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Abstract

Modeling and generating human reactions poses a significant challenge with broad applica-
tions for computer vision and human-computer interaction. Existing methods either treat
multiple individuals as a single entity, directly generating interactions, or rely solely on one
person’s motion to generate the other’s reaction, failing to integrate the rich semantic infor-
mation that underpins human interactions. Yet, these methods often fall short in adaptive
responsiveness, i.e., the ability to accurately respond to diverse and dynamic interaction
scenarios. Recognizing this gap, our work introduces an approach tailored to address the
limitations of existing models by focusing on text-driven human reaction generation. Our
model specifically generates realistic motion sequences for individuals that responding to
the other’s actions based on a descriptive text of the interaction scenario. The goal is to
produce motion sequences that not only complement the opponent’s movements but also
semantically fit the described interactions. To achieve this, we present MoReact, a diffusion-
based method designed to disentangle the generation of global trajectories and local motions
sequentially. This approach stems from the observation that generating global trajectories
first is crucial for guiding local motion, ensuring better alignment with given action and text.
Furthermore, we introduce a novel interaction loss to enhance the realism of generated close
interactions. Our experiments, utilizing data adapted from a two-person motion dataset,
demonstrate the efficacy of our approach for this novel task, which is capable of producing
realistic, diverse, and controllable reactions that not only closely match the movements of
the counterpart but also adhere to the textual guidance.

1 Introduction

Humans are able to naturally interact with one another, adopting appropriate actions based on their inten-
tions and the movements of others. For instance, when someone extends their hand, we understand it as
an invitation for a handshake, allowing us to react accordingly – either by engaging in the handshake or
choosing to ignore and walk away. Since interactions are a fundamental aspect of the real world, reproducing
this behavior pattern in virtual characters holds profound implications for various fields, such as robotics,
animation, VR/AR, and healthcare. It enhances realism and functionality across these fields, enriching user
experiences and interactions with technology.

However, achieving realistic generation of human reactions is a significant challenge. Current approaches to
Human-Human Interaction (HHI) generation have not yet fully captured the complexity of human reactions,
particularly in generating adaptive reactions to diverse and dynamic social interactions. Current studies,
while striving to generate reactive motions for a variety of actions (Ghosh et al., 2023; Xu et al., 2024a;b; Liu
et al., 2024; Tan et al.; Liu et al., 2023; Cen et al., 2025; Cong et al., 2025), typically lack integration of the
rich semantic information that underlies human interactions, such as the intent conveyed in text descriptions.

Addressing these limitations, we propose a novel approach that focuses on enhancing text-driven human
reaction generation. Specifically, we aim to more accurately generate one’s (named reactor) reaction based
on both the motion of another individual (named actor) and a corresponding textual description, as shown
in Fig. 1(a). This approach not only seeks to align generated reactions with physical movements but also
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Figure 1: (a) Our model, MoReact, learns to generate lifelike reactions, represented by the black mesh,
based on the textual description and the actor’s motion, represented by the red mesh. (b) As an important
motivating analysis for developing our approach, we introduce noise of the same scale to local motion,
full-body motion, and global trajectory, respectively. The results indicate that the precision of the global
trajectory has a greater impact on the perceptual realism of the reaction. (c) We demonstrate global
trajectory’s significant influence on the motion’s semantic information in certain scenarios, such as fall
actions.

with the semantic context provided by text, presenting unique challenges in maintaining both alignment and
authenticity of interactions.

Naïvely adapting existing text-to-motion (Shafir et al., 2023) or text-to-interaction (Liang et al., 2024)
models fails to generate high-quality reactions based on text descriptions, often resulting in artifacts like
interaction misalignment. The underlying reason is that these methods struggle to adequately model the
relationship between global trajectory and local motion. To begin with, most existing methods for two-person
interaction generation either overly focus on local motion or treat these two equally. However, our analysis
indicates that the global trajectory serves as the foundation for both local motion and interaction realism.
Incorrect global trajectory makes it difficult for the local motion to align with the action and text description,
having a more detrimental impact on interaction realism than incorrect local motion. As shown in Fig. 1(b),
minor deviations in local motion have little impact on interaction quality, while adding the same scale of
deviations in global motion leads to the reaction being misaligned, though the single-human motion can still
be reasonable if the interaction is not considered. Furthermore, most existing methods neglect the substantial
influence of the global trajectory on the semantics of local motion; instead, they persist in exploring a broad
spectrum of potential reactions, rather than focusing on a more confined and plausible subspace delineated
by the global trajectory. For example, as shown in Fig. 1(c), the descent of the global trajectory to a lower
height suggests that the reactor ought to fall, rather than stand or walk, to achieve a lower position.

Building upon these observations and insights, we propose a novel framework, MoReact, to tackle the
text-driven human interaction generation task. MoReact incorporates two primary components: (1) Trajec-
tory Diffusion Module: This diffusion-based generator predicts the reactor’s global trajectory based on the
text description of the interaction and the actor’s motion. (2) Full-Body Motion Diffusion Module: This
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diffusion-based generator incorporates text, actor’s motion, and reactor’s trajectory from the Trajectory
Diffusion Module as inputs to synthesize the reactor’s full-body reaction. It further enhances the reaction’s
realism by incorporating the reactor’s trajectory information into the denoising process through an inpaint-
ing mechanism. By decoupling the reaction generation into two phases, MoReact places a strong emphasis
on generating accurate global trajectories. The infilling of accurate global trajectories generated in the first
stage to the full-body motion diffusion model further guides the local motion generation to a specific, refined
plausible subspace. Doing so guarantees the semantic integrity of local motion, contributing to the overall
realism of the generated reaction.

Within this two-stage modeling framework, we further introduce the interaction loss – a specialized loss func-
tion tailored to characterize reactions and interactions. Rather than solely depending on the reconstruction
loss, which targets global absolute coordinates or local joint features, we highlight the significance of relative
motion in interactions. Specifically, we focus on the motion of the reactor’s joints in relation to the actor’s
joint movements, crafting a weighted interaction graph to emphasize the influential relative motion. For
instance, in scenarios where two joints are close to each other, e.g., two hands in a handshake interaction,
we specifically utilize the interaction loss to promote such contact to be accurately represented.

