51 | 41.71 | 47.62 | 52.74 | 64.47

F SYNERGY WITH FIXED ETF CLASSIFIER

In Yang et al. (2022), a scale factor is necessary for the fixed ETF classifier, due to class vectors
are normalized. For this reason, we make a modified version of the fixed ETF classifier to apply
our methods, named as fixed Mixed-Singleton Weighted ETF classifier (MS-WETF). The scale of
class vectors is important for softmax cross-entropy loss. Thus, we remove the scale factor and add
learnable parameter s € R¥ to control the scale of each class vectors.

Wwere = s - WErr

Then, we make Wygrr as Mixed-Singleton classifier
Wits WeTE () = IAWOWETE.a + (1 — A)WwETE b] (a,) ek
Table 5: Extension to the fixed ETF classifier on CIFAR10/100-LT datasets with various imbalance

factors. The results are the mean of five repeated experiments with random seeds. Best in bold (CBS:
Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler)

CIFAR10-LT CIFAR100-LT
Sampler CIf. L imbalance factor imbalance factor
200 100 50 10 200 100 50 10

random ETF CE" | 60.06 | 67.00 | 77.20 | 87.00 | N/A N/A N/A N/A
random ETF DR | 71.90 | 76.50 | 81.00 | 87.70 | 40.90 | 45.30 | 50.40 | N/A
random ETF DR | 71.58 | 76.82 | 81.25 | 87.59 | 41.20 | 45.07 | 50.71 | 63.08
CBS ETF DR | 69.35 | 75.46 | 81.15 | 88.38 | 38.78 | 42.96 | 48.84 | 62.01
CAS ETF DR | 69.17 | 76.16 | 80.81 | 88.61 | 38.91 | 43.18 | 49.05 | 62.50
BMLS ETF DR | 77.77 | 80.38 | 84.30 | 87.91 | 39.54 | 43.60 | 49.54 | 62.06
diff. | +6.19 | +3.56 | 43.05 | +0.32 | -1.66 | -147 | -1.17 | -1.02
BMLS MS-WETF CE | 77.73 | 80.31 | 8422 | 88.26 | 42.73 | 47.10 | 52.44 | 64.10
diff. | +6.15 | +3.49 | +2.97 | +0.67 | +1.53 | +2.03 | +1.73 | +1.02
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G ADDITIONAL EXPERIMENTAL RESULTS

According to Liu et al. (2019), we also calculate top-1 test accuracy of three disjoint set: many,
medium, and few classes. The classes included in each set for the respective datasets are described in
Table 6. In the tables of experimental results about many, medium, and few classes, we the mean and
std of top-1 test accuracies as meansq.

Table 6: The classes in Many/Medium/Few class sets.

CIFARIO0-LT CIFARI00-LT Places-LT ImageNet-LT iNaturalist2018
Many [0,2] [0,35] [0, 130] [0, 389] [0, 841]
Medium [3.6] [36,70] [131, 287] [390, 835] [842, 4542]
Few [7,9] [71,99] [288, 364] [835, 999] [4543, 8141]

Table 7: Comparison experiments of samplers on the CIFAR10/100-LT dataset with various imbalance
factors. The results are the mean of five repeated experiments with random seeds. Best in bold (CBS:
Class-Balanced Sampler, CAS: Class-Aware Sampler, BMLS: Balanced Mixed Label Sampler) (Gray
indicates that it is not a comparison target)

