Under review as a conference paper at ICLR 2026

CAN LLMS MAINTAIN FUNDAMENTAL ABILITIES UN-
DER KV CACHE COMPRESSION?

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates an underexplored challenge in large language models
(LLMs): the impact of KV cache compression methods on LLMs’ fundamental
capabilities. Although existing methods achieve impressive compression ratios on
long-context benchmarks, their effects on core model capabilities remain under-
studied. We present a comprehensive benchmark KVFundaBench to systematically
evaluate the effects of KV cache compression across diverse fundamental LLM
capabilities, spanning world knowledge, commonsense reasoning, arithmetic rea-
soning, code generation, safety, and long-context understanding and generation.Our
analysis reveals serval key findings: (1) Task-Dependent Degradation; (2) Model-
Type Robustness (3) Prompt Length Vulnerability; (4) Chunk-Level Superiority; (5)
Prompt-Gain Sensitivity; (6) Long-Context Generation Sensitivity. Based on our
analysis of attention patterns and cross-task compression performance, we propose
ShotKV, a novel compression approach that distinctly handles prefill and decod-
ing phases while maintaining shot-level semantic coherence. Empirical results
show that ShotKV achieves 9%-18% performance improvements on long-context
generation tasks under aggressive compression ratios.

1 INTRODUCTION

The evolution of Large Language Models (LLMs) to process large documents for tasks such as
answering and summarizing questions (Raffel et al.l [2020; |Brown et al.| [2020} |Chowdhery et al.,
2022; Tay et al.,2022; Touvron et al., 2023ab), spurred by breakthroughs in system architectures (Dao
et al., 2022} Dao), 2024; Jacobs et al., 2023} Xiao et al.,2024) and model design (Chen et al., 2023a;
Xiong et al.;2024;|Chen et al.||2023b} |Peng et al., [2024)), has significantly increased GPU memory
demands during inference (AI21}2024} X.Al, 2024; [Reid et al.|[2024; |Anthropic} 2024} DeepSeek-Al,
2024; |L1u et al., [2024a)), making the development of efficient key value (KV) cache compression
strategies a critical focus for LLM deployment and optimization.

To address this, numerous studies have proposed selective token retention strategies (Xiao et al.
2024; Zhang et al., [2023; |L1 et al., 2024b; |Ge et al., [2023; [Cai et al., |2024; |[Fu et al., 2024} Yang
et al., 2024; |/Adnan et al.| 2024; [Liu et al.l |2024¢e} [Tang et al.| 2024), with pioneering works such
as H20 (Zhang et al.,2023) and SnapKV (Li et al.| 2024b)) showing that retaining approximately
50% of KV cache entries can balance model performance with significant memory savings. However,
current research primarily evaluates these methods in retrieval-based long-context scenarios such
as LongBench [Bai et al.| (2023; 2025)) and Need-In-A-Haystack (NIAH) |[Kamradt| (2023)). This
narrow focus overlooks reasoning-intensive long-context scenarios, such as many-shot in-context
learning (ICL) (Agarwal et al. 2024)), where the context length is driven by extensive examples
and the challenge lies not merely in retrieving specific information (‘“needle in a haystack™), but
in maintaining reasoning chains across extended generation sequences (e.g., 4k+ tokens). In
these settings, the pressure on the KV cache comes from the necessity to preserve the semantic
coherence required for multi-step deduction. Consequently, the impact of compression on a spectrum
of fundamental LLM capabilities—such as arithmetic reasoning, world knowledge, commonsense
reasoning, and safety—remains largely unexplored, particularly concerning their distinct attention
patterns. To this end, we introduce KVFundaBench, a benchmark designed to systematically
assess the effects of KV cache compression across these diverse fundamental capabilities and their
underlying attention dynamics. The benchmark includes 5 categories of tasks: world knowledge,
commonsense reasoning, arithmetic reasoning, code generation, and safety. Our comprehensive

Accuracy

Under review as a conference paper at ICLR 2026

Long-Context Benchmark Arithmetic Benchmark

050 - 050
045° 0.45-
040" 0—.—.—0—.—.-—._\ 040]
035° 0.35°

0.30° l e g O A B l 039 [—a— " Arithmetic Benchmark

025 0.25
Baseline90 80 70 60 50 40 30 20 10 Baseline90 80 70 60 50 40 30 20 10
Compression Ratio (%) Compression Ratio (%)

Long-Context Arithmetic Reasoning

(a) KV cache compression methods on long-context and (b) Attention heatmap on long-context and arith-
arithmetic benchmarks. metic benchmarks.

Figure 1: KV cache compression methods on long-context and arithmetic benchmarks. (a) Arithmetic
benchmark shows more performance degradation than long-context benchmark. (b) Long-Context
benchmark shows more sparsity in attention heatmap.

evaluations using KVFundaBench reveal several critical findings: we observe, as shown in Figure
that arithmetic reasoning tasks suffer significantly higher performance degradation under compression
compared to long-context tasks, and that attention patterns in long-context scenarios exhibit notably
higher sparsity. These initial results suggest that existing evaluation frameworks, which focus
predominantly on long-context performance, may not adequately capture the full impact spectrum.
Our KVFundaBench reveals several key findings: (1) Task-Dependent Degradation: Performance
degradation is highly task-dependent, with arithmetic reasoning tasks showing particular sensitivity to
aggressive compression; (2) Model-Type Robustness: Multi-step reasoning LLMs demonstrate higher
compression robustness compared to instruction-tuned models; (3) Prompt Length Vulnerability:
Shorter prompts are more vulnerable to compression effects; (4) Chunk-Level Superiority: Chunk-
level compression strategies show superior performance on complex long-context reasoning tasks;
(5) Prompt-Gain Sensitivity: Tasks with larger prompt-based performance gains exhibit higher
compression sensitivity; and (6) Long-Context Generation Sensitivity: Long-context generation
tasks are particularly sensitive to compression. These findings provide valuable insights into the
relationship between compression methods and model capabilities, motivating our development of
ShotKYV, which is a new KV cache compression method with separate compression methods for
prefill and decoding phases.

We hope our work can provide the research community with insightful perspectives on the impact of
KV cache compression on LLMs. Our main contributions are summarized as follows:

* Introduce KVFundaBench to systematically evaluate the effects of KV cache compression across
diverse fundamental LLM capabilities, we demonstrate that task-specific sensitivity to compression
varies significantly, with performance degradation ranging from 1% to 40%.

* Our systematic investigation reveals multiple critical factors influencing compression sensitivity,
including model training dynamics, prompt length characteristics, task-specific requirements,
long-context reasoning, and long-context generation capabilities.

* We introduce ShotKYV, an innovative compression framework that distinctively manages the prefill
and decoding phases while maintaining the semantic integrity of the shot level.

2 PRELIMINARY

In this section, we provide comprehensive preliminaries of KV cache compression and LLM evalua-
tion.

Key-Value Cache in LLMs With the increasing long-context capabilities of LLMs, the Key-Value
(KV) cache has become crucial for improving inference efficiency. During LLM inference, the KV
cache stores intermediate computation results to avoid redundant calculations. For a given input
sequence ¥ = (1,2, ..., Tp,), each transformer layer [maintains its key cache K' = (k! kb, ..., k})
and value cache V! = (v}, v}, ...,vl), where k!, v} € R? represent the key and value vectors for
token x; at layer [.

KYV Cache Compression KV cache compression aims to reduce memory usage by selectively
storing or merging cached vectors. A compression operation can be denoted as C(K, V) = (K', V'),
where K’ and V' are compressed caches with size m < n, where C' is the compression method, m
is the number of retained tokens, and n is the original number of tokens. The core idea is token

Under review as a conference paper at ICLR 2026

Table 1: Hyperparameters for Different Observations

| Obs1 Obs2 Obs3 Obs4 Obs5 | Obs6

Benchmarks

\ Number of Shots | K T
MMLU Hendrycks et al.|(2020) 5 5 - - 0,5 - -
CommonsenseQA [Talmor et al.|(2019) 4 4 - - - - -
GSMB8K |Cobbe et al.|(2021) 8 8 1-8 50 0,8 - -
HumanEval |Chen et al.|(2021) 8 8 - - - - -
JailBreakV |[Luo et al.|(2024) 8 8 - - - - -

LongGenBench-GSMSK [Liu et al.|(2024d) | - - - 135 20

selection - identifying and retaining important tokens based on attention patterns or other metrics
while discarding less important ones. The compression ratio r = m/n indicates how aggressively
the cache is compressed, where a smaller ratio means more aggressive compression.

Evaluation Protocol To thoroughly evaluate the impact of KV cache compression on LLMs’
capabilities, we assess five benchmark categories: world knowledge, commonsense reasoning,
arithmetic reasoning, code generation, and safety.

For each task category and compression method C', we calculate the relative performance change as
follows:
P, C — I base
AP =—— 1)
B base

where Po and B, represent the performance scores with and without compression, respectively.

3 BENCHMARK DESIGN

3.1 BENCHMARK SETUPS

In this section, we will introduce the KVFundaBench setups, including the datasets, models, and
evaluation environment.

Datasets To evaluate the performance of world Knowledge CommonSense Reasoning
KV cache compression on LLMs’ overar-
ching capabilities, we assess five bench-
mark categories: World Knowledge (WK) us-
ing MMLU (Hendrycks et al.| [2020), mea-
sured by accuracy; CommonSense Reason-
ing (CSR) using CommonsenseQA (Talmor
et al.,|2019)) , evaluated through multiple-choice
accuracy; Arithmetic Reasoning (AR) using
GSMS8K (Cobbe et al., 2021), assessed by
solve rate; Code Generation (CG) using Hu-
manEval (Chen et al., 2021), measured by
pass@1 rate on test cases; and Safety (SA) us-
ing JailBreakV (Luo et al.| [2024)), evaluated
by attack success rate. Furthermore, we test
the performance of KV cache compression on
LongGenBench (Liu et al., 2024d), a long-
context generation (LG) benchmark. Detailed

statistics for all datasets are provided in Sec- System
tion [0 G oy)

Models We conduct experiments on a series of ~ Figure 2: Attention heatmap on different tasks.
LLMs, including LLaMA-3.1-8B, LLaMA-3.1-

8B-Instruct (Dubey et al.| 2024])), Mistral-7B-Instruct (Jiang et al.,[2023a), and multi-step reasoning
LLM DeepSeek-R1-Distill-Llama-8B (Guo et al.,|2025).

3

Under review as a conference paper at ICLR 2026

Attention Distribution with Sink Tokens Attention Distribution without Sink Tokens

;\?100 __100 !
o & 90 i
Q o !
o o 80 1
[90 o 1
@ 70 !
o c 1
Ke] S gorr
€ 80 = !
2 % 50 1
< 1
o 70 2 s .
% L Context (Including Sink 3% !
o —— Long-Context (Including Sinks S
g 60 i f? io (1 (I) 'gk) E 20 i —— Long-Context (Non-Sink Tokens)
s — Arithmetic (Including Sinks) S 10 I |—— Arithmetic (Non-Sink Tokens)
500 10 20 30 40 50 60 70 80 90 100 00 .

10 20 30 40 50 60 70

Top X% of Tokens Retained

80 90 100

Top X% of Total Tokens Retained

(a) Attention Distribution with Sink Tokens (b) Attention Distribution without Sink Tokens

Figure 3: Cumulative attention score distribution for Long-Context and Arithmetic. (a) Overall
distribution including initial sink tokens, showing high initial concentration. (b) Distribution without
sink tokens (first 4 tokens removed), revealing that Arithmetic’s non-sink attention is more diffuse
compared to Long-Context’s.

KV Cache Compression Methods To thoroughly investigate the potential impact on KV cache
compression methods, we select the following methods: StreamingLLM . (2024),
SnapKV |Li et a 12024b) H20 [Zhang et al| (2023), PyramidKV [Cai et al, (2024), Pyramldln—
fer[Yang et al. , and ChunkKYV |Liu et al.| (2025).

