
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAN LLMS MAINTAIN FUNDAMENTAL ABILITIES UN-
DER KV CACHE COMPRESSION?

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates an underexplored challenge in large language models
(LLMs): the impact of KV cache compression methods on LLMs’ fundamental
capabilities. Although existing methods achieve impressive compression ratios on
long-context benchmarks, their effects on core model capabilities remain under-
studied. We present a comprehensive benchmark KVFundaBench to systematically
evaluate the effects of KV cache compression across diverse fundamental LLM
capabilities, spanning world knowledge, commonsense reasoning, arithmetic rea-
soning, code generation, safety, and long-context understanding and generation.Our
analysis reveals serval key findings: (1) Task-Dependent Degradation; (2) Model-
Type Robustness (3) Prompt Length Vulnerability; (4) Chunk-Level Superiority; (5)
Prompt-Gain Sensitivity; (6) Long-Context Generation Sensitivity. Based on our
analysis of attention patterns and cross-task compression performance, we propose
ShotKV, a novel compression approach that distinctly handles prefill and decod-
ing phases while maintaining shot-level semantic coherence. Empirical results
show that ShotKV achieves 9%-18% performance improvements on long-context
generation tasks under aggressive compression ratios.

1 INTRODUCTION

The evolution of Large Language Models (LLMs) to process large documents for tasks such as
answering and summarizing questions (Raffel et al., 2020; Brown et al., 2020; Chowdhery et al.,
2022; Tay et al., 2022; Touvron et al., 2023a;b), spurred by breakthroughs in system architectures (Dao
et al., 2022; Dao, 2024; Jacobs et al., 2023; Xiao et al., 2024) and model design (Chen et al., 2023a;
Xiong et al., 2024; Chen et al., 2023b; Peng et al., 2024), has significantly increased GPU memory
demands during inference (AI21, 2024; X.AI, 2024; Reid et al., 2024; Anthropic, 2024; DeepSeek-AI,
2024; Liu et al., 2024a), making the development of efficient key value (KV) cache compression
strategies a critical focus for LLM deployment and optimization.

To address this, numerous studies have proposed selective token retention strategies (Xiao et al.,
2024; Zhang et al., 2023; Li et al., 2024b; Ge et al., 2023; Cai et al., 2024; Fu et al., 2024; Yang
et al., 2024; Adnan et al., 2024; Liu et al., 2024e; Tang et al., 2024), with pioneering works such
as H2O (Zhang et al., 2023) and SnapKV (Li et al., 2024b) showing that retaining approximately
50% of KV cache entries can balance model performance with significant memory savings. However,
current research primarily evaluates these methods in retrieval-based long-context scenarios such
as LongBench Bai et al. (2023; 2025) and Need-In-A-Haystack (NIAH) Kamradt (2023). This
narrow focus overlooks reasoning-intensive long-context scenarios, such as many-shot in-context
learning (ICL) (Agarwal et al., 2024), where the context length is driven by extensive examples
and the challenge lies not merely in retrieving specific information (“needle in a haystack”), but
in maintaining reasoning chains across extended generation sequences (e.g., 4k+ tokens). In
these settings, the pressure on the KV cache comes from the necessity to preserve the semantic
coherence required for multi-step deduction. Consequently, the impact of compression on a spectrum
of fundamental LLM capabilities—such as arithmetic reasoning, world knowledge, commonsense
reasoning, and safety—remains largely unexplored, particularly concerning their distinct attention
patterns. To this end, we introduce KVFundaBench, a benchmark designed to systematically
assess the effects of KV cache compression across these diverse fundamental capabilities and their
underlying attention dynamics. The benchmark includes 5 categories of tasks: world knowledge,
commonsense reasoning, arithmetic reasoning, code generation, and safety. Our comprehensive

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Baseline90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.25

0.30

0.35

0.40

0.45

0.50

0.55
A

cc
ur

ac
y

Long-Context Benchmark

Long-Context Benchmark

Baseline90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.25

0.30

0.35

0.40

0.45

0.50

0.55 Arithmetic Benchmark

Arithmetic Benchmark

(a) KV cache compression methods on long-context and
arithmetic benchmarks.

Long-Context Arithmetic Reasoning

(b) Attention heatmap on long-context and arith-
metic benchmarks.

Figure 1: KV cache compression methods on long-context and arithmetic benchmarks. (a) Arithmetic
benchmark shows more performance degradation than long-context benchmark. (b) Long-Context
benchmark shows more sparsity in attention heatmap.

evaluations using KVFundaBench reveal several critical findings: we observe, as shown in Figure 1,
that arithmetic reasoning tasks suffer significantly higher performance degradation under compression
compared to long-context tasks, and that attention patterns in long-context scenarios exhibit notably
higher sparsity. These initial results suggest that existing evaluation frameworks, which focus
predominantly on long-context performance, may not adequately capture the full impact spectrum.
Our KVFundaBench reveals several key findings: (1) Task-Dependent Degradation: Performance
degradation is highly task-dependent, with arithmetic reasoning tasks showing particular sensitivity to
aggressive compression; (2) Model-Type Robustness: Multi-step reasoning LLMs demonstrate higher
compression robustness compared to instruction-tuned models; (3) Prompt Length Vulnerability:
Shorter prompts are more vulnerable to compression effects; (4) Chunk-Level Superiority: Chunk-
level compression strategies show superior performance on complex long-context reasoning tasks;
(5) Prompt-Gain Sensitivity: Tasks with larger prompt-based performance gains exhibit higher
compression sensitivity; and (6) Long-Context Generation Sensitivity: Long-context generation
tasks are particularly sensitive to compression. These findings provide valuable insights into the
relationship between compression methods and model capabilities, motivating our development of
ShotKV, which is a new KV cache compression method with separate compression methods for
prefill and decoding phases.

We hope our work can provide the research community with insightful perspectives on the impact of
KV cache compression on LLMs. Our main contributions are summarized as follows:

• Introduce KVFundaBench to systematically evaluate the effects of KV cache compression across
diverse fundamental LLM capabilities, we demonstrate that task-specific sensitivity to compression
varies significantly, with performance degradation ranging from 1% to 40%.

• Our systematic investigation reveals multiple critical factors influencing compression sensitivity,
including model training dynamics, prompt length characteristics, task-specific requirements,
long-context reasoning, and long-context generation capabilities.

• We introduce ShotKV, an innovative compression framework that distinctively manages the prefill
and decoding phases while maintaining the semantic integrity of the shot level.

2 PRELIMINARY

In this section, we provide comprehensive preliminaries of KV cache compression and LLM evalua-
tion.

Key-Value Cache in LLMs With the increasing long-context capabilities of LLMs, the Key-Value
(KV) cache has become crucial for improving inference efficiency. During LLM inference, the KV
cache stores intermediate computation results to avoid redundant calculations. For a given input
sequence x = (x1, x2, ..., xn), each transformer layer l maintains its key cache Kl = (kl1, k

l
2, ..., k

l
n)

and value cache V l = (vl1, v
l
2, ..., v

l
n), where kli, v

l
i ∈ Rd represent the key and value vectors for

token xi at layer l.

KV Cache Compression KV cache compression aims to reduce memory usage by selectively
storing or merging cached vectors. A compression operation can be denoted as C(K,V) = (K ′, V ′),
where K ′ and V ′ are compressed caches with size m < n, where C is the compression method, m
is the number of retained tokens, and n is the original number of tokens. The core idea is token

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Hyperparameters for Different Observations

Benchmarks Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6

Number of Shots K T

MMLU Hendrycks et al. (2020) 5 5 - - 0,5 - -
CommonsenseQA Talmor et al. (2019) 4 4 - - - - -
GSM8K Cobbe et al. (2021) 8 8 1-8 50 0,8 - -
HumanEval Chen et al. (2021) 8 8 - - - - -
JailBreakV Luo et al. (2024) 8 8 - - - - -

LongGenBench-GSM8K Liu et al. (2024d) - - - - - 35 20

selection - identifying and retaining important tokens based on attention patterns or other metrics
while discarding less important ones. The compression ratio r = m/n indicates how aggressively
the cache is compressed, where a smaller ratio means more aggressive compression.

Evaluation Protocol To thoroughly evaluate the impact of KV cache compression on LLMs’
capabilities, we assess five benchmark categories: world knowledge, commonsense reasoning,
arithmetic reasoning, code generation, and safety.

For each task category and compression method C, we calculate the relative performance change as
follows:

∆P =
PC − Pbase

Pbase
(1)

where PC and Pbase represent the performance scores with and without compression, respectively.

3 BENCHMARK DESIGN

3.1 BENCHMARK SETUPS

In this section, we will introduce the KVFundaBench setups, including the datasets, models, and
evaluation environment.

World Knowledge

Arithmetic Reasoning

CommonSense Reasoning

Safety

System
Prompt CoT Prompt Quesiton

Figure 2: Attention heatmap on different tasks.

Datasets To evaluate the performance of
KV cache compression on LLMs’ overar-
ching capabilities, we assess five bench-
mark categories: World Knowledge (WK) us-
ing MMLU (Hendrycks et al., 2020), mea-
sured by accuracy; CommonSense Reason-
ing (CSR) using CommonsenseQA (Talmor
et al., 2019) , evaluated through multiple-choice
accuracy; Arithmetic Reasoning (AR) using
GSM8K (Cobbe et al., 2021), assessed by
solve rate; Code Generation (CG) using Hu-
manEval (Chen et al., 2021), measured by
pass@1 rate on test cases; and Safety (SA) us-
ing JailBreakV (Luo et al., 2024), evaluated
by attack success rate. Furthermore, we test
the performance of KV cache compression on
LongGenBench (Liu et al., 2024d), a long-
context generation (LG) benchmark. Detailed
statistics for all datasets are provided in Sec-
tion E.1.

Models We conduct experiments on a series of
LLMs, including LLaMA-3.1-8B, LLaMA-3.1-
8B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct (Jiang et al., 2023a), and multi-step reasoning
LLM DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80 90 100
Top X% of Total Tokens Retained

50

60

70

80

90

100

C
um

ul
at

iv
e

A
tte

nt
io

n
S

co
re

 (%
)

Attention Distribution with Sink Tokens

Long-Context (Including Sinks)
Arithmetic (Including Sinks)

(a) Attention Distribution with Sink Tokens

0 10 20 30 40 50 60 70 80 90 100
Top X% of Tokens Retained

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

A
tte

nt
io

n
S

co
re

(%
)

Attention Distribution without Sink Tokens

Long-Context (Non-Sink Tokens)
Arithmetic (Non-Sink Tokens)

(b) Attention Distribution without Sink Tokens

Figure 3: Cumulative attention score distribution for Long-Context and Arithmetic. (a) Overall
distribution including initial sink tokens, showing high initial concentration. (b) Distribution without
sink tokens (first 4 tokens removed), revealing that Arithmetic’s non-sink attention is more diffuse
compared to Long-Context’s.
KV Cache Compression Methods To thoroughly investigate the potential impact on KV cache
compression methods, we select the following methods: StreamingLLM Xiao et al. (2024),
SnapKV Li et al. (2024b), H2O Zhang et al. (2023), PyramidKV Cai et al. (2024), PyramidIn-
fer Yang et al. (2024), and ChunkKV Liu et al. (2025).

Hyperparameters The hyper-parameters for different observations are shown in Table 1. The
temperature for the experiments are set to 0 for ensuring the deterministic results.