Based on these features, MoReact generates realistic and high-quality reactions that follow the text guidance
faithfully while also syncing seamlessly with the actor’s motion. Furthermore, MoReact demonstrates re-
markable control capacity – it is capable of synthesizing varied reactions to the actor’s same motion based on
different textual descriptions, and conversely, generating diverse reactions to actors’ various motions guided
by the same text, as shown in Fig. 4.

In summary, our contributions are: (a) We develop a novel two-stage diffusion-based modeling framework,
MoReact, which incorporates inherent motion pattern in reactions and synthesizes global trajectory and full-
body motion in a sequential manner, ensuring the generated reactions are of high quality. (b) We introduce
a novel interaction loss that enhances the modeling of relative joint motions in interactions, utilizing a
weighted interaction graph to accurately model close interactions such as handshakes. (c) We conduct
extensive experimental evaluation that demonstrates MoReact’s remarkable flexibility and controllability
in the reaction generation process, enabling the synthesis of diverse reactions based on varying conditions.
Comprehensive analyses are provided to validate our design decisions, showcasing the efficacy of MoReact in
creating realistic reactions.

2 Related Work

Human Motion Generative Models. Generative models have achieved remarkable advancements in
synthesizing human motion based on various inputs, such as action labels (Guo et al., 2020; Petrovich
et al., 2021; Lee et al., 2023; Athanasiou et al., 2022), audio signals (Li et al., 2022; Tseng et al., 2023; Li
et al., 2021; Yi et al., 2023; Zhou & Wang, 2023), prior motions (Xu et al., 2022; Barquero et al., 2023;
Chen et al., 2023a), movement trajectories (Kaufmann et al., 2020; Karunratanakul et al., 2023; Rempe
et al., 2023; Xie et al., 2023), the surrounding environment (Cao et al., 2020; Hassan et al., 2021; Wang
et al., 2021b;c; 2022a;b; Huang et al., 2023; Zhao et al., 2022; 2023; Tendulkar et al., 2023; Zhang et al.,
2023d), and including methods that generate motions without any specific conditions (Raab et al., 2023a).
Particularly in text-based human motion generation (Petrovich et al., 2023; Guo et al., 2022b; Petrovich
et al., 2022; Tevet et al., 2023; Chen et al., 2023b; Zhang et al., 2022; Jiang et al., 2023; Zhang et al.,
2023e;b; Tevet et al., 2022a; Ahuja & Morency, 2019; Guo et al., 2022a; Kim et al., 2023; Lu et al., 2023;
Raab et al., 2023b; Zhang et al., 2023a; Shafir et al., 2023; Dabral et al., 2023; Zhang et al., 2023c; Wei
et al., 2023; Zhang et al., 2023g; Athanasiou et al., 2023; Kong et al., 2023), significant progress has been
made through the integration of diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2020; Ho et al.,
2020). A notable advantage of diffusion models is their capacity to iteratively refine the generation process
by reintroducing available information, thus tailoring the outcomes to specific conditions. An instance of this
is PhysDiff (Yuan et al., 2023), which incorporates a physics-based motion imitation policy into the diffusion
process to produce physically realistic motion. GMD (Karunratanakul et al., 2023) is capable of generating
human motions tailored to specific goals, such as following a trajectory or achieving certain keyframes. This is
also accomplished by strategically incorporating information into the diffusion process. In our work, we adopt
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a simple but effective inpainting mechanism to incorporate global trajectory information into the full-body
motion generation process, ensuring the full-body motion aligns coherently with the intended trajectory.

Interactive Motion Synthesis. Interactive motion generation takes into account both human movements
and the dynamics of interactive entities, including objects and other humans. The goal is to generate motions
that are both realistic and appropriately responsive to the interactive context. For example, human-object
interaction generation (Xu et al., 2023b; Li et al., 2023; Diller & Dai, 2024; Peng et al., 2023b; Starke et al.,
2019; Wang et al., 2023a; Merel et al., 2020; Hassan et al., 2023; Bae et al., 2023; Corona et al., 2020) considers
the dynamics of both humans and objects. Human-human interaction generation (Wang et al., 2021a; Xu
et al., 2023a;c; Adeli et al., 2020; 2021; Guo et al., 2022c; Tanke et al., 2023a; Zhu et al., 2023; Tanke et al.,
2023b; Peng et al., 2023a; Liu et al., 2023; Cai et al., 2024; Wang et al., 2023b; Liang et al., 2024; Shafir et al.,
2023; Rempe et al., 2023; Xu et al., 2024a;b; Liu et al., 2024) involves motions from two or more persons. For
methods aimed at modeling interactions in crowds with numerous participants, there is a notable emphasis
on global trajectories synthesis. For instance, DuMMF (Xu et al., 2023c) separates the modeling of local and
global representations in social interactions, placing constraints on global motion. Trace and Pace (Rempe
et al., 2023) present a trajectory-guided diffusion model that allows for the manipulation of trajectories while
considering the context of the surrounding environment. However, in two-person interaction generation, the
crucial role of global trajectory modeling has been overlooked. In our work, we generate global trajectory and
local motion sequentially, allowing the global trajectory to guide the generation of local motion. Despite the
advancements in this field, these attempts at modeling multi-person interactions do not adequately capture
individual reactions to others. For example, they often struggle to synchronize or align with rapid and varied
movements. In contrast, some recent works (Ghosh et al., 2023; Xu et al., 2024b; Liu et al., 2024; Tan et al.;
Liu et al., 2023; Cen et al., 2025; Cong et al., 2025) focus on reactive motion generation, emphasizing the
spatio-temporal coherence between the actor’s and reactor’s movements. However, these models are limited
as they generate reactions either solely based on the actor’s motion or by combining the actor’s motion with
an action label, which fail to capture the full diversity of potential reactions. To address this, we enhance
the reactive motion generation by incorporating textual guidance.

