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ABSTRACT

Transfer learning is crucial in training deep neural networks on new target tasks.
Current transfer learning methods always assume at least one of (i) source and
target task label spaces overlap, (ii) source datasets are available, and (iii) target
network architectures are consistent with source ones. However, holding these
assumptions is difficult in practical settings because the target task rarely has the
same labels as the source task, the source dataset access is restricted due to stor-
age costs and privacy, and the target architecture is often specialized to each task.
To transfer source knowledge without these assumptions, we propose a transfer
learning method that uses deep generative models and is composed of the follow-
ing two stages: pseudo pre-training (PP) and pseudo semi-supervised learning
(P-SSL). PP trains a target architecture with an artificial dataset synthesized by
using conditional source generative models. P-SSL applies SSL algorithms to la-
beled target data and unlabeled pseudo samples, which are generated by cascading
the source classifier and generative models to condition them with target samples.
Our experimental results indicate that our method can outperform the baselines of
scratch training and knowledge distillation.

1 INTRODUCTION

For training deep neural networks on new tasks, transfer learning is essential, which leverages the
knowledge of related (source) tasks to the new (target) tasks via the joint- or pre-training of source
models. There are many transfer learning methods for deep models under various conditions (Pan
& Yang, 2010; Wang & Deng, 2018). For instance, domain adaptation leverages source knowl-
edge to the target task by minimizing the domain gaps (Ganin et al., 2016), and fine-tuning uses the
pre-trained weights on source tasks as the initial weights of the target models (Yosinski et al., 2014).
These existing powerful transfer learning methods always assume at least one of (i) source and target
label spaces have overlaps, e.g., a target task composed of the same class categories as a source task,
(ii) source datasets are available, and (iii) consistency of neural network architectures i.e., the archi-
tectures in the target task must be the same as that in the source task. However, these assumptions
are seldom satisfied in real-world settings (Chang et al., 2019; Kenthapadi et al., 2019; Tan et al.,
2019). For instance, suppose a case of developing an image classifier on a totally new task for an
embedded device in an automobile company. The developers found an optimal neural architecture
for the target dataset and the device by neural architecture search, but they cannot directly access
the source dataset for the reason of protecting customer information. In such a situation, the exist-
ing transfer learning methods requiring the above assumptions are unavailable, and the developers
cannot obtain the best model.

To promote the practical application of deep models, we argue that we should reconsider the three
assumptions on which the existing transfer learning methods depend. For assumption (i), new target
tasks do not necessarily have the label spaces overlapping with source ones because target labels
are often designed on the basis of their requisites. In the above example, if we train models on
StanfordCars (Krause et al., 2013), which is a fine-grained car dataset, there is no overlap with
ImageNet (Russakovsky et al., 2015) even though ImageNet has 1000 classes. For (ii), the accessi-
bility of source datasets is often limited due to storage costs and privacy (Liang et al., 2020; Kundu
et al., 2020; Wang et al., 2021a), e.g., ImageNet consumes over 100GB and contains person faces
co-occurring with objects that potentially raise privacy concerns (Yang et al., 2022). For (iii), the
consistency of the source and target architectures is broken if the new architecture is specialized for
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Figure 1: Proposed transfer learning methods leveraging conditional source generative model Gs. Red color
represents given source models, light blue represents target models and datasets, and dark blue represents the
output of the proposed methods. (a) We produce initial weights of a target architecture At by training a source
classifier CAt

s with pairs of conditional sample x̂s ∼ Gs(ys) and uniformly sampled source label ys. (b) We
penalize a target classifier CAt

t with unsupervised loss derived from SSL method by applying a pseudo sample
xs←t while supervised training on target dataset Dt. xs←t is sampled from Gs conditioned by pseudo source
label ys←t = CAs

s (xt).

Table 1: Comparison of transfer learning settings

(i) no label overlap (ii) no source dataset access (iii) architecture inconsistency

Domain Adaptation – X –
Fine-tuning X X –
Ours X X X

the new tasks like the above example. Deep models are often specialized for tasks or computational
resources by neural architecture search (Zoph & Le, 2017; Lee et al., 2021) in particular when de-
ploying on edge devices; thus, their architectures can differ for each task and runtime environment.
Since existing transfer learning methods require one of the three assumptions, practitioners must de-
sign target tasks and architectures to fit those assumptions by sacrificing performance. To maximize
the potential performance of deep models, a new transfer learning paradigm is required.

In this paper, we shed light on an important but less studied problem setting of transfer learning,
where (i) source and target task label spaces do not have overlaps, (ii) source datasets are not avail-
able, and (iii) target network architectures are not consistent with source ones (Tab. 1). To transfer
source knowledge while satisfying the above three conditions, our main idea is to leverage source
pre-trained discriminative and generative models; their architectures differ from that of target tasks.
We focus on applying the generated samples from source class-conditional generative models for tar-
get training. Deep conditional generative models precisely replicate complex data distributions such
as ImageNet (Brock et al., 2018; Karras et al., 2020; Dhariwal & Nichol, 2021), and the pre-trained
models are widely used for downstream tasks (Wang et al., 2018; Zhao et al., 2020a; Patashnik et al.,
2021; Ramesh et al., 2022). Furthermore, deep generative models have the potential to resolve the
problem of source dataset access because they can compress information of large datasets into much
smaller pre-trained weights (e.g., about 100MB in the case of a BigGAN generator), and safely
generate informative samples without re-generating training samples by differential privacy training
techniques (Torkzadehmahani et al., 2019; Augenstein et al., 2020; Liew et al., 2022).

By using conditional generative models, we propose a two-stage transfer learning method composed
of pseudo pre-training (PP) and pseudo semi-supervised learning (P-SSL). Figure 1 illustrates an
overview of our method. PP pre-trains the target architectures by using the artificial dataset gen-
erated from the source conditional generated samples and given labels. This simple pre-process
provides effective initial weights without accessing source datasets and architecture consistency. To
address the non-overlap of the label spaces without accessing source datasets, P-SSL trains a target
model with SSL (Chapelle et al., 2006; Van Engelen & Hoos, 2020) by treating pseudo samples
drawn from the conditional generative models as the unlabeled dataset. Since SSL assumes the la-
beled and unlabeled datasets are drawn from the same distribution, the pseudo samples should be
target-related samples, whose distribution is similar enough to the target distribution. To generate
target-related samples, we cascade a classifier and conditional generative model of the source do-
main. Specifically, we (a) obtain pseudo source soft labels from the source classifier by applying
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Figure 2: Pseudo conditional sampling. We obtain a pseudo soft label ys←t by applying a target data xt to
a source classifier CAs

s , and then generate a target-related sample xs←t from a source generative model Gs

conditioned by ys←t. In this example, CAs
s output ys←t from the input car image xt of Hummer class by

interpreting xt as a mixture of source car classes (Jeep, Limousine, MovingVan, etc.), and then Gs generate a
target-related car image from ys←t.

target data, and (b) generate conditional samples given a pseudo source soft label. By using the
target-related samples, P-SSL trains target models with off-the-shelf SSL algorithms.

In the experiments, we first confirm the effectiveness of our method through a motivating example
scenario where the source and target labels do not overlap, the source dataset is unavailable, and
the architectures are specialized by manual neural architecture search (Sec. 4.2). Then, we show
that our method can stably improve the baselines in transfer learning without three assumptions
under various conditions: e.g., multiple target architectures (Sec. 4.3), and multiple target datasets
(Sec. 4.4). These indicate that our method succeeds to make the architecture and task designs free
from the three assumptions. Further, we confirm that our method can achieve practical performance
without the three assumptions: the performance was comparable to the methods that require one of
the three assumptions (Sec. 4.5 and 4.7). We also provide extensive analysis revealing the conditions
for the success of our method. For instance, we found that the target performance highly depends on
the similarity of generated samples to the target data (Sec. 3.2.4 and 4.4), and a general source dataset
(ImageNet) is more suitable than a specific source dataset (CompCars) when the target dataset is
StanfordCars (Sec. 4.6).

2 PROBLEM SETTING

We consider a transfer learning problem where we train a neural network model fAt

θ on a labeled
target dataset Dt = {(xit ∈ Xt, yit ∈ Yt)}Nt

i=1 given a source classifier CAs
s and a source conditional

generative modelGs; CAs
s andGs are off-the-shelf i.e., we do not access source datasets to pre-train

them. fAt

θ is parameterized by θ of a target neural architecture At. CAs
s outputs class probabilities

by softmax function and Gs is pre-trained on a labeled source dataset Ds. We mainly consider
classification problems and denote fAt

θ as the target classifier CAt
t in the below.

In this setting, we assume the following conditions.

(i) no label overlap: Ys ∩ Yt = ∅
(ii) no source dataset access: Ds is not available when training CAt

t

(iii) architecture inconsistency: As 6= At
Existing methods are not available when the three conditions are satisfied simultaneously. Unsu-
pervised domain adaptaion (Ganin et al., 2016) require Ys ∩ Yt 6= ∅, accessing Ds, and As = At.
Source-free domain adaptation methods (Liang et al., 2020; Kundu et al., 2020; Wang et al., 2021a)
can adapt models without accessing Ds, but still depend on Ys ∩ Yt 6= ∅ and As = At. Fine-
tuning (Yosinski et al., 2014) can be applied to the problem with the condition (i) and (ii) if and only
if As = At. However, since recent progress of neural architecture search (Zoph & Le, 2017; Wang
et al., 2021b; Lee et al., 2021) enable to find specialized At for each task, situations of As 6= At
are common when developing models for environments requiring both accuracy and model size e.g.,
embedded devices. As a result, the specialized CAt

t currently sacrifices the accuracy so that the size
requirement can be satisfied. Therefore, tackling this problem setting has the potential to enlarge the
applicability of deep models.
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3 PROPOSED METHOD

In this section, we describe our proposed method. An overview of our method is illustrated in
Figure 1. PP yields initial weights for a target architecture by training it on the source task with
synthesized samples from a conditional source generative model. P-SSL takes into account the
pseudo samples drawn from generative models as an unlabeled dataset in an SSL setting. In P-SSL,
we generate target-related samples by pseudo conditional sampling (PCS, Figure 2), which cascades
a source classifier and a source conditional generative model.