3.2 ATTENTION PATTERN ANALYSIS ON KVFUNDABENCH

Baseline90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

A
cc

ur
ac

y

Compression Sensitivity

WK
CSR
AR
CG
SA

(a) Sensitivity Analysis of Different Benchmark Cate-
gories to KV Cache Compression

Baseline90 80 70 60 50 40 30 20 10
Compression Ratio (%)

30

20

10

0

P
er

fo
rm

an
ce

 D
el

ta
 (%

)

Average Performance (%)

WK
CSR
AR
CG
SA

(b) Performance Delta Lines with Baseline

Figure 4: Sensitivity Analysis of Different Bench-
mark Categories to KV Cache Compression. The
performance delta lines are calculated by Equa-
tion (1).

To better understand the task-specific sensitivity,
we analyze the Cumulative Distribution Func-
tion (CDF) of attention scores, as shown in Fig-
ure Figure 2. Based on the slope and concen-
tration of the CDF curves, we categorize task
attention patterns into two distinct types:

Universal Patterns (WK/CSR): As observed
in World Knowledge and Commonsense Rea-
soning, the attention distribution is relatively
uniform (after excluding sink tokens). The CDF
curve rises smoothly, indicating that the model
aggregates information from a broad range of
context tokens. This “bag-of-words” style atten-
tion is robust to compression because losing a
small fraction of tokens does not critically dis-
rupt the overall semantic representation.

Specialized Patterns (AR): In Arithmetic Rea-
soning tasks, the attention pattern is highly
sparse and specialized. The CDF curve for non-
sink tokens is significantly flatter (Figure 3b),
implying that the model concentrates its atten-
tion mass on a very small, specific set of to-
kens—likely the intermediate steps crucial for
the reasoning path. We term this a “Special-
ized” pattern. Unlike retrieval tasks, these to-
kens act as “bridges” in a reasoning chain; if
compression algorithms (like H2O or SnapKV)
mistakenly discard these key tokens, the entire
Chain-of-Thought (CoT) is broken, leading
to the severe performance degradation we ob-
served.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

90 80 70 60 50 40 30 20 10
0.67

0.68

0.68

0.69

0.69

A
cc

ur
ac

y

(a) WK

FullKV
H2O
SnapKV
StreamingLLM
ChunkKV
PyramidKV
ShotKV

90 80 70 60 50 40 30 20 10
0.68

0.70

0.73

0.75

0.78

(b) CSR

90 80 70 60 50 40 30 20 10

0.50

0.60

0.70

0.80
(c) AR

90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.35

0.40

0.45

0.50

0.55

A
cc

ur
ac

y

(d) CG

90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.50

0.60

0.70

0.80

0.90

(e) SA

90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.50

0.55

0.60

0.65

0.70
(f) R1-AR

Figure 5: Performance Comparison of KV Cache Compression Methods on KVFundaBench. Results
for R1-AR (f) were obtained using the DeepSeek-R1-Distill-Llama-8B model. ShotKV is our
proposed method; details can be found in Section 4.

To further investigate the attention dynamics that might explain the task-specific sensitivities to KV
cache compression, we analyzed the cumulative attention score distributions, as illustrated in Figure 3.
Figure 3(a) depicts the overall attention distribution, which includes the initial sink tokens Xiao
et al. (2024). In this view, both long-context and arithmetic tasks demonstrate a very similar pattern:
a steep initial rise where the top 1% of tokens capture over 60% of the total attention mass. This
highlights the predominant role of sink tokens in attracting attention, regardless of the specific task.

However, a more distinct pattern emerges when these initial sink tokens (specifically, the first four
tokens) are excluded from the analysis, as shown in Figure 3(b). Within the remaining non-sink
tokens, the attention distribution for arithmetic tasks becomes notably more diffuse, with a slower
accumulation of attention mass. For instance, the top 20% of non-sink tokens in arithmetic cover
only about 37% of the attention within their own non-sink group. In contrast, long-context’s non-sink
tokens exhibit a relatively more concentrated attention profile, where the top 20% of its non-sink
tokens capture approximately 61.5% of the attention within their non-sink set. This divergence sug-
gests that while sink tokens provide a common, strong attentional anchor, the subsequent distribution
of attention across task-relevant (non-sink) tokens varies. The more diffuse attention in arithmetic’s
non-sink tokens implies a reliance on a broader set of contextual cues for its structured reasoning,
potentially making it more vulnerable when compression begins to impact these non-sink tokens.

These detailed analyses of attention distributions (Figure 2 and Figure 3) reveal that LLMs engage
different contextual information and attention strategies when performing long-context tasks versus
tasks requiring fundamental abilities such as arithmetic reasoning. This highlights the necessity of
evaluating KV cache compression beyond long-range dependencies to specifically assess its impact
on diverse fundamental capabilities, owing to their distinct attentional mechanisms.

3.3 RESULTS AND ANALYSIS

In this section, we present the results and an analysis of the experiments. For detailed results, see
Section C.1.

Evaluation Environment We use the lm-evaluation-harness (Gao et al., 2023) library to load the
models and evaluate the performance. The evaluation environment is a NVIDIA A40 GPU server.

Observation 1. Task-Dependent Degradation: KV cache compression methods show task-
dependent performance degradation, WK and CSR are more robust to KV cache compression.
As demonstrated in Figure 4, all tasks maintain stable performance at compression ratios above 40%,
but exhibit distinct degradation patterns below this threshold. Arithmetic reasoning, code genera-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

tion, and safety tasks demonstrate the highest compression sensitivity, characterized by precipitous
performance declines. Figure 5 illustrates the detailed performance impact of various KV cache
compression methods across different tasks. This degradation is most pronounced in arithmetic
reasoning (c), where performance deteriorates significantly below the compression ratio of 20%,
with precision dropping from approximately 0.75 to below 0.5. Among the evaluated methods,
ChunkKV Liu et al. (2025) and PyramidKV Cai et al. (2024) consistently demonstrate superior
stability in most tasks, while StreamingLLM Xiao et al. (2024) exhibits increased sensitivity to
aggressive compression. Additionally, R1-Arithmetic reasoning (f) indicates that reasoning LLMs
demonstrate enhanced robustness to KV cache compression. Highlighting World Knowledge and
Common Sense Reasoning as the most robust tasks, indicating that these tasks are less sensitive to
KV cache compression.

Observation 2. Model-Type Robustness: Multi-step reasoning LLMs are more robust to KV cache
compression. Figure 7 presents a comparative analysis of LLaMA-3.1-8B across its base (w/o instruct
tuned), instruct-tuned, and DeepSeek-R1 distilled variants, illustrating their averaged performance in
five compression methods with confidence intervals. Although all three variants exhibit performance
degradation at low compression ratios, their degradation trajectories differ significantly. The R1
distilled model demonstrates superior stability, maintaining performance around 0.60 even at a
compression ratio 10%. Although the instruct-tuned model achieves a higher initial accuracy (0.8),
it exhibits heightened compression sensitivity, with performance deterioration beginning at 30%
compression ratio and declining sharply to approximately 0.5 at 10% ratio. These findings suggest
that while multi-step reasoning LLMs demonstrate enhanced robustness to KV cache compression,
and instruct-tuning improves overall model performance, the latter may inadvertently increase model
vulnerability to aggressive compression, particularly at compression ratios below 30%.

Baseline90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.50

0.60

0.70

0.80

A
cc

ur
ac

y

Many-shot AR Performance

FullKV
H2O
SnapKV
StreamingLLM
ChunkKV
PyramidKV

(a) Many-shot Arithmetic Reasoning on LLaMA3.1-8B-
Instruct

Baseline90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

Many-shot AR Performance (R1 Model)

(b) Many-shot Arithmetic Reasoning on DeepSeek-R1-
Distill-Llama-8B

Figure 6: Many-shot scenario on KV cache com-
pression

Observation 3. Prompt Length Vulnerabil-
ity: Shorter prompts are more vulnerable to KV
cache compression. As illustrated in Figure 8,
the effect of KV cache compression is markedly
different with varying prompt lengths (shot num-
bers). Scenarios with fewer shots (for example,
one-shot and two-shot) demonstrate heightened
sensitivity to compression; their performance
degrades more precipitously below a compres-
sion ratio of 30% compared to scenarios with a
greater number of shots (e.g., 4-8 shots). For ex-
ample, in 1-shot settings, performance decreases
from 0.5 to 0.05 as the compression ratio de-
creases from 30% to 10%. In contrast, 8-shot
settings experience a less severe reduction, from
0.75 to 0.5, under the same compression con-
ditions. This suggests that prompts with more
shots, by virtue of containing more contextual
examples, offer a richer set of reference points
for the model. Consequently, the model’s re-
liance on any single example being perfectly pre-
served in the compressed KV cache is reduced,
leading to greater robustness against aggressive
compression.

Observation 4. Chunk-Level Superiority:
Chunk-level compression is more effective for
long-context structured reasoning tasks. In-
spired by Agarwal et al. (2024), we consider
many-shot in-context learning as a long-context
reasoning task, which is more complex than ex-
isting long-context benchmarks, such as LongBench and NIAH. Figure 6 shows the performance of
KV cache compression methods on a 50-shot GSM8K task, where the prompt length exceeds 4K
tokens. From the figure, we observe that ChunkKV Liu et al. (2025) demonstrates the most stability
when the compression ratio is below 10% on both LLaMA-3.1-8B-Instruct and DeepSeek-R1-Distill-
Llama-8B, indicating that in more complex long-context arithmetic reasoning tasks, chunk-level

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Baseline 90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.30

0.40

0.50

0.60

0.70

0.80

A
cc

ur
ac

y

Different Training Dynamics

W/ Instruct Tuning
W/ R1 Distillation
W/o Instruct Tuning

Figure 7: Performance Comparison of KV Cache
Compression Methods on different training dy-
namics on Arithmetic Reasoning

Baseline90 80 70 60 50 40 30 20 10
Compression Ratio (%)

0.20

0.40

0.60

0.80

A
cc

ur
ac

y

Different Shot Numbers

8-shot
6-shot
4-shot
2-shot
1-shot

Figure 8: Average Performance Across Different
Shot Numbers

retention is more effective at preserving semantic information. Highlighting the effectiveness of
chunk-level compression for long-context structured reasoning tasks.

Observation 5. Prompt-Gain Sensitivity: KV cache compression significantly reduces perfor-
mance gains from ICL and CoT. As shown in Table 2, different tasks exhibit varying levels of
performance improvement from zero-shot to CoT prompting. Arithmetic reasoning shows a dramatic
improvement of 50.41%, while World Knowledge demonstrates a more modest gain of 6.20%.

Table 2: Zero-shot vs Few-shot Performance Com-
parison

Benchmark Zero-shot ↑ CoT ↑ Delta∆

Arithmetic Reasoning 29.04 79.45 +50.41
World Knowledge 62.62 68.82 +6.20

From Figure 4, we find that tasks with larger
CoT improvements, such as Arithmetic reason-
ing, are more sensitive to KV cache compres-
sion. This suggests that when a task is heavily
based on CoT to achieve better performance,
compression of these crucial prompt elements
has a more substantial impact on model perfor-
mance. In contrast, tasks like World Knowledge,
where the performance gain from CoT is smaller, show more resilience to KV cache compression,
likely because the model relies more on its inherent knowledge than on the specific examples in the
prompt.

Table 3: KV cache compression methods’ perfor-
mance on LG-GSM8K

Method 100% 40% 35% 30% 25%
FullKV 46.00 - - - -

StreamingLLM - 39.50 28.67 14.83 6.33
H2O - 32.66 25.17 19.83 14.83
PyramidInfer - 38.33 27.67 20.50 16.67
ShotKV(Ours) - 47.33 41.33 38.33 26.83

Observation 6. Long-Context Generation
Sensitivity: KV cache compression exhibits
significant performance degradation in long-
context generation tasks. As demonstrated in
Table 3, our evaluation of three unified com-
pression methods—StreamingLLM, H2O, and
PyramidInfer—on LG-GSM8K reveals substan-
tial performance limitations. In this arithmetic
reasoning task with approximately 4k token gen-
eration duration, compression methods show no-
table deterioration, with performance declining by more than 20% at compression ratios below 30%.
The ShotKV is our proposed method that aims to improve the performance of KV cache compression
on Long-Context Generation tasks, details in Section 4.

