
Motion Graph Unleashed:
A Novel Approach to Video Prediction

Yiqi Zhong13∗ Luming Liang1∗ Bohan Tang2 Ilya Zharkov1 Ulrich Neumann3

1Microsoft 2University of Oxford 3University of Southern California
1{yiqizhong,lulian,zharkov}@microsoft.com

2bohan.tang@eng.ox.ac.uk 3{yiqizhon,uneumann}@usc.edu

Abstract

We introduce motion graph, a novel approach to the video prediction problem,
which predicts future video frames from limited past data. The motion graph
transforms patches of video frames into interconnected graph nodes, to comprehen-
sively describe the spatial-temporal relationships among them. This representation
overcomes the limitations of existing motion representations such as image differ-
ences, optical flow, and motion matrix that either fall short in capturing complex
motion patterns or suffer from excessive memory consumption. We further present
a video prediction pipeline empowered by motion graph, exhibiting substantial
performance improvements and cost reductions. Experiments on various datasets,
including UCF Sports, KITTI and Cityscapes, highlight the strong representative
ability of motion graph. Especially on UCF Sports, our method matches and
outperforms the SOTA methods with a significant reduction in model size by 78%
and a substantial decrease in GPU memory utilization by 47%. Please refer to this
link for the official code.

1 Introduction

Video prediction aims at predicting future frames given a limited number of past frames. This
technology has potential for numerous applications, including video compression, visual robotics,
and surveillance systems. A critical aspect of designing an effective video prediction system is the
precise modeling of motion information, which is essential for its successful deployment.

Figure 1: (A) Hard cases which cannot be properly modeled by most existing representations. (B)
Motion graph transforms single-frame patches into interconnected nodes, describing the spatial-
temporal relationships. Future per-pixel motion dynamic vectors are then predicted on this graph.

1Equal contributions. The work is mostly done during Yiqi Zhong’s internship at Microsoft.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Kay1794/Motion-Graph-Video-Prediction

At first glance, video prediction appears as a sequence prediction problem, with conventional ap-
proaches using advanced sequential data modeling techniques such as 3D convolution [1, 2], recurrent
neural networks [3, 4, 5, 6, 7], and transformers [8, 9, 10]. These methods implicitly model motion
and image appearance to help reason sequence evolution. However, the implicit approach to motion
modeling can result in inefficient learning, which stems from the inherent difference between video
prediction and typical sequence prediction: in typical sequence prediction, features tend to evolve
uniformly; whereas video prediction involves not only static elements like object appearance but also
dynamic elements intricately embedded in the sequence, e.g., motion-related information, including
object pose and camera movement. Effectively managing both the static and dynamic aspects of the
hidden feature space presents a great challenge.

Instead of treating video prediction purely as a sequence prediction problem, an alternative approach
is to explicitly model inter-frame motion, and redefine the task primarily as a motion prediction
problem [11, 12, 13, 10, 2]. For this approach, it is crucial to select an appropriate motion repre-
sentation, which should exhibit expressiveness by accurately encapsulating motion with detailed
information like direction and speed. However, as Section 2 and Table 1 will elaborate, existing video
motion representations have limitations. Some, as Figure 1(A) demonstrates, lack representative
ability for complex scenarios. For example, optical flow is unable to handle motion blur and object
distortion/deformation resulting from perspective projection. Others over-sacrifice memory efficiency
to model complex motion patterns, such as the motion matrices proposed in MMVP [2].

To fill the gap in existing research, we propose a novel motion representation: the motion graph,
which treats image patches of the observed video frames in the downsample space as interconnected
graph nodes based on their spatial and temporal proximity; See Figure 1 (B) for an illustration.
This approach achieves both goals of representativeness and compactness by generating accurate
predictions while conserving memory and computational resources. For the representative ability, our
motion graph enriches each node with dynamic information, including multiple feasible weighted
flows toward the subsequent frame. This method captures a broader range of motion patterns compared
to single-direction representations like optical flow and enhances error tolerance. Additionally, the
motion graph excels in compactness by avoiding computation-heavy operations such as stacked
convolutional layers. To reduce computational complexity, we also limit the connections in the
motion graph to a fixed number of neighbors for each node. Consequently, compared to previous
representations (e.g., motion matrix, keypoint heatmap), the motion graph offers a more sparse and
memory-efficient modeling of motion, effectively transcending the limitations of 2D image structures.

Based on the motion graph we have introduced, we present a novel video prediction pipeline. The
representative ability and compactness of the motion graph allow our system to have achieved notable
enhancements in computational efficiency. We test various scenarios with different motion patterns
on three well-known datasets, UCF Sports, KITTI, and Cityscapes. Across all three datasets, our
approach consistently exhibits performance that aligns with or surpasses the state-of-the-art (SOTA)
methods with significantly lower GPU comsumption.

2 Related Works

In this section, we mainly discuss the existing video prediction systems that apply to the setting of
short-term high resolution video prediction, please see more details about the setting in Section A.5.

Based on whether they explicitly model motion, existing video prediction methods can be put into two
categories. Methods that do not explicitly model motion usually consider video prediction purely as a
sequence prediction problem [3]. They use advanced sequential modeling techniques such as recurrent
neural networks [4, 3, 5, 14, 15, 16, 17, 18] and transformers [8, 10, 19, 20] to estimate the evolution
of image features in the hidden space along the temporal dimension. However, video prediction holds
a unique property that is unlike text generation or other sequence prediction problems: that is, most
features in video sequences (e.g., object appearance, scene layout, texture of the background) usually
remain unchanged, or have no major swift change, from frame to frame. Yet, sequential modeling
techniques treat the whole image features uniformly; using them for video prediction thus requires
modification in the inner structure of certain sequential modeling architectures to accommodate
this property of video prediction. Some works choose to enhance the spatial consistency by adding
complex residual shortcuts [4, 17, 21], or by decomposing temporal and spatial information into
two separate hidden spaces, hoping that the network will figure out which to maintain and which

2

to change [15, 16]. Although such accommodations sometimes help systems reach impressive
prediction accuracy (given the powerful sequential modeling capability of the advanced techniques),
these methods tend to have larger model sizes and complicated architectures.