3.1 PSEUDO PRE-TRAINING

Without accessing source datasets and architectures consistency, we cannot directly use the exist-
ing pre-trained weights for fine-tuning CAt

t . To build useful representations under these condi-
tions, we pre-train the weights ofAt with synthesized samples from a conditional source generative
model. Every training iteration of PP is composed of two simple steps: (step 1) synthesizing a
batch of generating source conditional samples {x̂is ∼ Gs(y

i
s)}

B′s
i=1 from uniformly sampled source

labels yis ∈ Ys, and (step 2) optimizing θ on the source classification task with the labeled batch of
{(x̂is, yis)}

B′s
i=1 by minimizing

1

B′s

B′s∑

i=1

CE(CAt
s (x̂is; θ), y

i
s), (1)

where B′s is the batch size for PP and CE is cross-entropy loss. Since PP alternately performs the
sample synthesis and training in an online manner, it efficiently yields pre-trained weights without
consuming massive storage. Further, we found that this online strategy is better in accuracy than the
offline strategy: i.e., synthesizing fixed samples in advance of training (Appendix C.4). We use the
pre-trained weights from PP as the initial weights of CAt

t by replacing the final layer of the source
task to that of the target task.

3.2 PSEUDO SEMI-SUPERVISED LEARNING

3.2.1 SEMI-SUPERVISED LEARNING

Given a labeled dataset Dl = {(xi, yi)}Nl
i=1 and an unlabeled dataset Du = {(xi)}Nu

i=1, SSL is used
to optimize the parameter θ of a deep neural network by solving the following problem.

min
θ

1

Nl

∑

(x,y)∈Dl

Lsup(x, y, θ) + λ
1

Nu

∑

x∈Du

Lunsup(x, θ), (2)

where Lsup is a supervised loss for a labeled sample (xl, yl) (e.g., cross-entropy loss), Lunsup is an
unsupervised loss for an unlabeled sample xu, and λ is a hyperparameter for balancing Lsup and
Lunsup. In SSL, it is generally assumed that Dl and Du shares the same generative distribution
p(x). If there is a large gap between the labeled and unlabeled data distribution, the performance
of SSL algorithms degrades (Oliver et al., 2018). However, Xie et al. (2020) have revealed that
unlabeled samples in another dataset different from a target dataset can improve the performance of
SSL algorithms by carefully selecting target-related samples from source datasets. This implies that
SSL algorithms can achieve high performances as long as the unlabeled samples are related to target
datasets, even when they belong to different datasets. On the basis of this implication, our P-SSL
exploits pseudo samples drawn from source generative models as unlabeled data for SSL.

3.2.2 PSEUDO CONDITIONAL SAMPLING

To generate informative target-related samples, our method uses PCS, which generates target-related
samples by cascading CAs

s and Gs. With PCS, we first obtain a pseudo source label ys←t from a
source classifier CAs

s with a uniformly sampled xt from Dt.
ys←t = CAs

s (xt) (3)
Intuitively, ys←t represents the relation between source class categories and xt in the form of the
probabilities. We then generate target-related samples xs←t with ys←t as the conditional label by

xs←t ∼ Gs(ys←t) = Gs(C
As
s (xt)). (4)
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Algorithm 1 Pseudo conditional sampling

Require: Target dataset Dt, source classifier CAs
s ,

source generator Gs, number of pseudo samples
Ns←t, output label function g

Ensure: Pseudo unlabeled dataset Ds←t

1: Ys←t ← ∅
2: ĈAt

s ← SwapFinalLayer(CAs
s , l)

3: for xt in Dt do
4: ys←t ← ĈAs

s (xt)
5: Add ys←t to Ys←t

6: end for
7: Repeat concatenating Ys←t with itself until the

length reaches to Ns←t

8: Ds←t ← ∅
9: for ys←t in Ys←t do

10: xs←t ∼ Gs(ys←t)
11: Add xs←t to Ds←t

12: end for

Table 2: Distribution gaps of pseudo samples on multi-
ple target datasets

Distribution Gap (FID)

(Ds,Dt) (F (Ds),Dt) (Ds←t,Dt)
Caltech-256-60 31.27 87.18 19.69
CUB-200-2011 131.85 65.34 19.15
DTD 100.51 82.63 87.57
FGVC-Aircraft 189.16 47.29 23.68
Indoor67 96.68 44.09 34.27
OxfordFlower102 190.33 137.64 118.39
OxfordPets 95.16 20.59 16.94
StanfordCars 147.27 54.76 19.92
StanfordDogs 80.94 6.09 7.34

Although Gs is trained with discrete (one-hot) class labels, it can generate class-wise interpolated
samples by the continuously mixed labels of multiple class categories (Miyato & Koyama, 2018;
Brock et al., 2019). By leveraging this characteristic, we aim to generate target-related samples by
ys←t constructed with an interpolation of source classes.

For the training of the target task, we compose a pseudo dataset Ds←t by applying Algorithm 1. In
line 2, we swap the final layer of CAs

s with an output label function g, which is softmax function as
the default. Sec. C.5.3, we empirically evaluate the effects of the choice of g.

3.2.3 TRAINING

By applying PCS, we obtain a target-related sample xs←t from xt. In the training of CAt
t , one can

assign the label yt of xt to xs←t since xs←t is generated from xt. However, it is difficult to directly
use (xs←t, yt) in supervised learning because xs←t can harm the performance of CAt

t due to the
gap between label spaces; we empirically confirm that this naı̈ve approach fails to boost the target
performance mentioned in Sec. C.5.1. To extract informative knowledge from xs←t, we apply SSL
algorithms that train a target classifier CAt

t by using a labeled target dataset Dt and an unlabeled
dataset Ds←t generated by PCS. On the basis of the implication discussed in Sec. 3.2.1, we can
expect that the training by SSL improve CAt

t if Ds←t contains target-related samples. We compute
the unsupervised loss function for a pseudo sample xs←t as Lunsup(xs←t, θ). We can adopt arbitrary
SSL algorithms for calculating Lunsup. For instance, UDA (Xie et al., 2020) is defined by

Lunsup(x, θ) = 1

(
max

y′∈ĈAt
t (x,τ);θ

y′>β

)
CE
(
ĈAt
t (x, τ ; θ),CAt

t (T (x); θ)
)
, (5)

where 1 is an indicator function, CE is a cross entropy function, ĈAt
t (x, τ) is the target classifier

replacing the final layer with the temperature softmax function with a temperature hyperparameter
τ , β is a confidence threshold, and T (·) is an input transformation function such as RandAug-
ment (Cubuk et al., 2020). In the experiments, we used UDA because it achieves the best result; we
compare and discuss applying the other SSL algorithms in Sec. C.5.1. Eventually, we optimize the
parameter θ by the following objective function based on Eq (2).

min
θ

1

Nt

∑

xt,yt∈Dt

Lsup(xt, yt, θ) + λ
1

Ns←t

∑

xs←t∈Ds←t

Lunsup(xs←t, θ). (6)

3.2.4 QUALITY OF PSEUDO SAMPLES

In this method, since we treat xs←t ∼ Gs(C
As
s (xt)) as the unlabeled sample of the target task, the

following assumption is required:

Assumption 3.1 pDt(x) ≈ pDs←t(x) =
1
Nt

∑
xt
pGs(C

As
s (xt))

(x),

where pD(x) is a data distribution of a datasetD. That is, if pseudo samples satisfy Assumption 3.1,
P-SSL should boost the target task performance by P-SSL.
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Table 3: List of target datasets

Dataset Task Classes Size (Train/Test)

Caltech-256-60 General Object Recognition 256 15,360/15,189
CUB-200-2011 Finegrained Object Recognition 200 5,994/5,794
DTD Texture Recognition 47 3,760/1,880
FGVC-Aircraft Finegrained Object Recognition 100 6,667/3,333
Indoor67 Scene Recognition 67 5,360/1,340
OxfordFlower Finegrained Object Recognition 102 2,040/6,149
OxfordPets Finegrained Object Recognition 37 3,680/3,369
StanfordCars Finegrained Object Recognition 196 8,144/8,041

Table 4: Evaluations on Motivating Example

Architecture Top-1 Acc. (%)

Scratch RN18 (4, 4, 4, 4) 73.27±0.43

Fine-tuning RN18 (4, 4, 4, 4) 87.75±0.35

Scratch Custom RN18 (2, 10, 2, 2) 77.01±0.57

Logit Matching Custom RN18 (2, 10, 2, 2) 85.81±0.37

Soft Target Custom RN18 (2, 10, 2, 2) 82.67±0.30

Ours Custom RN18 (2, 10, 2, 2) 89.13±0.23

To confirm that pseudo samples can satisfy Assumption 3.1, we assess the difference between the
target distribution and pseudo distribution. Since it is difficult to directly compute the likelihood of
the pseudo samples, we leverage Fréchet Inception Distance (FID, Heusel et al. (2017)), which mea-
sures a distribution gap between two datasets by 2-Wasserstein distance in the closed-form (lower
FID means higher similarity). We evaluate the quality of Ds←t by comparing FID(Ds←t,Dt) to
FID(Ds,Dt) and FID(F (Ds),Dt), where F (Ds) is a subset of Ds constructed by confidence-based
filtering similar to a previous study (Xie et al., 2020) (see Appendix B.4 for more detailed protocol).
That is, if Ds←t achieves lower FID than Ds or D′s, then Ds←t can approximate Dt well.