3 Methodology

Overview. In this section, we begin by formally defining the text-driven reaction generation task. We then
introduce the overall architecture of MoReact in Sec. 3.1. In Sec. 3.2 and Sec. 3.3, we delve into the model’s
design and the detailed configurations of MoReact’s training process. Finally, in Sec. 3.4 we introduce the
inpainting mechanism we used during the inference stage.

Task Definition. Given a motion sequence of the actor and a sentence describing the interaction between
the actor and the reactor, our goal is to generate the reactor’s motion that not only harmoniously coordinates
with the actor but also aligns coherently with the textual description. In this context, actor refers to the
character with known motion, while reactor refers to the character for whom we aim to synthesize motion,
a.k.a., reaction.

The reactor’s motion sequence with T frames, is represented as x = [x1, x2, . . . , xT ], where each xi ∈ R263

contain the pose information of the reactor at the i-th frame in an adapted HumanML3D (Guo et al., 2022a)
representation. Specifically, each pose xi consists of both global trajectory information gi ∈ R4 and local
pose information li ∈ R259. Global trajectory information gi consists of root orientation along the y-axis and
3D translation in the global coordinate, while local pose information li includes joint position, joint velocity,
joint rotation, and foot contact in the reactor’s local coordinate. Similarly, we use y = [y1, y2, . . . , yT ] to
denote the motion sequence of the actor.

We use w = [w1, w2, · · · , wn] to denote the n-words textual description of the interaction between the actor
and the reactor. Our goal is to model the conditional probability distribution p(x|y, w), from which we can
then generate the reactor’s motion sequence through sampling.
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Figure 2: Overview of MoReact. (a) Our approach to text-driven reaction generation employs a two-stage
framework. First, we employ a trajectory diffusion model to generate the global trajectory of the reactor,
based on the actor’s full-body motion and the text description. Subsequently, we apply a full-body motion
diffusion model to generate the reactor’s full-body motion, based on the actor’s full-body motion, the text
description, as well as the synthesized reactor’s trajectory. (b) Our full-body motion diffusion model is built
upon a transformer-based architecture, where the ‘TE’ in the figure denotes a Transformer Encoder. The
trajectory diffusion model mirrors this architecture but omits the cross-attention layer that integrates global
trajectory into the generative process.

3.1 Framework Overview

As shown in Fig. 2(a), we decouple the process for text-driven reaction generation into two sequential stages,
consisting of two diffusion modules, i.e., the Trajectory Diffusion Module and the Full-Body Motion Diffusion
Module. In the first stage, we use the Trajectory Diffusion Module to generate the global trajectory of the
reactor, informed by the motion of the actor and the text description. Following this, in the second stage,
we utilize the Full-Body Motion Diffusion Module to generate the full-body motion of the reactor, based on
the actor’s motion, the previously generated reactor’s global trajectory, and the text description. During the
inference stage, we adopt an inpainting mechanism during the denoising process to ensure the final full-body
motion faithfully adheres to the intended trajectory pre-generated by Trajectory Diffusion Module.

3.2 Text-Driven Reaction Generation

Trajectory Generation. Based on our key observation that global motion significantly outweighs local
motion in generating reactions, our approach prioritizes the reactor’s overall trajectory by generating it
at the beginning, and using it as the condition for the full-body generation. We use Gtraj to denote our
diffusion model for this generation. More specifically, Gtraj takes time step t, a noised global trajectory gt,
the actor’s motion sequence y, and the text condition description w as input. We observe that instead of
estimating the clean denoised signal g̃0, estimating the noise ϵ̃t = Gtraj(t, gt, y, w) added in the forward
diffusion, and recovering g̃0 with ϵ̃t leads to better trajectory generation, which is consistent with the finding
in GMD (Karunratanakul et al., 2023).

Full-Body Motion Generation. In this stage, our goal is to generate realistic, coherent, and semantically
aligned full-body reactions based on a synthesized global trajectory. Similarly, we use Gfull to denote our
diffusion model for the reactor’s full-body motion generator. We input time step t, a noised full-body motion
xt, the actor’s motion y, the text condition description w, as well as the synthesized reactor’s trajectory g
into the model Gfull. Following MDM (Tevet et al., 2023), the model Gfull is designed to directly predict the
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clean motion x̃0 as the output. Note that during the training phase, we utilize the reactor’s ground truth
trajectory g as the input for the model, while we directly use the synthesized trajectory during the inference
phase.

Network Architectures. Fig. 2(b) illustrates the architecture of Gfull. Given a noisy motion xt, our
model feeds it into a transformer-style architecture and obtains the denoised motion x̃0. This architecture
consists of self-attention blocks, cross-attention blocks, and feed-forward networks. The cross-attention layers
integrate the motion feature with the features extracted from w, y, and g.

3.3 Loss Formulations with Training Details

We train the trajectory generation diffusion model, Gtraj, and the full-body motion generation model, Gfull,
independently. And they can be seamlessly combined during inference. The loss formulations and the training
strategies are elaborated in the following.

Trajectory Generation. In the trajectory generation stage, we use a single reconstruction loss term to
train our model. Formally, the loss function Ltraj is defined as:

Ltraj = ∥ϵ − ϵ̃∥2
2, (1)

where ϵ̃ = Gtraj(t, gt, y, w) represents the estimated noise.

Full-Body Motion Generation. At the stage of full-body motion generation, the loss function consists
of three terms: the reconstruction loss LR, the kinematic loss LK, and the interaction loss LI. We define the
training objective Lfull in this stage as:

Lfull = λRLR + λKLK + λILI. (2)

Here, λR, λK, λI are the weights assigned to LR, LK, LI, respectively.

(i) Similar to the reconstruction loss used in the trajectory generation stage, we define LR = ∥x0 − x̃0∥2
2 as

the reconstruction loss here. However, solely relying on the reconstruction loss does not necessarily lead to
realistic reaction.