Hyperparameters The hyper-parameters for different observations are shown in Table [T} The

temperature for the experiments are set to 0 for ensuring the deterministic results.

3.2 ATTENTION PATTERN ANALYSIS ON KVFUNDABENCH

To better understand the task-specific sensitivity,
we analyze the Cumulative Distribution Func-
tion (CDF) of attention scores, as shown in Fig-
ure Figure 2] Based on the slope and concen-
tration of the CDF curves, we categorize task
attention patterns into two distinct types:

Universal Patterns (WK/CSR): As observed
in World Knowledge and Commonsense Rea-
soning, the attention distribution is relatively
uniform (after excluding sink tokens). The CDF
curve rises smoothly, indicating that the model
aggregates information from a broad range of
context tokens. This “bag-of-words” style atten-
tion is robust to compression because losing a
small fraction of tokens does not critically dis-
rupt the overall semantic representation.

Specialized Patterns (AR): In Arithmetic Rea-
soning tasks, the attention pattern is highly
sparse and specialized. The CDF curve for non-
sink tokens is significantly flatter (Figure 3b),
implying that the model concentrates its atten-
tion mass on a very small, specific set of to-
kens—Ilikely the intermediate steps crucial for
the reasoning path. We term this a “Special-
ized” pattern. Unlike retrieval tasks, these to-
kens act as “bridges” in a reasoning chain; if
compression algorithms (like H2O or SnapKV)
mistakenly discard these key tokens, the entire
Chain-of-Thought (CoT) is broken, leading
to the severe performance degradation we ob-
served.

Compression Sensitivity

0.90-
0.80; A \
3 \

070" \
[9) 1
o 1
30.60 - \
o
<<

0.505
0.40;

70 60 50 40 30 20 10
Compression Ratio (%)

30- . .
Baseline90 80

(a) Sensitivity Analysis of Different Benchmark Cate-
gories to KV Cache Compression

Average Performance A (%)

/\T

Performance Delta (%)

70 60 50 40 30 20 10
Compression Ratio (%)

80

Baseline 90

(b) Performance Delta Lines with Baseline

Figure 4: Sensitivity Analysis of Different Bench-
mark Categories to KV Cache Compression. The
performance delta lines are calculated by Equa-

tion (EI)

Accuracy

Accuracy

Under review as a conference paper at ICLR 2026

060 - (a) WK 7 (b) CSR 7
3 " 078 - B 0.80 3
0.69 - - FullkV \]
] H20 0.75 - 0.70 -
1 SnapKV - 1
0.68 - 1]]
StreamingLLM 0.73 - 060 -
] ChunkKV 1 1
0.68 - PyramidKV 0.70 - 1
1 ShotkV] 0.50 -
0.67 = ! ! ! !)))) 0.68 - I I I I I I I I I - | | | | | | | L
90 80 70 60 50 40 30 20 10 90 80 70 60 50 40 30 20 10 90 80 70 60 50 40 30 20 10
055 (d) CG (e) SA , (f) R1-AR
T i 1 0.70 -,
0.50 -] 0.65 -
0.45 - 0.60 -
0.40 - 0.851
1] 0.50 -
5- 050
90 80 70 60 50 40 30 20 10 90 80 70 60 50 40 30 20 10 90 80 70 60 50 40 30 20 10
Compression Ratio (%) Compression Ratio (%) Compression Ratio (%)

Figure 5: Performance Comparison of KV Cache Compression Methods on KVFundaBench. Results
for R1-AR (f) were obtained using the DeepSeek-R1-Distill-Llama-8B model. ShotKV is our
proposed method; details can be found in Section @

To further investigate the attention dynamics that might explain the task-specific sensitivities to KV
cache compression, we analyzed the cumulative attention score distributions, as illustrated in Figure[3]
Figure [3(a) depicts the overall attention distribution, which includes the initial sink tokens [Xiao
et al.|(2024). In this view, both long-context and arithmetic tasks demonstrate a very similar pattern:
a steep initial rise where the top 1% of tokens capture over 60% of the total attention mass. This
highlights the predominant role of sink tokens in attracting attention, regardless of the specific task.

However, a more distinct pattern emerges when these initial sink tokens (specifically, the first four
tokens) are excluded from the analysis, as shown in Figure 3(b). Within the remaining non-sink
tokens, the attention distribution for arithmetic tasks becomes notably more diffuse, with a slower
accumulation of attention mass. For instance, the top 20% of non-sink tokens in arithmetic cover
only about 37% of the attention within their own non-sink group. In contrast, long-context’s non-sink
tokens exhibit a relatively more concentrated attention profile, where the top 20% of its non-sink
tokens capture approximately 61.5% of the attention within their non-sink set. This divergence sug-
gests that while sink tokens provide a common, strong attentional anchor, the subsequent distribution
of attention across task-relevant (non-sink) tokens varies. The more diffuse attention in arithmetic’s
non-sink tokens implies a reliance on a broader set of contextual cues for its structured reasoning,
potentially making it more vulnerable when compression begins to impact these non-sink tokens.

These detailed analyses of attention distributions (Figure [2]and Figure [3) reveal that LLMs engage
different contextual information and attention strategies when performing long-context tasks versus
tasks requiring fundamental abilities such as arithmetic reasoning. This highlights the necessity of
evaluating KV cache compression beyond long-range dependencies to specifically assess its impact
on diverse fundamental capabilities, owing to their distinct attentional mechanisms.

3.3 RESULTS AND ANALYSIS

In this section, we present the results and an analysis of the experiments. For detailed results, see
Section

Evaluation Environment We use the Im-evaluation-harness (Gao et al., 2023)) library to load the
models and evaluate the performance. The evaluation environment is a NVIDIA A40 GPU server.

Observation 1. Task-Dependent Degradation: KV cache compression methods show task-
dependent performance degradation, WK and CSR are more robust to KV cache compression.
As demonstrated in Figure[d] all tasks maintain stable performance at compression ratios above 40%,
but exhibit distinct degradation patterns below this threshold. Arithmetic reasoning, code genera-

Under review as a conference paper at ICLR 2026

tion, and safety tasks demonstrate the highest compression sensitivity, characterized by precipitous
performance declines. Figure [5]illustrates the detailed performance impact of various KV cache
compression methods across different tasks. This degradation is most pronounced in arithmetic
reasoning (c), where performance deteriorates significantly below the compression ratio of 20%,
with precision dropping from approximately 0.75 to below 0.5. Among the evaluated methods,
ChunkKYV |Liu et al.|(2025) and PyramidKV |Cai et al.| (2024) consistently demonstrate superior
stability in most tasks, while StreamingL.LM [Xiao et al.| (2024) exhibits increased sensitivity to
aggressive compression. Additionally, RI-Arithmetic reasoning (f) indicates that reasoning LLMs
demonstrate enhanced robustness to KV cache compression. Highlighting World Knowledge and
Common Sense Reasoning as the most robust tasks, indicating that these tasks are less sensitive to
KV cache compression.

Observation 2. Model-Type Robustness: Multi-step reasoning LLMs are more robust to KV cache
compression. Figure[7]presents a comparative analysis of LLaMA-3.1-8B across its base (w/o instruct
tuned), instruct-tuned, and DeepSeek-R1 distilled variants, illustrating their averaged performance in
five compression methods with confidence intervals. Although all three variants exhibit performance
degradation at low compression ratios, their degradation trajectories differ significantly. The R1
distilled model demonstrates superior stability, maintaining performance around 0.60 even at a
compression ratio 10%. Although the instruct-tuned model achieves a higher initial accuracy (0.8),
it exhibits heightened compression sensitivity, with performance deterioration beginning at 30%
compression ratio and declining sharply to approximately 0.5 at 10% ratio. These findings suggest
that while multi-step reasoning LLMs demonstrate enhanced robustness to KV cache compression,
and instruct-tuning improves overall model performance, the latter may inadvertently increase model
vulnerability to aggressive compression, particularly at compression ratios below 30%.

Observation 3. Prompt Length Vulnerabil- , Many-shot AR Performance

ity: Shorter prompts are more vulnerable to KV ~gose e
cache compression. As illustrated in Figure[8]
the effect of KV cache compression is markedly [|=== Fullkv

different with varying prompt lengths (shot num- §0-70 1 H20

bers). Scenarios with fewer shots (for example, 8 SnapKV

one-shot and two-shot) demonstrate heightened < 060-| —— StreamingLLM

sensitivity to compression; their performance “|—— ChunkKV

degrades more precipitously below a compres- | —— PyramidKV

sion ratio of 30% compared to scenarios witha 050, . o T o
greater number of shots (e.g., 4-8 shots). For ex- Compression Ratio (%)

ample, in 1-shot settings, performan'ce decr.eases (a) Many-shot Arithmetic Reasoning on LLaMA3.1-8B-
from 0.5 to 0.05 as the compression ratio de- [y qtruct

creases from 30% to 10%. In contrast, 8-shot
settings experience a less severe reduction, from Many-shot AR Performance (R1 Model)

. 0.75 -
0.75 to 0.5, under the same compression con-]
ditions. This suggests that prompts with more ;-
shots, by virtue of containing more contextual]
examples, offer a richer set of reference points g
for the model. Consequently, the model’s re- 3
liance on any single example being perfectly pre- <
served in the compressed KV cache is reduced,
leading to greater robustness against aggressive
compression.

Baseline90 80 70 60 50 40 30 20 10
Observation 4. Chunk-Level Superiority: Compression Ratio (%)

Chunk-level compression is more effective for (b) Many-shot Arithmetic Reasoning on DeepSeek-R1-
long-context structured reasoning tasks. In- Distill-Llama-8B

spired by |Agarwal et al| (2024), we consider pjoyre 6: Many-shot scenario on KV cache com-
many-shot in-context learning as a long-context pression

reasoning task, which is more complex than ex-

isting long-context benchmarks, such as LongBench and NIAH. Figure [6] shows the performance of
KV cache compression methods on a 50-shot GSMS8K task, where the prompt length exceeds 4K
tokens. From the figure, we observe that ChunkKV |Liu et al.| (2025)) demonstrates the most stability
when the compression ratio is below 10% on both LLaMA-3.1-8B-Instruct and DeepSeek-R1-Distill-
Llama-8B, indicating that in more complex long-context arithmetic reasoning tasks, chunk-level

Under review as a conference paper at ICLR 2026

Different Training Dynamics

0.80 - A Different Shot Numbers
0.80 *—0
0.70 -
2060 - 0.60 -
§0.60 §
3 5
8050 v 2
< <040-

.| =—=— W/ Instruct Tuning
—— W/ R1 Distillation
0.30 - | —— W/o Instruct Tuning

N
'S
1<)

/

0.20 -
Baselne90 80 70 60 50 40 30 20 10
Compression Ratio (%)

Baseline 90 80 70 60 50 40 30 20 10
Compression Ratio (%)

Figure 7: Performance Comparison of KV Cache Fijgure 8: Average Performance Across Different
Compression Methods on different training dy- Shot Numbers

namics on Arithmetic Reasoning

retention is more effective at preserving semantic information. Highlighting the effectiveness of
chunk-level compression for long-context structured reasoning tasks.

Observation 5. Prompt-Gain Sensitivity: KV cache compression significantly reduces perfor-
mance gains from ICL and CoT. As shown in Table 2] different tasks exhibit varying levels of
performance improvement from zero-shot to CoT prompting. Arithmetic reasoning shows a dramatic
improvement of 50.41%, while World Knowledge demonstrates a more modest gain of 6.20%.
From Figure fi] we find that tasks with larger

CoT improvements, such as Arithmetic reason- 1able 2: Zero-shot vs Few-shot Performance Com-

ing, are more sensitive to KV cache compres- parison
sion. This suggests that when a task is heavily
based on CoT to achieve better performance, Benchmark | Zero-shott CoT 1 | DeltaA

compression of these crucial prompt elements

Arithmetic Reasoning 29.04 79.45 | +50.41

has a more substantial impact on model perfor- ~ World Knowledge 62.62 68.82 | +6.20
mance. In contrast, tasks like World Knowledge,

where the performance gain from CoT is smaller, show more resilience to KV cache compression,
likely because the model relies more on its inherent knowledge than on the specific examples in the

prompt.