Table 2 shows the FID scores when Ds is ImageNet. The experimental settings are shared with
Sec. 4.4. Except for DTD and StanfordDogs, Ds←t outperformed Ds and F (Ds) in terms of the
similarity to Dt. This indicates that PCS can produce more target-related samples than the natu-
ral source dataset. On the other hand, in the case of DTD (texture classes), Ds←t relatively has
low similarity to Dt. This implies that PCS does not approximate pDt(x) well when the source
and target datasets are not so relevant. Note that StanfordDogs is a subset of ImageNet, and thus
FID(F (Ds),Dt) was much smaller than other datasets. Nevertheless, the FID(Ds←t,Dt) is com-
parable to FID(F (Ds),Dt). From this result, we can say that our method approximates the target
distribution almost as well as the actual target samples. We further discuss the relationships between
the pseudo sample quality and target performance in Sec. 4.4.

4 EXPERIMENTS

We evaluate our method with multiple target architectures and datasets, and compare it with base-
lines including scratch training and knowledge distillation that can be applied to our problem setting
with a simple modification. We further conduct detailed analyses of our pseudo pre-training (PP)
and pseudo semi-supervised learning (P-SSL) in terms of (a) the practicality of our method by com-
paring to the transfer learning methods that require the assumptions of source dataset access and
architecture consistency, (b) the effect of source dataset choices, (c) the applicability toward another
target task (object detection) other than classification. We further provide more detailed experiments
including the effect of varying target dataset size (Appendix C.2), the performance difference when
varying source generative model (Appendix C.3), the detailed analysis of PP (Appendix C.4) and P-
SSL (Appendix C.5), and the qualitative evaluations of pseudo samples (Appendix D). We provide
the detailed settings for training in Appendix B.3.

4.1 SETTING

Baselines Basically, there are no existing transfer learning methods that are available on the prob-
lem setting defined in Sec. 2. Thus, we evaluated our method by comparing it with the scratch
training (Scratch), which trains a model with only a target dataset, and naı̈ve applications of knowl-
edge distillation methods: Logit Matching (Ba & Caruana, 2014) and Soft Target (Hinton et al.,
2015). Logit Matching and Soft Target can be used for transfer learning under architecture inconsis-
tency since their loss functions use only final logit outputs of models regardless of the intermediate
layers. To transfer knowledge in CAs

s to CAt
t , we first yield CAs

t by fine-tuning the parameters of
CAs
s on the target task, and then train CAt

t with knowledge distillation penalties by treating CAs
t as

the teacher model. We provide more details in Appendix B.2.

Datasets We used ImageNet (Russakovsky et al., 2015) as the default source datasets. In Sec. 4.6,
we report the case of applying CompCars (Yang et al., 2015) as the source dataset. For the target
dataset, we mainly used StanfordCars (Krause et al., 2013), which is for fine-grained classification
of car types, as the target dataset. In Sec. 4.4, we used the nine classification datasets listed in
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Table 5: Performance comparison of multiple target architectures on StanfordCars (Top-1 Acc.(%))

ResNet-50 WRN-50-2 MNASNet1.0 MobileNetV3-L EfficientNet-B0 EfficientNet-B5

Scratch 71.86±0.80 76.21±1.40 79.22±0.66 80.98±0.27 80.80±0.56 81.73±3.50

Logit Matching 84.36±0.47 86.28±1.13 85.08±0.08 85.11±0.10 86.37±0.69 88.42±0.60

Soft Target 79.95±1.62 82.34±1.15 83.55±1.21 84.64±0.21 85.16±0.69 85.30±1.37

Ours 90.69±0.11 91.76±0.41 87.39±0.19 88.40±0.67 89.28±0.41 90.04±0.34

Table 6: Performance comparison of WRN-50-2 classifiers on multiple target datasets (Top-1 Acc. (%))

Caltech-256-60 CUB-200-2011 DTD FGVC-Aircraft Indoor67 OxfordFlower OxfordPets StanfordDogs

Scratch 48.07±1.30 52.61±1.36 45.11±2.37 74.04±0.59 50.77±1.07 67.91±0.94 63.03±1.59 57.16±3.11

Logit Matching 55.28±2.63 62.52±2.13 49.29±0.69 78.91±1.93 57.61±0.74 75.23±1.11 70.56±3.96 64.46±1.88

Soft Target 54.84±1.33 60.53±1.65 48.39±1.06 77.08±3.30 54.08±1.22 69.90±0.38 65.62±0.97 63.64±3.00

Ours w/o PP 51.62±0.79 56.61±1.31 45.50±0.17 77.13±0.46 51.23±1.01 68.11±1.21 68.70±1.21 61.26±0.85

Ours w/o P-SSL 70.88±0.21 71.78±0.28 61.28±0.66 86.08±0.14 66.79±0.22 94.02±0.27 86.31±0.10 73.30±0.10

Ours 71.35±0.32 74.93±0.16 57.48±1.28 87.98±0.91 67.72±0.11 90.31±0.17 89.97±0.41 75.25±0.13

Table 3 as the target datasets. We used these datasets with the intent to include various granularities
and domains. We constructed Caltech-256-60 by randomly sampling 60 images per class from the
original dataset in accordance with the procedure of Cui et al. (2018). Note that StanfordDogs is
a subset of ImageNet, and thus has the overlap of the label space to ImageNet, but we added this
dataset to confirm the performance when the overlapping exists.

Network Architecture As a source architecture As, we used the ResNet-50 architecture (He
et al., 2016) with the pre-trained weight distributed by torchvision official repository.1 For a
target architecture At, we used five architectures publicly available on torchvision: WRN-50-
2 (Zagoruyko & Komodakis, 2016), MNASNet1.0 (Tan et al., 2019), MobileNetV3-L (Howard et al.,
2019), and EfficientNet-B0/B5 (Tan & Le, 2019). Note that, to ensure reproducibility, we assume
them as entirely new architectures for the target task in our problem setting, while they are actu-
ally existing architectures. For a source conditional generative model Gs, we used BigGAN (Brock
et al., 2018) generating 256 × 256 resolution images as the default architecture. We also tested the
other generative models such as ADM-G (Dhariwal & Nichol, 2021) in Sec. C.3. We implemented
BigGAN on the basis of open source repositories including pytorch-pretrained-BigGAN2;
we used the pre-trained weights distributed by the repositories.

4.2 MOTIVATING EXAMPLE: MANUAL ARCHITECTURE SEARCH

First of all, we confirm the effectiveness of our setting and method through a practical scenario
described in Sec. 1. Here, we consider a case of manually optimizing the number of layers of
ResNet-18 (RN18) for the target task to improve the performance while keeping the model size.

We evaluated our method on the above scenario by assuming StanfordCars as the target dataset and
ImageNet as the source dataset. We searched the custom architecture by grid search of the layers
in four blocks of RN18 from (2, 2, 2, 2) to (2, 2, 2, 10) by varying layers in {2, 4, 6, 8, 10} for each
block of ResNet while keeping the sum of layers less than or equal to 18 to maintain architecture
size. We found that the best architecture is one with (2, 10, 2, 2). The test accuracies on StanfordCars
are shown in Table 4. We can see that finding an optimal custom RN18 architecture for the target
task brings test accuracy improvements, and our method contributes to further improvements under
this difficult situation. This result indicates that our method can widen the applicability of neural
architecture search techniques, which have been difficult in practice in terms of accuracy.

4.3 TARGET ARCHITECTURES

We discuss the performance evaluations by varying the neural network architectures of the target
classifiers to evaluate our method on the condition of architecture inconsistency. Table 5 lists the
results on StanfordCars with multiple target architectures. Note that we evaluated our method by
fixing the source architecture to ResNet-50. Our method outperformed the baselines on all target
architectures without architecture consistency. Remarkably, our method stably performs arbitrary

1https://github.com/pytorch/vision
2https://github.com/huggingface/pytorch-pretrained-BigGAN
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Table 7: Comparison to fine-tuning (FT) and
semi-supervised learning (SSL) on StanfordCars

Top-1 Acc. (%)

Generative Model PP P-SSL

BigGAN (Brock et al., 2019) 90.95±0.21 80.01±0.14

Real Dataset FT R-SSL

All ImageNet 88.24±0.17 73.01±3.10

Filtered ImageNet 74.08±2.77 77.21±0.29

Table 8: Comparison of source datasets on Stan-
fordCars

Source Dataset

ImageNet CompCars

PP 90.95±0.21 87.57±0.32

P-SSL 80.01±0.14 79.97±0.13

PP + P-SSL 91.76±0.41 87.80±0.33

relationships between target and source architectures including from a smaller architecture (ResNet-
50) to larger ones (WRN-50-2 and EfficientNet-B5), and from a larger one (ResNet-50) to smaller
ones (MNASNet1.0, MobileNetV3, and EfficientNet-B0). This flexibility can lead to the effective-
ness of the neural architecture search in Sec. 4.2.