(ii) To address the problem such as foot sliding or jittering artifacts, following (Tevet et al., 2022b; Liang
et al., 2024; Ghosh et al., 2023), we use a kinematic loss term LK. To specify, LK consists of 4 subterms,
which are Lfoot

K , Lvel
K , Lrot

K , Ltraj
K , representing foot skating loss, velocity loss, global rotation loss, and global

trajectory loss, respectively. With the weights λfoot, λvel, λrot, λtraj, LK can be formulated as:

LK = λfootL
foot
K + λvelL

vel
K + λrotL

rot
K + λtrajL

traj
K . (3)

For more details on the formulation of these subterms, please refer to Appendix D.

(iii) We introduce an interaction loss, LI, that emphasizes the spatial relationships within interactions.
Inspired by (Zhang et al., 2023f), this approach models human interactions as an interaction graph where
each joint of the actor and reactor serves as a node, and edges represent joint pairs. To compute LI, we
design a weighting function that emphasizes pairs of joints that are closer together, deeming pairs that are
farther apart as less critical for interaction.

Specifically, the interaction loss LI consists of two terms: position interaction loss Lp
I and velocity interaction

loss Lv
I , as shown in Eq. 4, where λp and λv are corresponding weights:

LI = λpLp
I + λvLv

I . (4)

To compute Lp
I , we first use forward kinematics to calculate the joint coordinates of the generated reaction

and the actor’s motion in the global coordinate, denoted as P̃x and Py ∈ RJ×T ×3, where T is the motion
length and J is the number of joints. Next, we calculate the interaction graph M̃p ∈ RJ×J×T ×3, where
M̃p[i, j] = Py[j] − P̃x[i], representing the difference in coordinates for each frame between the i-th joint
of the reactor and the j-th joint of the actor. We also compute distance graph D̃p ∈ RJ×J×T , where
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D̃p[i, j] = ∥M̃p[i, j]∥2, representing the distance between joint pair (i, j). Similarly, we calculate Mp and
Dp of the ground truth reactor and the actor. The position interaction loss Lp

I can be formulated as:

Lp
I = 1

|S|
∑

(i,j,k)∈S

Wp[i, j, k]∥M̃p[i, j, k] − Mp[i, j, k]∥2
2, (5)

where S = {(i, j, k)|Dp[i, j, k] ≤ c} is the set of joints-frame pairs that the distance between the i-th joint
of the reactor and the j-th joint of the actor is below a threshold c in the ground truth distance graph. The
weighted term Wp ∈ RJ×J×T is defined as:

Wp = (σ(D̃p) + σ(Dp))(ϕ(D̃p) + ϕ(Dp)), (6)

where σ(D)[i, j, k] = exp(D[i,j,k])∑
x,y

exp(D[x,y,k])
is a softmax function along the joint pair axis, and ϕ(D)[i, j, k] =

1
D[i,j,k] . The intuition behind S and weighted terms Wp is that distant joint pairs are less important for
interaction, while closer joint pairs are more critical. We can compute the velocity interaction loss Lv

I
similarly. Please refer to Appendix D for details.

As highlighted in (Yuan et al., 2023; Liang et al., 2024; Xu et al., 2023b), we find that the denoising motion
in the initial denoising phase does not have reasonable kinematic and interaction properties. Based on this
observation, it is not reasonable to apply kinematic and interaction losses if the diffusion time step t is large.
Thus, we adopt a thresholding scheme among loss functions during the training of our full-body motion
generator. Specifically, we set a threshold t̄ and only apply the kinematic loss and the interaction loss if t is
no larger than t̄. Therefore, the final form of Lfull can be written as:

Lfull = λRLR + I(t ≤ t̄)(λILI + λKLK). (7)

3.4 Inference

In the inference stage, we incorporate an inpainting mechanism into the denoising process, similar to the
motion infilling scheme in (Tevet et al., 2023; Shafir et al., 2023; Raab et al., 2023b). Specifically, at each time
step t, after estimating the clean sample x̃0, we fuse the x̃0 with the previously generated global trajectory
g from the first stage to form x̂0. This process can be formulated as:

x̂0 = (1 − M) ⊙ x̃0 + M ⊙ g, (8)

where M represents the mask for the dimensions that describe the global trajectory information in the
motion feature x and ⊙ is the Hadamard product. The modified result, x̂0, is then used to sample xt−1.
Through this inpainting mechanism, we continuously incorporate the known global trajectory g into the
denoising process, ensuring the final full-body motion faithfully adheres to g.

4 Experiments

In this section, we begin by introducing the experimental setup of our work, which includes evaluation
metrics, baseline settings, and implementation details in Sec. 4.1. Subsequently, we present the quantitative
results of our method in Sec. 4.2, followed by the qualitative results in Sec. 4.3. Finally, in Sec. 4.4, we
discuss the ablation study conducted on our model.

4.1 Experimental Setup

Dataset. We conduct our evaluation on the InterHuman (Liang et al., 2024) and CHI3D (Fieraru et al.,
2020) datasets. InterHuman features 6,022 motion sequences across various interaction categories, annotated
with 16,756 unique descriptions. We use the official training and testing split as specified in InterHuman. To
demonstrate the generalizability of MoReact, we also evaluate its performance on the action-driven reaction
generation task using the CHI3D dataset, which contains 376 interaction sequences with action labels. We
split this dataset into training and testing sets at a 2:1 ratio.

7



Under review as submission to TMLR

Evaluation Metrics. We adopt the evaluation metrics used in prior works (Liang et al., 2024; Xu et al.,
2024b) for our quantitative analysis, evaluating the actor and reactor’s motion as a whole. Specifically, in the
experiments on the InterHuman dataset, R-Precision measures the relevance of the generated interaction to
the provided text description. The Fréchet Inception Distance (FID) evaluates the realism of the generated
reaction relative to the actor’s motion. Additionally, we use Multi-Modality Distance (MM Dist) to assess
the alignment between the text and the generated interaction in a shared latent space. We also measure
Diversity to examine the variation in the generated motions. For the experiments on the CHI3D dataset,
we further evaluate the generated interactions by measuring their action recognition Accuracy using a
pretrained action classifier.