To improve the efficiency of motion modeling in systems, this paper extends the idea shared by the
second type of methods, which treat video prediction as a motion prediction problem, and explicitly
model the motion hidden in image sequences. Such methods either reason future motion patterns
using certain representations with image features as the input, or solely use motion representations
as the input for prediction. There are four lines of work on motion representations. First, image
difference [11, 10] uses the subtraction of two consecutive frames to represent the dynamic of image
sequences. It requires almost no computational cost to calculate but does not directly describe motion.
Second, optical flow/ voxel flow [22, 23, 24, 13] describes the pixel-level motion. But, it usually
requires auxiliary or out-of-shell models to generate, and is limited to only modeling one-to-one
relationships [2], which can be a disadvantage, especially for scenarios with ambiguous pixel-to-pixel
correspondence (e.g., motion blur). Third, key point trace [12] serves highly structured scenarios
(e.g., videos with static backgrounds and dominated by human motions) but can be inefficient for
more complex content, including crowded scenes with multiple objects. Fourth, the recent motion
matrix [2] describes the all-pair relationship between consecutive frames to overcome the drawback
of optical flow. While motion matrix supports a more efficient and compact system of a notably
smaller size, concerns were over the computational and space complexity of its operations [2].

Table 1: Motion representation comparison. We assess the representative ability by judging how
accurate the motion can be described, especially for the hard cases demonstrated in Fig 1(A).

Motion Representation Out-of-shell Model Representative Ability Space Complexity
Image difference [11, 10] n/a low O(n)

Keypoint trace [12] required medium O(n)
Optical flow/ voxel flow [22, 23, 24, 13] Some required medium O(n)

Motion matrix [2] n/a high O(n2)
Motion graph (ours) n/a high O(n)

Besides the above motion representations, we notice that graph, as a sparse data structure that can
accurately describe the relationships between entities, has been widely adopted in ordinary motion
prediction systems, such as trajectory forecasting [25, 26, 27] and human motion prediction [28, 29,
30]. Inspired by these successful adoptions, we propose to represent the motion in videos using graph
structures, named motion graph in this work.

The major difference between motion graph and previous motion representations is that motion graph
can describe many-to-many temporal and spatial correspondence with low space complexity. Such
sparse representations not only enhance representative ability but also advantageously i) replace
most 2D convolution operations by graph operations which are mostly implemented by linear layers,
leading to faster and more parameter-efficient systems; ii) enable convenient spatial and temporal
interactions among feature patches, promoting higher learning efficiency and prediction accuracy.

3 Methodology

In this work, video prediction is approached as a motion prediction problem, utilizing a novel
representation called the motion graph. This representation is designed to effectively capture the
intricate motion dynamics within video sequences. Leveraging the motion graph, we develop a
video prediction pipeline that achieves high performance with reduced model size and GPU memory
requirements. Section 3.1 details our problem formulation and notation. Section 3.2 explains the
construction of the motion graph from input video sequences. Finally, Section 3.3 delves into our
video prediction pipeline, illustrating how the motion graph is used for effective video prediction.

3.1 Problem Formulation

Given a video sequence with T frames {It ∈ RH×W×3|t = 0, 1, ..., T − 1}, a video prediction
system aims to predict the next T ′ frames {It′ ∈ RH×W×3|t′ = T, T + 1, ..., T + T ′ − 1}. We
approach this task by regarding video prediction as a pixel-level motion prediction problem.

3

Figure 2: Motion graph node construction: Cosine similarity, denoted by (,), between patch
features in consecutive frames is computed to further choose top k directions for each patch. Tendency
vtf(m)

i and location features vlf(m)

i are then generated based on these k vectors and the patch location.

Consider a pixel located at (x, y) in a given video frame It. Our system is designed to predict k
dynamic vectors starting from this pixel, pointing to the possible locations in the target future frame
It′ . These vectors represent the pixel’s anticipated motion from its current position in It to its future
position in It′ . Mathematically, we express the dynamic vectors of all pixels across the observed
frames as P ∈ RT×H×W×k×3, where Pt,x,y =

[
[∆x1,∆y1, w1], ..., [∆xk,∆yk, wk]

]
with both the

motion direction (∆xk,∆yk) and the weighted component (wk). The transformation of previous
frames into future frames is performed by a pixel-level image warper, denoted as

−→
W . The warping is

based on the predicted dynamic vectors and is formally defined by the following equation:

ÎT =
−→
W(P, I0, ..., IT−1). (1)

This formulation allows us to capture and translate the intricate motion dynamics within the video
sequence into future frame predictions with enhanced accuracy.

3.2 Motion Graph

3.2.1 Intuition

Inspired by advancements in general motion prediction systems [25, 26, 30], we posit that modeling
semantic correlations among image patches within observed frames is essential for improving current
motion representations in video prediction. To capture such correlations, we first model the semantic
information of each image patch across a video with T observed frames. This is achieved by multi-
scale image patch feature mappings, F = {f (1), · · · , f (M)}, generated by inputting each observed
frame into a shared image encoder genc and applying a pixel unshuffle technique [31] to reshape all
M feature maps to the resolution of the smallest features. Here, the smallest resolution of the features
generated by genc is Hs ×Ws, and f (m) ∈ RT×Hs×Ws×Cm represents the feature map in the m-th
scale containing the Cm-dimensional features of T ×Hs ×Ws distinct image patches.

Based on F , we construct a multi-view graph, named motion graph, to capture the semantic correla-
tions among T ×Hs ×Ws image patches. This graph is represented as: G = {V, E(1), · · · , E(M)},
where V = {v0, · · · , vTHsWs−1} denotes the set of nodes each corresponding to an image patch,
and E(m) denotes the edge set for the m-th view capturing the correlations driven by the semantic
information within f (m). We detail the graph construction and the graph-related operations as follows.

3.2.2 Node Motion Feature Initialization

For each node vi in the m-th view, we initialize its motion feature vf(m)

i ∈Rd
(m)
mf with two components:

the tendency feature vtf(m)

i ∈Rd
(m)
tf and the location feature vlf(m)

i ∈Rd
(m)
lf . The tendency feature

vtf(m)

i captures the node’s motion-related attributes relative to nodes in the subsequent frame and the

location feature vlf(m)

i models the normalized absolute location of each node in a frame.