4.4 TARGET DATASETS
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Figure 3: Correlation between FID and
accuracy gain

We show the efficacy of our method on multiple target datasets
other than StanfordCars. We used WRN-50-2 as the architec-
ture of the target classifiers. Table 6 lists the top-1 accuracy
of each classification task. Our method stably improved the
baselines across datasets. We also print the ablation results of
our method (Ours w/o PP and Ours w/o P-UDA) for assessing
the dependencies of PP and P-SSL on datasets. PP outper-
formed the baselines on all target datasets. This suggests that
building basic representation by pre-training is effective for
various target tasks even if the source dataset is drawn from
generative models. For P-SSL, we observed that it boosted
the scratch models in all target datasets except for DTD and
OxfordFlower. As the reasons for the degradation on DTD
and OxfordFlower, we consider that the pseudo samples do
not satisfy Assumption 3.1 as discussed in Sec. 3.2.4. In fact,
we observe that FID(Ds←t,Dt) is correlated to the accuracy gain from Scratch models (−0.80 of
correlation coefficient,−0.97 of Spearman rank correlation) as shown in Fig. 3. These experimental
results suggest that our method is effective on the setting without no label overlap as long as Ds←t
approximates Dt well.

4.5 COMPARISON TO METHODS REQUIRING PARTIAL CONDITIONS

To confirm the practicality of our method, we compared it with methods requiring As = At and
accessing Ds. We tested Fine-tuning (FT) and R-SSL, which use a source pre-trained model and
a real source dataset for SSL as reference. For FT and R-SSL, we used ImageNet and a subset
of ImageNet (Filtered ImageNet), which was collected by confidence-based filtering similar to Xie
et al. (2020) (see Appendix B.4). This manual filtering process corresponds to PCS in P-SSL. In
Table 7, PP and P-SSL outperformed FT and R-SSL, respectively. This suggests that the samples
from Gs not only preserve essential information ofDs but are also more useful thanDs, i.e., access-
ing Ds may not be necessary for transfer learning. In summary, PP and P-SSL are practical enough
compared to existing methods that require assumptions.

4.6 SOURCE DATASETS

We investigate the preferable characteristics of source datasets for PP and P-SSL by testing another
source dataset, which was CompCars (Yang et al., 2015), a fine-grained vehicle dataset containing
136K images (see Appendix B.5 for details). This is more similar to the target dataset (StanfordCars)
than ImageNet. All training settings were the same as mentioned in Sec. 4.1. Table 8 lists the scores
for each model of our methods. The models using ImageNet were superior to those using CompCars.
To seek the difference, we measured FID(Ds←t,Dt) when using CompCars as with the protocol in
Sec. 4.5, and the score was 22.12, which is inferior to 19.92 when using ImageNet. This suggests
that the fidelity of pseudo samples toward target samples is important to boost the target performance
and is not simply determined by the similarity between the source and target datasets. We consider
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that the diversity of source classes provides the usefulness of pseudo samples; thus ImageNet is
superior to CompCars as the source dataset.

4.7 APPLICATION TO OBJECT DETECTION TASK

Table 9: Results on PASCAL-VOC 2007

trainval07+12 trainval07
AP AP50 AP75 AP AP50 AP75

FT (ImageNet) 52.5 80.3 56.2 42.2 74.0 43.7

PP 52.6 80.1 57.4 41.2 70.6 43.4
PP+P-SSL (UT) 57.3 83.1 63.5 52.2 80.3 56.8

Although we have mainly discussed the cases
where the target task is classification through
the paper, our method can be applied to any
task for which the SSL method exists. Here, we
evaluate the applicability of PP+P-SSL toward
another target task other than classification. To
this end, we applied our method to object detec-
tion task on PASCAL-VOC 2007 (Everingham
et al., 2015) by using FPN (Lin et al., 2017) models with ResNet-50 backbone. As the SSL method,
we used Unbiased Teacher (UT, (Liu et al., 2021)), which is a method for object detection based on
self distillation and pseudo labeling, and implemented PP+P-SSL on the code base provided by Liu
et al. (2021). We generated samples for PP and P-SSL in the same way as the classification ex-
periments; we used ImageNet as the source dataset. Table 9 shows the results of average precision
scores calculated by following detectron2 (Wu et al., 2019). Note that the baseline of Table 9 is FT
instead of Scratch because the Scratch setting of the object detection task is hard to train and too
slow to converge. We confirm that PP achieved competitive results to FT and P-SSL significantly
boosted the PP model. This can be caused by the high similarity between Ds←t and Dt (19.0 in
FID). This result indicates that our method has the flexibility to be applied to other tasks as well as
classification and is expected to improve baselines.

5 RELATED WORK

We briefly discuss related works by focusing on training techniques applying generative models. We
also provide discussions on existing transfer learning and semi-supervised learning in Appendix A.

Similar to our study, several studies have applied the expressive power of conditional generative
models to boost the performance of discriminative models; Zhu et al. (2018) and Yamaguchi et al.
(2020) have exploited the generated images from conditional GANs for data augmentation in clas-
sification, and Sankaranarayanan et al. (2018) have introduced conditional GANs into the system of
domain adaptation for learning joint-feature spaces of source and target domains. Moreover, Li et al.
(2020b) have implemented an unsupervised domain adaptation technique with conditional GANs in
a setting of no accessing source datasets. These studies require label overlapping between source
and target tasks or training of generative models on target datasets, which causes problems of over-
fitting and mode collapse when the target datasets are small (Zhang et al., 2020; Zhao et al., 2020b;
Karras et al., 2020). Our method, however, requires no additional training in generative models
because it simply extracts samples from fixed pre-trained conditional generative models.

6 CONCLUSION AND LIMITATION

We explored a new transfer learning setting where (i) source and target task label spaces do not
have overlaps, (ii) source datasets are not available, and (iii) target network architectures are not
consistent with source ones. In this setting, we cannot use existing transfer learning such as do-
main adaptation and fine-tuning. To transfer knowledge, we proposed a simple method leveraging
pre-trained conditional source generative models, which is composed of PP and P-SSL. PP yields
effective initial weights of a target architecture by generated samples and P-SSL applies an SSL
algorithm by taking into account the pseudo samples from the generative models as the unlabeled
dataset for the target task. Our experiments showed that our method can practically transfer knowl-
edge from the source task to the target tasks without the assumptions of existing transfer learning
settings. One of the limitations of our method is the difficulty to improve target models when the
gap between source and target is too large. A future step is to modify the pseudo sampling process
by optimizing generative models toward the target dataset, which was avoided in this work to keep
the simplicity and stability of the method.
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APPENDIX

The following manuscript provides the supplementary materials of the main paper: Transfer Learn-
ing with Pre-trained Conditional Generative Models. We describe (A) additional related works of
domain adaptation and fine-tuning, (B) details of experimental settings used in the main paper, (C)
additional experiments including comparison of our method and fine-tuning, and detailed analysis
of PP and P-SSL, and (D) qualitative evaluations of pseudo samples by PCS.

A EXTENDED RELATED WORK

A.1 DOMAIN ADAPTATION

Domain adaptation leverages source knowledge to the target task by minimizing domain gaps be-
tween source and target domains through joint-training (Ganin et al., 2016). It is generally assumed
that the source and target task label spaces overlap (Pan & Yang, 2010; Wang & Deng, 2018) and
labeled source datasets are available when training target models. Several studies have attempted to
solve the transfer learning problems called source-free adaptation (Chidlovskii et al., 2016; Liang
et al., 2020; Kundu et al., 2020; Wang et al., 2021a), where the model must adapt to the target domain
without target labels and the source dataset. However, they still require architecture consistency and
overlaps between the source and target tasks, i.e., it is not applicable to our problem setting.

A.2 FINETUNING

Our method is categorized as an inductive transfer learning approach (Pan & Yang, 2010), where
thelabeled target datasets are available and the source and target task label spaces do not overlap.
In deep learning, fine-tuning (Yosinski et al., 2014; Agrawal et al., 2014; Girshick et al., 2014),
which leverages source pre-trained weights as initial parameters of the target modesl, is one of the
most common approaches of inductive transfer learning because of its simplicity. Previous studies
have attempted to improve fine-tuning by adding a penalty of the gaps between source and target
models such as adding L2 penalty term (Li et al., 2018) or penalty using channel-wise importance
of feature maps (Li et al., 2019). You et al. (2020) have introduced category relationships between
source and target tasks into target-task training and penalized the target models to predict pseudo
source labels that are the outputs of the source models by applying target data. Shu et al. (2021) have
presented an approach leveraging multiple source models pre-trained on different datasets and tasks
by mixing the outputs via adaptive aggregation modules. Although these methods outperform the
naı̈ve fine-tuning baselines, they require architecture consistency between source and target tasks.
In contrast to the fine-tuning methods, our method can be used without architecture consistency and
source dataset access since it transfers source knowledge via pseudo samples drawn from source
pre-trained generative models.

A.3 SEMI-SUPERVISED LEARNING

SSL is a paradigm that trains a supervised model with labeled and unlabeled samples by minimizing
supervised and unsupervised loss simultaneously. Historically, various SSL algorithms have been
used or proposed for deep learning such as entropy minimization (Grandvalet & Bengio, 2005),
pseudo-label (Lee et al., 2013), virtual adversarial training (Miyato et al., 2017), and consistency
regularization (Bachman et al., 2014; Sajjadi et al., 2016; Laine & Aila, 2016). UDA (Xie et al.,
2020) and FixMatch (Sohn et al., 2020), which combine ideas of pseudo-label and consistency
regularization, have achieved remarkable performance. An assumption with these SSL algorithms
is that the unlabeled data are sampled from the same distribution as the labeled data. If there is a
large gap between the labeled and unlabeled data distribution, the performance of SSL algorithms
degrades (Oliver et al., 2018). However, Xie et al. (2020) have revealed that unlabeled samples in
another dataset different from a target dataset can improve the performance of SSL algorithms by
carefully selecting target-related samples from source datasets. This indicates that SSL algorithms
can achieve high performances as long as the unlabeled samples are related to target datasets, even
when they belong to different datasets. On the basis of this implication, our P-SSL exploits pseudo
samples drawn from source generative models as unlabeled data for SSL. We tested SSL algorithms

15



Under review as a conference paper at ICLR 2023

for P-SSL and compared the resulting P-SSL models with SSL models using the filtered real source
dataset constructed by the protocol of Xie et al. (2020) in Appendix C.5.1 and Sec. 4.5.