Observation 6. Long-Context Generation
Sensitivity: KV cache compression exhibits
significant performance degradation in long-
context generation tasks. As demonstrated in

Table 3: KV cache compression methods’ perfor-
mance on LG-GSM8K

. . Method | 100% | 40% 35% 30% 25%
Table [3} our evaluation of three unified com- — 4600 |
pression methods—StreamingLLM, H20, and : -
PyramidInfer—on LG-GSM8K reveals substan- nggmmgLLM i gg'gg 52?; }4'83 6.33
. R . . . - . . 9.83 14.83
tial peyformance. 11m1tatlops. In this arithmetic pyramidnfer B} 3833 2767 2050 16.67
reasoning task with approximately 4k token gen- = ShotKV(Ours) - 4733 4133 3833 26.83

eration duration, compression methods show no-
table deterioration, with performance declining by more than 20% at compression ratios below 30%.
The ShotKYV is our proposed method that aims to improve the performance of KV cache compression
on Long-Context Generation tasks, details in Section

4 SHOTKV

Our comprehensive empirical investigation in Section [3.3]has systematically revealed critical vulnera-
bilities in current KV cache compression approaches when applied to a diverse range of fundamental
LLM capabilities. Key findings indicate that:

* Specific task categories, notably Arithmetic Reasoning (Observation 1) and Long-Context Genera-
tion (Observation 6), exhibit pronounced performance degradation under aggressive compression.

* The integrity of prompt information is paramount; tasks that derive significant benefits from ICL
and CoT (Observation 5) or rely heavily on n-shot prompts (as evidenced by the attention patterns
in Figure [2) are particularly susceptible to information loss from compression.

Under review as a conference paper at ICLR 2026

* Preserving semantic coherence is crucial, with chunk-level strategies showing promise in complex
reasoning tasks (Observation 4), suggesting that compressing or discarding tokens without regard
to these semantic units can be detrimental.

These observations collectively underscore the limitations of existing unified compression methods,
which often fail to preserve nuanced structured information embedded in prompts, thereby leading to
documented performance drops. This necessitates a more discerning compression strategy that is
acutely aware of the semantic and structural importance of prompt components, especially for tasks
demanding intricate reasoning and extensive generation.

To address these multifaceted challenges identified by our empirical study, we introduce ShotKV, a
novel decoding-time compression method. ShotKV is specifically designed to mitigate the observed
performance degradation by strategically managing KV cache during the prefill and decoding phases.
Our approach is founded on the principle that n-shot examples in prompts are not merely token
sequences, but constitute coherent semantic chunks vital for effective reasoning (a concept supported
by Figure[2|and Observation 4). We therefore design ShotKV to preserve these shot examples intact
during the prefill phase, complemented by a distinct strategy for the decoding phase, aiming for
robust performance, particularly on the sensitive tasks highlighted in our analysis.

4.1 IMPLEMENTATION

The ShotKYV (Prefill-Decoding Separated Shot-aware KV Cache Compression), which separates
the compression strategy for prefill and decoding phases. The key insight is that the prefill phase
KV cache, which contains crucial prompt information, should be compressed once and remain fixed,
while the decoding phase KV cache can be dynamically compressed with different strategies.

Given a prompt with n shots and tokens generated, we define:
KViora = KViJreﬁll U K‘/decoding (2)

For the prefill phase, we compute shot importance and preserve complete shot examples:

Scoreprefin(si) = Z ZZ é 3)

Y tes; h=11=1

where s; represents the i-th shot example containing k; tokens. The term at ;, denotes the attention
weight assigned by the query vector (corresponding to the first token to be decoded immediately
following the prompt) to the key vector of a token ¢ within shot s;, in attention head h at transformer
layer I. Once the prefill phase KV cache is compressed based on these scores, it remains fixed
throughout the generation process.

Given a prefill compression ratio r,,, we prioritize shots with higher scores while ensuring that the total
number of preserved tokens does not exceed the KV cache limit. Specifically, the shots are ranked by
their scores and selected in descending order until they reach the compression budget r,, x | K Viprefilt |.
This shot-level selection strategy helps to maintain the semantic coherence of important examples
while adhering to memory constraints.

erehll - Compress({sz|s S reserved}) (4)
where Spreserved = argmax Z Scoreprefin (i) (5)
SC{s1,...,8n} 5,68
subject to: Z ki < 1p X | K Vesin| ©)
s; €S

Here, K Vreﬁ]1 represents the compressed KV cache for prefilling and Spreservea represents the optimal
subset of shots that should be preserved after compression. The first equation aims to maximize the
total importance score of the selected shots, where {s1, ..., s, } represents all available shots and
Scoreprefin(s;) is the importance score of the shot s; calculated using attention weights as defined
earlier. The second equation enforces the memory constraint: the total number of tokens (k;) in the
selected shots must not exceed the allocated budget, which is determined by the prefill compression
ratio r, multiplied by the original KV cache size.

Under review as a conference paper at ICLR 2026

For the decoding phase, we compute importance scores only for the tokens generated during decoding:

H L
Scoredecoding(t) = Z Z afg,h @)

h=11=1

Here, for a previously generated token ¢, ai ,, 1s similarly defined as the attention weight assigned

by the query vector of the current token being generated to the key vector of token ¢, within head i
at layer . Thus, Scorégecoding (t) represents the total attention received by token ¢ from the current
generation step.

Given a decoding compression ratio 4, we select the tokens with the highest scores to preserve. The
compressed decoding KV cache K Vfwding retains only the top-k tokens where k = 74 X | K Viecoding
effectively maintaining the most influential context tokens while reducing memory usage:

)

C
K‘/:jecoding = TOPK(K%ecodinga Scoredecodinga

®)
k=mrgx |K‘/:lec0ding|)

Finally, we combine compressed prefill and decoding KV caches to form the total compressed KV

cache:

KVioa = K %?e'ﬁll UK V;igcoding (€

4.2 EMPIRICAL RESULTS

In this section, we evaluate ShotKV under two scenarios: many-shot Arithmetic Reasoning with
multiple KV cache compression methods, and LG-GSMS8K with three unified compression methods
that optimize the KV cache during generation. We additionally report a non-ICL generalization study
on HotpotQA and an ablation that isolates the contribution of the decoding-phase compression on
LG-GSMB8K; detailed experimental results are provided in Section[C.2]and Section

Baseline. For LG-GSMSK evaluation, we employ three state-of-the-art unified compression methods
as baselines: Streamingl..M Xiao et al.|(2024), H20 [Zhang et al.|(2023), and PyramidInfer|Yang
et al.| (2024). We conduct experiments using LLaMA-3-8B-Instruct |Dubey et al.| (2024) on the
LG-GSMS8K benchmark |Liu et al.|(2024d), maintaining consistent parameters with Observation 6
(K = 35, T = 20). For many-shot Arithmetic Reasoning experiments, we follow the configuration
detailed in Observation 4.

Main results and analysis. From
the Table[d] we can see that ShotKV
achieves the best performance on
LG-GSMS8K, maintaining high per-
formance at low compression ratios.
Specifically, at a compression ratio of ~ FullKV | 8235 | - = = =

40%, ShotKV achieves 47.33% accu- gyreamingLLM | - | 80.37 7835 7537 74.32
racy, surpassing the full kv cache base- 120 i 7832 7932 7428 51.27

Table 4: KV cache compression methods’ performance on
Many-shot Arithmetic Reasoning

Method | 100% | 40% 30% 20% 10%

line (46.00%) and showing substan- PyramidKV - 7834 7934 7832 70.37
tial improvements over other methods SnapKV - 79.35 80.38 79.34 68.27
(32.66%-39.50%). And Table[3shows ChunkKV - 7832 7932 78.35 79.32

that ShotKV also achieves the best ShotKV(Ours)
performance on many-shot Arithmetic
Reasoning, maintaining high performance at low compression ratios. Even in aggressive compres-
sion ratios (25%-30%), ShotKV maintains relatively stable performance (26.83%-38.33%), while
other methods experience more severe degradation (6.33%-16.67%). This superior performance
can be attributed to two key design choices: (1) the preservation of complete shot examples during
compression maintains the semantic coherence necessary for mathematical reasoning, and (2) the
separation of prefill and decoding phase compression allows for more flexible and task-appropriate
token retention strategies. These results suggest that our shot-aware compression strategy is particu-
larly effective for long-context generation tasks that require maintaining complex reasoning chains,
such as mathematical problem solving.

81.07 80.82 80.57 80.37

Under review as a conference paper at ICLR 2026

Latency and Throughput We further compare the inference efficiency of ShotKV and the FullKV
baseline in terms of latency and throughput under different input and output sequence lengths. As
shown in Table[5] ShotKV consistently reduces latency and improves throughput compared to FullK'V.
For example, with an input length of 8192 and output length of 4096, ShotKV achieves an 11.3%
reduction in latency and a 13.1% increase in throughput. These results demonstrate that ShotK'V not
only maintains model performance under aggressive KV cache compression, but also brings tangible
efficiency benefits for long-context inference.

Table 5: Latency and throughput comparison between ShotKV and FullKV under different input-
output configurations. Percentages in parentheses indicate improvements over FullKV baseline. The
experiments test on the A40 server with batch size 1.

Method | Sequence Length | Performance Metrics

| Input Output | Latency(s)| Throughput(T/S) 1
FullKV 4096 4096 175.50 37.73
ShotKV | 4096 4096 162.85 (7.2%) 41.12 (9.0%)
FullKV 8192 4096 183.42 55.93
ShotKV | 8192 4096 162.78 (11.3%) 63.24 (13.1%)

Generalization to Non-ICL Tasks (HotpotQA). For a doc-
ument QA setting without few-shot ICL, we adapt ShotKV by Taple 6: T.LaMA-3-8B-Instruct on
treating each sentence as a coherent semantic unit (analogous HotpotQA at 10% compression.

to a shot). Even under an aggressive 10% compression ratio
on LLaMA-3-8B-Instruct, ShotKV remains competitive with

the best-performing method, as shown in Table|§| Method ‘ Score

FullKV | 45.55
5 CONCLUSION StreamingLLLM | 40.27

H20 40.84
This paper presents KVFundaBench, a benchmark for sys- SnapKV 43.36
tematically evaluating the effects of KV cache compression PyramidKV 43.80
on various fundamental LLM capabilities. Our findings re- ChunkKV 43.27
veal that performance degradation is highly task dependent, ShotKV (Ours) | 43.60

with arithmetic reasoning and long-context generation being
particularly sensitive (Task-Dependent Degradation and Long-
Context Generation Sensitivity). We also highlight that com-
pression sensitivity is influenced by a confluence of factors,
including inherent model characteristics such as training dynamics (Model-Type Robustness), prompt-
level attributes like length (Prompt Length Vulnerability), and the reliance on in-context examples
(Prompt-Gain Sensitivity). Crucially, we demonstrate the importance of preserving the semantic
integrity of prompt components, especially at a chunk or shot level, for complex reasoning and
generation tasks where current methods often struggle and where chunk-based approaches show
promise (Chunk-Level Superiority).

Based on these insights, we introduced ShotKV, a novel compression framework that distinctively
manages prefill and decoding phases while prioritizing shot-level semantic coherence to mitigate
information loss in sensitive tasks. ShotKV demonstrates superior performance, notably on long-
context arithmetic reasoning and generation tasks, maintaining high accuracy even at aggressive
compression ratios. The results of KVFundaBench and the efficacy of ShotKV underscore the
potential for more nuanced compression strategies and suggest promising future research avenues.

ETHICS STATEMENT

This work focuses on the technical advancement of LLM efficiency. Our goal is to reduce the
computational and energy costs of LLMs, thereby making Al technology more accessible and sustain-
able. We built our benchmark using public academic datasets and foresee no direct negative societal

10

Under review as a conference paper at ICLR 2026

impacts. While we acknowledge the broader societal implications of advancing Al capabilities, our
work is intended to contribute positively to the research community by enabling more efficient model
deployment.