CIFARI0-LT CIFAR100-LT

Method imbalance factor imbalance factor

200 | 100 [ 50 | 10 [ 200 [ 100 [ 50 [ 10
mixup
Mixup (Zhang et al., 2018) 67.30 | 72.80 | 78.60 | 87.70 | 38.70 | 43.00 | 48.10 | 58.20
Remix (Chou et al., 2020) N/A | 73.00 | N/A | 88.50 | N/A | 4140 | N/A | 59.50
CMO (Park et al., 2021) N/A N/A N/A N/A N/A | 4390 | 48.30 | 59.50
SBN-mix (Baik et al., 2024) 69.87 | 76.33 | 81.04 | 89.84 | 40.30 | 45.07 | 50.39 | 62.37
OTMix (Gao et al., 2023) N/A | 78.30 | 83.40 | 90.20 | N/A | 46.40 | 50.70 | 61.60
2-stage or extra network
BBN-mix (Zhou et al., 2020) N/A | 79.82 | 82.18 | 88.32 | N/A | 42.56 | 47.02 | 59.12
DBN-mix (Baik et al., 2024) 79.58 | 83.47 | 86.82 | 90.87 | 46.21 | 51.04 | 54.93 | 64.98
UniMix (Xu et al., 2021) 78.48 | 82.75 | 84.32 | 89.66 | 42.07 | 4545 | 51.11 | 61.25
MiSLAS (Zhong et al., 2021) N/A | 82.10 | 8570 | 90.00 | N/A | 47.00 | 52.30 | 63.20
CP-Mix (Yoon et al., 2025) 78.34 | 82.44 | 85.08 | 89.87 | 43.56 | 48.20 | 52.12 | 61.91
class-balance loss
CB+RS (Cao et al., 2019) N/A | 70.55 | N/A | 86.79 | N/A | 33.44 | N/A | 55.06
CB+RW (Cui et al., 2019) N/A | 7237 | N/A | 86.54 | N/A | 3399 | NJA | 57.12
CB+Focal (Cui et al., 2019) N/A | 7457 | N/A | 87.10 | N/A | 36.02 | N/A | 57.99
LDAM (Cao et al., 2019) N/A | 7335 | N/A | 8696 | N/A | 39.60 | N/A | 5691
LDAM+DRW (Cao et al., 2019) N/A 77.03 N/A 88.16 N/A 42.04 N/A 58.71
class-balance sampling
CAS (Shen & Lin, 2016) N/A | 6840 | N/A | 8690 | N/A | 3190 | N/A | 55.00
LOM (Zhang et al., 2022) N/A | 7420 | N/A | 8940 | N/A | 41.50 | N/A | 59.90
CAS+DRW (Shen & Lin, 2016) N/A | 73.50 | N/A | 87.70 | N/A | 41.50 | N/A | 57.60
LOM+DRW (Zhang et al., 2022) N/A 78.70 N/A 89.60 N/A 46.20 N/A 61.10
reproduced results and our method
random+Mixup 66.77 | 72.94 | 78.64 | 88.05 | 39.06 | 42.88 | 48.31 | 63.03
CBS+Mixup 70.17 | 76.63 | 81.15 | 89.24 | 39.61 | 44.24 | 49.99 | 63.90
CAS+Mixup 69.90 | 76.43 | 81.42 | 89.24 | 40.28 | 44.65 | 50.07 | 63.57
BMLS+MS 74.70 | 79.67 | 83.46 | 88.51 | 41.71 | 47.62 | 52.74 | 64.47
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Table 8: Experimental results on Many/Medium/Few classes in the CIFAR10/100-LT datasets.