B DETAILS OF EXPERIMENTS

B.1 DATASET DETAILS

ImageNet (Russakovsky et al., 2015): We downloaded ImageNet from the official site https:
//www.image-net.org/. ImageNet is released under license that allows it to be used for
non-commercial research/educational purposes (see https://image-net.org/download.
php).

Caltech-256 (Griffin et al., 2007): We downloaded Caltech-256 from the official site https://
data.caltech.edu/records/20087. Caltech-256 is released under CC-BY license.

CUB-200-2011 (Welinder et al., 2010): We downloaded CUB-200-2011 from the official site
http://www.vision.caltech.edu/datasets/cub_200_2011/. CUB-200-2011 is
released under license that allows it to be used for non-commercial purposes (see https://
authors.library.caltech.edu/27452/).

DTD (Cimpoi et al., 2014): We downloaded DTD from the official site https://www.robots.
ox.ac.uk/˜vgg/data/dtd/. DTD is released under license that allows it to be used for
non-commercial research purposes (see https://www.robots.ox.ac.uk/˜vgg/data/
dtd/).

FGVC-Aircraft (Maji et al., 2013): We downloaded FGVC-Aircraft from the official sitehttps:
//www.robots.ox.ac.uk/˜vgg/data/fgvc-aircraft/. FGVC-Aircraft is released
under license that allows it to be used for non-commercial research purposes (see https://www.
robots.ox.ac.uk/˜vgg/data/fgvc-aircraft/).

Indoor67 (Quattoni & Torralba, 2009): We downloaded Indoor67 from the official sitehttps:
//web.mit.edu/torralba/www/indoor.html. Indoor67 is released under license that
allows it to be used for non-commercial research purposes (see https://web.mit.edu/
torralba/www/indoor.html).

OxfordFlower (Nilsback & Zisserman, 2008): We downloaded OxfordFlower from the offi-
cial sitehttps://www.robots.ox.ac.uk/˜vgg/data/flowers/102/. OxfordFlower
is released under unknown license.

OxfordPets (Parkhi et al., 2012): We downloaded OxfordPets from the official sitehttps://
www.robots.ox.ac.uk/˜vgg/data/pets/. OxfordPets is released under Creative Com-
mons Attribution-ShareAlike 4.0 International License.

StanfordCars (Krause et al., 2013): We downloaded StanfordCars from the official sitehttps:
//ai.stanford.edu/˜jkrause/cars/car_dataset.html. StanfordCars is released
under license that allows it to be used for non-commercial research purposes (see https://ai.
stanford.edu/˜jkrause/cars/car_dataset.html).

StanfordDogs (Khosla et al., 2011): We downloaded StanfordDogs from the official sitehttp:
//vision.stanford.edu/aditya86/ImageNetDogs/. StanfordDogs is released under
license that allows it to be used for non-commercial research/educational purposes (see https:
//image-net.org/download.php).

CompCars (Yang et al., 2015): We downloaded CompCars from the official sitehttp://mmlab.
ie.cuhk.edu.hk/datasets/comp_cars/. CompCars is released under license that allows
it to be used for non-commercial research purposes (see http://mmlab.ie.cuhk.edu.hk/
datasets/comp_cars/).

PASCAL-VOC (Everingham et al., 2015): We downloaded PASCAL-VOC from the official
sitehttp://host.robots.ox.ac.uk/pascal/VOC/. PASCAL-VOC is released under li-
cense of flickr (see https://www.flickr.com/help/terms).
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B.2 KNOWLEDGE DISTILLATION BASELINES

As stated in the main paper, we evaluated our method by comparing it with naı̈ve knowledge distil-
lation methods Logit Matching (Ba & Caruana, 2014) and Soft Target (Hinton et al., 2015). We
exploited Logit Matching and Soft Target for transfer learning under the architecture inconsistency
since their loss functions use only final logit outputs of models regardless of the intermediate layers.
To tranfer knowledge in CAs

s to CAt
t , we first fine-tune the parameters of CAs

s on the target task
then train Ct with knowledge distillation penalties by treating the trained CAs

s as the teacher model.
We optimized the knowledge distillation models by the following objective function:

min
θ

∑

xt,yt∈Dt

Lsup(xt, yt, θ) + λdLKD(lθ(xt), lφ(xt)), (7)

where λd is a hyperparameter, LKD is a loss function of a knowledge distillation method, φ is the
parameter of a teacher model, and lθ(·) and lφ(·) are the output of the logit function on θ and φ.
In Logit Matching, LKD is a simple mean squared loss between lθ and lφ. Soft Target computes a
Kullback-Leibler divergence between the softmax output of lθ and the temperature softmax output
of lφ as LKD. We set the temperature parameter T to 4 by searching in {2, 4, 6}.

B.3 TRAINING SETTINGS

We selected the training configurations on the basis of the previous works (Li et al., 2020a; Xie
et al., 2020). In PP, we trained a source classifier by Neterov momentum SGD for 1M iterations
with a mini-batch size of 128, weight decay of 0.0001, momentum of 0.9, and initial learning rate of
0.1; we decayed the learning rate by 0.1 at 30, 60, 90 epochs. We trained a target classifier CAt

t by
Neterov momentum SGD for 300 epochs with a mini-batch size of 16, weight decay of 0.0001, and
momentum of 0.9. We set the initial learning rate to 0.05 for the scratch models and 0.005 for the
models with PP. We dropped the learning rate by 0.1 at 150 and 250 epochs. For each target dataset,
we split the training set into 9 : 1, and used the former in the training and the later in validating.
The input samples were resized into 224×224 resolution. For the SSL algorithms, we set the mini-
batch size for Lunsup to 112, and fixed λ in Eq. (2) to 1.0. We fixed the hyperparameters of UDA
as the confidence threshold β = 0.5 and the temperature parameter τ = 0.4 following Xie et al.
(2020). For P-SSL, we generated 50,000 samples by PCS. We ran the target trainings three times
with different seeds and selected the best models in terms of the validation accuracy for each epoch.
We report the average top-1 test accuracies and standard deviations.

B.4 FILTERING OF REAL DATASET BY RELATION TO TARGET

We provide the details of the protocol of dataset filtering discussed in Sec. 4.5 of the main paper
and list the correspondences between the target classes and selected source classes. For filtering
datasets, we first calculated the confidence (the maximum probability of a class in the prediction)
of the target samples by using the pre-trained source classifiers, then averaged the confidence scores
for each target class, and finally selected the source classes with a confidence higher than 0.001 as
the unlabeled dataset similar to (Xie et al., 2020). We list the filtered ImageNet classes for each
target dataset in Table 24 and 25.

B.5 SOURCE DATASET: COMPCARS

CompCars (Yang et al., 2015) is a fine-grained vehicle image dataset for classifying the vehicle
manufacturers or models. It contains 163 manufacturer classes, 1,716 model classes, and 136,726
images of entire vehicles collected from the web. As the source dataset for PP and P-SSL, we
used 163 manufacturer classes for training classifiers and conditional generative models since the
manufacturer classes do not overlap with the classes of the target dataset, i.e., StanfordCars.
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Table 10: Comparison of our methods with fine-
tuning methods

Top-1 Acc. (%)

Baseline + P-SSL

Pseudo Pre-training (Ours) 90.95±0.21 91.76±0.41

Fine-tuning 90.56±0.17 91.41±0.15

L2-SP (Li et al., 2018) 91.20±0.05 91.43±0.10

DELTA (Li et al., 2019) 91.52±0.26 91.82±0.29

BSS (Chen et al., 2019) 91.25±0.27 91.45±0.16

Co-Tuning (You et al., 2020) 91.08±0.15 91.16±0.05

Table 11: Comparison of our methods with fine-
tuning discriminator

Top-1 Acc. (%)

Scratch (WRN-50-2) 76.92±2.16

Finetuning Discriminator (BigGAN) 16.09±0.10

Ours (WRN-50-2) 91.76±0.41

Table 12: Performance comparison of multiple target architectures on StanfordCars (Top-1 Acc. (%))

ResNet-50 WRN-50-2 MNASNet1.0 MobileNetV3-L EfficientNet-B0 EfficientNet-B5

Scratch 71.86±0.80 76.21±1.40 79.22±0.66 80.98±0.27 80.80±0.56 81.73±3.50

Logit Matching 84.36±0.47 86.28±1.13 85.08±0.08 85.11±0.10 86.37±0.69 88.42±0.60

Soft Target 79.95±1.62 82.34±1.15 83.55±1.21 84.64±0.21 85.16±0.69 85.30±1.37

Ours w/o PP 80.14±0.57 80.01±0.14 82.22±0.16 83.26±0.21 83.22±0.54 85.82±0.47

Ours w/o P-SSL 90.25±0.19 90.95±0.21 87.14±0.05 87.82±0.83 88.27±0.33 89.50±0.17

Ours 90.69±0.11 91.76±0.41 87.39±0.19 88.40±0.67 89.28±0.41 90.04±0.34

Fine-tuning (FT) 90.56±0.17 88.24±1.55 89.18±0.14 87.57±0.28 90.06±0.25 91.64±0.29