4 SHOTKV

Our comprehensive empirical investigation in Section 3.3 has systematically revealed critical vulnera-
bilities in current KV cache compression approaches when applied to a diverse range of fundamental
LLM capabilities. Key findings indicate that:

• Specific task categories, notably Arithmetic Reasoning (Observation 1) and Long-Context Genera-
tion (Observation 6), exhibit pronounced performance degradation under aggressive compression.

• The integrity of prompt information is paramount; tasks that derive significant benefits from ICL
and CoT (Observation 5) or rely heavily on n-shot prompts (as evidenced by the attention patterns
in Figure 2) are particularly susceptible to information loss from compression.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Preserving semantic coherence is crucial, with chunk-level strategies showing promise in complex
reasoning tasks (Observation 4), suggesting that compressing or discarding tokens without regard
to these semantic units can be detrimental.

These observations collectively underscore the limitations of existing unified compression methods,
which often fail to preserve nuanced structured information embedded in prompts, thereby leading to
documented performance drops. This necessitates a more discerning compression strategy that is
acutely aware of the semantic and structural importance of prompt components, especially for tasks
demanding intricate reasoning and extensive generation.

To address these multifaceted challenges identified by our empirical study, we introduce ShotKV, a
novel decoding-time compression method. ShotKV is specifically designed to mitigate the observed
performance degradation by strategically managing KV cache during the prefill and decoding phases.
Our approach is founded on the principle that n-shot examples in prompts are not merely token
sequences, but constitute coherent semantic chunks vital for effective reasoning (a concept supported
by Figure 2 and Observation 4). We therefore design ShotKV to preserve these shot examples intact
during the prefill phase, complemented by a distinct strategy for the decoding phase, aiming for
robust performance, particularly on the sensitive tasks highlighted in our analysis.

4.1 IMPLEMENTATION

The ShotKV (Prefill-Decoding Separated Shot-aware KV Cache Compression), which separates
the compression strategy for prefill and decoding phases. The key insight is that the prefill phase
KV cache, which contains crucial prompt information, should be compressed once and remain fixed,
while the decoding phase KV cache can be dynamically compressed with different strategies.

Given a prompt with n shots and tokens generated, we define:

KVtotal = KVprefill ∪KVdecoding (2)

For the prefill phase, we compute shot importance and preserve complete shot examples:

Scoreprefill(si) =
1

ki

∑
t∈si

H∑
h=1

L∑
l=1

αl
t,h (3)

where si represents the i-th shot example containing ki tokens. The term αl
t,h denotes the attention

weight assigned by the query vector (corresponding to the first token to be decoded immediately
following the prompt) to the key vector of a token t within shot si, in attention head h at transformer
layer l. Once the prefill phase KV cache is compressed based on these scores, it remains fixed
throughout the generation process.

Given a prefill compression ratio rp, we prioritize shots with higher scores while ensuring that the total
number of preserved tokens does not exceed the KV cache limit. Specifically, the shots are ranked by
their scores and selected in descending order until they reach the compression budget rp × |KVprefill|.
This shot-level selection strategy helps to maintain the semantic coherence of important examples
while adhering to memory constraints.

KV C
prefill = Compress({si|si ∈ S∗

preserved}) (4)

where Spreserved = argmax
S⊆{s1,...,sn}

∑
si∈S

Scoreprefill(si) (5)

subject to:
∑
si∈S

ki ≤ rp × |KVprefill| (6)

Here, KV C
prefill represents the compressed KV cache for prefilling and Spreserved represents the optimal

subset of shots that should be preserved after compression. The first equation aims to maximize the
total importance score of the selected shots, where {s1, ..., sn} represents all available shots and
Scoreprefill(si) is the importance score of the shot si calculated using attention weights as defined
earlier. The second equation enforces the memory constraint: the total number of tokens (ki) in the
selected shots must not exceed the allocated budget, which is determined by the prefill compression
ratio rp multiplied by the original KV cache size.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

For the decoding phase, we compute importance scores only for the tokens generated during decoding:

Scoredecoding(t) =

H∑
h=1

L∑
l=1

αl
t,h (7)

Here, for a previously generated token t, αl
t,h is similarly defined as the attention weight assigned

by the query vector of the current token being generated to the key vector of token t, within head h
at layer l. Thus, Scoredecoding(t) represents the total attention received by token t from the current
generation step.

Given a decoding compression ratio rd, we select the tokens with the highest scores to preserve. The
compressed decoding KV cache KV C

decoding retains only the top-k tokens where k = rd×|KVdecoding|,
effectively maintaining the most influential context tokens while reducing memory usage:

KV C
decoding = TopK(KVdecoding, Scoredecoding,

k = rd × |KVdecoding|)
(8)

Finally, we combine compressed prefill and decoding KV caches to form the total compressed KV
cache:

KVtotal = KV C
prefill ∪KV C

decoding (9)

4.2 EMPIRICAL RESULTS

In this section, we evaluate ShotKV under two scenarios: many-shot Arithmetic Reasoning with
multiple KV cache compression methods, and LG-GSM8K with three unified compression methods
that optimize the KV cache during generation. We additionally report a non-ICL generalization study
on HotpotQA and an ablation that isolates the contribution of the decoding-phase compression on
LG-GSM8K; detailed experimental results are provided in Section C.2 and Section 4.2.
Baseline. For LG-GSM8K evaluation, we employ three state-of-the-art unified compression methods
as baselines: StreamingLLM Xiao et al. (2024), H2O Zhang et al. (2023), and PyramidInfer Yang
et al. (2024). We conduct experiments using LLaMA-3-8B-Instruct Dubey et al. (2024) on the
LG-GSM8K benchmark Liu et al. (2024d), maintaining consistent parameters with Observation 6
(K = 35, T = 20). For many-shot Arithmetic Reasoning experiments, we follow the configuration
detailed in Observation 4.

Table 4: KV cache compression methods’ performance on
Many-shot Arithmetic Reasoning

Method 100% 40% 30% 20% 10%

FullKV 82.35 - - - -

StreamingLLM - 80.37 78.35 75.37 74.32
H2O - 78.32 79.32 74.28 51.27
PyramidKV - 78.34 79.34 78.32 70.37
SnapKV - 79.35 80.38 79.34 68.27
ChunkKV - 78.32 79.32 78.35 79.32
ShotKV(Ours) - 81.07 80.82 80.57 80.37

Main results and analysis. From
the Table 4, we can see that ShotKV
achieves the best performance on
LG-GSM8K, maintaining high per-
formance at low compression ratios.
Specifically, at a compression ratio of
40%, ShotKV achieves 47.33% accu-
racy, surpassing the full kv cache base-
line (46.00%) and showing substan-
tial improvements over other methods
(32.66%-39.50%). And Table 3 shows
that ShotKV also achieves the best
performance on many-shot Arithmetic
Reasoning, maintaining high performance at low compression ratios. Even in aggressive compres-
sion ratios (25%-30%), ShotKV maintains relatively stable performance (26.83%-38.33%), while
other methods experience more severe degradation (6.33%-16.67%). This superior performance
can be attributed to two key design choices: (1) the preservation of complete shot examples during
compression maintains the semantic coherence necessary for mathematical reasoning, and (2) the
separation of prefill and decoding phase compression allows for more flexible and task-appropriate
token retention strategies. These results suggest that our shot-aware compression strategy is particu-
larly effective for long-context generation tasks that require maintaining complex reasoning chains,
such as mathematical problem solving.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Latency and Throughput We further compare the inference efficiency of ShotKV and the FullKV
baseline in terms of latency and throughput under different input and output sequence lengths. As
shown in Table 5, ShotKV consistently reduces latency and improves throughput compared to FullKV.
For example, with an input length of 8192 and output length of 4096, ShotKV achieves an 11.3%
reduction in latency and a 13.1% increase in throughput. These results demonstrate that ShotKV not
only maintains model performance under aggressive KV cache compression, but also brings tangible
efficiency benefits for long-context inference.

Table 5: Latency and throughput comparison between ShotKV and FullKV under different input-
output configurations. Percentages in parentheses indicate improvements over FullKV baseline. The
experiments test on the A40 server with batch size 1.

Method Sequence Length Performance Metrics
Input Output Latency(s) ↓ Throughput(T/S) ↑

FullKV 4096 4096 175.50 37.73
ShotKV 4096 4096 162.85 (7.2%) 41.12 (9.0%)

FullKV 8192 4096 183.42 55.93
ShotKV 8192 4096 162.78 (11.3%) 63.24 (13.1%)

Table 6: LLaMA-3-8B-Instruct on
HotpotQA at 10% compression.

Method Score
FullKV 45.55

StreamingLLM 40.27
H2O 40.84
SnapKV 43.36
PyramidKV 43.80
ChunkKV 43.27
ShotKV (Ours) 43.60

Generalization to Non-ICL Tasks (HotpotQA). For a doc-
ument QA setting without few-shot ICL, we adapt ShotKV by
treating each sentence as a coherent semantic unit (analogous
to a shot). Even under an aggressive 10% compression ratio
on LLaMA-3-8B-Instruct, ShotKV remains competitive with
the best-performing method, as shown in Table 6

5 CONCLUSION

This paper presents KVFundaBench, a benchmark for sys-
tematically evaluating the effects of KV cache compression
on various fundamental LLM capabilities. Our findings re-
veal that performance degradation is highly task dependent,
with arithmetic reasoning and long-context generation being
particularly sensitive (Task-Dependent Degradation and Long-
Context Generation Sensitivity). We also highlight that com-
pression sensitivity is influenced by a confluence of factors,
including inherent model characteristics such as training dynamics (Model-Type Robustness), prompt-
level attributes like length (Prompt Length Vulnerability), and the reliance on in-context examples
(Prompt-Gain Sensitivity). Crucially, we demonstrate the importance of preserving the semantic
integrity of prompt components, especially at a chunk or shot level, for complex reasoning and
generation tasks where current methods often struggle and where chunk-based approaches show
promise (Chunk-Level Superiority).

Based on these insights, we introduced ShotKV, a novel compression framework that distinctively
manages prefill and decoding phases while prioritizing shot-level semantic coherence to mitigate
information loss in sensitive tasks. ShotKV demonstrates superior performance, notably on long-
context arithmetic reasoning and generation tasks, maintaining high accuracy even at aggressive
compression ratios. The results of KVFundaBench and the efficacy of ShotKV underscore the
potential for more nuanced compression strategies and suggest promising future research avenues.

ETHICS STATEMENT

This work focuses on the technical advancement of LLM efficiency. Our goal is to reduce the
computational and energy costs of LLMs, thereby making AI technology more accessible and sustain-
able. We built our benchmark using public academic datasets and foresee no direct negative societal

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

impacts. While we acknowledge the broader societal implications of advancing AI capabilities, our
work is intended to contribute positively to the research community by enabling more efficient model
deployment.

REPRODUCIBILITY STATEMENT

To ensure our results are reproducible, we will release all code for our method, ShotKV, and
evaluation scripts. Our experiments exclusively use publicly available models (e.g., LLaMA-3.1,
Mistral-7B) and standard academic datasets (e.g., MMLU, GSM8K), all evaluated using the open-
source lm-evaluation-harness and KVpress framework. Detailed hyperparameters and
specific experimental configurations are provided in Appendix ??.

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. arXiv preprint
arXiv:2404.11018, 2024.