Inspired by prior works [2, 32], we generate the tendency feature vtf(m)

i in three steps. First, for each
node vi, we form a node list L(m)

i by choosing top-K scoring image patches from the subsequent
frame based on the cosine similarities computed by f

(m)
⌊ i
HsWs

⌋
and f

(m)
⌊ i
HsWs

⌋+1
. By doing so, we mitigate

4

the risk of false positives and better accommodate complex motion patterns, especially in downscaled
spaces where an image patch may exhibit multiple potential movements. Second, we define the
dynamic vector for each node vi as d(m)

i = [∆x1,∆y1, w1, · · · ,∆xK ,∆yK , wK] ∈ R3K , where
∆xk,∆yk indicate the motion direction and wk is the cosine similarity score between vi and the k-th
node in L(m)

i . Here, an exception is made for nodes in the last observed frame IT−1, where we apply
zero-padding to the dynamic vectors, as IT is unknown. Finally, we generate the tendency feature
vtf(m)

i for each node by feeding each dynamic vector d(m)
i into a multilayer perceptron (MLP) gtdc(.)

followed by a max-pooling operation φagg(.), as shown in:

vtf(m)

i = φagg(gtdc(d
(m)
i)). (2)

The location feature vlf(m)

i encodes the position of a pixel in a frame. Pixel positions influence
motion patterns. For instance, pixels on the sides of a frame may appear to move differently than
pixels in the center for street views collected by wide-range moving cameras, due to the perspective
projection effect. We use another MLP gloc(.) to extract the location feature and define it as:

vlf(m)

i = gloc

(
x

Ws
,
y

Hs

)
, (3)

Finally, the motion features of each node vf(m)

i are initialized as follows:

vf(m)

i = ⊕(vlf(m)

i ,vtf(m)

i), (4)
where ⊕(·) denotes the concatenation operation. Figure 2 details the node motion feature initialisation.

3.2.3 Edge Construction

After initializing the node features, we construct edges in the motion graph to capture the semantic
relationships between image patches in the observed frames. We further represent the edge set of
the m-th view as E(m) = {ES(m)

, EB(m)

, EF (m)}, where ES(m)

is spatial edges, EB(m)

is backward
edges, and EF (m)

is forward edges. Generally, spatial edges are posit on that neighboring image
patches in a frame likely influence each other’s future motion, and backward and forward edges
connect nodes across adjacent frames indicating potential motion paths. Notably, nodes in the first
frame are not assigned backward edges, and nodes in the last frame are not assigned forward edges.

We construct these edges in two steps: 1) finding the neighbors of each node connected by spatial,
backward, and forward edges respectively; and 2) generating the three types of edges by connecting
the neighboring nodes found. For the first step, we denote N S(m)

i , NB(m)

i , and NF (m)

i as sets
containing neighbors of vi connected by the spatial, backward and forward edges, respectively. Then,
the neighbors of each node vi are found by solving the following optimization problems:

N S(m)

i = arg max
Ω

||C(m)
i,Ω ||1,1 s.t. Ω ⊆ Si, |Ω| = k,

NB(m)

i = arg max
Ω

||C(m)
i,Ω ||1,1 s.t. Ω ⊆ Bi, |Ω| = k,

NF (m)

i = arg max
Ω

||C(m)
i,Ω ||1,1 s.t. Ω ⊆ Fi, |Ω| = k,

(5)

where C(m) ∈ RTHsWs×THsWs contains cosine similarity scores between nodes in V computed by
f (m), k ∈ Z is a hyperparameter, Si = {vj ∈ V : ⌊ i

HsWs
⌋= ⌊ j

HsWs
⌋}, Bi = {vj ∈ V : ⌊ i

HsWs
⌋=

⌊ j
HsWs

⌋+1}, and Fi = {vj ∈ V : ⌊ i
HsWs

⌋=⌊ j
HsWs

⌋−1}. For the second step, we construct ES(m)

,

EB(m)

, and EF (m)

by connecting each vi with nodes in N S(m)

i , NB(m)

i , and NF (m)

i respectively.

3.2.4 Motion Graph Interaction Module

After constructing the nodes and establishing the edges in the motion graph, we enable information
flow within the m-th view of the graph via the message-passing operation gmp defined as follows:

v′(m)
= gmp

(
v(m), E in(m)

)
, (6)

5

Figure 3: Inside the interaction module for the m-th view Φ(m). The spatial and temporal message
passing are iteratively conducted and repeated T − 1 times, where T is the observed frame number.

where v(m) ∈ RTHsWs×d(m)

is the input node features, v′(m) ∈ RTHsWs×d(m)

is the updated node
features, and E in(m)

denotes an edge set. The operation gmp facilitates the information exchange
between nodes connected by edges in E in(m)

. In practice, the spatial message passing is implemented
as a 2D convolution layer, while for the temporal message passing we use graph neural network to
implement gmp. See implementation details in the appendix.

With the message-passing operation gmp, we introduce a motion graph interaction module, denoted
as Φ and illustrated in Figure 3. The goal of Φ is to ensure that even nodes in the last observed frame
are informed about the motion dynamics from the first observed frame, and vice versa. To achieve
this comprehensive information flow, we implement T−1 rounds of full information transition, where
T is the total number of observed frames. Each round of transition includes twice the spatial message
passing, once the temporal forward message passing, and once the temporal backward message
passing. The combination of spatial and temporal interaction in Φ ensures holistic information
integration for accurate and comprehensive motion prediction in video sequences. The design of Φ
allows for thorough and balanced dissemination of motion information throughout the motion graph.

3.3 Motion-graph-empowered Video Prediction

Figure 4: Pipeline overview. After decoding per-pixel motion features into dynamic vectors, we
perform multi-flow forward warping for future frame generation.

By constructing the motion graph, we create a tool to extract motion information from the observed
video frames. The following passage describes how to conduct video prediction using the constructed
motion graph and its related operations. As Figure 4 indicates, to predict the unknown video frame
involves three main steps, which are elaborated in the following three subsections.

3.3.1 Motion Feature Learning

Multi-view motion feature update. After having the motion graph G = {V, E(1), · · · , E(M)}, with
the node motion feature vf(m)

initialized by Eq. (4) in the m-th view, we use the motion graph
interaction module introduced in Section 3.2.4 to update vf(m)

via the following formula:

v̂f(m)

= Φ(m)
(
vf(m)

, E(m)
)
, (7)

where v̂f(m) ∈ RTHsWs×d
(m)
mf is the updated node features in the m-th view of the motion graph.

Multi-view motion feature fusion. Once the node feature in each view of the motion graph is
updated, we concatenate the node features from each view and apply a fusion module Ψfuse to
integrate these multi-view features into a unified representation as follows:

ffuse = Ψfuse(φcat(v
f(m)

|m = 1, ...,M)), (8)

6

where ffuse ∈ RT×Hs×Ws×Cnode , with Cnode denoting the dimension of the node features.

3.3.2 Motion Feature Upsampling and Decoding

In this step, we transform the fused multi-view motion feature ffuse into a 2D structure with a
resolution of Hs ×Ws. This feature is then upscaled to match the resolution of the original video
frames (H ×W) using a motion upsampler, ΘSR. The architecture of ΘSR is inspired by ResNet-
based image super-resolution networks [33], which progressively refine features from lower to higher
resolutions until reaching the original image size. This upsampling process is key to predicting
pixel-level motion features for all observed frames, which extend toward the next future frame. By
incrementally adjusting the resolution, ΘSR effectively bridges the gap between the multi-view
motion information and the high-resolution requirements of accurate pixel-level motion prediction.