FT + P-SSL 91.41±0.15 91.95±0.09 89.46±0.15 88.19±0.15 90.13±0.14 91.71±0.09

R-SSL with ImageNet 77.48±0.46 77.93±1.45 81.74±2.19 82.17±0.75 82.25±1.03 83.86±1.54

FT + R-SSL 90.70±0.17 91.87±0.22 88.63±0.20 87.26±0.09 89.91±0.19 91.10±0.08

C ADDITIONAL EXPERIMENTS

C.1 COMPARISON OF OUR METHOD WITH FINE-TUNING METHODS

For assessing the practicality of our method, we additionally compare our method with the fine-
tuning methods that require architecture consistency, i.e., Fine-tuning: naı̈vely training target clas-
sifiers by using the source pre-trained weights as the initial weights. L2-SP (Li et al., 2018): fine-
tuning with the L2 penalty term between the current training weights and the pre-trained source
weights. DELTA (Li et al., 2019): fine-tuning with a penalty minimizing the gaps of channel-wise
outputs of feature maps between source and target models. BSS (Chen et al., 2019): fine-tuning
with the penalty term enlarging eigenvalues of training features to avoid negative transfer. Co-
Tuning (You et al., 2020): fine-tuning on source and target task simultaneously by translating the
target labels to the source labels. We implemented these methods on the basis of the open source
repositories provided by the authors. All of hyperparameters used in L2-SP, DELTA, BSS, and
Co-Tuning are those in the respective papers: β for L2-SP and DELTA was 0.01, η for BSS was
0.001, and λ for Co-Tuning was 2.3. We also tested the models by combining our methods and the
fine-tuning methods. Table 12 and 13 list the extended results of the experiments on multiple archi-
tectures and target datasets in Secs. 4.3 and 4.4, respectively. Table 10 summarizes the results using
the fine-tuning variants. The +P-SSL column indicates the results of the combination models of a
fine-tuning method and P-SSL. We confirm that our method (pseudo pre-training + P-SSL) achieved
competitive or superior results to the naı̈ve fine-tuning. This means that our method can improve
target models as well as fine-tuning without architectures consistency. We also observed that P-SSL
can outperform fine-tuning baselines by being combined with them. These results indicate that our
P-SSL can be applied even if the source and target architectures are consistent.

C.1.1 COMPARSION TO FINE-TUNING DISCRIMINATOR

We compare PP with a transfer learning method applying encoders of generative models as the
pre-trained encoder for target tasks. Here, we assume the discriminator of ImageNet pre-trained
BigGAN as the pre-trained encoder, and fine-tune it on the target classification task of StanfordCars.
Table 11 shows the results. The BigGAN discriminator easily overfitted the target dataset and catas-
trophically degraded the test performance. It seems difficult to achieve high accuracy by naı̈vely
applying the discriminator as a simple pre-trained encoder. This suggests that the representation of
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Table 13: Performance comparison of classifiers on multiple target datasets (Top-1 Acc. (%))

Caltech-256-60 CUB-200-2011 DTD FGVC-Aircraft Indoor67 OxfordFlower OxfordPets StanfordDogs

Scratch 48.07±1.30 52.61±1.36 45.11±2.37 74.04±0.59 50.77±1.07 67.91±0.94 63.03±1.59 57.16±3.11

Logit Matching 55.28±2.63 62.52±2.13 49.29±0.69 78.91±1.93 57.61±0.74 75.23±1.11 70.56±3.96 64.46±1.88

Soft Target 54.84±1.33 60.53±1.65 48.39±1.06 77.08±3.30 54.08±1.22 69.90±0.38 65.62±0.97 63.64±3.00

Ours w/o PP 51.62±0.79 56.61±1.31 45.50±0.17 77.13±0.46 51.23±1.01 68.11±1.21 68.70±1.21 61.26±0.85

Ours w/o P-SSL 70.88±0.21 71.78±0.28 61.28±0.66 86.08±0.14 66.79±0.22 94.02±0.27 86.31±0.10 73.30±0.10

Ours 71.35±0.32 74.93±0.16 57.48±1.28 87.98±0.91 67.72±0.11 90.31±0.17 89.97±0.41 75.25±0.13

Fine-tuning (FT) 75.02±0.09 76.69±0.40 65.59±0.60 86.67±0.39 70.27±0.99 95.76±0.05 87.73±0.05 75.79±0.30

FT + P-SSL 75.93±0.44 80.46±0.16 62.48±0.97 87.32±1.15 71.00±0.35 96.59±0.37 91.48±0.32 78.53±0.28

R-SSL with ImageNet 52.22±1.12 55.54±1.23 41.84±3.64 75.36±0.80 52.13±1.98 68.55±1.68 66.34±1.07 59.93±1.25

FT + R-SSL 76.16±0.16 80.38±0.16 61.52±0.40 87.08±0.51 61.52±0.83 96.20±0.04 90.33±0.11 78.27±0.19

Table 14: Top-1 accuracy in various target dataset sizes

Samping Rate

25% 50% 75%

Scratch 6.14±0.42 40.69±1.50 67.46±2.93

Logit Matching 10.39±1.43 63.14±1.51 79.64±1.83

Soft Target 4.50±1.93 48.71±7.99 72.08±1.27

Ours w/o PP 11.73±0.88 45.27±0.92 69.21±0.88

Ours w/o P-SSL 59.48±1.23 82.46±0.36 88.31±0.10

Ours 61.90±0.60 82.65±0.30 89.33±0.19

the generative model is quite different from one of the classification tasks and that our method is
well suited to absorb such a difference between tasks for knowledge transfer.

C.1.2 COMPARSION OF RN18 AND CUSTOM ARCHITECTURE

We provide further comparison of RN-18 architecture and the custom architecture found by the
architecture search in Sec. 4.2. Here, we tested RN18 with our methods (PP, P-SSL, and PP+P-SSL)
on the same setting as Sec. 4.2 to confirm the superiority of the custom architecture. We summarize
the results in Table 16. This shows that the custom architecture is superior to the original RN18
(4, 4, 4, 4) in all settings, and also indicates that this is a fair comparison among methods.

C.2 TARGET DATASET SIZE

We evaluate the performance of our method on a limited target data setting. We randomly sampled
the subsets of the training dataset (StanfordCars) for each sampling rate of 25, 50, and 75%, and
used them to train target models with our method. Note that the pseudo datasets were created by
using the reduced datasets. Table 14 lists the results. We observed that our method can outperform
the baselines in all sampling rate settings.

C.3 SOURCE GENERATIVE MODELS

Table 17 lists the results with the architectures of multiple generative models. We tested our method
by using pseudo samples generated from the generative models for multiple resolutions including
SNGAN (Miyato et al., 2018), SAGAN (Zhang et al., 2019), and ADM-G (Dhariwal & Nichol,
2021). We implemented these generative models on the basis of open source repositories includ-
ing pytorch-pretrained-BigGAN3, Pytorch-StudioGAN4 by Minguk et al. (2021), and
guided-diffusion5 by Dhariwal & Nichol (2021); we used the pre-trained weights distributed
by the repositories. We measured the top-1 test accuracy on the target task (StanfordCars) and
Fréchet Inception Distance (FID, Heusel et al. (2017)). In Table 17, the generative models with
better FID scores tended to achieve a higher top-1 accuracy score with PP and P-SSL. Regarding

3https://github.com/huggingface/pytorch-pretrained-BigGAN
4https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
5https://github.com/openai/guided-diffusion
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Table 15: Comparison of RN18 and Custom RN

Architectures Top-1 Acc. (%)

RN18 (4, 4, 4, 4) 73.27±0.43

CRN (2, 2, 8, 2) 76.10±1.10

CRN (2, 2, 10, 2) 75.65±1.60

CRN (2, 10, 2, 2) 77.01±0.57

CRN (6, 2, 6, 2) 76.76±1.58

CRN (8, 4, 2, 2) 76.78±1.72

Table 16: Comparison of RN18 and Custom RN

Top-1 Acc. (%)
RN18 (4, 4, 4, 4) Custom RN18 (2, 10, 2, 2)

Scratch 73.27±0.43 77.01±0.57

Fine-tuning 87.75±0.35 N/A
P-SSL 77.56±0.62 80.86±0.16

PP 86.09±0.41 88.75±0.33

PP+P-SSL 87.61±0.41 89.13±0.23

Table 17: Comparison of multiple source generative models (StanfordCars)

Top-1 Acc. (%)

Source Generative Model PP P-SSL FID(Ds←t,Dt)
128 × 128 resolution
SNGAN (Miyato et al., 2018) 87.07±0.26 72.75±2.60 108.31
SAGAN (Zhang et al., 2019) 89.10±0.19 77.66±2.15 58.67
BigGAN (Brock et al., 2019) 89.97±0.27 77.54±1.45 27.17
256 × 256 resolution
BigGAN (Brock et al., 2019) 90.25±0.19 80.01±0.14 19.92
ADM-G (Dhariwal & Nichol, 2021) 90.23±1.06 79.44±0.47 18.72
512 × 512 resolution
BigGAN (Brock et al., 2019) 90.14±0.24 78.38±1.61 17.87

the resolution, the models of 256×256, the generated samples of which are the nearest to the input
size of CAt

t (224×224), were the best. From these results, we recommend using generative mod-
els synthesizing high-fidelity samples at a resolution close to the target models when applying our
method.

C.4 ANALYSIS OF PSEUDO PRE-TRAINING

We analyze the characteristics of PP by varying the synthesized samples.