Baseline. Given that text-driven human reaction generation is a novel task, there is no existing work or
code publicly available that directly serves as a baseline for comparison. To facilitate comparison, in our
evaluations, we modify InterGen (Liang et al., 2024) to incorporate an inpainting mechanism during the
inference stage, as described in Sec. 3.4. This modification ensures that InterGen takes the actor’s motion
as a condition to generate the reactor’s motion accordingly. We also adapted MDM (Tevet et al., 2022b),
a widely used method in text-driven human motion generation, to suit the text-driven reaction generation
task. For more details, please refer to the Appendix D.

Table 1: Quantitative Comparison on InterHuman and CHI3D. ± represents the 95% confidence
interval, and → indicates that values that closer to the Real are better. * indicates the model is evaluated
without motion infilling mechanism.

InterHuman CHI3D
Methods 3-Precision↑ FID↓ MM Dist↓ Diversity→ Accuracy↑ FID↓ Diversity→

Real 0.704±0.005 0.206±0.009 3.784±0.001 7.799±0.031 0.604±0.005 0.084±0.005 3.995±0.056

MDM 0.532±0.006 3.763±0.056 3.844±0.001 7.751±0.021 0.496±0.011 13.850±0.375 3.997±0.056

MDM-GRU 0.640±0.006 12.758±0.158 3.812±0.001 7.640±0.028 0.345±0.011 39.280±1.397 4.097±0.089

InterGen 0.631±0.005 7.207±0.114 3.812±0.001 7.692±0.038 0.531±0.017 46.531±0.699 4.082±0.077

InterGen∗ 0.614±0.008 7.576±0.178 3.821±0.002 7.860±0.051 0.661±0.005 14.772±0.448 3.962±0.058

MoReact 0.615±0.007 2.412±0.050 3.813±0.002 7.775±0.046 0.687±0.014 10.801±0.313 3.582±0.063

Table 2: Ablation Studies on InterHuman dataset. The results demonstrate the effectiveness of
kinematic loss LK, interaction loss LI, thresholding scheme and two-stage framework.

Methods 3-Precision↑ FID↓ MM Dist↓ Diversity→

Real 0.704±0.005 0.206±0.009 3.784±0.001 7.799±0.031

MoReact(w/o LK , LI ) 0.623±0.007 3.164±0.062 3.808±0.001 7.719±0.031

MoReact(w/o LI ) 0.594±0.005 2.456±0.030 3.816±0.002 7.832±0.037

MoReact(w/o LK) 0.618±0.008 2.673±0.020 3.810±0.002 7.784±0.036

MoReact(w/o threshold scheme) 0.613±0.008 3.403±0.044 3.816±0.002 7.796±0.031

MoReact(single-stage) 0.591±0.007 2.776±0.032 3.822±0.002 7.761±0.051

MoReact 0.615±0.007 2.412±0.050 3.813±0.002 7.775±0.046

Implementation Details. As a pre-processing step, we normalize the actor’s motion by relocating it to
the origin and rotating it to make the actor facing z+ axis. Subsequent transformations are applied to the
reactor to maintain the spatial relationship between the actor and reactor unchanged. Similar to previous
work (Tevet et al., 2023; Zhang et al., 2022), we use a pretrained and frozen CLIP (Radford et al., 2021)
model to encode text prompts into text features, while the rest of MoReact is trained from scratch. The
trajectory generation model is trained for 1,200 epochs, and the full-body motion generation model is trained
for 2,000 epochs. We train both models using a learning rate of lr = 1e − 4 and the AdamW optimizer,
with a batch size of 32. Our models are implemented in PyTorch and trained on two NVIDIA A40 GPUs.
Following (Tevet et al., 2023), we adopt a classifier-free approach (Ho & Salimans, 2022) in the generation
process. For evaluation, we adopt the MotionClip (Tevet et al., 2022a) provided by InterGen (Liang et al.,
2024) to evaluate our model’s performance on InterHuman dataset. We follow the implementation of ST-
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GCN (Yan et al., 2018) to train the action recognition model and compute action-classification accuracy on
CHI3D (Fieraru et al., 2020) dataset. Additional implementation details are provided in the Appendix D.

4.2 Quantitative Results

We compare MoReact with InterGen (Liang et al., 2024) and MDM (Tevet et al., 2022b) on the test sets
of the InterHuman and CHI3D datasets. For a fair comparison, we include the results of both adapted
InterGen with actor motion infilling and the original InterGen without motion infilling. The main results
are summarized in Table 1. Our approach, MoReact, outperforms the baselines across various metrics,
particularly achieving significant improvements in interaction quality and alignment, as evidenced by a
substantial reduction in FID. As described in Sec. 4.1, FID is the most critical metric for reflecting the
quality of the generated reactions. The results also indicate that naively adapting existing text-interaction
or text-motion models fails to generate satisfactory reactions. This underscores the need for new paradigms
in text-driven reaction generation, implying the importance of our proposed method.

4.3 Qualitative Results

The qualitative comparisons between MoReact and baselines are demonstrated in Fig. 3. As shown in the
first two rows, the baselines fail to generate realistic reactions based on the textual description and the
actor’s motion. Specifically, the reactions generated by InterGen and MDM do not faithfully align with the
textual description and fail to coordinate harmoniously with the actor’s motion. For instance, in Fig. 4.3(c),
InterGen is unable to synthesize a motion that the reactor falls onto the ground as the text described. This
exemplifies how the previously generated global trajectory can act as a constraint, narrowing the search space
for full-body motion generation and resulting in interactions that better align with the text. Moreover, in
Fig. 4.3(a), the reactor and actor overlap in the same space, leading to implausible body penetration artifacts.
All visualization results from MDM fail to generate realistic reactions that align well with the actor’s motion,
even if the reaction itself is coherent with the text description. These issues highlight the importance of a
plausible global trajectory for realistic interaction and demonstrate the effectiveness of MoReact.

Moreover, we demonstrate MoReact’s capability for diverse control, as illustrated in Fig. 4. MoReact effec-
tively synthesizes diverse reactions to the same motion of the actor based on differing textual descriptions.
Conversely, it is also adept at generating varied reactions to different motions of actors when guided by the
same text.