Upon obtaining the pixel-level motion feature fSR
fuse, we use a motion decoder, Ωdec, to convert it into

pixel-level dynamic vectors P. As defined in Section 3.1, P contains k potential motion directions
with associated probability scores for each pixel. This decoding output is compatible with the motion
features in the motion graph, which are generated by the k dynamic vectors of image patches.

3.3.3 Image Warping

After having the dynamic vectors through the decoding process, we use them to warp the observed
frames into the future frame. Unlike traditional methods that often use optical-flow-based backward
warping, our approach follows the design logic of the motion graph feature learning as well as the
output format to use a multi-flow forward warping technique. This method, drawing from the image
splatting concepts in prior works [34, 35], is visually detailed in Figure 4. Forward warping allows
each predicted dynamic vector to directly contribute to the construction of the future frame. To
aggregate the contributions of multiple vectors at each pixel location in the synthesized frame, we
apply a normalization operation φnorm. It normalizes the weight of each vector based on the sum of
their weights, ensuring an even and balanced contribution to the final pixel value in the future frame.

4 Experiments

For evaluation, we trained our video prediction pipeline in an end-to-end fashion on three public
datasets: i) UCF Sports [36] (i.e. 150 video sequences emphasizing various sports scenes, with
frame resolution, and two different data splits to date—one from STRPM [15], one from MMVP [2]—
evaluation is on both splits); ii) KITTI [37] (i.e. 28 driving videos with a resolution of 375× 1242;
following previous works [38, 13], the image frames are resized to 256×832); and iii) Cityscapes [39]
(i.e. 3,475 driving videos with 2,945 in the training set and 500 in the validation set). For each
dataset, by default, we set k = max(10, 1%×Hs ×Ws) which is 1% of the smallest feature map’s
resolution and no larger than 10 for efficiency consideration. Table 2 shows the configuration for
each dastaset. More training and implementation details are in the appendix.

Table 2: Dataset configurations
Dataset Resolution Hs Ws Input Frame Output Frame Training Loss k

UCF Sports 512× 512 32 32 4 1 mean-square error (following [15, 16, 2]) 10
KITTI 256× 832 16 52 2 1 l1 + Perceptual loss(following [13]) 8

Cityscapes 512× 1024 32 64 2 1 l1 + Perceptual loss (following [13]) 10

4.1 Public Benchmark Comparison

On the UCF Sports STRPM split, we evaluate the method on two metrics following previous
research [15]: peak signal-to-noise ratio (PSNR) and learned perceptual image patch similar-
ity (LPIPS) [40]. The proposed method is compared with existing methods for their results of
the 1st and 6th future frames (t = 5, t = 10 in Table 3). Table 3 shows that our method matches the
SOTA performance on the PSNR metric and outperforms all previous methods on the LPIPS metric.
On the UCF Sports MMVP split, the validation dataset has been divided into three categories: the
easy (SSIM ≤ 0.9), intermediate (0.6 ≤ SSIM < 0.9), and hard subsets (SSIM < 0.6), which take
up 66%, 26%, and 8% of the full set respectively. We evaluate the methods on PSNR, LPIPS, and
Structural Similarity Index Measure (SSIM). Table 4 shows that the proposed method outperforms all
other methods.

7

Table 3: Performance comparison on UCF Sports STRPM split

Method t = 5 t = 10
PSNR ↑ LPIPS×100 ↓ PSNR ↑ LPIPS×100 ↓

ConvLSTM (NeurIPS 2015) [3] 26.43 32.20 17.80 58.78
BeyondMSE (ICLR 2016) [41] 26.42 29.01 18.46 55.28
PredRNN (NeurIPS 2017) [4] 27.17 28.15 19.65 55.34

PredRNN++ (ICML 2018) [5] 27.26 26.80 19.67 56.79
SAVP (arXiv 2018) [42] 27.35 25.45 19.90 49.91
SV2P (ICLR 2018) [43] 27.44 25.89 19.97 51.33

E3D-LSTM (ICLR 2019) [17] 27.98 25.13 20.33 47.76
CycleGAN (CVPR 2019) [44] 27.99 22.95 19.99 44.93

CrevNet (ICLR 2020) [45] 28.23 23.87 20.33 48.15
MotionRNN (CVPR 2021) [7] 27.67 24.23 20.01 49.20

STRPM (CVPR 2022) [15] 28.54 20.69 20.59 41.11
STIP (arXiv 2022) [16] 30.75 12.73 21.83 39.67

DMVFN (CVPR 2023) [13] 30.05 10.24 22.67 22.50
MMVP (ICCV 2023) [2] 31.68 7.88 23.25 22.24

Ours 31.70 6.61 23.27 19.94

Table 4: Performance comparison on the UCF Sports MMVP split.
Method Full set Easy (SSIM ≥ 0.9) Intermediate (0.6 ≤ SSIM < 0.9) Hard (SSIM < 0.6) Model Size↓SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

STIP [16] 0.8817 28.17 0.1626 0.9491 30.65 0.1066 0.8351 23.97 0.2271 0.4673 15.97 0.4450 18.05M
SimVP [1] 0.9189 29.97 0.1326 0.9664 32.87 0.0584 0.8845 25.79 0.1951 0.6267 18.99 0.5600 3.47M
MMVP [2] 0.9300 30.35 0.1062 0.9674 33.05 0.0580 0.8970 26.29 0.1569 0.7203 20.84 0.3510 2.79M

Ours 0.9314 30.49 0.0823 0.9685 33.23 0.0444 0.8978 26.36 0.1348 0.7264 20.83 0.2320 0.60M

Table 5: Evaluation on Cityscapes [39] and KITTI [37] datasets. “RGB", “F", “S" and “I" denote
video frames, optical flow, semantic map, and instance map; t+ 3 and t+ 5 respectively indicate the
average performance of the next 3 and 5 frames. Results with * are copied from [13].