C.4.1 SYNTHESIZING STRATEGY

We compare the four strategies using the source generative models for PP. We tested Uniform: syn-
thesizing samples for all source classes (default), Filtered: synthesizing samples for target-related
source classes identified by the same protocol as in Sec. 4.5, PCS: synthesizing samples by PCS,
Offline: synthesizing fixed samples in advance of training and training CAt

s with them instead of
sampling from Gs. In PCS, we optimized the pre-training models with pseudo source soft labels
generated in the process of PCS. Table 18 shows the target task performances. We found that the
Uniform model achieved the best performance. We can infer that, in PP, pre-training with various
classes and samples is more important than that with only target-related classes or fixed samples.

C.5 ANALYSIS OF PSEUDO SEMI-SUPERVISED LEARNING

C.5.1 SEMI-SUPERVISED LEARNING ALGORITHM

We compare SSL algorithms in P-SSL. We used six SSL algorithms: EntMin (Grandvalet & Ben-
gio, 2005), Pseudo Label (Lee et al., 2013), Soft Pseudo Label, Consistency Regularization, Fix-
Match (Sohn et al., 2020), and UDA (Xie et al., 2020). Soft Pseudo Label is a variant of Pseudo
Label, which uses the sharpen soft pseudo labels instead of the one-hot (hard) pseudo labels. Consis-
tency Regularization computes the unsupervised loss of UDA without the confidence thresholding.
Table 19 shows the results on StanfordCars, where Pseudo Supervised is a model using a pairs of
(xs←t, yt) in pseudo conditional sampling for supervised training. UDA achieved the best result.
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Table 18: Comparison of pseudo pre-training variants

Top-1 Acc. (%)

Uniform 90.95±0.21

Filtered 84.89±0.23

PCS 85.90±0.35

Offline (1.3M) 89.08±0.20

Table 19: Comparison of algorithms for P-SSL
(At: WRN-50-2)

Top-1 Acc. (%)

Scratch 76.21±1.40

Pseudo Supervised 53.03±1.79

EntMin (Grandvalet & Bengio, 2005) 72.56±3.33

Pseudo Label (Lee et al., 2013) 74.49±2.26

Soft Pseudo Label 78.44±2.41

Consistency Regularization 79.17±1.79

FixMatch (Sohn et al., 2020) 74.31±3.27

UDA (Xie et al., 2020) 80.01±0.14
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Figure 4: Top-1 accuracy of P-SSL when scaling
pseudo dataset size

More importantly, the methods using hard labels (Pseudo Supervised, Pseudo Label, and FixMatch)
failed to outperform the scratch models, whereas the soft label based methods improved the perfor-
mance. This indicates that translating the label of pseudo samples as the interpolation of the target
labels can improve the performance as mentioned in Sec. 3.2.3.

C.5.2 SAMPLE SIZE

We evaluate the effect of the sizes of pseudo datasets for P-SSL on the target test accuracy. We
varied the pseudo dataset sizes in {10K, 50K, 100K, 500K } and tested the target performance of
P-SSL on the StanfordCars dataset, as shown in Figure 4 (right). We found that the middle range of
the dataset size (50K and 100K images) achieved better results. This suggests that P-SSL does not
require generating extremely large pseudo datasets for boosting the target models.

C.5.3 OUTPUT LABEL FUNCTION

We discuss the performance comparison of output label functions in PCS. The output label function
is crucial for synthesizing the target-related samples from source generative models since it directly
determines the attributes on the pseudo samples. We tested six labeling strategies, i.e., Random
Label: attaching uniformly sampled source labels, Softmax: using softmax outputs of CAs

s (de-
fault), Temperature Softmax: applying temperature scaling to output logits of CAs

s and using the
softmax output, Argmax: using one-hot labels generated by selecting the class with the maximum
probability in the softmax output of CAs

s , Sparsemax (Martins & Astudillo, 2016): computing the
Euclidean projections of the logit of Ct representing sparse distributions in the source label space,
and Classwise Mean: computing the mean of softmax outputs of CAs

s for each target class and us-
ing it as representative pseudo source labels of the target class to generate pseudo samples. Table 20
shows the comparison of the labeling strategies. Among the strategies, Softmax is the best choice for
PCS in terms of the target performance (top-1 accuracy) and the relatedness toward target datasets
(FID). This means that the pseudo source label ys←t by Softmax succeeds in representing the char-
acteristics of a target sample xt and its form of the soft label is important to extract target-related
information via a source generative model Gs.
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Table 20: Comparison of output label functions in PCS

Top-1 Acc. (%) FID

Random Label 75.55±0.35 134.37
Softmax 80.01±0.14 19.92
Temperature Softmax (τ = 0.4) 79.94±1.12 20.68
Argmax 78.89±2.01 22.35
Sparsemax 76.08±1.14 24.28
Classwise Mean 78.56±2.83 22.14

Table 21: Effect of τ in UDA

τ Top-1 Acc. (%)

0.2 79.59±1.59

0.4 80.01±0.14

0.6 80.43±0.25

0.8 81.81±0.58

1.0 79.16±0.25

C.5.4 SEARCHING TEMPERATURE HYPERPARAMETER FOR UDA

Here, we investigate the effect of hyperparameter τ for UDA, which is mainly used in the main paper.
By the definition of temperature softmax function (exp(yi/τ)/

∑K
j exp(yj/τ)), the temperature

parameter τ controls the sharpness of the predicted class-conditional distribution; lower temperature
outputs sharper distribution. In this regard, in our P-SSL, Ĉt(xs←t, τ ; θ), which determines how to
represent the pseudo sample xs←t with the soft target class labels, can be changed by τ . Thus,
the choice of τ can be an important factor for training in P-SSL. To evaluate the effect, we tested
P-SSL by varying τ on StanfordCars as shown in Table 21 The results show that the moderately
higher τ achieved better target performances. This suggests that representing xs←t by softer target
class labels can bring a positive effect to target classifiers, which is consistent with the discussions
in Sec. 3.2.1 and 3.2.3.

C.5.5 P-SSL VS. SSL USING TARGET LABELED DATA

Table 22: P-SSL vs. T-SSL

Top-1 Acc. (%)

PP 90.95±0.21

PP+T-SSL 87.65±0.35

PP+P-SSL 91.76±0.41

We provide further analysis to confirm the performance of the unla-
beled pseudo samples xs←t by comparing with a SSL method using
real target samples in the unsupervised loss function. We call this
method as T-SSL, and T-SSL can be another simple baseline for
P-SSL because it can simply discard pseudo sample synthesis in
P-SSL. The results are shown in Table 22. We can see that apply-
ing supervised loss and unsupervised loss to the same sample has a
negative effect: the use of pseudo-labels to target labeled data might
promote overfitting. This result indicates that xs←t in P-SSL certainly performs as useful unlabeled
data in UDA than directly using target data.

D QUALITATIVE EVALUATION OF PSEUDO SAMPLES

We discuss qualitative studies of the pseudo samples generated by PCS. To confirm the correspon-
dences between the target and pseudo samples, we used StanfordCars as the target dataset and gener-
ated samples from BigGAN with the same setting as in Sec. 4. Figure 5 shows the visualizations of
the source dataset (ImageNet), target dataset (StanfordCars), and pseudo samples generated by PCS.
The samples were randomly selected from each dataset. We can see that PCS succeeded in gener-
ating target-related samples from the target samples. To assess the validity of using pseudo source
soft labels in PCS, we analyzed the pseudo samples corresponding to each target label. Figure 6
shows the pseudo samples generated by the target samples of Hummer and Aston Martin V8
Convertible classes in StanfordCars. We confirm that the pseudo samples by PCS can capture
the features of target classes. This also can confirm the ranking of the confidence scores for source
classes listed in Table 23; the pseudo source soft labels seem to represent the target samples by the
interpolation of source classes.
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ImageNet (target-related) StanfordCars PCS

Figure 5: Samples of source, target, and pseudo datasets (random picking).
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Figure 6: Pseudo samples generated by PCS (random picking)
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Table 23: Ranking of averaged confidence scores of ImageNet classes corresponding to target classes

Target Class Label

Rank All target classes Hummer Aston Martin V8 Convertible

1st sports car (23.5%) jeep (41.0%) convertible (62.8%)
2nd beach wagon (15.8%) limousine (11.1%) sports car (27.4%)
3rd minivan (12.0%) snowplow (6.7%) racer (1.3%)
4th convertible (10.0%) moving van (6.7%) pickup truck (1.3%)
5th pickup truck (7.0%) tow truck (6.3%) car wheel (1.3%)

Table 24: Corresponding ImageNet classes to target datasets (1)

Target Dataset ImageNet Classes

Caltech-256-60

goldfish, electric ray, ostrich, great grey owl, tree frog, tailed frog, loggerhead, leatherback turtle, common iguana,
triceratops, trilobite, scorpion, barn spider, tick, centipede, hummingbird, drake, goose, tusker, wallaby,

jellyfish, nematode, conch, snail, rock crab, fiddler crab, American lobster, isopod, black stork, American egret,
king penguin, killer whale, whippet,Saluki, leopard, jaguar, cheetah, brown bear, American black bear, fly, grasshopper,

cockroach, mantis, monarch, starfish, sea urchin, porcupine, sorrel, zebra, ibex, hartebeest, Arabian camel,
llama, skunk, gorilla, chimpanzee, Indian elephant, African elephant, acoustic guitar, airliner, airship, altar,
analog clock, assault rifle, backpack, balloon, ballpoint, Band Aid, barbell, barrow, bathtub, beacon, beaker,

bearskin, beer glass, bell cote, bicycle-built-for-two, binder, binoculars, bolo tie, bottlecap, bow, brass,
breastplate, buckle, candle, cannon, canoe, can opener, carpenter’s kit, car wheel, cassette, cassette player,