4.4 Ablation Studies

We conduct an ablation study on the InterHuman dataset to evaluate the effectiveness of our loss designs
and two-stage framework, as shown in Table 2. The results indicate that the kinematic loss LK, interaction
loss LI, and thresholding scheme all contribute to generating more realistic reactions and achieving lower
FID scores. To validate the superiority of the two-stage framework, we develop a baseline model that
operates in a single stage, directly generating full-body motion from the text description and the actor’s
motion. The quantitative results in Table 2 demonstrate that our two-stage model significantly outperforms
the single-stage model across all metrics. Additional details of the ablation studies can be found in the
Appendix E.

5 Conclusions

In this work, we propose an innovative method, MoReact, to solve the text-driven human reaction generation.
Utilizing a two-stage framework that sequentially synthesizes the global trajectory and full-body motion,
MoReact effectively creates high-quality, realistic reactions. These reactions not only align accurately with
the text but also harmonize with the actor’s movements. Moreover, MoReact also demonstrates remarkable
flexibility and controllability in the reaction generation process, enabling the synthesis of diverse reactions
based on varying conditions. Experimental results demonstrate our methods’ superiority over baselines and
validate the efficacy of our model’s design.
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The two guys rush towards one 
another and embrace tightly.

Two individuals walk towards 
each other. At the same time, the 
first one lifts their left hand and 

points their index finger towards 
the second one, then comes to a 

complete stop.

One person moves forward, while 
the other person moves towards 
the left front side. Suddenly, the 

other falls backwards to the 
ground, and one person rushes to 

help them up. After that, one 
person holds out their right hand 
and grasps the other’s left hand.

One person attempts to lunge 
forward and stab the other’s body, 
but the other person dodges with 

a sword held in their hand.
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Figure 3: Qualitative comparison. We show that MoReact consistently generates more realistic reactions
than MDM InterGen, avoiding issues such as body penetration (a)(b), text-motion mismatch (c), and inter-
action misalignment (d).

The first person speaks 
animatedly while the second 

sits with her phone, not 
paying attention.

The first person talks with 
excitement while the second 
stands and listens carefully. Two people are having a fight.

(a) (b)

Figure 4: Qualitative evaluation of the control capacity.
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A Appendix Overview

In this appendix, we present further analyses, implementation details, and additional experimental results.
Specifically: (1) We provide a detailed video demonstration in the supplementary materials, with a cor-
responding explanation provided in Sec. B. (2) We delve deeper into our key insight – global trajectory
serves as the foundation for both local motion and interaction realism – and further validate this claim with
quantitative experimental evidence in Sec. C. (3) Additional information regarding the implementation of
MoReact and the baseline models is detailed in Sec. D. (4) Sec. E illustrates extra ablation studies to show
the efficacy of MoReact’s framework. (5) We discuss MoReact’s limitations and social impacts in Sec. F.

B Visualization Demo

In the supplementary materials, we include a demo video that shows the visualization results associated
with figures in the main paper. The video features: (1) visualizations of our main insights; (2) qualitative
comparisons with baseline models; (3) showcases of MoReact’s controllability on both text and motion; and
(4) qualitative results of MoReact in action-driven reaction generation task on CHI3D dataset. Please watch
the video for further results and details.

C A Further Investigation on Our Key Insight: The Central Role of Global
Trajectory

As discussed and qualitatively validated in the main paper as well as in the demo video, a crucial insight of
our work is that the global trajectory serves as the foundation for both local motion and interaction realism.
Incorrect global trajectory makes it difficult for the local motion to align with the action and text description,
having a more detrimental impact on interaction realism than incorrect local motion. Here to further validate
this insight in a quantitative manner, we perform an experiment examining the impact of equivalent levels
of noise on both global trajectory and local motion and their effects on the overall motion’s realism.

In detail, for a reaction x0, we use a diffusion style forward process to apply a sequence of Gaussian noise
additions to x0 and obtain the noised full-body reactions x1, x2, · · · , xT , where xT ∼ N (0, I). Based on
the noised full-body reactions {xt}T

t=1, we can obtain reactions with noised global trajectory {xg
t }T

t=1 and
reactions with noised local motion {xl

t}T
t=1 with the following equations:

xg
t = (1 − Mg) ⊙ x0 + Mg ⊙ xt (9)

xl
t = (1 − M l) ⊙ x0 + M l ⊙ xt, (10)

where Mg, M l represent the masks for the dimensions that describe the global trajectory information and
local motion information in the motion feature x respectively, and ⊙ is the Hadamard product. For a set of
time steps {t}, we compute xt, xg

t and xl
t for every reaction x in the test dataset. Subsequently, we evaluate

the realism of interaction between the actor’s motion and the noised reaction by calculating the Fréchet
Inception Distance (FID) across the entire test dataset. The FID is computed by the MotionClip (Tevet
et al., 2022a) provided by InterGen (Liang et al., 2024). The results, depicted in Fig. C.1 and consistent
with the demo video, show that adding noise to the global trajectory has a more detrimental effect on the
realism of interactions compared with adding noise to the local motion, thus motivating the design of our
MoReact framework.

D Implementation Details

Formulation of Velocity Interaction Loss Lv
I . Beyond the position interaction loss introduced in the

main paper, we also employ a velocity interaction loss to enhance the model’s ability to generate realistic
close interactions. Similar to the computation of Lp

I , for Lv
I , we first compute Ṽx and Vy ∈ RJ×(T −1)×3,

representing the joint velocities of the reactor and the actor. We then calculate the velocity interaction graph
M̃v ∈ RJ×J×(T −1)×3, where M̃v[i, j] = Vy[j] − Ṽx[i]. We also calculate Mv for the ground truth reactor
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Figure C.1: Change of FID for different noising modes and diffusion steps. Adding noise to the
global trajectory has a more detrimental effect on the realism of interactions compared with adding noise to
the local motion.

and the actor. The velocity interaction loss Lv
I can be formulated as:

Lv
I = 1

|S′|
∑

(i,j,k)∈S′

Wv[i, j, k]∥M̃v[i, j, k] − Mv[i, j, k]∥2
2, (11)

where S′ = {(i, j, k)|Dp[i, j, k] ≤ c, k < T} is a set of index pairs and Wv = σ(D̃p) + σ(Dp) is the weighted
term. The definition of D̃p, Dp, and σ are consistent with those in the main paper.