Method Input
Cityscapes KITTI

MS_SSIM(×10−2)↑ LPIPS(×10−2)↓ MS_SSIM(×10−2)↑ LPIPS(×10−2)↓
t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5

Vid2vid (NeurIPS 2018)* [46] RGB+S 88.16 80.55 75.13 10.58 15.92 20.14 N/A N/A N/A N/A N/A N/A
Seg2vid (CVPR 2019)* [47] RGB+S 88.32 N/A 61.63 9.69 N/A 25.99 N/A N/A N/A N/A N/A N/A

FVS (CVPR 2020)* [48] RGB+S+I 89.1 81.13 75.68 8.5 12.98 16.5 79.28 67.65 60.77 18.48 24.61 30.49
SADM (CVPR 2021)* [49] RGB+S+F 95.99 N/A 83.51 7.67 N/A 14.93 83.06 72.44 64.72 14.41 24.58 31.16
PredNet (ICLR 2017)* [50] RGB 84.03 79.25 75.21 25.99 29.99 36.03 56.26 51.47 47.56 55.35 58.66 62.95
MCNET (ICLR 2017)* [11] RGB 89.69 78.07 70.58 18.88 31.34 37.34 75.35 63.52 55.48 24.05 31.71 37.39

DVF (ICCV 2017)* [51] RGB 83.85 76.23 71.11 17.37 24.05 28.79 53.93 46.99 42.62 32.47 37.43 41.59
CorrWise (CVPR 2022)* [52] RGB 92.8 N/A 83.9 8.5 N/A 15 82 N/A 66.7 17.2 N/A 25.9

OPT (CVPR 2022)* [53] RGB 94.54 86.89 80.4 6.46 12.5 17.83 82.71 69.5 61.09 12.34 20.29 26.35
DMVFN (CVPR 2023)* [13] RGB 95.73 89.24 83.45 5.58 10.47 14.82 88.53 78.01 70.52 10.74 19.27 26.05

Ours RGB 94.85 87.82 82.11 4.13 8.12 11.70 87.70 77.15 69.72 9.50 16.94 22.90

In Table 5, we compare the proposed method with existing methods on the Cityscapes and KITTI
datasets. Following previous research, we report the Multi-scale Structural Similarity Index Mea-
sure (MS_SSIM) and LPIPS of the first future frame (t+1), the average numbers of the next three
future frames (t+3) and the average numbers of the next five future frames (t+5).

The UCF Sports dataset features sports scenes and thus contains a large amount of fast movements
and motion blurs. The leading performance in both Table 3 and 4 validates that the proposed motion
graph helps the network better interpret the motion in the input video sequence and facilitate more
accurate prediction. Meanwhile, the qualitative result in Figure 5 demonstrates the method’s ability
to capture and restore intricate image details during the prediction.

For KITTI and Cityscapes datasets, videos are captured from outdoor, large-scale traffic scenarios
through cameras with perspective projection, which results in drastic object distortions on both sides
of images as well as unstable lighting conditions. Our method matches SOTA performance in terms
of quantitative evaluation (see Table 5). In Figure 6, we conducted qualitative comparison on these
datasets with two SOTA methods, OPT [53] and DMVFN [13], which are all optical-flow-based.

We noticed that as a non-generative model, our proposed video prediction system may face challenges
with occlusions that require the generation of unseen objects. However, it excels in scenarios with
scenarios involving occlusions of known objects, as showcased in white walls of the third column in
Figure 6. Notably, in scenes with partial obstructions—such as the white wall behind the cyclist, our
system adeptly employs multiple motion vectors per pixel to reconstruct occluded areas. This feature

8

Figure 5: On the UCF Sports dataset, our method recovers richer image details than MMVP [2].

Figure 6: Qualitative comparisons with OPT [53] and DMVFN [13]. Our method maintains the
object structures better than both methods while holding a higher motion prediction accuracy.

also supports precise management of object expansion due to perspective projection, as exemplified
by the green car in Figure 6’s first column.

Moreover, our approach is adept at managing objects exiting the camera’s view. By explicitly
modeling the motion of image patches, the motion graph predicts when features are about to leave the
scene. Thus, any image patches projected to move out of view are not included in the final prediction.
This is demonstrated in the 1st, 3rd, and 4th columns of Figure 6, where objects like a cyclist and
the front of a blue truck are shown as moving out of frame. Our method successfully and uniquely
captures and represents these movements, unlike how the other methods evaluated.

To assess the compactness of the motion graph, we conduct a model consumption analysis. We
compare the proposed method with SOTA methods on each dataset in terms of the model size and
maximum running GPU memory (the system configurations are identical to the models that generate
the numbers in the corresponding tables above). Examination of Table 6 reveals that our method
shows robust advantages than SOTA methods in minimizing model consumption and saving resources.

Table 6: Model consumption analysis on three datasets, compared with the SOTA methods.

Dataset Image Resolution Input Frame Method Model Size GPU Memory

UCF Sports 512× 512 4 MMVP [2] 2.79M 4.53GB
Ours 0.60M 2.38GB

KITTI 256× 832 2 DMVFN [13] 3.56M 3.79GB
Ours 0.97M 0.97GB

Cityscapes 512× 1024 2 DMVFN [13] 3.56M 7.41GB
Ours 0.97M 1.25GB

4.2 Ablation Studies

We conduct ablation studies on three aspects of the UCF Sports MMVP split: i) the choice of k, which
defines three attributes of the system, i.e., the number of dynamic vectors each node initially embeds,

9

the number of temporal forward/backward edges for each node, and the number of dynamic vectors
to be decoded from the upsampled motion features; ii) the number of views used for multi-view
motion graph construction; and iii) the composition of the node’s initial features.

Table 7: Ablation study on the value of k.
k SSIM ↑ PSNR ↑ LPIPS ↓ Memory ↓
1 0.9199 29.84 0.0868 0.98G
5 0.9273 30.19 0.0966 1.61G
8 0.9285 30.25 0.0934 2.07G

10 0.9314 30.49 0.0823 2.38G
20 0.9319 30.58 0.0809 3.96G

Table 8: Ablation study on the number of motion
graph views and on the location feature floc.

View Number floc SSIM ↑ PSNR ↑ LPIPS ↓
1 ✓ 0.9058 28.53 0.1205
2 ✓ 0.9158 29.47 0.1064
4 ✓ 0.9314 30.52 0.0832
4 × 0.9247 30.27 0.1008

The choice of k: Adjustments to the value of k and subsequent evaluations reveal a consistent,
monotonic increase in both performance and GPU memory usage, as documented in Table 7. Notably,
the gain rate diminishes as k increases. This observation aligns with the intuition that increasing
the value of k will bring more temporal correspondences to the system. However, once the motion
information nears saturation, the incremental benefit of further increasing k becomes less significant.
More ablation studies related to k can be found in Section A.4.

The number of graph views: As Section 3.2 mentioned, using multi-view graphs can enhance
motion prediction accuracy. To validate this claim, we reduce the number of views used in the system
and test the system on the UCF Sports dataset. The first three rows in Table 8 show that increasing
the number of graph views indeed improves the system performance.