REPRODUCIBILITY STATEMENT

To ensure our results are reproducible, we will release all code for our method, ShotKV, and
evaluation scripts. Our experiments exclusively use publicly available models (e.g., LLaMA-3.1,
Mistral-7B) and standard academic datasets (e.g., MMLU, GSMS8K), all evaluated using the open-
source lm—evaluation-harness and KVpress framework. Detailed hyperparameters and
specific experimental configurations are provided in Appendix ??.

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114—127, 2024.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. arXiv preprint
arXiv:2404.11018, 2024.

AI21. Introducing jamba: Ai21’s groundbreaking ssm-transformer model, 2024. URL https:
//www.ai2l.com/blog/announcing-jamba.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathga: Towards interpretable math word problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Chenxin An, Shansan Gong, Ming Zhong, Mukai Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu.
L-eval: Instituting standardized evaluation for long context language models. ArXiv preprint,
abs/2307.11088, 2023. URL https://arxiv.org/abs/2307.11088.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic!
com/news/claude—3—-family.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper understanding
and reasoning on realistic long-context multitasks, 2025. URL https://arxiv.org/abs/
2412.15204.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,

Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

11

https://www.ai21.com/blog/announcing-jamba
https://www.ai21.com/blog/announcing-jamba
https://arxiv.org/abs/2307.11088
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2412.15204
https://arxiv.org/abs/2412.15204

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. ArXiv preprint, abs/2306.15595, 2023a. URL
https://arxiv.org/abs/2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2023b.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqgi Chen. Adapting language models to
compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 3829-3846, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
232. URL https://aclanthology.org/2023.emnlp-main.232.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. ArXiv preprint, abs/2204.02311, 2022. URL https:
//arxiv.org/abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

DeepSeek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

Yue Deng, Wenxuan Zhang, Sinno Jialin Pan, and Lidong Bing. Multilingual jailbreak challenges in
large language models. arXiv preprint arXiv:2310.06474, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Weizhi Fei, Xueyan Niu, Pingyi Zhou, Lu Hou, Bo Bai, Lei Deng, and Wei Han. Extending context
window of large language models via semantic compression. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics ACL 2024, pp.
5169-5181, Bangkok, Thailand and virtual meeting, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.306. URL https://aclanthology.org/
2024.findings—-acl.306.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Najibi.
LazyLLM: Dynamic token pruning for efficient long context LLM inference. In Workshop on
Efficient Systems for Foundation Models I @ ICML2024,2024. URL https://openreview,
net/forum?id=gGZD1dsJqgZ.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

12

https://arxiv.org/abs/2306.15595
https://aclanthology.org/2023.emnlp-main.232
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://aclanthology.org/2024.findings-acl.306
https://aclanthology.org/2024.findings-acl.306
https://openreview.net/forum?id=gGZD1dsJqZ
https://openreview.net/forum?id=gGZD1dsJqZ
https://zenodo.org/records/10256836

Under review as a conference paper at ICLR 2026

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. ArXiv preprint, abs/2310.01801, 2023.
URL https://arxiv.org/abs/2310.01801.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detection.
arXiv preprint arXiv:2203.09509, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? ArXiv preprint, abs/2404.06654, 2024. URL https://arxiv.org/abs/2404 |
06654.

Sam Ade Jacobs et al. DeepSpeed Ulysses: System optimizations for enabling training of extreme
long sequence Transformer models. ArXiv preprint, abs/2309.14509, 2023. URL https://
arxiv.orqg/abs/2309.14500.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

Huiqgiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13358—-13376, Singapore, December 2023b. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.825. URL https:
//aclanthology.org/2023.emnlp-main.825.

Huiqgiang Jiang, Qianhui Wu, , Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1658-1677, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-1long. 91l

Gregory Kamradt. Needle In A Haystack - pressure testing LLMs. Github, 2023. URL https:
//github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W Lee, Sangdoo Yun, and Hyun Oh Song.
Kvzip: Query-agnostic kv cache compression with context reconstruction. arXiv preprint
arXiv:2505.23416, 2025.

Dacheng Li, Rulin Shao, et al. How long can open-source LLMs truly promise on context length?,
2023. URL https://lmsys.org/blog/2023-06-29-1ongchat.

Qi Li, Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Xinglin Pan, and Xiaowen Chu. Should
we really edit language models? on the evaluation of edited language models. arXiv preprint
arXiv:2410.18785, 2024a.

13

https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2024.acl-long.91
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://lmsys.org/blog/2023-06-29-longchat

Under review as a conference paper at ICLR 2026

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
ArXiv preprint, abs/2404.14469, 2024b. URL https://arxiv.org/abs/2404.144609.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. Towards understand-
ing and mitigating social biases in language models. In International Conference on Machine
Learning, pp. 6565-6576. PMLR, 2021.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. arXiv preprint arXiv:2405.14366,
2024b.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024c. doi: 10.1162/tacl_.a_00638. URL
https://aclanthology.org/2024.tacl-1.9.

Xiang Liu, Peijie Dong, Xuming Hu, and Xiaowen Chu. LongGenBench: Long-context generation
benchmark. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 865-883, Miami, Florida, USA,
November 2024d. Association for Computational Linguistics. URL https://aclanthology!
org/2024.findings—emnlp.48.

Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Bo Li, Xuming Hu, and Xiaowen Chu. Chunkkv:
Semantic-preserving kv cache compression for efficient long-context llm inference, 2025. URL
https://arxiv.org/abs/2502.00299.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024e.

Weidi Luo, Siyuan Ma, Xiaogeng Liu, Xiaoyu Guo, and Chaowei Xiao. Jailbreakv: A benchmark for
assessing the robustness of multimodal large language models against jailbreak attacks. In First
Conference on Language Modeling, 2024. URL |https://openreview.net/forum?id=
GC4mXViqug.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. ArXiv preprint, abs/2305.16300, 2023. URL https://arxiv.org/
abs/2305.16300.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZulu.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606-624, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1-140:67, 2020. URL http://jmlr.org/
papers/v21/20-074 .html.

14

https://arxiv.org/abs/2404.14469
https://aclanthology.org/2024.tacl-1.9
https://aclanthology.org/2024.findings-emnlp.48
https://aclanthology.org/2024.findings-emnlp.48
https://arxiv.org/abs/2502.00299
https://openreview.net/forum?id=GC4mXVfquq
https://openreview.net/forum?id=GC4mXVfquq
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2305.16300
https://openreview.net/forum?id=wHBfxhZu1u
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Under review as a conference paper at ICLR 2026

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. ArXiv preprint,
abs/2403.05530, 2024. URL https://arxiv.org/abs/2403.05530.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. ZeroSCROLLS: A zero-shot
benchmark for long text understanding. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 7977-7989, Singa-
pore, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.536.
URLhttps://aclanthology.org/2023.findings—emnlp.536.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ” do anything now™:
Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In Proceed-
ings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, pp.
1671-1685, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
arXiv preprint arXiv:2405.05254, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4149—4158, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.,
orq/N19-1421/l

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. ArXiv preprint, abs/2406.10774,
2024. URL https://arxiv.org/abs/2406.10774.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=qgVyeW-grC2k.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven
Zheng, Neil Houlsby, and Donald Metzler. Unifying language learning paradigms. ArXiv preprint,
abs/2205.05131, 2022. URL https://arxiv.org/abs/2205.05131.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. ArXiv preprint, abs/2302.13971, 2023a. URL https:
//arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. ArXiv preprint, abs/2307.09288, 2023b. URL https://arxiv.
org/abs/2307.09288.

15

https://arxiv.org/abs/2403.05530
https://aclanthology.org/2023.findings-emnlp.536
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://arxiv.org/abs/2406.10774
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

Under review as a conference paper at ICLR 2026

Qingyue Wang, Liang Ding, Yanan Cao, Zhiliang Tian, Shi Wang, Dacheng Tao, and Li Guo.
Recursively summarizing enables long-term dialogue memory in large language models. arXiv
preprint arXiv:2308.15022, 2023.

David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt compression and con-
trastive conditioning for controllability and toxicity reduction in language models. In Find-
ings of the Association for Computational Linguistics: EMNLP 2022, pp. 5621-5634, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.findings-emnlp.412. URL |https://aclanthology.org/2022,
findings—-emnlp.412.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models,
2024. URL https://arxiv.org/abs/2405.10637.

Jialong Wu, Zhenglin Wang, Linhai Zhang, Yilong Lai, Yulan He, and Deyu Zhou. Scope: Optimizing
key-value cache compression in long-context generation, 2024. URL https://arxiv.org/
abs/2412.13649.

X.Al Announcing grok-1.5,2024. URL https://x.ai/blog/grok-1.5,

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar
Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis,
Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models. In Kevin
Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 4643-4663, Mexico City, Mexico, 2024. Association
for Computational Linguistics. URL https://aclanthology.org/2024.naacl-long,
260l

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid
kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu,
and Junchen Jiang. Cacheblend: Fast large language model serving with cached knowledge fusion.
arXiv preprint arXiv:2405.16444, 2024.

Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy
Le, Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, et al. Kv cache compression, but what must we
give in return? a comprehensive benchmark of long context capable approaches. arXiv preprint
arXiv:2407.01527, 2024.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. co-bench: Extending long context evaluation
beyond 100k tokens. ArXiv preprint, abs/2402.13718, 2024a. URL https://arxiv.org/
abs/2402.13718.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first International Conference
on Machine Learning, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o0: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661-34710, 2023.

16

https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://arxiv.org/abs/2405.10637
https://arxiv.org/abs/2412.13649
https://arxiv.org/abs/2412.13649
https://x.ai/blog/grok-1.5
https://openreview.net/forum?id=NG7sS51zVF
https://aclanthology.org/2024.naacl-long.260
https://aclanthology.org/2024.naacl-long.260
https://arxiv.org/abs/2402.13718
https://arxiv.org/abs/2402.13718

Under review as a conference paper at ICLR 2026

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
text, 2023.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Yue Zhang, Neil Zhenqgiang Gong, et al. Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv e-prints, pp. arXiv—2306, 2023.

17

Under review as a conference paper at ICLR 2026

APPENDIX

|A~ Use of LLMs in Paper Writing|

[B_Related Work|

|C Experiment Details|
I DetaitlResults|
|IC.2 Ablation: Prefill-only vs. Full ShotKV on LG-GSMS8K

|C.3 More experiments on othermodels|

[Tmpact Statement|

18

19

19

21
21
22
23

24
25

26
26

27

Under review as a conference paper at ICLR 2026

A USE OF LLMS IN PAPER WRITING

We used LLMs solely to aid and polish the writing (e.g., wording refinement and grammar), without
generating or altering experimental designs, methods, results, or conclusions. All technical content,
analyses, figures, and tables were authored and verified by the researchers.

B RELATED WORK

Key-value Cache Optimization Techniques KV cache is the core component in LLM inference,
which avoids repetitive computations by caching Key and Value vectors. However, the cost of caching
KV increases exponentially with the expansion of the model size and the length of the context [Pope
et al.| (2023). Some approaches have been published to alleviate the problem. For example, KV
Compression designs efficient content selection strategies to filter and manage tokens Zhang et al.
(2023); /Adnan et al.|(2024). Some methods identify important tokens by focusing on high attention
allocation [L1 et al.[(2024b), while others optimize token selection by combining attention scores with
value vector norms to improve importance evaluation Guo et al.|(2024)). Techniques like Pyramid-
Infer reduce critical contexts layer by layer based on the distribution of attention scores|Yang et al.
(2024)), and Streamingl.LM preserves attention sinks to maintain stable performance in extended
sequences [Xiao et al.|(2024). Researchers reduce storage costs by merging similar context represen-
tations and solving input disturbances caused by compression |Zhang et al.| (2024b)). For example,
CaM |Zhang et al.| (2024b) works by integrating the KV cache to be dropped into the retained cache
in proportion to the attention weight. In addition, |Yao et al.| (2024) proposes CacheBlend to achieve
a selective KV recompute. Only partial KVs of crucial tokens are updated to reduce the delay in
the prefill stage and increase the throughput. In addition, the dynamic budget allocation method is
also used to optimize the KV cache, which adjusts the resource allocation in real time according to
the importance of the context, providing a balance between performance and efficiency in multitask
inference scenarios [Cai et al.| (2024); |[Feng et al.| (2024); |Kim et al.|(2025)Wu et al.[(2024) proposes
a prefill-decoding separation strategy to optimize the KV cache compression.