AI21. Introducing jamba: Ai21’s groundbreaking ssm-transformer model, 2024. URL https:
//www.ai21.com/blog/announcing-jamba.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathqa: Towards interpretable math word problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Chenxin An, Shansan Gong, Ming Zhong, Mukai Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu.
L-eval: Instituting standardized evaluation for long context language models. ArXiv preprint,
abs/2307.11088, 2023. URL https://arxiv.org/abs/2307.11088.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude-3-family.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper understanding
and reasoning on realistic long-context multitasks, 2025. URL https://arxiv.org/abs/
2412.15204.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

11

https://www.ai21.com/blog/announcing-jamba
https://www.ai21.com/blog/announcing-jamba
https://arxiv.org/abs/2307.11088
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2412.15204
https://arxiv.org/abs/2412.15204

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. ArXiv preprint, abs/2306.15595, 2023a. URL
https://arxiv.org/abs/2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2023b.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 3829–3846, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
232. URL https://aclanthology.org/2023.emnlp-main.232.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. ArXiv preprint, abs/2204.02311, 2022. URL https:
//arxiv.org/abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

Yue Deng, Wenxuan Zhang, Sinno Jialin Pan, and Lidong Bing. Multilingual jailbreak challenges in
large language models. arXiv preprint arXiv:2310.06474, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Weizhi Fei, Xueyan Niu, Pingyi Zhou, Lu Hou, Bo Bai, Lei Deng, and Wei Han. Extending context
window of large language models via semantic compression. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics ACL 2024, pp.
5169–5181, Bangkok, Thailand and virtual meeting, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.306. URL https://aclanthology.org/
2024.findings-acl.306.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Najibi.
LazyLLM: Dynamic token pruning for efficient long context LLM inference. In Workshop on
Efficient Systems for Foundation Models II @ ICML2024, 2024. URL https://openreview.
net/forum?id=gGZD1dsJqZ.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

12

https://arxiv.org/abs/2306.15595
https://aclanthology.org/2023.emnlp-main.232
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://aclanthology.org/2024.findings-acl.306
https://aclanthology.org/2024.findings-acl.306
https://openreview.net/forum?id=gGZD1dsJqZ
https://openreview.net/forum?id=gGZD1dsJqZ
https://zenodo.org/records/10256836

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. ArXiv preprint, abs/2310.01801, 2023.
URL https://arxiv.org/abs/2310.01801.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detection.
arXiv preprint arXiv:2203.09509, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? ArXiv preprint, abs/2404.06654, 2024. URL https://arxiv.org/abs/2404.
06654.

Sam Ade Jacobs et al. DeepSpeed Ulysses: System optimizations for enabling training of extreme
long sequence Transformer models. ArXiv preprint, abs/2309.14509, 2023. URL https://
arxiv.org/abs/2309.14509.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13358–13376, Singapore, December 2023b. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.825. URL https:
//aclanthology.org/2023.emnlp-main.825.

Huiqiang Jiang, Qianhui Wu, , Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1658–1677, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.91.

Gregory Kamradt. Needle In A Haystack - pressure testing LLMs. Github, 2023. URL https:
//github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W Lee, Sangdoo Yun, and Hyun Oh Song.
Kvzip: Query-agnostic kv cache compression with context reconstruction. arXiv preprint
arXiv:2505.23416, 2025.

Dacheng Li, Rulin Shao, et al. How long can open-source LLMs truly promise on context length?,
2023. URL https://lmsys.org/blog/2023-06-29-longchat.

Qi Li, Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Xinglin Pan, and Xiaowen Chu. Should
we really edit language models? on the evaluation of edited language models. arXiv preprint
arXiv:2410.18785, 2024a.

13

https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2024.acl-long.91
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://lmsys.org/blog/2023-06-29-longchat

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
ArXiv preprint, abs/2404.14469, 2024b. URL https://arxiv.org/abs/2404.14469.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. Towards understand-
ing and mitigating social biases in language models. In International Conference on Machine
Learning, pp. 6565–6576. PMLR, 2021.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. arXiv preprint arXiv:2405.14366,
2024b.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024c. doi: 10.1162/tacl a 00638. URL
https://aclanthology.org/2024.tacl-1.9.

Xiang Liu, Peijie Dong, Xuming Hu, and Xiaowen Chu. LongGenBench: Long-context generation
benchmark. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 865–883, Miami, Florida, USA,
November 2024d. Association for Computational Linguistics. URL https://aclanthology.
org/2024.findings-emnlp.48.

Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Bo Li, Xuming Hu, and Xiaowen Chu. Chunkkv:
Semantic-preserving kv cache compression for efficient long-context llm inference, 2025. URL
https://arxiv.org/abs/2502.00299.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024e.

Weidi Luo, Siyuan Ma, Xiaogeng Liu, Xiaoyu Guo, and Chaowei Xiao. Jailbreakv: A benchmark for
assessing the robustness of multimodal large language models against jailbreak attacks. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
GC4mXVfquq.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. ArXiv preprint, abs/2305.16300, 2023. URL https://arxiv.org/
abs/2305.16300.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZu1u.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

14

https://arxiv.org/abs/2404.14469
https://aclanthology.org/2024.tacl-1.9
https://aclanthology.org/2024.findings-emnlp.48
https://aclanthology.org/2024.findings-emnlp.48
https://arxiv.org/abs/2502.00299
https://openreview.net/forum?id=GC4mXVfquq
https://openreview.net/forum?id=GC4mXVfquq
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2305.16300
https://openreview.net/forum?id=wHBfxhZu1u
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. ArXiv preprint,
abs/2403.05530, 2024. URL https://arxiv.org/abs/2403.05530.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. ZeroSCROLLS: A zero-shot
benchmark for long text understanding. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 7977–7989, Singa-
pore, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.536.
URL https://aclanthology.org/2023.findings-emnlp.536.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ” do anything now”:
Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In Proceed-
ings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, pp.
1671–1685, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
arXiv preprint arXiv:2405.05254, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.
org/N19-1421/.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. ArXiv preprint, abs/2406.10774,
2024. URL https://arxiv.org/abs/2406.10774.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=qVyeW-grC2k.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven
Zheng, Neil Houlsby, and Donald Metzler. Unifying language learning paradigms. ArXiv preprint,
abs/2205.05131, 2022. URL https://arxiv.org/abs/2205.05131.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. ArXiv preprint, abs/2302.13971, 2023a. URL https:
//arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. ArXiv preprint, abs/2307.09288, 2023b. URL https://arxiv.
org/abs/2307.09288.

15

https://arxiv.org/abs/2403.05530
https://aclanthology.org/2023.findings-emnlp.536
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://arxiv.org/abs/2406.10774
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Qingyue Wang, Liang Ding, Yanan Cao, Zhiliang Tian, Shi Wang, Dacheng Tao, and Li Guo.
Recursively summarizing enables long-term dialogue memory in large language models. arXiv
preprint arXiv:2308.15022, 2023.

David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt compression and con-
trastive conditioning for controllability and toxicity reduction in language models. In Find-
ings of the Association for Computational Linguistics: EMNLP 2022, pp. 5621–5634, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.findings-emnlp.412. URL https://aclanthology.org/2022.
findings-emnlp.412.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models,
2024. URL https://arxiv.org/abs/2405.10637.

Jialong Wu, Zhenglin Wang, Linhai Zhang, Yilong Lai, Yulan He, and Deyu Zhou. Scope: Optimizing
key-value cache compression in long-context generation, 2024. URL https://arxiv.org/
abs/2412.13649.

X.AI. Announcing grok-1.5, 2024. URL https://x.ai/blog/grok-1.5.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar
Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis,
Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models. In Kevin
Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 4643–4663, Mexico City, Mexico, 2024. Association
for Computational Linguistics. URL https://aclanthology.org/2024.naacl-long.
260.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid
kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu,
and Junchen Jiang. Cacheblend: Fast large language model serving with cached knowledge fusion.
arXiv preprint arXiv:2405.16444, 2024.

Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy
Le, Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, et al. Kv cache compression, but what must we
give in return? a comprehensive benchmark of long context capable approaches. arXiv preprint
arXiv:2407.01527, 2024.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. ∞-bench: Extending long context evaluation
beyond 100k tokens. ArXiv preprint, abs/2402.13718, 2024a. URL https://arxiv.org/
abs/2402.13718.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first International Conference
on Machine Learning, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

16

https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://arxiv.org/abs/2405.10637
https://arxiv.org/abs/2412.13649
https://arxiv.org/abs/2412.13649
https://x.ai/blog/grok-1.5
https://openreview.net/forum?id=NG7sS51zVF
https://aclanthology.org/2024.naacl-long.260
https://aclanthology.org/2024.naacl-long.260
https://arxiv.org/abs/2402.13718
https://arxiv.org/abs/2402.13718

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
text, 2023.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Yue Zhang, Neil Zhenqiang Gong, et al. Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv e-prints, pp. arXiv–2306, 2023.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

APPENDIX

A Use of LLMs in Paper Writing 19

B Related Work 19

C Experiment Details 21

C.1 Detail Results . 21

C.2 Ablation: Prefill-only vs. Full ShotKV on LG-GSM8K. 22

C.3 More experiments on other models . 23

D ShotKV 24

D.1 Pseudocode . 25

E Evaluation Benchmark 26

E.1 Dataset Details . 26

F Impact Statement 27

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A USE OF LLMS IN PAPER WRITING

We used LLMs solely to aid and polish the writing (e.g., wording refinement and grammar), without
generating or altering experimental designs, methods, results, or conclusions. All technical content,
analyses, figures, and tables were authored and verified by the researchers.

B RELATED WORK

Key–value Cache Optimization Techniques KV cache is the core component in LLM inference,
which avoids repetitive computations by caching Key and Value vectors. However, the cost of caching
KV increases exponentially with the expansion of the model size and the length of the context Pope
et al. (2023). Some approaches have been published to alleviate the problem. For example, KV
Compression designs efficient content selection strategies to filter and manage tokens Zhang et al.
(2023); Adnan et al. (2024). Some methods identify important tokens by focusing on high attention
allocation Li et al. (2024b), while others optimize token selection by combining attention scores with
value vector norms to improve importance evaluation Guo et al. (2024). Techniques like Pyramid-
Infer reduce critical contexts layer by layer based on the distribution of attention scores Yang et al.
(2024), and StreamingLLM preserves attention sinks to maintain stable performance in extended
sequences Xiao et al. (2024). Researchers reduce storage costs by merging similar context represen-
tations and solving input disturbances caused by compression Zhang et al. (2024b). For example,
CaM Zhang et al. (2024b) works by integrating the KV cache to be dropped into the retained cache
in proportion to the attention weight. In addition, Yao et al. (2024) proposes CacheBlend to achieve
a selective KV recompute. Only partial KVs of crucial tokens are updated to reduce the delay in
the prefill stage and increase the throughput. In addition, the dynamic budget allocation method is
also used to optimize the KV cache, which adjusts the resource allocation in real time according to
the importance of the context, providing a balance between performance and efficiency in multitask
inference scenarios Cai et al. (2024); Feng et al. (2024); Kim et al. (2025).Wu et al. (2024) proposes
a prefill-decoding separation strategy to optimize the KV cache compression.