Location feature floc: We incorporate the tendency feature ftdc (directly related to motion) and a
location feature floc to initialize the node features. This inclusion hypothesizes that an image pixel’s
motion patterns may also be influenced by its spatial position. Empirical evidence supporting this
hypothesis is documented in the last two rows of Table 8. There is a notable decline in performance
when the location feature ftdc is excluded from the node feature initialization. In Section A.7, we
further visualize the location features and observe that such feature may reflect the camera projection
pattern, providing substantial information to the following motion reasoning task.

5 Conclusion & Limitation
This work presents the motion graph for video prediction and a novel pipeline built upon it. We
focus on balancing representative ability and compactness to optimize efficiency. The motion graph
encapsulates complex motion information hidden in video sequences into a more manageable format,
and achieves encouraging results: it matched or outperformed SOTA on three well-known datasets
with a considerably smaller model size and less GPU running memory. Beyond the results, the
motion graph and its associated video prediction pipeline set a foundation for further research and
optimization in the field of video prediction, thus suggesting a promising direction for researchers
seeking to balance performance and resource efficiency in the evolving domain of video processing.

Limitation. There is no significantly improvement in terms of the inference speed. The current
version of our model is slower than DMVFN, which is specifically optimized for this aspect. Future
efforts will focus on accelerating inference while maintaining the model’s compactness and efficiency.
Additionally, video prediction remains particularly challenging in scenarios involving sudden or
unpredictable motions, which our system occasionally fails to capture, as highlighted in Appendix A.6.
These instances, where the model struggles with abrupt actions not readily discernible from the input
frames, underscore the need for further enhanced video understanding abilities. Addressing these
challenges presents a valuable direction for future research.

References

[1] Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z Li. Simvp: Simpler yet better video
prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3170–3180, 2022.

[2] Yiqi Zhong, Luming Liang, Ilya Zharkov, and Ulrich Neumann. Mmvp: Motion-matrix-based
video prediction. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4273–4283, 2023.

10

[3] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun
Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting.
Advances in neural information processing systems, 28, 2015.

[4] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. Predrnn:
Recurrent neural networks for predictive learning using spatiotemporal lstms. Advances in
neural information processing systems, 30, 2017.

[5] Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, and S Yu Philip. Predrnn++:
Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In
International Conference on Machine Learning, pages 5123–5132. PMLR, 2018.

[6] Yunbo Wang, Jianjin Zhang, Hongyu Zhu, Mingsheng Long, Jianmin Wang, and Philip S Yu.
Memory in memory: A predictive neural network for learning higher-order non-stationarity
from spatiotemporal dynamics. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9154–9162, 2019.

[7] Haixu Wu, Zhiyu Yao, Jianmin Wang, and Mingsheng Long. Motionrnn: A flexible model for
video prediction with spacetime-varying motions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15435–15444, 2021.

[8] Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Martín-Martín, and Li Fei-Fei.
Maskvit: Masked visual pre-training for video prediction. arXiv preprint arXiv:2206.11894,
2022.

[9] Shuliang Ning, Mengcheng Lan, Yanran Li, Chaofeng Chen, Qian Chen, Xunlai Chen, Xi-
aoguang Han, and Shuguang Cui. Mimo is all you need: a strong multi-in-multi-out baseline for
video prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 1975–1983, 2023.

[10] Mingzhen Sun, Weining Wang, Xinxin Zhu, and Jing Liu. Moso: Decomposing motion, scene
and object for video prediction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18727–18737, 2023.

[11] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing
motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033,
2017.

[12] Xiaojie Gao, Yueming Jin, Qi Dou, Chi-Wing Fu, and Pheng-Ann Heng. Accurate grid keypoint
learning for efficient video prediction. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5908–5915. IEEE, 2021.

[13] Xiaotao Hu, Zhewei Huang, Ailin Huang, Jun Xu, and Shuchang Zhou. A dynamic multi-scale
voxel flow network for video prediction. arXiv preprint arXiv:2303.09875, 2023.

[14] Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Improved conditional vrnns for video
prediction. In Proceedings of the IEEE/CVF international conference on computer vision, pages
7608–7617, 2019.

[15] Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, and Wen Gao. Strpm: A spatiotem-
poral residual predictive model for high-resolution video prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13946–13955, 2022.

[16] Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, and Wen Gao. Stip: A spatiotemporal
information-preserving and perception-augmented model for high-resolution video prediction.
arXiv preprint arXiv:2206.04381, 2022.

[17] Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, and Li Fei-Fei. Eidetic
3d lstm: A model for video prediction and beyond. In International conference on learning
representations, 2018.

[18] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos Niebles. Learning to
decompose and disentangle representations for video prediction. Advances in neural information
processing systems, 31, 2018.

11

[19] Xi Ye and Guillaume-Alexandre Bilodeau. Vptr: Efficient transformers for video prediction. In
2022 26th International Conference on Pattern Recognition (ICPR), pages 3492–3499. IEEE,
2022.

[20] Rohit Girdhar and Kristen Grauman. Anticipative video transformer. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 13505–13515, 2021.

[21] Nal Kalchbrenner, Aäron Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves,
and Koray Kavukcuoglu. Video pixel networks. In International Conference on Machine
Learning, pages 1771–1779. PMLR, 2017.

[22] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P Xing. Dual motion gan for future-flow embedded
video prediction. In proceedings of the IEEE international conference on computer vision,
pages 1744–1752, 2017.

[23] Yung-Han Ho, Chuan-Yuan Cho, Wen-Hsiao Peng, and Guo-Lun Jin. Sme-net: Sparse motion
estimation for parametric video prediction through reinforcement learning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 10462–10470, 2019.

[24] Hang Gao, Huazhe Xu, Qi-Zhi Cai, Ruth Wang, Fisher Yu, and Trevor Darrell. Disentangling
propagation and generation for video prediction. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 9006–9015, 2019.

[25] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun.
Learning lane graph representations for motion forecasting. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages
541–556. Springer, 2020.

[26] Maosheng Ye, Tongyi Cao, and Qifeng Chen. Tpcn: Temporal point cloud networks for motion
forecasting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11318–11327, 2021.

[27] Roger Girgis, Florian Golemo, Felipe Codevilla, Martin Weiss, Jim Aldon D’Souza,
Samira Ebrahimi Kahou, Felix Heide, and Christopher Pal. Latent variable sequential set
transformers for joint multi-agent motion prediction. arXiv preprint arXiv:2104.00563, 2021.

[28] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yanfeng Wang, and Qi Tian. Dynamic
multiscale graph neural networks for 3d skeleton based human motion prediction. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 214–223, 2020.

[29] Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li. Msr-gcn: Multi-
scale residual graph convolution networks for human motion prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 11467–11476, 2021.

[30] Chongyang Zhong, Lei Hu, Zihao Zhang, Yongjing Ye, and Shihong Xia. Spatio-temporal
gating-adjacency gcn for human motion prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6447–6456, 2022.