Method CIf. CIFARI10-LT CIFARI100-LT
many med few all many med few all
random  FC 91.173.65  69.992.25  38.09.32 | 66.770.76 | 71.160.52  35.22¢.20 3.850.47 39.060.23
=] CBS FC 82.632.72 6929379  58.893.94 | 70.179.51 | 6592051  39.44¢.96 7.150.50 39.619.50
< CAS FC 85.653.74  67.673.86  57.144.43 | 69.900.77 | 66.320.55  40.54¢.59 7.620.28 40.28.29
E BMLS FC 90.490.26  74.121.21 5443225 | 73.130.67 | 65290.45 41.330.76 7.090.37 40.03¢0.38
BMLS MS | 8894g.30 7297g.83 6277130 | 74.700.45 | 63.240.57 44.860.42 11.199.76¢ | 41.710.36
random FC 93.395 4o 74.055 03 50.995 40 72.94¢ 68 72.09¢0 .21 41.109 .40 8.770.42 42.880.15
= CBS FC 90.892.45  7431l2.99 6546576 | 76.630.41 | 67.070.74  46.290.72  13.43¢.37 | 44.240.14
. CAS FC 90.545.86  75.541.95 63.51g.26 | 76430.60 | 68280.35 46.479.34 13.129.05 | 44.650.26
E BMLS FC 88.531.01  77.840.25 7053127 | 78.850.34 | 68.38p.27 46.899.33 14.379.85 | 45.200.33
BMLS MS | 89.140.63 76340.62 T4.630.69 | 79.670.21 | 66.31g.26 49.800.57 21.800.40 | 47.62¢.25
random FC 95.250_23 78.520_54 62.191_04 78.640_57 73.720_18 48.620_23 16.400_93 48.310_28
o CBS FC 91.573.17  79.621.58  72.784.05 | 81.150.48 | 68.800.46  52.970.28  23.060.56 | 49.990.13
A CAS FC 92.780.43  79.280.46  72.890.96 | 81.429.27 | 69.160.61  52.719.34  23.18p.41 | 50.07¢.27
E BMLS FC 91.860.40 81.320.36  76.631.05 | 83.070.43 | 69.770.55 54.550.28 26.83p.67 | 51.99¢.26
BMLS MS | 89450.15 7929054  83.030.50 | 83.460.36 | 67.060.51  55.300.84 31.881.30 | 52.74¢.55
random FC 94.790_55 85.380_27 84.861_23 88.050_27 76.060_32 64.100_63 45.560_57 63.030_17
= CBS FC 93.950.7s  86.040.57 88.8lp.2s | 89.249.37 | 72420.64  65760.4a5 51.08p.69 | 63.900.37
2 CAS FC 94.149.203  86.340.24  882lp.a3 | 89.249.18 | 72.590.49  65200.47  50.400.66 | 63.570.26
E BMLS FC 91.170.40  87.040.26 90.980.59 | 89.460.19 | 71.050.70 68.930.66 55.240.47 | 65.720.29
BMLS MS | 91.630.60 8492063 90.180.56 | 88.51p.19 | 71.6lg.21  65.671.20 54.171.49 | 64.47¢.24
Table 9: Experimental results on Many/Medium/Few classes in the Places-LT datasets.
Method CIf. Places-LT Places-LT (FT)
many med few all many med few all
random FC 42.020,75 15.790,54 0.860,12 22.060,50 43.790,29 20.450,27 6.590,25 25900.06
CBS FC 38.651.097  22.601.20 5.690.52 24.790.13 | 41.310.00  39.98p.17  25.110.11 37.320.07
CAS FC | 40.680.33  20.08¢.53 4.860.50 24.260.22 | 41.350.08  40.060.06  25.460.17 | 37.440.04
BMLS FC 38.43¢.21 27.800.12 7470.26 27.330.17 34.650.04 43.790.05 29.000.08 37.390.01
BMLS MS | 3939g.32 27.0lp.40 10399.12 | 27.950.26 | 41.33g.00  40.149.00  27.050.15 | 37.81¢.01
Table 10: Experimental results on Many/Medium/Few classes in the ImageNet-LT and iNaturalist2018
datasets.
Method  CIf. ImageNet-LT iNaturalist2018
many med few all many med few all
random FC 67.760,43 38.720,50 9~330.28 45.190,43 774550,39 66.660,38 59»49038 64.620,31
CBS FC 62.460.91 4455110  20.000.92 | 47490.99 | 6325022  68.360.15 66.639.18 | 67.060.04
CAS FC 63.040.31  43.830.34 19.530.40 | 47.310.33 | 63.990.63 68.800.02 67.100.08 | 67.550.09
BMLS FC 62.350.60  46.530.43  23.080.54 | 48.830.55 | 6444252  6833p.37  66.199.87 | 66.980.19
BMLS MS 59.03¢.89 45.871 .01 24.860.92 47.540 94 51.73¢ .83 57.150.14 57.18¢ .28 56.600.18
Table 11: Experimental results of the ablation study on Many/Medium/Few classes in the

CIFAR10/100-LT datasets. The results are the mean of five repeated experiments with random

seeds.

Method  CIf. CIFAR10-LT CIFAR100-LT
many med few all many med few all

s random FC 91.173455 69.992425 38.095,32 66.770476 71.160,52 35.220420 3.850447 39.060423
S | random MS 88.590.19 53.771.07 16.741 .04 53.110.58 64.590.75 28.430.49 0.750.15 33.420.37
’g BMLS FC 90.490 .26 74.121 21 54435 25 73.130.67 65.290.45 41.330.76 7.090.37 40.030.38
T | BMLS MS | 8894032 72.970.835 6277130 | 74700.45 | 6324057 4486042 11.199.7¢ | 41.710.36
o random FC 93.392,42 74.052403 50.995.40 72-940,68 72.090,21 41.100440 8.770,42 42.880415
S | random MS 89.470.46 62245 2 41.153.22 64.081 .59 67.290.31 33.840.61 2.780.32 36.870.24
’g BMLS FC 88.531.01 77.84¢.25 70.531 27 78.850.34 68.380.27  46.899.33 14.379 .88 45.200.33
- BMLS MS 89.14¢ .63 76.340.62 74.630.69 79.670.21 66.310.26 49.800.57 21.800.40 47.62¢.25

random FC 95.250,23 78.520454 62.191 .04 78.640457 73~720.18 48.620,23 16.400.93 48.310,28
& | random MS 90.04¢.63 64.801.76 52.111.06 68.560.50 68.280.69 42.17¢.89 8.000.52 41.660.42
E BMLS FC 91.860.40 81.320.36 76.631.05 83.070.43 69.770.55 54.550.28 26.830.67 51.990.26

BMLS MS 89.450.15 79.290.54 83.030.50 83.460 .36 67.060.51 55.300.84 31.881.39 52.74¢ 55

random FC 94.790,55 85.380(27 84.861.23 88.050(27 76.060,32 64.100(63 45.560.57 63.030, 17
9 random MS 91.540,43 76.311402 75.251.44 80.560476 71.910,35 57.380490 37.030,72 56.710448
E BMLS FC 91.170.40 87.040.26 90.98¢.59 89.460.19 71.050.70 68.930.66 55.240.47 65.720.29

BMLS MS 91.630.60 84.929 63 90.18¢.56 88.510.19 71.610.21 65.671.20 54.171 .49 64.47¢.24

23




Under review as a conference paper at ICLR 2026

Table 12: Experimental results of extension to the fixed ETF Classifier on Many/Medium/Few classes
in the CIFAR10-LT dataset. The results are the mean of five repeated experiments with random seeds.