Evaluation of LLMs’ Fundamental Abilities Accurately evaluating the fundamental capabilities
of large language models is crucial to understand their true potential and limitations. The evaluation
typically spans across several key dimensions: world knowledge tasks like MMLU Hendrycks et al.
(2020),BBH |Suzgun et al.| (2022) assess models’ grasp of diverse domains through multiple-choice
questions; commonsense reasoning tasks such as CSQA [Talmor et al.|(2019) evaluate inference and
context understanding abilities; arithmetic reasoning benchmarks like GSM8K |Cobbe et al.| (2021)
test mathematical problem-solving capabilities through step-by-step reasoning; code generation
tasks including HumanEval |Chen et al.| (202 1)) measure the ability to generate functionally correct
code; and safety evaluations using benchmarks like JailBreakV |Luo et al.| (2024)) assess models’
robustness against harmful content generation. Additionally, long-context benchmarks such as Long-
Bench Bai et al.| (2023} 2025) and Need-In-A-Haystack (NIAH) |[Kamradt| (2023)) aiming to evaluate
models’ long-context summarization and retrieval capabilities. Furthermore, LongGenBench |Liu
et al.| (2024d) evaluates the models’ ability to process and generate responses for extended input
sequences. And recently, in-context many-shot learning has been recognized as a long-context
reasoning paradigm Agarwal et al.|(2024)), which considers the number of shots as a critical factor
in the performance of LLM. Although these tasks typically employ automatic evaluation metrics
for standardization, KV cache compression may introduce unique challenges, particularly in tasks
requiring complex reasoning chains or extensive knowledge retrieval.

KYV cache sharing Recent work has explored various strategies for sharing KV caches across
transformer layers. The Layer Condensed KV Cache (LCKV) (Wu & Tu, 2024) computes the KV
only for the top layer and pairs them with queries from all layers, while optionally retaining standard
attention for a few top and bottom layers to mitigate performance degradation. Similarly, You Only
Cache Once (YOCO) (Sun et al., |2024) computes KV exclusively for the top layer but pairs them
with queries from only the top half of layers, employing efficient attention in the bottom layers to
maintain a constant cache size. In contrast, Cross-Layer Attention (CLA) (Brandon et al., [2024)
divides layers into groups, pairing queries from all layers in each group with KVs from that group’s
bottom layer. MiniCache (Liu et al., [2024b) introduces a novel method that merges KV caches in
layering while enabling recovery during compute-in-place operations, optimizing the size of the KV

19

Under review as a conference paper at ICLR 2026

cache. These methods illustrate various trade-offs between computation, memory usage, and model
performance when sharing KV caches across transformer layers.

Prompting Compression Recent advances in prompt compression have yielded innovative ap-
proaches to information density optimization in natural language processing. Research by Wingate
et al.| (2022)) demonstrates how soft prompting techniques can achieve higher information density
per token. Building upon this foundation, AutoCompressor (Chevalier et al.| 2023) leverages soft
prompts to both condense input sequences and expand model context windows. Parallel develop-
ments by |Zhou et al.| (2023)) and [Wang et al.|(2023)) showcase iterative summarization strategies using
LLMs, establishing persistent memory mechanisms particularly beneficial for narrative construction
and conversational systems. The progressive development of the LLMLingua framework (Jiang
et al.| 2023b; |2024; [Fei et al., 2024) has advanced prompt compression capabilities across extended
context processing, logical reasoning, and retrieval-augmented generation. Notable contributions
from [Fei et al.|(2024)) demonstrate effective context management through automated segmentation
and semantic condensation using pre-trained language models.

General Tasks General tasks refer to evaluating the overall performance of LLMs under math-
ematical inference, logic reasoning, and common knowledge. GSMS8K |Cobbe et al.| (2021) and
MMLU Hendrycks et al.|(2020) are representative tasks. The former focuses on the step-by-step
reasoning ability of mathematical problem solving, while the latter covers assessment of common
sense and expertise in multiple areas. Besides, MATH Hendrycks et al.[|(2021) spans various math-
ematical fields, ranging from elementary algebra to calculus, aiming to improve the mathematical
problem-solving capabilities of LLMs. Meanwhile, MathQA [Amini et al.| (2019) is a large-scale
dataset comprising approximately 37,000 multiple-choice questions with precise annotations, de-
signed to enhance the interpretability and performance of LLMs. In addition, BBH [Suzgun et al.
(2022), a subset of BIG-Bench [Srivastava et al.|(2022), focuses on challenging tasks. BBH includes
multi-step reasoning problems, highlighting the importance of Chain-of-Thought prompting in LLMs.
Similarly, CSQA [Talmor et al.| (2019)) is a task that combines knowledge graph-based multi-step
reasoning with conversational capabilities. CSQA emphasizes inference and context understanding
grounded in knowledge graphs. Normally, the general tasks apply automatic evaluation metrics
(e.g. multi-choice accuracy) to ensure comparability and standardization. However, optimization
strategies like KV cache compression may introduce challenges in executing the mentioned tasks.
Filtering and dropping of contexts are involved in the compression strategy which may lead to an
intermediate inference steps missing. In addition, in tasks such as MMLU that are highly dependent
on knowledge coverage, compression may weaken the model’s ability to capture long context or rare
domain knowledge |Yuan et al.| (2024).

Security Tasks Security tasks focus on assessing the robustness and protections of LLMs against
harmful content, including truthfulness [Lin et al.| (2021), toxicity [Hartvigsen et al.| (2022), and
bias [Liang et al.| (2021). Recently, researchers noticed the weakness of LLMs in adversarial
prompts Zhu et al.| (2023)), especially in generating illegal or inappropriate content under jailbreak
prompts. Shen et al.| (2024)) analyze the jailbreak prompts in real cases to reveal the failure of model
security mechanism under complex malicious input. Meanwhile, |Deng et al.| (2023) demonstrates the
multilingual jailbreak makes model security in low-resource languages easier to bypass, significantly
increasing the probability that users of low-resource languages will generate insecure content. Similar
to general tasks, KV optimization techniques can cause the model to ignore potential security threats
when dealing with jailbreak prompts, thereby improving the success rate of adversarial prompts|Li
et al.|(2024a).

Code Generation Tasks Code generation tasks test the capacities of LLMs to generate code, which
not only requires that the model can generate syntactic code based on natural language description
but also has certain logical reasoning abilities. HumanEval (Chen et al.|(2021) and MBPP |Austin et al.
(2021)) are the commonly used benchmarks. They measure the functional correctness of the model by
testing the results of the code’s execution.

Long-context Tasks Recent developments in evaluating long-context models have produced a
comprehensive ecosystem of benchmarks, focusing on both comprehension depth and retrieval
efficiency. In the comprehension domain, co-Bench (Zhang et al., |2024a) has established new

20

Under review as a conference paper at ICLR 2026

standards by crafting evaluation scenarios exceeding 100,000 tokens, while LongBench (Bai et al.,
2023} 2025)) introduced multilingual assessment frameworks spanning document comprehension,
text synthesis, and programming tasks. Further enriching this landscape, ZeroSCROLLS (Shaham
et al.|[2023) and L-Eval (An et al.||2023) have expanded evaluation criteria to encompass real-world
applications, particularly in query-based content summarization. The emergence of many-shot
learning as a distinct paradigm for extended context processing |Agarwal et al.| (2024) has added
another dimension to this field. Notable contributions from LongGenBench [Liu et al.|(2024d) have
advanced evaluation methodologies by combining extensive response generation requirements with
efficient, cost-effective quality metrics.

The development of retrieval-focused benchmarks has taken a distinct approach, predominantly
utilizing constructed datasets that enable precise experimental control, particularly in managing input
sequence lengths. This methodology helps neutralize variations in model performance stemming from
differences in training approaches. Substantial research efforts have yielded specialized synthetic
frameworks for assessing retrieval capabilities (Kamradt, [2023; Mohtashami & Jaggi, [2023; LLi et al.,
2023} ILiu et al.l 2024c; [Hsieh et al.,[2024)), while concurrent investigations have revealed the broader
implications of extended context processing for enhanced reasoning capabilities (Tay et al., 2021).

C EXPERIMENT DETAILS

C.1 DETAIL RESULTS

This section provide the detailed results of experiments in this paper, the results are shown in the
format of x,, where x is the performance of the method and y is the A P from the Equation (T)).

Observation 1. KV cache compression methods show task-dependent performance degrada-
tion, WK and CSR are more robust to KV cache compression.

The detailed results of different KV cache compression methods are shown in Table [8] different
tasks exhibit notably varied sensitivities to KV cache compression, particularly under aggressive
compression ratios. Ata 10% compression ratio, MMLU demonstrates remarkable resilience with less
than 1% average performance degradation, while GSM8K experiences a severe average performance
drop exceeding 35%. Other tasks show moderate to significant degradation, ranging from 6.5% to
17.2%. This substantial variation in compression sensitivity across tasks suggests that the effectiveness
of KV cache compression is highly task-dependent, necessitating careful consideration of the specific
task requirements when determining appropriate compression ratios.

The Table [7|compares the performance of R1-Distill-Llama-8B and LLaMA-3.1-8B-Instruct under
different compression ratios. R1-Distill-Llama-8B demonstrates more robust performance under
compression compared to LLaMA-3.1-8B-Instruct. While both models start with similar baseline
performance (0.6938 vs 0.7945), R1-Distill shows significantly less performance degradation under
aggressive compression. Specifically, at 30% compression ratio, R1-Distill maintains a performance
of 0.6407 (-7.66%), while LLaMA-3.1-8B-Instruct drops to 0.7469 (-6.00%). The difference be-
comes more pronounced at 10% compression ratio, where R1-Distill achieves 0.5840 (-15.82%)
compared to LLaMA-3.1-8B-Instruct’s sharp decline to 0.5143 (-35.30%). This suggests that the
multi-step reasoning capabilities of R1-Distill contribute to its resilience against aggressive KV cache
compression, particularly in maintaining reasoning coherence under limited context conditions.

On safety-focused evaluations, we observe that aggressive compression can disproportionately
degrade performance, plausibly because compression may discard or fragment subtle safety-critical
keywords and phrases present in system prompts; this disruption can weaken safety constraints during
generation.