[31] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop,
Daniel Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1874–1883, 2016.

[32] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In
European conference on computer vision, pages 402–419. Springer, 2020.

[33] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for
image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2472–2481, 2018.

[34] Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5437–5446,
2020.

12

[35] Simon Niklaus, Ping Hu, and Jiawen Chen. Splatting-based synthesis for video frame interpola-
tion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 713–723, 2023.

[36] Mikel D Rodriguez, Javed Ahmed, and Mubarak Shah. Action mach a spatio-temporal maximum
average correlation height filter for action recognition. In 2008 IEEE conference on computer
vision and pattern recognition, pages 1–8. IEEE, 2008.

[37] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[38] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen. Future video synthesis with object
motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5539–5548, 2020.

[39] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3213–3223, 2016.

[40] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[41] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond
mean square error. arXiv preprint arXiv:1511.05440, 2015.

[42] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine.
Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523, 2018.

[43] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell, and Sergey Levine.
Stochastic variational video prediction. arXiv preprint arXiv:1710.11252, 2017.

[44] Yong-Hoon Kwon and Min-Gyu Park. Predicting future frames using retrospective cycle gan.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1811–1820, 2019.

[45] Wei Yu, Yichao Lu, Steve Easterbrook, and Sanja Fidler. Efficient and information-preserving
future frame prediction and beyond. 2020.

[46] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. Video-to-video synthesis. arXiv preprint arXiv:1808.06601, 2018.

[47] Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng, Junjie Yan, and Xiaogang Wang.
Video generation from single semantic label map. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3733–3742, 2019.

[48] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen. Future video synthesis with object
motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5539–5548, 2020.

[49] Xinzhu Bei, Yanchao Yang, and Stefano Soatto. Learning semantic-aware dynamics for video
prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 902–912, 2021.

[50] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video
prediction and unsupervised learning. arXiv preprint arXiv:1605.08104, 2016.

[51] Ziwei Liu, Raymond A Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala. Video frame
synthesis using deep voxel flow. In Proceedings of the IEEE international conference on
computer vision, pages 4463–4471, 2017.

[52] Daniel Geng, Max Hamilton, and Andrew Owens. Comparing correspondences: Video pre-
diction with correspondence-wise losses. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3365–3376, 2022.

13

[53] Yue Wu, Qiang Wen, and Qifeng Chen. Optimizing video prediction via video frame interpola-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 17814–17823, 2022.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[55] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[56] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[57] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, page 3. Atlanta, GA, 2013.

[58] Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video dif-
fusion for prediction, generation, and interpolation. Advances in neural information processing
systems, 35:23371–23385, 2022.

[59] Kangfu Mei and Vishal Patel. Vidm: Video implicit diffusion models. In Proceedings of the
AAAI conference on artificial intelligence, volume 37, pages 9117–9125, 2023.

[60] Zhicheng Zhang, Junyao Hu, Wentao Cheng, Danda Paudel, and Jufeng Yang. Extdm: Distri-
bution extrapolation diffusion model for video prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 19310–19320, 2024.

14

A Appendix

A.1 Implementation Details

We implement the video prediction system using PyTorch [54] and conduct end-to-end training on a
single NVIDIA A100 GPU. We use AdamW optimizer [55] during the training. The initial learning
rate is set to 1e−3 and decayed to 1e−5 following a cosine decay scheduler [56]. There are only a few
hyperparameters to adjust for the system when training on different datasets. The adjustments are
mainly based on the resolution of the frame. Those hyper-parameters include i) image feature length
(Image feat.), which is the parameter for the image encoder; ii) Tendency feature length (Tendency
feat.), which is the length of the tendency feature in node initialization; iii) location feature length
(Location feat.), which is fixed to 4 for all datasets, indicating the length of the location feature in
node initialization; iv) the number of graph views, indicating view number in motion graph feature
learning; v) k, indicates the number of the dynamic vectors embedded in each node, the number
of the temporal edges per node and the output dynamic vectors per pixel; vi) training epoch is the
training related parameters; vii) the reconstruction loss, which follows the popular setting of the
SOTA methods on each dataset. In Table 9, we demonstrate the hyper-parameter setting for each
dataset.

Please note that we did not especially tune the parameters for each dataset. When adjusting the
parameters, we consider more about the training efficiency instead of the performance. Therefore,
our setting is likely not the optimal choice. For example, in DMVFN [13], the training on Cityscapes
and KITTI are both 300 epochs, we observe that our system can achieve comparable performance
with only 100 and 200 epochs respectively, we thus stay with this configuration.

Dataset Image feat. Tendency feat. Location feat. Number of Graph views k Epoch Loss
UCF Sports 16 16 4 4 10 300 MSE
Cityscapes 16 32 4 4 10 100 L1 + Lpips

KITTI 16 32 4 4 8 200 L1 + Lpips

Table 9: Hyper-parameter setting for each dataset.

A.2 Network Architecture

The proposed video prediction system includes three major components, the image encoder, the
motion graph interaction module, and the motion upsampler. Here we demonstrate the detailed
architecture of each component for reproduction needs.

Image Encoder: Figure 7 shows the inner structure of the image encoder in the proposed system.
Cimg is related to the image feature length in Table 9. Each convolution layer will come with a Leaky
ReLU layer [57] as the activation layer.

Figure 7: Architecture of the image encoder

15

Motion Graph Interaction Module In Figure 8 we demonstrate the inner structure of the spatial
and temporal message passing in the motion graph interaction module. Cnode equals the sum of the
tendency feature length and the location feature length in Table 9.

Figure 8: Inner structure of spatial and temporal block in motion graph interaction module

Motion Upsampler Figure 9 illustrates the inner structure of the motion upsampler as well as the
motion decoder. The implementation of the decoder is a single 2D convolution layer with a kernel
size of 1.

Figure 9: Inner structure of the motion upsampler and the motion decoder.

A.3 Additional Quantitative Evaluation

For comparison convenience of the future works, we list the extra metrics of cityscapes and KITTI
datasets in Table10, i.e. ssim and psnr.

Table 10: Evaluation on Cityscapes [39] and KITTI [37] datasets. “RGB", “F", “S" and “I" denote
video frames, optical flow, semantic map, and instance map; t+ 3 and t+ 5 respectively indicate the
average performance of the next 3 and 5 frames. Results with * are copied from [13].