Evaluation of LLMs’ Fundamental Abilities Accurately evaluating the fundamental capabilities
of large language models is crucial to understand their true potential and limitations. The evaluation
typically spans across several key dimensions: world knowledge tasks like MMLU Hendrycks et al.
(2020),BBH Suzgun et al. (2022) assess models’ grasp of diverse domains through multiple-choice
questions; commonsense reasoning tasks such as CSQA Talmor et al. (2019) evaluate inference and
context understanding abilities; arithmetic reasoning benchmarks like GSM8K Cobbe et al. (2021)
test mathematical problem-solving capabilities through step-by-step reasoning; code generation
tasks including HumanEval Chen et al. (2021) measure the ability to generate functionally correct
code; and safety evaluations using benchmarks like JailBreakV Luo et al. (2024) assess models’
robustness against harmful content generation. Additionally, long-context benchmarks such as Long-
Bench Bai et al. (2023; 2025) and Need-In-A-Haystack (NIAH) Kamradt (2023) aiming to evaluate
models’ long-context summarization and retrieval capabilities. Furthermore, LongGenBench Liu
et al. (2024d) evaluates the models’ ability to process and generate responses for extended input
sequences. And recently, in-context many-shot learning has been recognized as a long-context
reasoning paradigm Agarwal et al. (2024), which considers the number of shots as a critical factor
in the performance of LLM. Although these tasks typically employ automatic evaluation metrics
for standardization, KV cache compression may introduce unique challenges, particularly in tasks
requiring complex reasoning chains or extensive knowledge retrieval.

KV cache sharing Recent work has explored various strategies for sharing KV caches across
transformer layers. The Layer Condensed KV Cache (LCKV) (Wu & Tu, 2024) computes the KV
only for the top layer and pairs them with queries from all layers, while optionally retaining standard
attention for a few top and bottom layers to mitigate performance degradation. Similarly, You Only
Cache Once (YOCO) (Sun et al., 2024) computes KVs exclusively for the top layer but pairs them
with queries from only the top half of layers, employing efficient attention in the bottom layers to
maintain a constant cache size. In contrast, Cross-Layer Attention (CLA) (Brandon et al., 2024)
divides layers into groups, pairing queries from all layers in each group with KVs from that group’s
bottom layer. MiniCache (Liu et al., 2024b) introduces a novel method that merges KV caches in
layering while enabling recovery during compute-in-place operations, optimizing the size of the KV

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

cache. These methods illustrate various trade-offs between computation, memory usage, and model
performance when sharing KV caches across transformer layers.

Prompting Compression Recent advances in prompt compression have yielded innovative ap-
proaches to information density optimization in natural language processing. Research by Wingate
et al. (2022) demonstrates how soft prompting techniques can achieve higher information density
per token. Building upon this foundation, AutoCompressor (Chevalier et al., 2023) leverages soft
prompts to both condense input sequences and expand model context windows. Parallel develop-
ments by Zhou et al. (2023) and Wang et al. (2023) showcase iterative summarization strategies using
LLMs, establishing persistent memory mechanisms particularly beneficial for narrative construction
and conversational systems. The progressive development of the LLMLingua framework (Jiang
et al., 2023b; 2024; Fei et al., 2024) has advanced prompt compression capabilities across extended
context processing, logical reasoning, and retrieval-augmented generation. Notable contributions
from Fei et al. (2024) demonstrate effective context management through automated segmentation
and semantic condensation using pre-trained language models.

General Tasks General tasks refer to evaluating the overall performance of LLMs under math-
ematical inference, logic reasoning, and common knowledge. GSM8K Cobbe et al. (2021) and
MMLU Hendrycks et al. (2020) are representative tasks. The former focuses on the step-by-step
reasoning ability of mathematical problem solving, while the latter covers assessment of common
sense and expertise in multiple areas. Besides, MATH Hendrycks et al. (2021) spans various math-
ematical fields, ranging from elementary algebra to calculus, aiming to improve the mathematical
problem-solving capabilities of LLMs. Meanwhile, MathQA Amini et al. (2019) is a large-scale
dataset comprising approximately 37,000 multiple-choice questions with precise annotations, de-
signed to enhance the interpretability and performance of LLMs. In addition, BBH Suzgun et al.
(2022), a subset of BIG-Bench Srivastava et al. (2022), focuses on challenging tasks. BBH includes
multi-step reasoning problems, highlighting the importance of Chain-of-Thought prompting in LLMs.
Similarly, CSQA Talmor et al. (2019) is a task that combines knowledge graph-based multi-step
reasoning with conversational capabilities. CSQA emphasizes inference and context understanding
grounded in knowledge graphs. Normally, the general tasks apply automatic evaluation metrics
(e.g. multi-choice accuracy) to ensure comparability and standardization. However, optimization
strategies like KV cache compression may introduce challenges in executing the mentioned tasks.
Filtering and dropping of contexts are involved in the compression strategy which may lead to an
intermediate inference steps missing. In addition, in tasks such as MMLU that are highly dependent
on knowledge coverage, compression may weaken the model’s ability to capture long context or rare
domain knowledge Yuan et al. (2024).

Security Tasks Security tasks focus on assessing the robustness and protections of LLMs against
harmful content, including truthfulness Lin et al. (2021), toxicity Hartvigsen et al. (2022), and
bias Liang et al. (2021). Recently, researchers noticed the weakness of LLMs in adversarial
prompts Zhu et al. (2023), especially in generating illegal or inappropriate content under jailbreak
prompts. Shen et al. (2024) analyze the jailbreak prompts in real cases to reveal the failure of model
security mechanism under complex malicious input. Meanwhile, Deng et al. (2023) demonstrates the
multilingual jailbreak makes model security in low-resource languages easier to bypass, significantly
increasing the probability that users of low-resource languages will generate insecure content. Similar
to general tasks, KV optimization techniques can cause the model to ignore potential security threats
when dealing with jailbreak prompts, thereby improving the success rate of adversarial prompts Li
et al. (2024a).

Code Generation Tasks Code generation tasks test the capacities of LLMs to generate code, which
not only requires that the model can generate syntactic code based on natural language description
but also has certain logical reasoning abilities. HumanEval Chen et al. (2021) and MBPP Austin et al.
(2021) are the commonly used benchmarks. They measure the functional correctness of the model by
testing the results of the code’s execution.

Long-context Tasks Recent developments in evaluating long-context models have produced a
comprehensive ecosystem of benchmarks, focusing on both comprehension depth and retrieval
efficiency. In the comprehension domain, ∞-Bench (Zhang et al., 2024a) has established new

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

standards by crafting evaluation scenarios exceeding 100,000 tokens, while LongBench (Bai et al.,
2023; 2025) introduced multilingual assessment frameworks spanning document comprehension,
text synthesis, and programming tasks. Further enriching this landscape, ZeroSCROLLS (Shaham
et al., 2023) and L-Eval (An et al., 2023) have expanded evaluation criteria to encompass real-world
applications, particularly in query-based content summarization. The emergence of many-shot
learning as a distinct paradigm for extended context processing Agarwal et al. (2024) has added
another dimension to this field. Notable contributions from LongGenBench Liu et al. (2024d) have
advanced evaluation methodologies by combining extensive response generation requirements with
efficient, cost-effective quality metrics.

The development of retrieval-focused benchmarks has taken a distinct approach, predominantly
utilizing constructed datasets that enable precise experimental control, particularly in managing input
sequence lengths. This methodology helps neutralize variations in model performance stemming from
differences in training approaches. Substantial research efforts have yielded specialized synthetic
frameworks for assessing retrieval capabilities (Kamradt, 2023; Mohtashami & Jaggi, 2023; Li et al.,
2023; Liu et al., 2024c; Hsieh et al., 2024), while concurrent investigations have revealed the broader
implications of extended context processing for enhanced reasoning capabilities (Tay et al., 2021).

C EXPERIMENT DETAILS

C.1 DETAIL RESULTS

This section provide the detailed results of experiments in this paper, the results are shown in the
format of xy , where x is the performance of the method and y is the ∆P from the Equation (1).

Observation 1. KV cache compression methods show task-dependent performance degrada-
tion, WK and CSR are more robust to KV cache compression.

The detailed results of different KV cache compression methods are shown in Table 8, different
tasks exhibit notably varied sensitivities to KV cache compression, particularly under aggressive
compression ratios. At a 10% compression ratio, MMLU demonstrates remarkable resilience with less
than 1% average performance degradation, while GSM8K experiences a severe average performance
drop exceeding 35%. Other tasks show moderate to significant degradation, ranging from 6.5% to
17.2%. This substantial variation in compression sensitivity across tasks suggests that the effectiveness
of KV cache compression is highly task-dependent, necessitating careful consideration of the specific
task requirements when determining appropriate compression ratios.

The Table 7 compares the performance of R1-Distill-Llama-8B and LLaMA-3.1-8B-Instruct under
different compression ratios. R1-Distill-Llama-8B demonstrates more robust performance under
compression compared to LLaMA-3.1-8B-Instruct. While both models start with similar baseline
performance (0.6938 vs 0.7945), R1-Distill shows significantly less performance degradation under
aggressive compression. Specifically, at 30% compression ratio, R1-Distill maintains a performance
of 0.6407 (-7.66%), while LLaMA-3.1-8B-Instruct drops to 0.7469 (-6.00%). The difference be-
comes more pronounced at 10% compression ratio, where R1-Distill achieves 0.5840 (-15.82%)
compared to LLaMA-3.1-8B-Instruct’s sharp decline to 0.5143 (-35.30%). This suggests that the
multi-step reasoning capabilities of R1-Distill contribute to its resilience against aggressive KV cache
compression, particularly in maintaining reasoning coherence under limited context conditions.

On safety-focused evaluations, we observe that aggressive compression can disproportionately
degrade performance, plausibly because compression may discard or fragment subtle safety-critical
keywords and phrases present in system prompts; this disruption can weaken safety constraints during
generation.

Observation 2. Multi-step reasoning LLMs are more robust to KV cache compression. As
shown in Table 9, while instruct-tuned models achieve superior baseline performance (0.7945 vs
0.5122), they demonstrate heightened sensitivity to KV cache compression. This sensitivity becomes
particularly pronounced at aggressive compression ratios. At 10% compression ratio, instruct-tuned
models suffer an average performance degradation of 35.3% (from 0.7945 to 0.5143), nearly double
the degradation observed in non-instruct-tuned models which show a 17.2% drop (from 0.5122
to 0.4244). In contrast, R1-Distill-Llama-8B shows better resilience to compression, with only a

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Performance Comparison of Different KV Cache Compression Methods on Instruction-
Tuning Model and Multi-Step Reasoning Model

Benchmark Ratio StreamingLLM H2O SnapKV PyramidKV ChunkKV Average ↑

R1-AR

Baseline R1-Distill-Llama-8B FullKV: 0.6938

90% 0.7167(+3.30%) 0.6900(−0.55%) 0.6933(−0.07%) 0.7100(+2.34%) 0.6867(−1.02%) 0.6993(+0.79%)

80% 0.6867(−1.02%) 0.6933(−0.07%) 0.6933(−0.07%) 0.7067(+1.86%) 0.6767(−2.47%) 0.6913(−0.36%)

70% 0.6933(−0.07%) 0.6633(−4.40%) 0.7100(+2.34%) 0.7100(+2.34%) 0.7000(+0.89%) 0.6953(+0.22%)

60% 0.6833(−1.51%) 0.6900(−0.55%) 0.6900(−0.55%) 0.7133(+2.81%) 0.7067(+1.86%) 0.6967(+0.42%)

50% 0.6700(−3.43%) 0.6967(+0.42%) 0.7067(+1.86%) 0.7000(+0.89%) 0.6867(−1.02%) 0.6920(−0.26%)

40% 0.6767(−2.47%) 0.6800(−1.99%) 0.5967(−13.99%) 0.6967(+0.42%) 0.7133(+2.81%) 0.6727(−3.04%)

30% 0.6600(−4.87%) 0.5900(−14.96%) 0.5833(−15.93%) 0.6700(−3.43%) 0.7000(+0.89%) 0.6407(−7.66%)

20% 0.6200(−10.64%) 0.4933(−28.90%) 0.5633(−18.81%) 0.6833(−1.51%) 0.6533(−5.84%) 0.6026(−13.14%)