Formulation of Kinematic Loss LK. As shown in Sec. 3.3 of the main paper and building upon (Tevet
et al., 2022b; Liang et al., 2024; Ghosh et al., 2023), we use a kinematic loss term, LK, to prevent artifacts
like foot sliding or jittering. Moreover, we aim to utilize the kinematic loss LK to make our model focus
more on the generation of global trajectory. This focus is crucial because, despite the greater importance
of global trajectory compared with local motion, the motion representation allocates only 4 values for the
global trajectory versus 259 for the local motion. As shown in GMD (Karunratanakul et al., 2023), such a
disparity could lead the model to prioritize local motion generation. Therefore, we want to use the kinematic
loss LK to eliminate such a bias.

Specifically, LK consists of 4 subterms, which can be formualted as:

LK = λfootL
foot
K + λvelL

vel
K + λrotL

rot
K + λtrajL

traj
K . (12)

Here, Lfoot
K , Lvel

K , Lrot
K , and Ltraj

K correspond to the foot skating loss, velocity loss, global rotation loss, and
global position loss, respectively. The coefficients λfoot, λvel, λrot, and λtraj denote the weights assigned
to these four loss terms. To compute these losses, we first compute joint positions P̃x, Px ∈ RJ×3T and
joint velocities Ṽx, Vx ∈ RJ×3(T −1) of the generated reaction and ground truth reaction. We further use
R̃x, Rx ∈ RT to denote the global rotation of the reactor along the y-axis. For clarity, we omit the subscript
x in subsequent formulations.

To compute the foot skating loss Lfoot
K , we first calculate H̃ ∈ RJ×(T −1), which signifies the height of each

joint across the previous T − 1 frames. The formulation of Lfoot
K is then articulated as follows:

C[i] = I(∥Ṽ [i]∥2 ≤ γv) ∗ I(H̃[i] ≤ γh) (13)

Lfoot
K = 1∑

i∈FootJoints C[i]
∑

i∈FootJoints
∥Ṽ [i]∥2

2 ∗ C[i]. (14)
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Here, γv and γh serve as thresholds for calculating C, where C ∈ {0, 1}J×(T −1) indicates the contact be-
tween each joint and the ground in each frame. FootJoints ⊂ {1, · · · , J} represents the subset of indices
corresponding to foot joints.

We use similar equations to compute velocity loss Lvel
K , global rotation loss Lrot

K , and global position loss
Ltraj

K , which are expressed as follows:

Lvel
K = 1

J ∗ (T − 1)
∑

i

∥Ṽ [i] − V [i]∥2
2 (15)

Lrot
K = 1

T
∥R̃ − R∥2

2 (16)

Ltraj
K = 1

T
∥P̃ [root] − P [root]∥2

2, (17)

where ‘root’ denotes the index of the root joint of the reactor.

Experimental Setup of InterGen. Originally designed for text-driven human interaction generation,
InterGen (Liang et al., 2024) processes a text prompt w to generate interactions z = [x, y] between two
people with respect to w. However, it is not directly applicable to our task of text-driven human reaction
generation. To adapt InterGen for this new task, we integrate an inpainting mechanism into the inference
process of InterGen, which is similar to the method described in Sec. 3.4 of the main paper. At each time
step t of the denoising process of InterGen, after estimating the clean interaction z̃0 = [x̃0, ỹ0], we embed
the known actor’s motion into z̃0 to obtain ẑ0. This operation can be expressed as:

ẑ0 = [1, 0] ⊙ z̃0 + [0, 1] ⊙ [0, y] = [x̃0, y]. (18)

Here, ⊙ denotes the Hadamard product. The modified result, ẑ0 = [x̂0, ŷ0], is subsequently utilized to
calculate µt and to sample zt−1 from N (µt, Σt). By employing this inpainting mechanism, we continuously
integrate the known actor’s motion y throughout the denoising process, guaranteeing that the resulting
interaction z = [x, y] accurately conforms to y. Consequently, x̃0 in the ultimate denoising outcome z0 =
[x0, y0] represents the reaction generated with respect to both the textual prompt w and the actor’s motion
y.

Through communication with the authors of InterGen (Liang et al., 2024), we discovered that the publicly
released checkpoint (Liang et al., 2023) of InterGen was trained using both the training and test sets to
produce best demonstrations. Therefore, for a fair comparison, we train InterGen from scratch using their
codebase, strictly following the experimental setup presented in their paper.

Experimental Setup of MDM. We adapted the official code of MDM to suit the text-driven reaction
generation task. Specifically, by concatenating the action and reaction features before feeding them into the
model, we enable the model to be aware of the interaction between two people instead of focusing on just
one person. We experimented with two backbones for MDM: a transformer encoder-only backbone and a
GRU backbone. For the transformer encoder-only backbone, we utilized N=8 blocks, each with a latent
dimension of 1,024, and equipped each attention layer with 8 heads. For the GRU backbone, we set N=8
GRU layers with a latent dimension of 1,024. Both models were trained for 2,000 epochs using the AdamW
optimizer, consistent with the training settings of MoReact.

Detailed Model Configurations. In the transformer-style architecture of our full-body motion diffusion
model, we utilize N=8 blocks, each with a latent dimension of 1,024, and we equip each attention layer with
8 heads, consistent with the setup in InterGen (Liang et al., 2024). Before inputting the noised reaction
vector xt into the transformer layers, we use a linear layer to adjust its dimension to match the transformer’s
input dimension. Similarly, the output from the transformer layers is processed by another linear layer to
match the motion feature’s dimension. For text processing, we utilize a frozen CLIP-ViT-L-14 model to
encode the text prompt into text features for cross-attention. Moreover, following InterGen, we extract
the most salient text feature embedding, combine it with the diffusion timestep feature, and employ this
composite feature within the adaptive layer norms of the transformer blocks. To encode the actor’s motion
y, a transformer encoder layer comprising 2 blocks, a latent dimension of 1,024, and 8 heads per attention
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MoReact MoReact (1-Stage) MoReact MoReact (1-Stage)

Two individuals are seated on chairs, the first individual is 
looking at the phone, while the other suggests that the former 

should look ahead.