Method Input
Cityscapes KITTI

SSIM(×10−2)↑ PSNR↑ SSIM(×10−2)↑ PSNR↑
t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5

DMVFN (CVPR 2023)* [13] RGB 87.45 78.75 63.95 28.81 25.47 23.61 72.69 62.52 57.05 22.74 20.16 18.70
Ours RGB 92.30 86.51 83.16 28.43 25.39 23.80 77.91 69.55 65.05 21.71 19.44 18.18

A.4 Extensive Ablation Study

In this section, we add two ablation studies to help the audience better interpret the design of the
motion graph.

Number of the predicted dynamic vectors per pixel: In the proposed system, we set the number of
the predicted dynamic vectors per pixel to k, which is identical to the number of the dynamic vectors
embedded by each node and the temporal edge of each node. This design ensures the flexibility
of the predicted motion to have multiple modes compared to the optical-flow-based method which

16

only allows each pixel to have a single future motion. The comparison between the first two rows
of Table 11 showcase that allowing multiple predicted dynamic vectors can largely improve the
performance. Meanwhile, if we control the number of the predicted dynamic vectors, as demonstrate
by the comparison between the first and third row of the Table 11, we see that when the motion graph
embeds more past motion modes, the performance will also has significant improvements.

k Predicted Vectors # Full set Hard (SSIM < 0.6) Memory ↓SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
1 1 0.8742 26.34 0.1527 0.5394 17.34 0.5032 0.98G
1 10 0.9199 29.87 0.1042 0.6408 19.44 0.3706 1.97G
10 1 0.9212 30.00 0.0877 0.6546 19.63 0.3261 1.38G

Table 11: Ablation study on the number of the predicted vectors. The experiments are conducted on
UCF Sports MMVP splits. The listed results are from the models trained for 100 epochs (models
were all trained for 300 epochs in the main manuscript).

Motion Graph Interaction Module The design of the motion graph interaction module are following
the intuition that both spatial connection and temporal connection should benefit the graph learning.
Here we also show the experimental results in Table 12 that both spatial and backward edges are
beneficial to the final performance.

Spatial Backward PSNR ↑ MS-SSIM ×100 ↑ LPIPS×100 ↓
× × 21.55 87.06 9.85
✓ × 21.64 87.25 9.83
✓ ✓ 21.71 87.70 9.50

Table 12: Ablation study on graph interaction module. The experiments are conducted on KITTI and
metrics show evaluation on the t+ 1 results.

A.5 Extensive Discussion on Experiment setting

Our research on video prediction has identified key differences between systems designed for
short-term and long-term predictions. Short-term systems typically use fewer frames to predict
the immediate next few frames, while long-term systems are tasked with forecasting an extensive
sequence of future frames. The design logic and objectives of these systems, thus, vary significantly.
Table 13 demonstrates the differences with more details. It is easy to notice that the recent works of

Short-term Video Prediction Long-term Video Prediction
Prediction Length Limited, usually one frame Much longer, ≫ 10 frames
Video Resolution Up to 4K Usually smaller, up to 256× 256
Common Dataset UCF 101, UCF Sports, KITTI, Cityscapes, SJTU4k, Vimeo, DAVIS KTH, moving MNIST, BAIR, cropped Cityscapes

Recent works SIMVP[1], MMVP[2], STRPM[15], STIP[16], DMVFN[13] MVCD[58], MaskViT[8],VIDM[59],ExtDM[60]
Objectives High resolution videos, pixel-level accuracy, real-time application Conditional video generation, semantic-level accuracy

Table 13: Experiment setting comparison between short-term and long-term video prediction task

long-term video prediction usually involve with diffusion-based generative models, which is designed
to feed the need of predicting long videos. The evaluation of such methods usually emphasize on if
the predicted video is semantically correct given the input video frame(s). While in this study, we
emphasize our method’s advanced motion modeling and significant reduction in computational costs,
essential for short-term prediction of high-resolution videos. Our system is tailored for short-term
video prediction, with evaluations conducted along this line of work.

We plan to further exploit the motion graph’s potential as an efficient motion representation tool and
develop advanced, motion graph-based systems for long-term video generation in our next work.

A.6 Failure case demonstration

The video prediction is always a challenging problem. Especially for those video sequences with
abrupt motion which can be hardly indicated by the previous video frames. The proposed method

17

Figure 10: Failure cases in UCF Sports Dataset

formulates the video prediction as a motion prediction problem and outperforms most of the existing
methods by using motion graph to better capture the motion hints from the input frames. However,
when evaluating the qualitative results, we still find some failure cases that require additional research
efforts to solve. In Figure 10, we showed typical failure cases in UCF Sports dataset. We notice
that most of the failures cases are in the action of kicking and diving, which usually include fast,
unpredictable motion that requires stronger video understanding capability of the model.

A.7 Node Feature Visualization

To better understand the initialization of the node embedding, here we visualize the tendency feature
and the location feature. We first extract the tendency feature and location feature of each node in
the motion graph and apply a K-means clustering to the extracted features. For the tendency feature,
we set the cluster number to 2; and for the location feature, we set the cluster number to 4 for better
visualization.

From Figure 11, we see that using the learned tendency feature, the system should be able to
distinguish the dynamic areas from the static areas. If we further enlarge the cluster number, we can
see more clearly that the tendency features embed the different motion patterns of each feature patch
in the frame. For the location feature, in the paper, we have shown that removing the location feature
from the node initialization will result in a performance drop. From Figure 12 we observe that the
location feature may contain information that is related to the camera projection mode. For cityscapes
and the KITTI, which use wide-range cameras, the clustering pattern of the location feature is very
different from the UCF Sports whose projection mode is possible to be orthogonal projection.

18

Figure 11: Tendency feature visualization using KITTI dataset

Figure 12: Locaiton feature visualization on three datasets.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 3 describes the detailed methodology and the Section 4 validates the
claim.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

19

Justification: Please see Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Section 4, Appendix A.1 and Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.

20

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data is all public and the code is provided in the supplementary zip file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section 4 and Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Appendix A.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

22

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

23

https://neurips.cc/public/EthicsGuidelines

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please see Appendix A.1

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[Yes]

Justification: Please see Appendix A.1, A.2 and the code comments provided in the supple-
mentary file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

24

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Works
	Methodology
	Problem Formulation
	Motion Graph
	Intuition
	Node Motion Feature Initialization
	Edge Construction
	Motion Graph Interaction Module

	Motion-graph-empowered Video Prediction
	Motion Feature Learning
	Motion Feature Upsampling and Decoding
	Image Warping

	Experiments
	Public Benchmark Comparison
	Ablation Studies

	Conclusion & Limitation
	Appendix
	Implementation Details
	Network Architecture
	Additional Quantitative Evaluation
	Extensive Ablation Study
	Extensive Discussion on Experiment setting
	Failure case demonstration
	Node Feature Visualization