10% 0.5167(−25.53%) 0.5567(−19.76%) 0.5767(−16.88%) 0.6267(−9.67%) 0.6433(−7.28%) 0.5840(−15.82%)

AR

Baseline LLaMA-3.1-8B-Instruct FullKV: 0.7945

90% 0.7695(−3.10%) 0.7923(−0.30%) 0.7839(−1.30%) 0.7854(−1.10%) 0.7824(−1.50%) 0.7827(−1.50%)

80% 0.7642(−3.80%) 0.7938(−0.10%) 0.7824(−1.50%) 0.7900(−0.60%) 0.7824(−1.50%) 0.7826(−1.50%)

70% 0.7642(−3.80%) 0.7900(−0.60%) 0.7923(−0.30%) 0.7983(+0.50%) 0.7809(−1.70%) 0.7851(−1.20%)

60% 0.7650(−3.70%) 0.7809(−1.70%) 0.7885(−0.80%) 0.7923(−0.30%) 0.7885(−0.80%) 0.7830(−1.50%)

50% 0.7657(−3.60%) 0.7854(−1.10%) 0.7847(−1.20%) 0.7854(−1.10%) 0.7824(−1.50%) 0.7807(−1.70%)

40% 0.7491(−5.70%) 0.7688(−3.20%) 0.7756(−2.40%) 0.7839(−1.30%) 0.7763(−2.30%) 0.7707(−3.00%)

30% 0.7051(−11.20%) 0.7225(−9.10%) 0.7619(−4.10%) 0.7718(−2.90%) 0.7733(−2.70%) 0.7469(−6.00%)

20% 0.6384(−19.70%) 0.6406(−19.40%) 0.6884(−13.40%) 0.7142(−10.10%) 0.7763(−2.30%) 0.6916(−13.00%)

10% 0.4784(−39.80%) 0.4503(−43.30%) 0.5034(−36.60%) 0.4829(−39.20%) 0.6566(−17.40%) 0.5143(−35.30%)

15.82% performance drop (from 0.6938 to 0.5840) at 10% compression ratio. This pattern suggests
that while instruction tuning enhances model capabilities, it also makes the model more dependent
on maintaining complete context information. However, models trained with multi-step reasoning
capabilities like R1-Distill demonstrate better robustness against aggressive compression, likely due to
their enhanced ability to maintain reasoning coherence even with limited context. We hypothesize that
the reinforcement learning objective that explicitly incentivizes multi-step reasoning in DeepSeek-R1
yields more structured and robust internal representations of reasoning chains, making them less
fragile to KV cache compression.

Observation 3. Short prompt length is more sensitive to KV cache compression. As demon-
strated in Table 10, the impact of KV cache compression varies significantly with the number of
shots in the prompt. One-shot prompts show extreme vulnerability to aggressive compression, with
performance plummeting from 0.7149 to 0.0452 (a 93.7% drop) at 10% compression ratio. This sen-
sitivity gradually decreases as the number of shots increases. For instance, at the same compression
ratio, 4-shot prompts show a 46.2% performance drop (from 0.7597 to 0.4088), while 8-shot prompts
demonstrate relatively better resilience with a 35.3% reduction (from 0.7945 to 0.5143). This pattern
suggests that longer prompts with more examples provide redundancy that helps maintain model
performance under compression, while shorter prompts lack this buffer against information loss.

Observation 4. Chunk-level compression is more effective for long-context structured rea-
soning tasks. As shown in Table 11, ChunkKV demonstrates superior robustness across different
compression ratios, particularly under aggressive compression settings. While other methods show
significant performance degradation at 10% compression ratio (StreamingLLM: -9.8%, H2O: -37.8%,
SnapKV: -17.1%, PyramidKV: -14.6%), ChunkKV maintains relatively stable performance with
only a -3.7% drop. This stark contrast in performance suggests that chunk-level compression better
preserves the essential contextual information needed for complex reasoning tasks. The method’s
effectiveness likely stems from its ability to maintain the structural integrity of related context seg-
ments, which is particularly crucial for tasks requiring extended logical reasoning and arithmetic
operations.

C.2 ABLATION: PREFILL-ONLY VS. FULL SHOTKV ON LG-GSM8K.

To assess the contribution of the decoding-phase compression, we ablate it by retaining only prefill
compression. As summarized in Table 12, this prefill-only variant substantially underperforms the
full method across compression ratios, confirming the importance of the prefill–decoding separation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Performance Comparison of Different KV Cache Compression Methods on KVFundaBench

Benchmark Ratio StreamingLLM H2O SnapKV PyramidKV ChunkKV Average ↑

WK

Baseline FullKV: 0.6882

90% 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%)

80% 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%)

70% 0.6881(−0.01%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%)

60% 0.6881(−0.01%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%)

50% 0.6881(−0.01%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%)

40% 0.6879(−0.04%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6881(−0.01%)

30% 0.6876(−0.09%) 0.6880(−0.03%) 0.6880(−0.03%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6880(−0.03%)

20% 0.6859(−0.33%) 0.6878(−0.06%) 0.6880(−0.03%) 0.6882(+0.00%) 0.6882(+0.00%) 0.6876(−0.08%)

10% 0.6787(−1.38%) 0.6852(−0.44%) 0.6831(−0.74%) 0.6882(0.00%) 0.6842(−0.58%) 0.6839(−0.63%)

AR

Baseline FullKV: 0.7945

90% 0.7695(−3.10%) 0.7923(−0.30%) 0.7839(−1.30%) 0.7854(−1.10%) 0.7824(−1.50%) 0.7827(−1.50%)

80% 0.7642(−3.80%) 0.7938(−0.10%) 0.7824(−1.50%) 0.7900(−0.60%) 0.7824(−1.50%) 0.7826(−1.50%)

70% 0.7642(−3.80%) 0.7900(−0.60%) 0.7923(−0.30%) 0.7983(+0.50%) 0.7809(−1.70%) 0.7851(−1.20%)

60% 0.7650(−3.70%) 0.7809(−1.70%) 0.7885(−0.80%) 0.7923(−0.30%) 0.7885(−0.80%) 0.7830(−1.50%)

50% 0.7657(−3.60%) 0.7854(−1.10%) 0.7847(−1.20%) 0.7854(−1.10%) 0.7824(−1.50%) 0.7807(−1.70%)

40% 0.7491(−5.70%) 0.7688(−3.20%) 0.7756(−2.40%) 0.7839(−1.30%) 0.7763(−2.30%) 0.7707(−3.00%)

30% 0.7051(−11.20%) 0.7225(−9.10%) 0.7619(−4.10%) 0.7718(−2.90%) 0.7733(−2.70%) 0.7469(−6.00%)

20% 0.6384(−19.70%) 0.6406(−19.40%) 0.6884(−13.40%) 0.7142(−10.10%) 0.7763(−2.30%) 0.6916(−13.00%)

10% 0.4784(−39.80%) 0.4503(−43.30%) 0.5034(−36.60%) 0.4829(−39.20%) 0.6566(−17.40%) 0.5143(−35.30%)

CSR

Baseline FullKV: 0.7748

90% 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%)

80% 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%)

70% 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%)

60% 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%)

50% 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%)

40% 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%)

30% 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%) 0.7748(+0.00%)

20% 0.7174(−7.40%) 0.7748(+0.00%) 0.7740(−0.10%) 0.7748(+0.00%) 0.7699(−0.60%) 0.7622(−1.60%)

10% 0.6806(−12.20%) 0.7510(−3.10%) 0.7191(−7.20%) 0.7723(−0.30%) 0.7002(−9.60%) 0.7246(−6.50%)

SA

Baseline FullKV: 0.8895

90% 0.8893(−0.00%) 0.8890(−0.10%) 0.8894(−0.00%) 0.8893(−0.00%) 0.8896(+0.00%) 0.8893(−0.00%)

80% 0.8878(−0.20%) 0.8885(−0.10%) 0.8895(+0.00%) 0.8891(−0.00%) 0.8894(−0.00%) 0.8889(−0.10%)

70% 0.8872(−0.30%) 0.8879(−0.20%) 0.8896(+0.00%) 0.8889(−0.10%) 0.8895(+0.00%) 0.8886(−0.10%)

60% 0.8845(−0.60%) 0.8848(−0.50%) 0.8892(−0.00%) 0.8887(−0.10%) 0.8899(+0.00%) 0.8874(−0.20%)

50% 0.8849(−0.50%) 0.8749(−1.60%) 0.8886(−0.10%) 0.8884(−0.10%) 0.8894(−0.00%) 0.8852(−0.50%)

40% 0.8734(−1.80%) 0.8557(−3.80%) 0.8880(−0.20%) 0.8877(−0.20%) 0.8900(+0.10%) 0.8790(−1.20%)

30% 0.8329(−6.40%) 0.8015(−9.90%) 0.8858(−0.40%) 0.8899(+0.00%) 0.8846(−0.60%) 0.8589(−3.50%)

20% 0.6501(−26.90%) 0.7178(−19.30%) 0.8806(−1.00%) 0.8751(−1.60%) 0.8902(+0.10%) 0.8028(−9.70%)

10% 0.5314(−40.30%) 0.6544(−26.40%) 0.8434(−5.20%) 0.8556(−3.80%) 0.8799(−1.10%) 0.7529(−15.40%)

CG

Baseline FullKV: 0.5122

90% 0.5061(−1.20%) 0.5183(+1.20%) 0.5122(+0.00%) 0.5122(+0.00%) 0.5122(+0.00%) 0.5122(+0.00%)

80% 0.5061(−1.20%) 0.5183(+1.20%) 0.5183(+1.20%) 0.5305(+3.60%) 0.5061(−1.20%) 0.5159(+0.70%)

70% 0.5000(−2.40%) 0.5244(+2.40%) 0.5122(+0.00%) 0.5183(+1.20%) 0.5122(+0.00%) 0.5134(+0.20%)

60% 0.5061(−1.20%) 0.5366(+4.80%) 0.5366(+4.80%) 0.5305(+3.60%) 0.5244(+2.40%) 0.5268(+2.90%)

50% 0.4939(−3.60%) 0.5427(+6.00%) 0.5061(−1.20%) 0.4939(−3.60%) 0.4878(−4.80%) 0.5049(−1.40%)

40% 0.4817(−6.00%) 0.5427(+6.00%) 0.5244(+2.40%) 0.4939(−3.60%) 0.5000(−2.40%) 0.5085(−0.70%)

30% 0.4817(−6.00%) 0.5305(+3.60%) 0.5000(−2.40%) 0.4939(−3.60%) 0.4817(−6.00%) 0.4976(−2.90%)

20% 0.4634(−9.50%) 0.5061(−1.20%) 0.4939(−3.60%) 0.4695(−8.30%) 0.4878(−4.80%) 0.4841(−5.50%)

10% 0.3659(−28.60%) 0.4634(−9.50%) 0.4268(−16.70%) 0.4207(−17.90%) 0.4451(−13.10%) 0.4244(−17.20%)

Table 12: LLaMA-3.1-8B-Instruct on LG-GSM8K: ShotKV vs. Prefill-only.