Observation 2. Multi-step reasoning LL.Ms are more robust to KV cache compression. As
shown in Table [0 while instruct-tuned models achieve superior baseline performance (0.7945 vs
0.5122), they demonstrate heightened sensitivity to KV cache compression. This sensitivity becomes
particularly pronounced at aggressive compression ratios. At 10% compression ratio, instruct-tuned
models suffer an average performance degradation of 35.3% (from 0.7945 to 0.5143), nearly double
the degradation observed in non-instruct-tuned models which show a 17.2% drop (from 0.5122
to 0.4244). In contrast, R1-Distill-Llama-8B shows better resilience to compression, with only a

21

Under review as a conference paper at ICLR 2026

Table 7: Performance Comparison of Different KV Cache Compression Methods on Instruction-
Tuning Model and Multi-Step Reasoning Model

Benchmark Ratio StreamingLLM H20 SnapKV PyramidKV ChunkKV | Average 1
Baseline R1-Distill-Llama-8B FullKV: 0.6938

90% 0.7167(1s30%) 0.6900(o559 069330y 0.7100(19349 0.6867(_1.00%) | 0.6993(10.70%)
80% 0.6867(1007 0.6933_gor) 0693300y 0.7067(11se%) 0.6767(o47%) | 0.6913(g s6%)
0% 0.6933_gor) 0.6633(_40%) 0.7100(153s%) 0.7100(1554%) 0.7000(10s0%) | 0-6953(10.20%)
RI-AR 60% 0.6833_151%) 0.6900(g5 06900 55z 0.7133(1asi%) 0.7067(1186%) | 0-6967(10.42%)
50% 0.6700(543%) 0.6967(s049%) 0.7067(11s6%) 0.7000(1oso%) 0.6867(1.09%) | 0.6920(g 26%)
40% 0.6767(.47 0.6800(1.09%) 0.5967(1300%) 0.6967(1o42%) 0.7133(1081%) | 0.6727(s 0%
30% 0.6600(g7y 0.5900 1406%) 0.5833(_150s%) 0.6700 _gazzy 0.7000(10.80%) | 0-6407(7 66%)
20% 0.6200_1064%) 04933 _ssoow) 0.5633(1sg1%) 0.6833(_1s1%) 0.6533(547 | 0.6026(13.14%)
10% 05167 553%) 0.5567(10.76%) O0.5767(1688%) 0-6267(o679 0.6433 708 | 0.5840(15507

Baseline LLaMA-3.1-8B-Instruct FullKV: 0.7945 \

90% 0.7695(_3.10%) 0.7923(_0.30%) 0.7839(_130%) 0.7854(_1.10%) 0.7824(_150%) | 0.7827(_1.50%)
80% 0.7642(_3 30%) 0.7938(—0.10%) 0.7824(_150%) 0.7900(_0.60%) 0.7824(_150%) | 0.7826(_1.50%)
70% 0.7642(_3 30%) 0.7900(—0.60%) 0.7923(_0.30%) 0.7983(y0.50%) 0.7809(_1.70%) | 0.7851(_1.20%)
AR 60% 0.7650(—3.70%) 0.7809(-1.70%) 0.7885(_080%) 0.7923(_0.30%) 0.7885(_0.80%) | 0.7830(-1.50%)
50% 0.7657(_3.60%) 0.7854(_1.10%) 0.7847(_120%) 0.7854(_1.10%) 0.7824(_150%) | 0.7807(_1.70%)
40% 0.7491(_5.70%) 0.7688(_3.20%) 0.7756(_2.40%) 0.7839(_1.30%) 0.7763(_2.30%) | 0.7707(_3.00%)
30% 0.7051(_11_2(]%) 0.7225(_9_1“%) 0.7619(_4_10%) 0.7718(_2_9“%) 0.7733(_2_70%) 0.7469(_3_00%)
20% 0.6384(_19.70%) 0.6406(—19.40%) 0.6884(_13.40%) 0.7142(_1910%) 0.7763(—2.30%) | 0.6916(-13.00%)
10% 0.4784(_30.80%) 0.4503(_43.30%) 0.5034(_36.60%) 0.4829(_3920%) 0.6566(_17.40%) | 0.5143(_35.30%)

15.82% performance drop (from 0.6938 to 0.5840) at 10% compression ratio. This pattern suggests
that while instruction tuning enhances model capabilities, it also makes the model more dependent
on maintaining complete context information. However, models trained with multi-step reasoning
capabilities like R1-Distill demonstrate better robustness against aggressive compression, likely due to
their enhanced ability to maintain reasoning coherence even with limited context. We hypothesize that
the reinforcement learning objective that explicitly incentivizes multi-step reasoning in DeepSeek-R1
yields more structured and robust internal representations of reasoning chains, making them less
fragile to KV cache compression.

Observation 3. Short prompt length is more sensitive to KV cache compression. As demon-
strated in Table the impact of KV cache compression varies significantly with the number of
shots in the prompt. One-shot prompts show extreme vulnerability to aggressive compression, with
performance plummeting from 0.7149 to 0.0452 (a 93.7% drop) at 10% compression ratio. This sen-
sitivity gradually decreases as the number of shots increases. For instance, at the same compression
ratio, 4-shot prompts show a 46.2% performance drop (from 0.7597 to 0.4088), while 8-shot prompts
demonstrate relatively better resilience with a 35.3% reduction (from 0.7945 to 0.5143). This pattern
suggests that longer prompts with more examples provide redundancy that helps maintain model
performance under compression, while shorter prompts lack this buffer against information loss.

Observation 4. Chunk-level compression is more effective for long-context structured rea-
soning tasks. As shown in Table[TT} ChunkKV demonstrates superior robustness across different
compression ratios, particularly under aggressive compression settings. While other methods show
significant performance degradation at 10% compression ratio (StreamingLLM: -9.8%, H20: -37.8%,
SnapKV: -17.1%, PyramidKV: -14.6%), ChunkKV maintains relatively stable performance with
only a -3.7% drop. This stark contrast in performance suggests that chunk-level compression better
preserves the essential contextual information needed for complex reasoning tasks. The method’s
effectiveness likely stems from its ability to maintain the structural integrity of related context seg-
ments, which is particularly crucial for tasks requiring extended logical reasoning and arithmetic
operations.

C.2 ABLATION: PREFILL-ONLY VS. FULL SHOTKV ON LG-GSMS8K.

To assess the contribution of the decoding-phase compression, we ablate it by retaining only prefill
compression. As summarized in Table[I2] this prefill-only variant substantially underperforms the
full method across compression ratios, confirming the importance of the prefill-decoding separation.

22

Under review as a conference paper at ICLR 2026

Table 8: Performance Comparison of Different KV Cache Compression Methods on KVFundaBench

Benchmark Ratio StreamingLLM H20 SnapKV PyramidKV ChunkKV \ Average 1
Baseline FullKV: 0.6882 |

90% 0.6882000%) 068821000 068821000 0-6882(1000%) 0-6882(ro00%) | 0.6882(1000%)
80% 0.68821000%) 0.6882(1000%) 068821000 0-6882(1o00%) 0-6882(ro00%) | 0.6882(1000%)
0% 0.688L_go%) 0.6882(1000%) 0.68%2(1000%) 0.6882(1000m) 0.6882(10.00%) | 0-6882(10.00%)
WK 60% 0.6881(_go1) 068821000 068821000 0-6882(1o00%) 0-6882(ro00%) | 0.6882(1000%)
50% 0.6881_go1) 0.6882(1000%) 0-6882(ro00%) 0-6882(1o00%) 0-6882(ro00%) | 0.6882(1000%)
40% 0.6879_0a%) 0.6882(1000%) 0-6882(1000%) 0-6882(i0.00%) 0-6882(40.00%) | 0-6881(0%
30% 0.6876(_g.00%) 0.6880(00wy 06880 00z 0.6882(i0.00%) 0-6882(40.00%) | 0-6880(_o.03%)
2% 0.6859_os3%) 0.6878ooery 0.6880oosn) 0.688201000%) 0.68820i0.00%) | 0.6876(_o.08%)
10% 0.6787rsse) 0.6852_oaamy 06831 _orasy 068820000 0-6842_oss) | 06839 _o.gso0)
Baseline FullKV: 0.7945 |
90% 0.7695_s10%) 0.7923_os0w) 0-7839_1s0%) 0.7854(_1.10%)

80% 0.7642(_ss0%) 0.7938(_010%) (C1s0m) 0.7900(_o.60%)

0% 0.7642_ss0m) 0.7900_og0) 0-7923(—os0s) 0-7983(+0.50%)
) (Coso) 0.7923 Losom) 0.7885

) ()

))

)

(—1.50%) | 0.7827(_1 50%)
(—1.50%) | 0.7826(_1.50%)
0.7809(—1.70%) 0.7851(_1.20%)
(
(
(

AR 60% 0.7650(_s70%) 0.7809(_170%) 0.7885 Coso%) | 0-7830(_1 50%)
50% 0.7657_sgov) 0.7854(_110%) O.784T(10wy 0.7854(1109 0.7824(_150%) | 0.7807(_170%)
40% 0.7491(5ron) 0.7683(_s00%) 0.7756(0wy 0.7839 _1somy 0.7763(asem) | 0.7707(_s00%)

30% 0.7051_1120%) 0.7225(_o10%) 0.7619_s10m) O0.T718(_a00%) 0.7733(_a70%) | 0.7469 g 00%)
20% 0.6334 170w 0.6406(_10.40%) 068841509y 0714210109y 07763230 | 0-6916(_15.00%)
10% 0.4784(sos0%) 0.4503(_szzom) 0.-5034(_sgeom) 04829 s000%) 0.6566(17.40%) | 0-5143(_s5 0%

Baseline FullKV: 0.7748 |

90% 0.7748(10.00%) 0.7748(r000% O-T748(1000%) 0.7748(1000%) 0-7748(10.00%) | 0-7748(10.00%)
80% 0.7748(10.00%) 0.7748(1000%) O.7748(1000%) 0.7748(1000%) 0-7748(10.00%) | 0-7748(10.00%)
0% 0.7748(i000%) 0-7T48(1o00%) 0-7748(1000%) 0-T748(1000%) 0-7748(10.00%) | O-7748(10.00%)
CSR 60% 0.7748(1000%) O0.-7748(1000%) O.7748(1000%) 0.7748(1000%) 0-7748(10.00%) | 0-7748(10.00%)
50% 0.7748(1000%) 0-T748(10.00%) O.7748(1000%) 0.7748(1000%) 0-7748(10.00%) | 0-7748(10.00%)
40% 0.7748(1000%) 0-TT48(1000%) O.T748(1000%) 0.7748(1000%) 0-7748(10.00%) | 0-7748(10.00%)
30% 0.7748(y000%) 0-T748(10.00%) O-T748(1000%) 0.7748(1000%) 0-7748(10.00%) | O0-7748(10.00%)
20% 07174 740%) 0.7748(s0.00%) O0.7740o10%) 0.7748(1000%) 0-7699 o.60%) | 0-7622(_160%)
10% 0.6806 12509 0.7510 5105 07191 700 0.7723(os0%) 0-7002(g eo%) | 0.7246(_ s50%)

Baseline FullKV: 0.8895 \

90% 0.8893_o00m) 08890 o10m) 08894 qoom) 08893 oo0m) 0-8896(10.00%) | 0-8393(_00%)
80% 0.8878(_ga0m) 0-8885(_o10m) 0889510007 08891 ooom) 08894 qoom) | 0-8889(_o10%)
0% 0.8872 _gson) 0.8879 _o20m) 0.8896(1000%) 0.8889 o.10m) 0-8895(10.00%) | 0-8386(o 10%)
SA 60% 0.8845_gcom) 08848 _osom) 08892 qoom) 08887 oiom) 08899 10.00%) | 0-8874(_20%)
50% 0.8849_o.50%) 0.8749(_160%) 0.8886(—g.10%) 0.8884(_0.10%) 0.8894(_0.00%) | 0.8852(_0.50%)
40% 0.8734(150 08557 ssomy 08880 osom) 0-8877(os0% 0-8900(40.10%) | 0-8790(_120%)
30% 0.8329(ga0m 08015 _go0%) 08858 oaom) 0-8899(i000% 0-8846(g.g0%) | 0.8589(s 50%)
20% 0.6501(_sg00%) 07178 19.50%) 0.-8806(_100%) 08751 160% 0-8902(40.10% | 0-8028(_g70%)
10% 053140505 06544 oga0%) 0.8434C 500 0.8556(550 0-8799 1 10%) | 0-7529(15.40%)

Baseline FullKV: 0.5122 |

90% 0.5061(_120%) 0.5183(:120%) 0.5122(1000%) 0-5122(1000%) 0-5122(10.00%) | 0-5122(10.00%)
80% 0.5061(_120%) 0.5183(3120%) 0.5183(1120%) 0-5305(1s60%) 0-5061(_1.90%) | 0.5159(10.70%)
70% 0.5000(_0.40%) 052441240 0.51220.00%) 0-5183(1120%) 0-5122(10.00%) | 0-5134(10.20%)
cG 60% 0.5061(_120%) 0.5366(;480%) 0.5366(1as0%) 0-5305(1s60%) 0-5244(12.40%) | 0.-5268(10.00%)
50% 0.4939_seom) 0.5427(igoom) 0-5061(_100%) 0.4939 sz 04878 ssov) | 0.-5049(_1s0%)
40% 04817 goom) 0.5427(igoom) 0-5244(1040%) 04939 _seo%) 0.5000(_o.40%) | 0.5085(_o70%)
30% 04817 goom) 0.5305(1s60%) 0-5000(_o40%) 04939 _seom) 04817 _goo) | 0.4976(_5.00%)
20% 0.4634_gs0%) 0.5061(_yn0%) 04939 g0y 04695 _gsozy 04878 ssov) | 04841509
10% 0.3659 _sscom) 0-4634(_gnom) 04268 1670%) 04207 _17.00%) 0.4451(1510%) | 04244 17.00%)

Table 12: LLaMA-3.1-8B-Instruct on LG-GSMS8K: ShotKV vs. Prefill-only.