The other person forcefully raises their right hand and slaps 
the left cheek of one person, causing them to collapse to the 

ground. The other person stands by the side afterwards.

Figure E.1: Ablation study on the design choice within MoReact.

layer is utilized prior to incorporating y for cross-attention. Except for the absence of a cross-attention layer,
the architecture of the trajectory diffusion model mirrors that of the full-body diffusion model.

During training, we use a 1,000-step diffusion process and adopt a classifier-free technique (Ho & Salimans,
2022) that randomly masks 10% of the text conditions, 10% of the actor’s motion conditions, and 10% of the
global trajectory condition independently. During inference, we use the DDIM (Song et al., 2020) sampling
strategy with 50 time steps and η = 0, and set the classifier-free guidance coefficient s = 3.5. For the
hyperparameters used in the training of the revised model, we set (λR, λK, λI, λfoot

K , λvel
K , λrot

K , λtraj
K , Lp

I , Lv
I )

to (7.0, 1.0, 1.0, 300.0, 110.0, 1.5, 10, 5.0, 25.0), respectively. In addition, we set the threshold t̄ for applying
the kinematic loss LK and the interaction loss LI as 700.

Details for experiments on CHI3D dataset. To demonstrate the generalization ability of MoReact, we
adapted it to suit the action-driven reaction generation task and evaluated it on the CHI3D (Fieraru et al.,
2020) dataset. Specifically, instead of using CLIP to extract features from text as in the text-driven reaction
generation task, we employed a learnable action embedding to encode the action features. Additionally,
compared to the architecture shown in Fig. 2(b) of the main paper, we eliminated the cross-attention layer
that fuses the textual features into the denoising process. We reduced the latent dimension to 512 and
the batch size to 16. The model was trained for 1,000 epochs using the AdamW optimizer. We also
made corresponding adjustments to the baseline MDM model (reducing the latent dimension, adjusting the
batch size, and training settings) to ensure a fair comparison. We follow the official implementation of
ST-GCN (Yan et al., 2018) to build our evaluator, an interaction classifier trained on CHI3D.

E Additional Ablation Studies

Two-Stage vs. Single-Stage. Beyond the quantitative analysis of the design choice in Sec. 4.4 of the
main paper, we present some visual results generated by both the two-stage and single-stage frameworks.
As illustrated in Fig. E.1 and supplementary video, our two-stage framework generates more natural and
text-aligned reactions compared to the single-stage baseline, validating the effectiveness of our two-stage
approach.

Predicted Term of Trajectory Diffusion Model. As mentioned in Sec. 3.2 of the main paper, diffusion
models can employ two kinds of strategies during the denoising process to derive xt−1 from the noised data
xt: predicting the noise ϵ, or predicting the clean data x0. Here, we conduct experiments to determine
which approach is more effective for the trajectory diffusion model. The results, displayed in Table E.1,
indicate that the variant focusing on noise prediction ϵ outperforms, aligning with the conclusions drawn by
GMD (Karunratanakul et al., 2023).
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Table E.1: Ablation studies on predicted term of trajectory diffusion model. The trajectory model that
predicts ϵ achieves better performance in R-precision, FID and Multi-Modality Distance.

Methods Traj. Model 3-Precision↑ FID↓ MM Dist↓ Diversity→

Real - 0.704±0.005 0.206±0.009 3.784±0.001 7.799±0.031

MoReact predict x0 0.568±0.006 2.959±0.030 3.826±0.001 7.808±0.030

MoReact predict ϵ 0.615±0.007 2.412±0.050 3.813±0.002 7.775±0.046

Interaction Loss. While some existing work also employed interaction loss to facilitate interaction genera-
tion, their implementations differ from ours in some important aspects. For example, ReMoS (Ghosh et al.,
2023) only considers corresponding joints of the interacting individuals in its interaction loss, thus failing
to capture diverse joint interaction patterns present in real-world scenarios. InterGen (Liang et al., 2024),
on the other hand, does not incorporate a weighting mechanism, preventing it from effectively penalizing
unrealistic close interactions or appropriately de-emphasizing irrelevant distant ones. In contrast, our inter-
action loss introduces a novel weighting mechanism that dynamically adjusts the importance of joint pairs
based on both ground-truth and generated interactions, thereby enabling more realistic reaction generation.
Additionally, we re-implemented the interaction losses employed by InterGen and ReMoS within MoReact
and conducted quantitative comparisons with our method. As demonstrated in Table E.2, our approach
consistently achieves superior performance in terms of R-precision, FID, and MM Dist, highlighting the
effectiveness of our weighted interaction loss.

Table E.2: Quantitative comparison of different interaction loss designs. Our weighted interaction loss
consistently outperforms InterGen (Liang et al., 2024) and ReMoS (Ghosh et al., 2023) losses on R-precision,
FID, and MM Dist, demonstrating its superior effectiveness in generating realistic reactions.

Methods 3-Precision↑ FID↓ MM Dist↓ Diversity→

Real 0.704±0.005 0.206±0.009 3.784±0.001 7.799±0.031

InterGen (Liang et al., 2024) Loss 0.596±0.009 3.436±0.075 3.826±0.002 7.887±0.039

ReMoS (Ghosh et al., 2023) Loss 0.608±0.007 2.817±0.070 3.819±0.002 7.792±0.035

MoReact 0.615±0.007 2.412±0.050 3.813±0.002 7.775±0.046

F Limitations and Social Impacts

Limitations and Future Work. MoReact is designed to generate reactions by considering both textual
descriptions and the motion of another individual. Future research will aim to generalize our method to
broader contexts, for example, generating reactions based on text and the motions of multiple people.

Potential Social Impact. We recognize the potential application of reaction synthesis in military training
contexts. With our model, the military might generate a virtual soldier who can dodge and counteract in
response to a real soldier’s movements, thereby simulating authentic battlefield scenarios to train soldiers.
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