Method 40% 30% 20% 10%
ShotKV 81.07 80.82 80.57 80.37
Prefill-only 79.07 78.82 78.57 77.26

C.3 MORE EXPERIMENTS ON OTHER MODELS

To further validate the generality of our findings, we also evaluate the impact of KV cache compression
on a different model, Mistral-7B-Instruct. As shown in Figure 9, we observe that various KV cache
compression methods lead to significant performance degradation across multiple fundamental
tasks, especially under aggressive compression ratios. This result demonstrates that the reduction in
foundation abilities due to KV cache compression is not limited to a specific model family, but is a
general phenomenon affecting different LLM architectures.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 9: KV Cache Compression Performance Comparison on Arithmetic Reasoning with Different
Instruction TuningSettings

Setting Ratio StreamingLLM H2O SnapKV PyramidKV ChunkKV Average ↑

w/ Instruct Tuning

Baseline FullKV: 0.7945

90% 0.7695(−3.10%) 0.7923(−0.30%) 0.7839(−1.30%) 0.7854(−1.10%) 0.7824(−1.50%) 0.7827(−1.50%)

80% 0.7642(−3.80%) 0.7938(−0.10%) 0.7824(−1.50%) 0.7900(−0.60%) 0.7824(−1.50%) 0.7826(−1.50%)

70% 0.7642(−3.80%) 0.7900(−0.60%) 0.7923(−0.30%) 0.7983(+0.50%) 0.7809(−1.70%) 0.7851(−1.20%)

60% 0.7650(−3.70%) 0.7809(−1.70%) 0.7885(−0.80%) 0.7923(−0.30%) 0.7885(−0.80%) 0.7830(−1.50%)

50% 0.7657(−3.60%) 0.7854(−1.10%) 0.7847(−1.20%) 0.7854(−1.10%) 0.7824(−1.50%) 0.7807(−1.70%)

40% 0.7491(−5.70%) 0.7688(−3.20%) 0.7756(−2.40%) 0.7839(−1.30%) 0.7763(−2.30%) 0.7707(−3.00%)

30% 0.7051(−11.20%) 0.7225(−9.10%) 0.7619(−4.10%) 0.7718(−2.90%) 0.7733(−2.70%) 0.7469(−6.00%)

20% 0.6384(−19.70%) 0.6406(−19.40%) 0.6884(−13.40%) 0.7142(−10.10%) 0.7763(−2.30%) 0.6916(−13.00%)

10% 0.4784(−39.80%) 0.4503(−43.30%) 0.5034(−36.60%) 0.4829(−39.20%) 0.6566(−17.40%) 0.5143(−35.30%)

w/ R1 Distill

Baseline R1-Distill-Llama-8B FullKV: 0.6938

90% 0.7167(+3.30%) 0.6900(−0.55%) 0.6933(−0.07%) 0.7100(+2.34%) 0.6867(−1.02%) 0.6993(+0.79%)

80% 0.6867(−1.02%) 0.6933(−0.07%) 0.6933(−0.07%) 0.7067(+1.86%) 0.6767(−2.47%) 0.6913(−0.36%)

70% 0.6933(−0.07%) 0.6633(−4.40%) 0.7100(+2.34%) 0.7100(+2.34%) 0.7000(+0.89%) 0.6953(+0.22%)

60% 0.6833(−1.51%) 0.6900(−0.55%) 0.6900(−0.55%) 0.7133(+2.81%) 0.7067(+1.86%) 0.6967(+0.42%)

50% 0.6700(−3.43%) 0.6967(+0.42%) 0.7067(+1.86%) 0.7000(+0.89%) 0.6867(−1.02%) 0.6920(−0.26%)

40% 0.6767(−2.47%) 0.6800(−1.99%) 0.5967(−13.99%) 0.6967(+0.42%) 0.7133(+2.81%) 0.6727(−3.04%)

30% 0.6600(−4.87%) 0.5900(−14.96%) 0.5833(−15.93%) 0.6700(−3.43%) 0.7000(+0.89%) 0.6407(−7.66%)

20% 0.6200(−10.64%) 0.4933(−28.90%) 0.5633(−18.81%) 0.6833(−1.51%) 0.6533(−5.84%) 0.6026(−13.14%)

10% 0.5167(−25.53%) 0.5567(−19.76%) 0.5767(−16.88%) 0.6267(−9.67%) 0.6433(−7.28%) 0.5840(−15.82%)

w/o Instruct Tuning

Baseline FullKV: 0.5122

90% 0.5061(−1.20%) 0.5183(+1.20%) 0.5122(+0.00%) 0.5122(+0.00%) 0.5122(+0.00%) 0.5122(+0.00%)

80% 0.5061(−1.20%) 0.5183(+1.20%) 0.5183(+1.20%) 0.5305(+3.60%) 0.5061(−1.20%) 0.5159(+0.70%)

70% 0.5000(−2.40%) 0.5244(+2.40%) 0.5122(+0.00%) 0.5183(+1.20%) 0.5122(+0.00%) 0.5134(+0.20%)

60% 0.5061(−1.20%) 0.5366(+4.80%) 0.5366(+4.80%) 0.5305(+3.60%) 0.5244(+2.40%) 0.5268(+2.90%)

50% 0.4939(−3.60%) 0.5427(+6.00%) 0.5061(−1.20%) 0.4939(−3.60%) 0.4878(−4.80%) 0.5049(−1.40%)

40% 0.4817(−6.00%) 0.5427(+6.00%) 0.5244(+2.40%) 0.4939(−3.60%) 0.5000(−2.40%) 0.5085(−0.70%)

30% 0.4817(−6.00%) 0.5305(+3.60%) 0.5000(−2.40%) 0.4939(−3.60%) 0.4817(−6.00%) 0.4976(−2.90%)

20% 0.4634(−9.50%) 0.5061(−1.20%) 0.4939(−3.60%) 0.4695(−8.30%) 0.4878(−4.80%) 0.4841(−5.50%)

10% 0.3659(−28.60%) 0.4634(−9.50%) 0.4268(−16.70%) 0.4207(−17.90%) 0.4451(−13.10%) 0.4244(−17.20%)

90 50 30 20 10
0.61

0.62

0.62

0.62

0.62

A
cc

ur
ac

y

(a) WK

FullKV
H2O
StreamingLLM
ChunkKV

90 50 30 20 10
0.73

0.73

0.73

0.74

0.74 (b) CSR

90 50 30 20 10
0.20

0.30

0.40

0.50
(c) AR

90 50 30 20 10
Compression Ratio (%)

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

(d) SA

Figure 9: Performance Comparison of KV Cache Compression Methods Across Tasks with Mistral-
7B-Instruct.

D SHOTKV

This section provides the detailed description of ShotKV.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Performance Comparison of Different Shot Numbers on GSM8K

Shot Ratio StreamingLLM H2O SnapKV PyramidKV ChunkKV Average ↑

1-shot

Baseline FullKV: 0.7149

90% 0.7013(−1.90%) 0.7172(+0.30%) 0.7142(−0.10%) 0.7020(−1.80%) 0.7172(+0.30%) 0.7104(−0.60%)

80% 0.6892(−3.60%) 0.7089(−0.80%) 0.7066(−1.20%) 0.6952(−2.80%) 0.7081(−1.00%) 0.7016(−1.90%)

70% 0.6816(−4.70%) 0.6914(−3.30%) 0.6945(−2.90%) 0.6884(−3.70%) 0.7127(−0.30%) 0.6937(−3.00%)

60% 0.6884(−3.70%) 0.6831(−4.40%) 0.6914(−3.30%) 0.6816(−4.70%) 0.6990(−2.20%) 0.6887(−3.70%)

50% 0.6952(−2.80%) 0.6596(−7.70%) 0.6611(−7.50%) 0.6717(−6.00%) 0.6732(−5.80%) 0.6722(−6.00%)

40% 0.6657(−6.90%) 0.6202(−13.20%) 0.6065(−15.20%) 0.6475(−9.40%) 0.6050(−15.40%) 0.6290(−12.00%)

30% 0.5118(−28.40%) 0.5004(−30.00%) 0.5042(−29.50%) 0.5898(−17.50%) 0.4011(−43.90%) 0.5015(−29.90%)

20% 0.2320(−67.50%) 0.2714(−62.00%) 0.2654(−62.90%) 0.3973(−44.40%) 0.1319(−81.60%) 0.2596(−63.70%)

10% 0.0296(−95.90%) 0.0243(−96.60%) 0.0296(−95.90%) 0.1236(−82.70%) 0.0190(−97.30%) 0.0452(−93.70%)

2-shot

Baseline FullKV: 0.7574

90% 0.7544(−0.40%) 0.7604(+0.40%) 0.7574(+0.00%) 0.7612(+0.50%) 0.7627(+0.70%) 0.7592(+0.20%)

80% 0.7551(−0.30%) 0.7521(−0.70%) 0.7559(−0.20%) 0.7559(−0.20%) 0.7589(+0.20%) 0.7556(−0.20%)

70% 0.7521(−0.70%) 0.7453(−1.60%) 0.7566(−0.10%) 0.7574(+0.00%) 0.7642(+0.90%) 0.7551(−0.30%)

60% 0.7475(−1.30%) 0.7506(−0.90%) 0.7521(−0.70%) 0.7589(+0.20%) 0.7695(+1.60%) 0.7557(−0.20%)

50% 0.7460(−1.50%) 0.7437(−1.80%) 0.7437(−1.80%) 0.7604(+0.40%) 0.7619(+0.60%) 0.7511(−0.80%)

40% 0.7445(−1.70%) 0.7081(−6.50%) 0.7202(−4.90%) 0.7309(−3.50%) 0.7650(+1.00%) 0.7337(−3.10%)

30% 0.7506(−0.90%) 0.6133(−19.00%) 0.6657(−12.10%) 0.7036(−7.10%) 0.7445(−1.70%) 0.6955(−8.20%)

20% 0.6217(−17.90%) 0.4412(−41.70%) 0.4936(−34.80%) 0.5534(−26.90%) 0.5368(−29.10%) 0.5293(−30.10%)

10% 0.1516(−80.00%) 0.1759(−76.80%) 0.1622(−78.60%) 0.2244(−70.40%) 0.0735(−90.30%) 0.1575(−79.20%)

4-shot

Baseline FullKV: 0.7597

90% 0.7597(+0.00%) 0.7604(+0.10%) 0.7650(+0.70%) 0.7642(+0.60%) 0.7657(+0.80%) 0.7630(+0.40%)

80% 0.7559(−0.50%) 0.7688(+1.20%) 0.7695(+1.30%) 0.7680(+1.10%) 0.7642(+0.60%) 0.7653(+0.70%)

70% 0.7597(+0.00%) 0.7695(+1.30%) 0.7680(+1.10%) 0.7710(+1.50%) 0.7726(+1.70%) 0.7682(+1.10%)

60% 0.7369(−3.00%) 0.7726(+1.70%) 0.7688(+1.20%) 0.7635(+0.50%) 0.7718(+1.60%) 0.7627(+0.40%)

50% 0.7475(−1.60%) 0.7612(+0.20%) 0.7619(+0.30%) 0.7665(+0.90%) 0.7635(+0.50%) 0.7601(+0.10%)

40% 0.7165(−5.70%) 0.7339(−3.40%) 0.7377(−2.90%) 0.7483(−1.50%) 0.7612(+0.20%) 0.7395(−2.70%)

30% 0.6558(−13.70%) 0.6603(−13.10%) 0.7111(−6.40%) 0.7263(−4.40%) 0.7597(+0.00%) 0.7026(−7.50%)

20% 0.6224(−18.10%) 0.5625(−26.00%) 0.6065(−20.20%) 0.6543(−13.90%) 0.7468(−1.70%) 0.6385(−16.00%)

10% 0.4708(−38.00%) 0.3980(−47.60%) 0.3995(−47.40%) 0.4321(−43.10%) 0.3434(−54.80%) 0.4088(−46.20%)

6-shot

Baseline FullKV: 0.7680

90% 0.7551(−1.70%) 0.7748(+0.90%) 0.7839(+2.10%) 0.7794(+1.50%) 0.7794(+1.50%) 0.7745(+0.90%)