Method | 40% 30% 20% 10%

ShotKV 81.07 80.82 80.57 80.37
Prefill-only | 79.07 78.82 7857 77.26

C.3 MORE EXPERIMENTS ON OTHER MODELS

To further validate the generality of our findings, we also evaluate the impact of KV cache compression
on a different model, Mistral-7B-Instruct. As shown in FigureEL we observe that various KV cache
compression methods lead to significant performance degradation across multiple fundamental
tasks, especially under aggressive compression ratios. This result demonstrates that the reduction in
foundation abilities due to KV cache compression is not limited to a specific model family, but is a
general phenomenon affecting different LLM architectures.

23

Under review as a conference paper at ICLR 2026

Table 9: KV Cache Compression Performance Comparison on Arithmetic Reasoning with Different
Instruction TuningSettings

Setting Ratio StreamingLLM H20 SnapKV PyramidKV ChunkKV \ Average T
Baseline FullKV: 0.7945 \

90% 0.7695(_3.10%) 0.7923(_0.30%) 0.7839(_1.30%) 0.7854(_1.10%) 0.7824(_1 50%) 0.7827_1.50%)
80% 07642 _ssan) 0.7938(_otng) 07824 _1s0m) 0.7900(_ogo) 0.7824(_ys0%) | 0.7826(_1 50)
0% 07642 sm0m) 07900 ogory 07923 oso%) 0.7983(rosomy 0.7809(1 70%) | 0.7851(1 209
w/ Instruct Tuning 60% 0.7650(_3.70%) 0.7809(_1.70%) 0.7885(_0.80%) 0.7923(_0.30%) 0.7885(_0.80%) | 0.7830(-1.50%)
50% 0.7657_sgomy 07854 110wy 07847 1a0%) 0.7854(110m) 0.7824(1 s0%) | 0.7807(_1 o)
40% 0.7491_570m) 0.7688(_350m) O.T756(_oa0%) 0.7839_yso%) O-7763(ss0%) | 0.7707(_s.00%)
30% 0.7051(_11.20%) 0.7225(_g.10%) 0.7619(_s10%) 0.7718(_2.90%) 0.7733(—2.70%) | 0.7469(—6.00%)
20% 0.6384_1070%) 0.6406(_100%) 0.688415.40%) O0.7142(1010%) 0.7763(_30%) | 0.6916(13 00%)
10% 0.4784(_3980%) 0.4503(—a3.30%) 0.5034(_36.60%) 0.4829(_39.20%) 0.6566(_17.40%) | 0.5143(_35.30%)

Baseline R1-Distill-Llama-8B FullKV: 0.6938 ‘

90% 0.7167(y350%) 0.6900 o55%) 0.6933o0r%) 0.7100(1231%) 0.6867_100%) | 0-6993(1070%)
80% 0.6867(1o 0.6933_gor) 0.6933(_gorey 0.7067(11sen) 0-6767(arsy | 0.6913(_o.36%)
70% 0.6933(_oor%) 0.6633(_sa0m) 0.7100(1234%) 0.7100(1234%) 0.7000(10s0%) | 0.6953(10 %)
w/ R1 Distill 60% 0.6833(_1s1) 0.6900(_gssz) 0.6900(_gsse) 0.7133(1amiz) 0-7067(r1se%) | 0.6967(1o.a2%)
50% 0.6700(_345%) 0.6967(1o.40%) 0.7067(11s0%) 0.7000(1os0%) 0.6867(_100%) | 0.6920(_26%)
40% 0.6767(_o4ry 0.6800(_100%) 0.5967(_15.00%) 06967 1oazsr) 0-7133(1os1%) | 0.6727(_s.0a%)
30% 0.6600(_ysr) 0.5900_1s06%) 0-5833(_15.03%) 0.6700 g3 0.7000(+os0%) | 0.6407(_7.ge%)
20% 0.6200(1061%) 0.4933(_as00%) 0.5633(_1s81%) 0.6833(_1s1%) 0.6533(s5sa%) | 0.6026(1314%)
10% 0.5167(_a5s3m) 0.5567(_10.76%) 0.5767(16ss%) 0.6267ogropy) 0.6433(7asy) | 0.5840(15 50%)

Baseline FullKV: 0.5122 ‘

90% 0.5061(—1.20%) 0.5183(11.20%) 0.5122(10.00%) 0.5122(10.00%) 0.5122(40.00%) | 0-5122(10.00%)
80% 0.5061(_120%) 0518311 20%) 0518311000 0.5305(1s60%) 0-5061(3205 | 0.5159(10.70%)
70% 0.5000 0% 0-524d(15100) 05122 000%) 051834120 0-5122(s0.00%) | 0-5134(40.20%)
w/o Tnstruct Tuning ~ 60% 0.5061_150%) 0.5366(1450%) 053661480 0.5305(15607) 0.5244(40.40%) | 0.5268(;00%)
50% 04939 _se0ny 0.5427(1e00m) 05061 1000 0.4939 _saovy 04878 ssaz) | 050491 09
40% 04817 —g.00%) 0.5427(16.00%) 0.5244(10.40%) 0.4939(_360%) 0.5000(—2.40%) | 0.5085(-0.70%)
30% 04817_goowy 0.5305(s30m) 0-5000(_240%) 0.4939 _seon) 04817 go0%) | 0-4976(_s.00%)
20% 0.4634(—950%) 0.5061(_1.20%) 0.4939_360%) 0.4695_s30%) 0.4878_as0%) | 0.4841(_550%)
10% 03659 _ascon) 04634 gsom) 04268 _1a70%) 04207 17000y 0445115100 | 0.4244(_1720%)

0.62 - (a) WK 074 - (b) CSR
0.62 - —— 0.74 -
3] \]
©] =]
5062- FullkV 0.73- =
g —— H20 |
0.62 - StreamingLLM 0.73-
—+— ChunkKV]
0.61- ¢ : O, 0.73- ‘ e —
90 50 30 20 10 90 50 30 20 10
, (c) AR (d) SA
0.50 = e T 0.60 = 'ﬁN“'
0.40 - 20.55 -
1 ®
| 5
, 8
0.30 - < 0.50 -
0.20- 0.45-
90 50 30 20 10 90 50 30 20 10

Compression Ratio (%)

Figure 9: Performance Comparison of KV Cache Compression Methods Across Tasks with Mistral-
7B-Instruct.

D SHOTKV

This section provides the detailed description of ShotKV.

24

Under review as a conference paper at ICLR 2026

Table 10: Performance Comparison of Different Shot Numbers on GSM8K

Shot Ratio

StreamingLLM

H20

SnapKV

PyramidKV

ChunkKV

Average 1

Baseline

FullKV: 0.7149

90%
80%
70%
1-shot 60%
50%
40%
30%
20%
10%

0.7013(_1.90%)
0.6892(43_60%)
0.6816(_4.70%)
0.6884(_3.70%)
0.6952(_5 s0%)
0.6657(_6.90%)
0.5118(728.40%)
0-2320(—67-50%)
0.0296(_95.90%)

0.7172(4.0.30%)
0.7089 o s0%)
0.6914(_3 30%)
0.6831(_4.40%)
0.6596,_7.70%)
0.6202(_13.20%)
0.5004(_30.00%)
0.2714(702_00%)
0.0243(_96.60%)

0.7142(_0.10%)
0.7066(—1.20%)
0.6945(_2.90%)
0.6914(_3 30%)
0.6611(_7 505,
0.6065(_15.20%)
0.5042(_29.50%)
0.2654(,62.90%)
0.0296(_95.90%)

0.7020(—1.80%)
0.6952(_2.80%)
0.6884(_3.70%)
0.6816(—4.70%)
0.6717(—6.00%)
0.6475(_9.40%)
0.5898(_17.50%)
0.3973(_44.40%)
0.1236(_82.70%)

0.7172(4.0.30%)
0.7081(1.00%)
0.7127_o.30%)
0.6990(_2.20%)
0.6732(5 50%)
0.6050(—15.40%)
0.4011(_43.90%)
0.1319(_g1.60%)
0.0190(—97.30%)

0.7104(—0.60%)
0.7016(_1.90%)
0.6937(_3.00%)
0.6887(_3.70%)
0.6722(_6.00%)
0.6290(_12.00%)
0.5015(_29.90%)
0.2596(_63.70%)
0.0452(_93.70%)

Baseline

FullKV: 0.7574

90%
80%
70%
2-shot 60%
50%
40%
30%
20%
10%

0.7544(_ 0 40%)
0.7551(_0.30%)
0.7521(_o.70%)
0.7475(_1 30%)
0.7460(_1.50%)
0.7445(71_70%)
0.7506(_0.90%)
0.6217(717‘90%)
0.1516(_80.00%)

0.7604 (4 0.40%)
0.7521(_0.70%)
0.7453(_1.60%)
0.7506(70_90%)
0.7437(—1.80%)
0.7081 (6 50%)
0.6133(_19.00%)
0.4412(741.70%)
0.1759(_76.80%)

0.7574 (40.00%)
0.7559(_0.20%)
0.7566(—0.10%)
0.7521(_o.70%)
0.7437(_1.80%)
0.7202(_4.90%)
0.6657(_12.10%)
0.4936(_34.80%)
0.1622(_78.60%)

0.7612(1.0.50%)
0.7559(—0.20%)
0.7574(40.00%)
0.7589(4.0.20%)
0.7604(40.40%)
0.7309(73.50%)
0.7036(—7.10%)
0.5534(—26.90%)
0.2244(_70.40%)

0.7627 10.70%)
0.7589(40.20%)
0.76424.0.90%)
0.7695 11 60%)
0.761910.60%)
0.7650(+1.00%)
0.7445_1 70%)
0.5368(729,10%)
0.0735(_90.30%)

0.7592(4.0.20%)
0.7556(_0.20%)
0.7551(_0.30%)
0.7557(_0.20%)
0.7511(_0.80%)
0.7337(73.10%)
0.6955(_g.20%)
0.5293(_30.10%)
0.1575(—79.20%)

Baseline

FullKV: 0.7597

90%
80%
70%
4-shot 60%
50%
40%
30%
20%
10%

0.7597 (40.00%)
0.7559(—0.50%)
0.7597 (10.00%)
0.7369(_3.00%)
0.7475(_1.60%)
0.7165(_5.70%)
0.6558_13.70%)
0.6224(718.10%)
0.4708(_38.00%)

0.7604(40.10%)
0.7688(41.20%)
0.7695(41.30%)
0.7726 (41.70%)
0.7612(40.20%)
0.7339(_3.40%)
0.6603(-13.10%)
0.5625(726.00%)
0.3980(—47.60%)

0.7650(10.70%)
0.769541.30%)
0.7680(11.10%)
0.7688(11.20%)
0.7619(1.0.30%)
0.7377(_2.90%)
0-7111(—6.40%)
0.6065(720.20%)
0.3995(_47.40%)

0.7642 4 0.60%)
0.7680(41.10%)
0.7710(11 50%)
0.7635(40.50%)
0.7665+0.90%)
0.7483(_1.50%)
0.7263(_4.40%)
0.6543(713.90%)
0.4321(_43.10%)