Method CIf. L CIFARIO-LT
many med few all
random ETF DR 84.13@64 73.890.92 55.941424 71.58()‘39
= CBS ETF DR | 81.053.12 69.262.29 57.774.75 | 69.350.38
2 CAS ETF DR | 87.676.09 72.170.94 46.676.61 | 69.170.67
E| BMLS ETF DR | 84.520.47 74.150.36 75.850.66 | 77.770.13
BMLS MS-WETF CE 85.410.71 74.960.45 73.740.72 77.730.32
random ETF DR 83.750‘92 75.420‘30 71.750‘95 76.820_20
= CBS ETF DR | 88.893.19 74.462.41 63.376.15 | 75.460.37
- CAS ETF DR | 91.030.54 75979.44 61.552.15 | 76.160.56
£ | BMLS ETF DR | 88.850.16 77.5lo.s0  75.740.42 | 80.380.23
BMLS MS-WETF CE | 86.710.88 76.280.69 79.271.39 | 80.310.43
random ETF DR 85.4—50,50 78.600_28 80.590‘42 81.250,18
2 CBS ETF DR | 9141107 7915105 73.571.93 | 81.150.37
© CAS ETF DR | 91.021.6s 79.261.09  72.682.07 | 80.81¢.22
E| BMLS  ETF DR | 8817021 8020019 858700 | 84300.07
BMLS MS-WETF CE | 87.0lp.s0 80.360.67 86.590.29 | 84.22¢.43
random ETF DR 89.67()‘52 83.81 0.28 90.54()‘39 87.59& 18
o CBS ETF DR | 92.799.23 85.140.38 88.280.41 | 88.380.25
= CAS ETF DR | 92.879.28 85.330.60 88.72p.22 | 88.61¢.21
5 BMLS ETF DR | 88.760.03 85.081.00 90.83¢p.79 | 87.91¢.24
BMLS MS-WETF CE | 91.27932 85.890.20 88.400.42 | 88.260.04

Table 13: Experimental results of extension to the fixed ETF Classifier on Many/Medium/Few classes
in the CIFAR100-LT dataset. The results are the mean of five repeated experiments with random
seeds.

Method CIf. C CIFAR100-LT
many med few all
random ETF DR | 68.230.59 42.050.52 6.630.29 41.200 15
S CBS ETF DR | 6390117 3898081 7.360.77 | 38.780.25
S CAS ETF DR | 64.100.66 38.860.68  7.680.31 38.91¢.43
E | BMLS ETF DR | 6381045 39.09 60 994054 | 39.540 .45
BMLS MS-WETF CE | 65.58070 4526051 11.32052 | 42.730.41
random ETF DR | 69.850.40 47.220.35 11.720.81 | 45.070.25
8 CBS ETF DR | 6543088 44.780.94 12.880.91 | 42.96¢.25
; CAS ETF DR | 66.040.40 44.730.32 1293035 | 43.180.18
£ | BMLS ETF DR | 655915 4449045 1521040 | 43.600 22
BMLS MS-WETF CE | 6344032 Sl.1S0s7  21.920.72 | 47.100.47
random ETF DR | 70.560.30 53.520.65 22.690.70 | 50.71¢.24
g | CBS ETF DR | 6773054 51.150.13 22.590.50 | 48.840.16
o CAS ETF DR | 67.87055 51.580.62 22.630.7s | 49.050.36
E | BMLS ETF DR | 6621055 51.02040 27.060.50 | 49.540.30
BMLS MS-WETF CE | 67.020.90 54.66060 31.660.41 | 52.440.40
random ETF DR | 7276020 64.48050 49.39036 | 63.080.21
= | cBs ETF DR | 70.89 45 6373042 48.900 .40 | 62.010 10
= | cas ETF DR | 7113045 63.89% 51 50.12045 | 62.500 27
E | BMLS ETF DR | 6895100 64.83071 50.181.26 | 62.060.22
BMLS MS-WETF CE | 6881040 64.950.46 57.240.2s | 64.100.25
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