80% 0.7642(−0.50%) 0.7756(+1.00%) 0.7809(+1.70%) 0.7741(+0.80%) 0.7786(+1.40%) 0.7747(+0.90%)

70% 0.7513(−2.20%) 0.7771(+1.20%) 0.7809(+1.70%) 0.7771(+1.20%) 0.7786(+1.40%) 0.7730(+0.70%)

60% 0.7468(−2.80%) 0.7748(+0.90%) 0.7733(+0.70%) 0.7771(+1.20%) 0.7809(+1.70%) 0.7706(+0.30%)

50% 0.7407(−3.60%) 0.7718(+0.50%) 0.7718(+0.50%) 0.7771(+1.20%) 0.7718(+0.50%) 0.7666(−0.20%)

40% 0.7377(−3.90%) 0.7506(−2.30%) 0.7771(+1.20%) 0.7688(+0.10%) 0.7854(+2.30%) 0.7639(−0.50%)

30% 0.7058(−8.10%) 0.7255(−5.50%) 0.7392(−3.70%) 0.7491(−2.50%) 0.7763(+1.10%) 0.7392(−3.70%)

20% 0.5921(−22.90%) 0.6232(−18.80%) 0.6732(−12.30%) 0.6960(−9.40%) 0.7665(−0.20%) 0.6702(−12.70%)

10% 0.4572(−40.50%) 0.4481(−41.60%) 0.4958(−35.40%) 0.4458(−41.90%) 0.5565(−27.50%) 0.4807(−37.40%)

8-shot

Baseline FullKV: 0.7945

90% 0.7695(−3.10%) 0.7923(−0.30%) 0.7839(−1.30%) 0.7854(−1.10%) 0.7824(−1.50%) 0.7827(−1.50%)

80% 0.7642(−3.80%) 0.7938(−0.10%) 0.7824(−1.50%) 0.7900(−0.60%) 0.7824(−1.50%) 0.7826(−1.50%)

70% 0.7642(−3.80%) 0.7900(−0.60%) 0.7923(−0.30%) 0.7983(+0.50%) 0.7809(−1.70%) 0.7851(−1.20%)

60% 0.7650(−3.70%) 0.7809(−1.70%) 0.7885(−0.80%) 0.7923(−0.30%) 0.7885(−0.80%) 0.7830(−1.50%)

50% 0.7657(−3.60%) 0.7854(−1.10%) 0.7847(−1.20%) 0.7854(−1.10%) 0.7824(−1.50%) 0.7807(−1.70%)

40% 0.7491(−5.70%) 0.7688(−3.20%) 0.7756(−2.40%) 0.7839(−1.30%) 0.7763(−2.30%) 0.7707(−3.00%)

30% 0.7051(−11.20%) 0.7225(−9.10%) 0.7619(−4.10%) 0.7718(−2.90%) 0.7733(−2.70%) 0.7469(−6.00%)

20% 0.6384(−19.70%) 0.6406(−19.40%) 0.6884(−13.40%) 0.7142(−10.10%) 0.7763(−2.30%) 0.6916(−13.00%)

10% 0.4784(−39.80%) 0.4503(−43.30%) 0.5034(−36.60%) 0.4829(−39.20%) 0.6566(−17.40%) 0.5143(−35.30%)

D.1 PSEUDOCODE

The detailed algorithm of ShotKV is presented in Algorithm1. Our method consists of two main
phases: prefill compression and decoding compression. During the prefill phase, we compute an
importance score for each shot by averaging the attention weights across all tokens, heads, and layers
within that shot. This score Scoreprefill(si) is normalized by the shot length ki to avoid bias towards
longer shots. Shots are then sorted by their scores and preserved until reaching the specified prefill
ratio rp.

In the decoding phase, compression is performed dynamically at each step. For each token in the
decoding KV cache, we calculate its importance score Scoredecoding(t) by summing attention weights
across all heads and layers. The top-k tokens are retained based on the decoding ratio rd. Finally, the
compressed KV cache is formed by combining both the preserved prefill and decoding caches.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 11: Performance Comparison of Different KV Cache Compression Methods on Many-shot
GSM8K

Benchmark Ratio StreamingLLM H2O SnapKV PyramidKV ChunkKV Average ↑

Many-shot
GSM8K

Baseline LLaMA-3.1-8B-Instruct FullKV: 0.8235

90% 0.7728(−6.16%) 0.8142(−1.13%) 0.8137(−1.19%) 0.7932(−3.68%) 0.8233(−0.02%) 0.8034(−2.44%)

80% 0.7935(−3.64%) 0.8334(+1.20%) 0.8138(−1.18%) 0.8037(−2.40%) 0.7932(−3.68%) 0.8075(−1.94%)

70% 0.8038(−2.39%) 0.8136(−1.20%) 0.7832(−4.89%) 0.7932(−3.68%) 0.8037(−2.40%) 0.7995(−2.91%)

60% 0.7932(−3.68%) 0.8142(−1.13%) 0.8037(−2.40%) 0.7935(−3.64%) 0.8038(−2.39%) 0.8017(−2.65%)

50% 0.7934(−3.65%) 0.8137(−1.19%) 0.7932(−3.68%) 0.7932(−3.68%) 0.7835(−4.86%) 0.7954(−3.41%)

40% 0.8037(−2.40%) 0.7832(−4.89%) 0.7935(−3.64%) 0.7834(−4.87%) 0.7832(−4.89%) 0.7894(−4.14%)

30% 0.7835(−4.86%) 0.7932(−3.68%) 0.8038(−2.39%) 0.7934(−3.65%) 0.7932(−3.68%) 0.7934(−3.65%)

20% 0.7537(−8.47%) 0.7428(−9.80%) 0.7934(−3.65%) 0.7832(−4.89%) 0.7835(−4.86%) 0.7713(−6.34%)

10% 0.7432(−9.75%) 0.5127(−37.74%) 0.6827(−17.10%) 0.7037(−14.55%) 0.7932(−3.68%) 0.6871(−16.56%)

Baseline R1-Distill-Llama-8B FullKV: 0.7123

90% 0.7123(+1.42%) 0.6612(−5.85%) 0.6534(−6.96%) 0.6912(−1.58%) 0.6923(−1.42%) 0.6821(−2.88%)

80% 0.7234(+3.00%) 0.6534(−6.96%) 0.7123(+1.42%) 0.6423(−8.54%) 0.7123(+1.42%) 0.6887(−1.94%)

70% 0.7412(+5.54%) 0.6523(−7.12%) 0.7234(+3.00%) 0.6923(−1.42%) 0.7234(+3.00%) 0.7065(+0.60%)

60% 0.7423(+5.69%) 0.6912(−1.58%) 0.6912(−1.58%) 0.6823(−2.85%) 0.6634(−5.54%) 0.6941(−1.17%)

50% 0.7234(+3.00%) 0.7134(+1.58%) 0.7312(+4.12%) 0.7123(+1.42%) 0.7123(+1.42%) 0.7185(+2.31%)

40% 0.7123(+1.42%) 0.6923(−1.42%) 0.6923(−1.42%) 0.7023(+0.00%) 0.7234(+3.00%) 0.7045(+0.31%)

30% 0.6523(−7.12%) 0.7312(+4.12%) 0.6634(−5.54%) 0.7423(+5.69%) 0.6912(−1.58%) 0.6961(−0.88%)

20% 0.6912(−1.58%) 0.5834(−16.93%) 0.5123(−27.05%) 0.6823(−2.85%) 0.6634(−5.54%) 0.6265(−10.79%)

10% 0.6323(−9.97%) 0.5423(−22.78%) 0.5412(−22.94%) 0.5923(−15.66%) 0.6823(−2.85%) 0.5981(−14.84%)

This two-phase approach allows for different compression strategies during prefill and decoding
stages, recognizing their distinct roles in the inference process. The shot-aware design during prefill
ensures that the most informative examples are preserved, while the token-level compression during
decoding maintains essential recent context.

Algorithm 1 ShotKV: Shot-aware KV Cache Compression

Require: Prompt with n shots {s1, ..., sn}, prefill ratio rp, decoding ratio rd
Ensure: Compressed KV cache KVtotal

1: // Phase 1: Prefill Compression (performed once)
2: for each shot si in {s1, ..., sn} do
3: Compute Scoreprefill(si) =

1
ki

∑
t∈si

∑H
h=1

∑L
l=1 α

l
t,h

4: end for
5: Sort shots by Scoreprefill(si) in descending order
6: Spreserved ← Select shots until

∑
si
ki ≤ rp × |KVprefill|

7: KV C
prefill ← Compress({si|si ∈ Spreserved})

8: // Phase 2: Decoding Compression (performed dynamically)
9: for each decoding step do

10: for each token t in KVdecoding do
11: Compute Scoredecoding(t) =

∑H
h=1

∑L
l=1 α

l
t,h

12: end for
13: k ← rd × |KVdecoding|
14: KV C

decoding ← TopK(KVdecoding, Scoredecoding, k)
15: end for

return KV C
prefill ∪KV C

decoding

E EVALUATION BENCHMARK

E.1 DATASET DETAILS

Detailed statistics for each benchmark dataset are provided in Table 13. For HotpotQA, we only
report results under the 10% compression ratio using the LLaMA-3-8B-Instruct model.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

DATASET TASK TYPE # TEST METRIC EVALUATION METHOD

MMLU Hendrycks et al. (2020) World Knowledge 14,079 Accuracy Generation-Based
GSM8K Cobbe et al. (2021) Arithmetic 1,319 Exact match Generation-Based
CSQA Talmor et al. (2019) Commonsense 1,221 Accuracy Generation-Based
HumanEval Chen et al. (2021) Code Generation 164 Pass@1 rate Generation-Based
JailBreakV Luo et al. (2024) Safety 28,000 Attack success rate Generation-Based
HotpotQA Yang et al. (2018) Document QA (Multi-hop) 7,405 Accuracy Generation-Based
LongGenBench Liu et al. (2024d) Long-Context Generation 23,000 Accuracy Generation-Based

Table 13: The statistics of the datasets used in this paper. # TEST denote the number of training data
and test data, respectively.

F IMPACT STATEMENT

This work advances the field of efficient large language model deployment through systematic
analysis and improvement of KV cache compression techniques. Our research has several potential
societal impacts:

First, by enabling more efficient memory usage in LLMs while maintaining performance, our
work contributes to reducing the computational resources and energy consumption required for AI
deployment. This has positive environmental implications and makes AI technology more accessible
to researchers and organizations with limited computing resources.

Second, our proposed ShotKV method specifically improves performance on long-context arithmetic
reasoning tasks, which could enhance the practical applications of LLMs in education, scientific
computing, and other fields requiring complex mathematical reasoning. This could lead to more
reliable AI-assisted learning and problem-solving tools.

However, we acknowledge that making LLMs more efficient could accelerate their widespread
adoption, potentially raising concerns about AI’s impact on employment and privacy. While our work
focuses on technical improvements, we encourage the research community to carefully consider these
broader implications when deploying such technologies.

We believe the benefits of more efficient and capable AI systems outweigh potential risks, particularly
as our work promotes more sustainable and accessible AI development. Nevertheless, we emphasize
the importance of responsible deployment and continued ethical consideration in the application of
these technologies.

27

	Introduction
	Preliminary
	Benchmark Design
	Benchmark Setups
	Attention Pattern Analysis on KVFundaBench
	Results and Analysis

	ShotKV
	Implementation
	Empirical Results

	Conclusion
	Use of LLMs in Paper Writing
	Related Work
	Experiment Details
	Detail Results
	Ablation: Prefill-only vs. Full ShotKV on LG-GSM8K.
	More experiments on other models

	ShotKV
	Pseudocode

	Evaluation Benchmark
	Dataset Details

	Impact Statement