0.7657 (10.80%)
0.7642 4 0.60%)
0.7726(1.1.70%)
0.7718(41.60%)
0.7635(+0.50%)
0.7612(1.0.20%)
0.7597 (40.00%)
0.7468(_1.70%)
0.3434(_54.80%)

0.7630(40.40%)
0.7653 (1-0.70%)
0.7682(11.10%)
0.7627(+0,4U%)
0.7601(40.10%)
0.7395(_2.70%)
0.7026(_7.50%)
0.6385(716.00%)
0.4088(_46.20%)

Baseline

FullKV: 0.7680

90%
80%
70%
6-shot 60%
50%
40%
30%
20%
10%

0.7551 (1 70%)
0.7642(o 50%)
0.7513(~2.20%)
0.7468(_2.80%)
0.7407 _3.60%)
0.7377(_3.90%)
0.7058(_s.10%)
0.5921 (22 90%)
0.4572(_40.50%)

0.7748(10.90%)
0.7756(+1_00%)
0.7771(41.20%)
0.7748(40.90%)
0.7718(4.0.50%)
0.7506(_2.30%)
0.7255(_5.50%)
0.6232(,13.80%)
0.4481_41.60%)

0.7839(42.10%)
0.7809 11 70%)
0.7809(41.70%)
0.7733 (40.70%)
0.7718(10.50%)
0.7771 (41.20%)
0.7392(73_70%)
0.6732(_12.30%)
0.4958_35.40%)

0.7794 (41 50%)
0.7741(+o,80%)
0.7771 (41.20%)
0.7771(41.20%)
0.7771(41.20%)
0.7688(10.10%)
0.7491(_2.50%)
0.6960(_9.40%)
0.4458_41.90%)

0.7794 (4 1.50%)
0.7786(41.10%)
0.7786(41.40%)
0.7809 (41.70%)
0.771810.50%)
0.7854 (42.30%)
0.7763(11.10%)
0.7665(—0.20%)
0.5565(_27.50%)

0.7745(40.90%)
0.7747(+o,90%)
0.7730(40.70%)
0.7706(4-0.30%)
0.7666(_0.20%)
0.7639(—0.50%)
0.7392(_3.70%)
0.6702(_12.70%)
0.4807(737.40%)

Baseline

FullKV: 0.7945

90%
80%
70%
8-shot 60%
50%
40%
30%
20%
10%

0.7695(43_10%)
0.7642(_3 80%)
0.7642(_3 80%)
0.7650(_3.70%)
0.7657(_3.60%)
0.7491(5 70%)
0.7051(_11.20%)
0.6384(_19.70%)
0.4784(_39.80%)

0.7923(_0.30%)
0.7938(_0.10%)
0.7900(—0.60%)
0.7809(_1.70%)
0.7854(_1.10%)
0.7688(_3.20%)
0.7225(_9.10%)
0.6406(_19.40%)
0.4503(—_43.30%)

0.7839(_1.30%)
0.7824(_1.50%)
0.7923(_0.30%)
0.7885(_0.s0%)
0.7847 (_1.20%)
0.7756(_2.10%)
0.7619(_4.10%)
0.6884 (13 40%)
0.5034(_36.60%)

0.7854(_1.10%)
0.7900(_0.60%)
0.7983 (1-0.50%)
0.7923(_0.30%)
0.7854(_1.10%)
0.7839(71,30%)
0.7718(_2.90%)
0.7142(710.10%)
0.4829(739.20%)

0.7824(_1.50%)
0.7824(_1.50%)
0.7809(_1.70%)
0.7885(_0.80%)
0.7824(_1.50%)
0.7763(_2.30%)
0.7733(_2.70%)
0.7763(_2.30%)
0.6566(717.40%)

0.7827(_1.50%)
0.7826(_1.50%)
0.7851(_1.20%)
0.7830(-1.50%)
0.7807(—1.70%)
0.7707(_5.00%)
0.7469_6.00%)
0.6916(_13.00%)
0.5143(_s5 30%)

D.1 PSEUDOCODE

The detailed algorithm of ShotKV is presented in AlgorithniI] Our method consists of two main
phases: prefill compression and decoding compression. During the prefill phase, we compute an
importance score for each shot by averaging the attention weights across all tokens, heads, and layers
within that shot. This score Scoreyei (s;) is normalized by the shot length k; to avoid bias towards
longer shots. Shots are then sorted by their scores and preserved until reaching the specified prefill

ratio ry,.

In the decoding phase, compression is performed dynamically at each step. For each token in the
decoding KV cache, we calculate its importance score Scoredecoding(t) by summing attention weights
across all heads and layers. The top-k tokens are retained based on the decoding ratio 4. Finally, the
compressed KV cache is formed by combining both the preserved prefill and decoding caches.

25

Under review as a conference paper at ICLR 2026

Table 11: Performance Comparison of Different KV Cache Compression Methods on Many-shot
GSM8K

Benchmark Ratio StreamingLLM H20 SnapKV PyramidKV ChunkKV \ Average T
Baseline LLaMA-3.1-8B-Instruct FullKV: 0.8235 ‘

90% 0.7728(_16%) 0.8142(_113%) 0.8137(_110%) 0.7932(ses%) 0-8233(_0.00%) | 0-8034(_2.44%)
80% 0.7935_seany 0833411209 08138 118y 0.8037(a0y 0.7932(sesw) | 0-8075(1.04%)
70% 0.8038 g0 08136 1s0%) 0.7832 o 0.7932(ses) 0.8037(_oony | 0.7995(5915
60% 0.7932 e 08142 113%) 0.8037(_saom 0.7935(sy 0.8038 _oso%) | 08017 59
50% 0.7934(ges% 081371109 0.7932(geswy 0.7932(sesw) 0.7835(asew) | 0.7954(5.41%)
40% 0.8037(ooy 0.7832 sson) 0.7935(_geuz) 0.7834(agrey 0.7832 _sson) | 0.7894(4147
30% 0.7835ssew) 0.7932 sesy) 0.8038 omow) 0.7934(sesuy 0.7932(sesw) | 0.7934(5 e5%)
20% 0.7537(_gary 0.7428 _osoy) 0.7934(_seswy 0.7832_ssoy 0.7835 ssew) | 0-7713(_e.34%)
Many-shot 10% 07432 g7sm 0.5127szraey 0.6827(1710%) 0.7037(_1agaoey 0.7932(5.68%) | 06871 16.56%)

GSMBK Baseline R1-Distill-Llama-8B FullKV: 0.7123 \

90% 07123011429 066125 m5%) 06534 gons) 06912 p1ss) 0.6923(14200) | 0-6821_pss00)
80% 0.7234(s3007) 0.6534(_goery 0712311427 0.6423(_gsany 0.7123(41a200) | 0.6887(_10a%)
70% 0.7412(4 5 50%) 0.6523(_7.12%) 0.7234(1300%) 0.6923(_1.42%) 0.7234(43.00%) | 0.7065(10.60%)
60% 0742345000 0.6912_1zs0) 0.6912 1550 0.6823 ogsor) 0.6634(5100 | 0.6941 1100,
50% 0.72340m000) 0.7T134p1as) 07312004100 071230140 O.7123(41 4200) | 0718510519
40% 071231140 0692314z 0.6923 1400 0.7023(ro00%) 0.7234(1s.00%) | 0.7045(1031%)
30% 0.6523(_7.12%) 0.7312(14.12%) 0.6634(_5.54%) 0.7423(15.60%) 0.6912(_1580%) | 0.6961(_¢.88%)
20% 0691215y 05834 10msny 05123 srong) 0.0823(axser) 0.0634(sas0) | 0.62651070%0)
10% 0.6323ogmr) 05423 anrs) 05412 ppausy 0.5923(_15.000) 06823 o s5) | 05981 (1480

This two-phase approach allows for different compression strategies during prefill and decoding
stages, recognizing their distinct roles in the inference process. The shot-aware design during prefill
ensures that the most informative examples are preserved, while the token-level compression during
decoding maintains essential recent context.

Algorithm 1 ShotKV: Shot-aware KV Cache Compression

Require: Prompt with n shots {s1, ..., s, }, prefill ratio 7, decoding ratio 74
Ensure: Compressed KV cache K Vi
1: // Phase 1: Prefill Compression (performed once)
2: for each shot s; in {s1, ..., 5, } do
3 Compute Scoreprefin(s;) = k% ZtEsi Zle Zle aé’h
4: end for
5: Sort shots by Scoreprefin (s;) in descending order
6
7
8
9

¢ Spreserved <— Select shots until Zsi ki < 1p X | K Viresin|
: KV Compress({si|si € Spreserved})
: // Phase 2: Decoding Compression (performed dynamically)
: for each decoding step do
10: for each token ¢ in K Viecoding do

11: Compute Scoregecoding (t) = ZhH:1 Zle ai’ A
12: end for

13: k <+ rg x |K‘/;]ecoding‘

14: K‘/(j(gloding — TopK(K‘/;lecoding> Scoredecoding7 k)
15: end for

C C
return K V;)reﬁll UK V;iecoding

E EVALUATION BENCHMARK

E.1 DATASET DETAILS

Detailed statistics for each benchmark dataset are provided in Table [I3] For HotpotQA, we only
report results under the 10% compression ratio using the LLaMA-3-8B-Instruct model.

26

Under review as a conference paper at ICLR 2026

DATASET | TASK TYPE | #TEST | METRIC | EVALUATION METHOD
MMLU Hendrycks et al.|(2020) World Knowledge 14,079 Accuracy Generation-Based
GSMB8K |Cobbe et al.|(2021) Arithmetic 1,319 Exact match Generation-Based
CSQA [Talmor et al.|(2019) Commonsense 1,221 Accuracy Generation-Based
HumanEval|Chen et al.|(2021) Code Generation 164 Pass@1 rate Generation-Based
JailBreakV |Luo et al.|(2024) Safety 28,000 | Attack success rate Generation-Based
HotpotQA |Yang et al.|(2018) Document QA (Multi-hop) 7,405 Accuracy Generation-Based
LongGenBench|Liu et al.[(2024d) | Long-Context Generation 23,000 Accuracy Generation-Based

Table 13: The statistics of the datasets used in this paper. # TEST denote the number of training data
and test data, respectively.

F IMPACT STATEMENT

This work advances the field of efficient large language model deployment through systematic
analysis and improvement of KV cache compression techniques. Our research has several potential
societal impacts:

First, by enabling more efficient memory usage in LLMs while maintaining performance, our
work contributes to reducing the computational resources and energy consumption required for Al
deployment. This has positive environmental implications and makes Al technology more accessible
to researchers and organizations with limited computing resources.

Second, our proposed ShotKV method specifically improves performance on long-context arithmetic
reasoning tasks, which could enhance the practical applications of LLMs in education, scientific
computing, and other fields requiring complex mathematical reasoning. This could lead to more
reliable Al-assisted learning and problem-solving tools.

However, we acknowledge that making LLMs more efficient could accelerate their widespread
adoption, potentially raising concerns about AI’s impact on employment and privacy. While our work
focuses on technical improvements, we encourage the research community to carefully consider these
broader implications when deploying such technologies.

We believe the benefits of more efficient and capable Al systems outweigh potential risks, particularly
as our work promotes more sustainable and accessible Al development. Nevertheless, we emphasize
the importance of responsible deployment and continued ethical consideration in the application of
these technologies.

27

	Introduction
	Preliminary
	Benchmark Design
	Benchmark Setups
	Attention Pattern Analysis on KVFundaBench
	Results and Analysis

	ShotKV
	Implementation
	Empirical Results

	Conclusion
	Use of LLMs in Paper Writing
	Related Work
	Experiment Details
	Detail Results
	Ablation: Prefill-only vs. Full ShotKV on LG-GSM8K.
	More experiments on other models

	ShotKV
	Pseudocode

	Evaluation Benchmark
	Dataset Details

	Impact Statement