CD player, chain, chest, chime, clog, coffee mug, coffeepot, coil, combination lock, corkscrew, cowboy hat,
cradle, crane, crash helmet, croquet ball, desktop computer, dial telephone, doormat, drilling platform, drum,
dumbbell, electric fan, electric guitar, envelope, face powder, fire engine, fire screen, flagpole, folding chair,
football helmet, fountain, French horn, frying pan, gasmask, gas pump, goblet, golf ball, gong, grand piano,

guillotine, hair slide, hamper, hand blower, hand-held computer, handkerchief, harmonica, harp, harvester, hook,
horse cart, hourglass, iPod, jersey, jigsaw puzzle, joystick, knee pad, ladle, lampshade, laptop, lawn mower,

letter opener, lighter, loudspeaker, loupe, lumbermill, magnetic compass, mailbag, mailbox, maraca, marimba,
maze, microphone, microwave, missile, modem, moped, mortar, mosque, mountain bike, mountain tent, mouse, mousetrap,

muzzle, nail, neck brace, nipple, notebook, obelisk, ocarina, oil filter, oscilloscope, oxygen mask, packet,
paddle, palace, parachute, park bench, pay-phone, pedestal, pencil sharpener, perfume, Petri dish, photocopier,

pick, pier, pill bottle, ping-pong ball, pitcher, plane, pole, pool table, pot, printer, projectile, projector,
puck, punching bag, quill, racket, radio, radio telescope, reel, refrigerator, revolver, rifle, rubber eraser,

rule, running shoe, safety pin, sandal, scabbard, scale, school bus, schooner, screen, screw, screwdriver, shield,
ski, slot, snowmobile, soap dispenser, soccer ball, sock, solar dish, sombrero, space bar, spatula, speedboat,

spotlight, stethoscope, stopwatch, stretcher, studio couch, sunglass, sunscreen, suspension bridge, swing, switch,
syringe, table lamp, tape player, teapot, teddy, tennis ball, thimble, thresher, toaster, tobacco shop, toilet seat,
torch, tow truck, tray, tricycle, tripod, tub, typewriter keyboard, umbrella, unicycle, upright, vase, waffle iron,

wall clock, wallet, warplane, washer, water jug, whiskey jug, whistle, Windsor tie, wine bottle, wool, worm fence,
yawl, web site, comic book, street sign, traffic light, book jacket, plate, cheeseburger, hotdog, spaghetti squash,

fig, carbonara, red wine, cup, eggnog, cliff, geyser, lakeside, promontory, seashore, valley, volcano,
daisy, hip, earthstar, hen-of-the-woods

CUB-200-2011

hen, brambling, goldfinch, house finch, junco, indigo bunting, robin, bulbul, jay, magpie, chickadee, water ouzel,
kite, bald eagle, vulture, great grey owl, black grouse, ptarmigan, ruffed grouse, prairie chicken, quail, partridge,

macaw, lorikeet, coucal, bee eater, hornbill, hummingbird, jacamar, toucan, drake, red-breasted merganser, goose,
black swan, white stork, black stork, spoonbill, little blue heron, American egret, bittern, crane, limpkin, European gallinule,

American coot, bustard, ruddy turnstone, red-backed sandpiper, redshank, dowitcher, oystercatcher,
pelican, king penguin, albatross, worm fence

DTD

electric ray, stingray, leatherback turtle, thunder snake, hognose snake, horned viper, sidewinder, trilobite,
harvestman, barn spider black widow tick, jellyfish, sea anemone, brain coral, flatworm, nematode, conch,

sea slug, chiton, chambered nautilus, fiddler crab, isopod, komondor, tiger, leaf beetle, dung beetle, bee, ant,
walking stick, cockroach, sea urchin, sea cucumber, zebra, apron, backpack, bakery, balloon, Band Aid, bannister,

bath towel, beer glass, bib, binder, bonnet, bottlecap, bow tie, breastplate, broom, buckle, candle, cardigan,
chain, chainlink fence, chain mail, cliff dwelling, cloak, coil, confectionery, crate, cuirass, dishrag, dome, doormat,
envelope, face powder, feather boa, fire screen, fountain, fur coat, golf ball, gown, hair slide, hamper, handkerchief,

honeycomb, hook, hoopskirt, jean, jersey, jigsaw puzzle, knot, lampshade, lighter, loudspeaker, mailbag, manhole cover,
mask, matchstick, maze, megalith, microphone, mitten, mosquito net, nail, necklace, overskirt, packet, padlock, paintbrush,

pajama, paper towel, pencil box, Petri dish, picket fence, pillow, pinwheel, plastic bag, poncho, pot, prayer rug,
prison, purse, quill, quilt, radiator, radio, rubber eraser, rule, safety pin, saltshaker, sarong, screw, shield, shoji,

shopping basket, shovel, shower cap, shower curtain, sleeping bag, solar dish, space heater, spider web, stole, stone wall,
strainer, swab, sweatshirt, swimming trunks, switch, syringe, tennis ball, thatch, theater curtain, thimble, tile roof,

tray, trench coat, umbrella, vase, vault, velvet, waffle iron, wall clock, wallet, wardrobe, water bottle, wig, window screen,
window shade, Windsor tie, wooden spoon, wool, web site, crossword puzzle, book jacket, trifle, ice cream, ice lolly,

French loaf, pretzel, head cabbage, broccoli, cauliflower, strawberry, lemon, fig, jackfruit, custard apple, pomegranate,
hay, chocolate sauce, dough, meat loaf, potpie, cup, eggnog, bubble, cliff, coral reef, geyser, sandbar, valley, volcano,

corn, buckeye, coral fungus, hen-of-the-woods, ear, toilet tissue

FGVC-Aircraft aircraft carrier, airliner, airship, missile, projectile, space shuttle, speedboat, trimaran, warplane, wing

Indoor67

academic gown, altar, bakery, balance beam, bannister, barbell, barber chair, barbershop, barrel, bathing cap,
bathtub, beer bottle, bookcase, bookshop, bullet train, butcher shop, carousel, carton, cash machine, china cabinet,
church, cinema, coil, confectionery, cradle, crate, crib, crutch, desk, desktop computer, dining table, dishwasher,

dome, drum, dumbbell, electric locomotive, entertainment center, file, fire screen, folding chair, forklift,
fountain, four-poster, golfcart, grand piano, greenhouse, grocery store, guillotine, home theater, horizontal bar,
jigsaw puzzle, lab coat, laptop, library, limousine, loudspeaker, lumbermill, marimba, maze, medicine chest,

microwave, minibus, monastery, monitor, mosquito net, organ, oxygen mask, palace, parallel bars, passenger car,
patio, photocopier, pier, ping-pong ball, planetarium, plate rack, pole, pool table, pot, potter’s wheel, prayer rug, printer,

prison, projector, quilt, radio, refrigerator, restaurant, rocking chair, rotisserie, scoreboard, screen, shoe shop, shoji,
shopping basket, shower curtain, sliding door, slot, solar dish, spotlight, stage, steel arch bridge, stove, streetcar,

stretcher, studio couch, table lamp, tape player, television, theater curtain, throne, tobacco shop, toilet seat, toyshop,
tripod, tub, turnstile, upright, vacuum, vault, vending machine, vestment, wardrobe, washbasin, washer,

window screen, window shade, wine bottle, wok, comic book, plate, groom
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Table 25: Corresponding ImageNet classes to target datasets (2)

Target Dataset ImageNet Classes

OxfordFlower

goldfish, cock, harvestman, garden spider, hummingbird, sea anemone, conch, snail, slug, sea slug, chambered nautilus,
ladybug, long-horned beetle, leaf beetle, fly, bee, ant, grasshopper, cricket, walking stick, mantis, lacewing, admiral,

ringlet, monarch, cabbage butterfly, sulphur butterfly, lycaenid, sea urchin, birdhouse, bonnet, candle, chainlink fence,
greenhouse, hair slide, hamper, handkerchief, lotion, paper towel, perfume, picket fence, pinwheel, plastic bag, pot,

quill, shower cap, tray, umbrella, vase, velvet, wool, head cabbage, cauliflower, zucchini, spaghetti squash,
acorn squash, butternut squash, cucumber, artichoke, bell pepper, cardoon, mushroom, strawberry, orange, lemon, fig, pineapple,

custard apple, pomegranate, coral reef, rapeseed, daisy, yellow lady’s slipper, corn, acorn, hip, buckeye, coral fungus,
stinkhorn, earthstar, hen-of-the-woods, ear

OxfordPets

Chihuahua, Japanese spaniel, Maltese dog, Pekinese, Shih-Tzu, Blenheim spaniel, papillon, toy terrier, Rhodesian ridgeback,
basset, beagle, bloodhound, bluetick, Walker hound, English foxhound, redbone, Italian greyhound, Ibizan hound, Norwegian elkhound,

Weimaraner, Staffordshire bullterrier, American Staffordshire terrier, Irish terrier, Norwich terrier, Yorkshire terrier,
Lakeland terrier, cairn, Australian terrier, Dandie Dinmont, Boston bull, Scotch terrier, Tibetan terrier, silky terrier,

soft-coated wheaten terrier, West Highland white terrier, Lhasa, flat-coated retriever, golden retriever, Labrador retriever,
Chesapeake Bay retriever, German short-haired pointer, English setter, Brittany spaniel, English springer, Welsh springer spaniel,

cocker spaniel, kuvasz, schipperke, groenendael, kelpie, German shepherd, miniature pinscher, boxer, bull mastiff, Tibetan mastiff,
French bulldog, Great Dane, Saint Bernard, Eskimo dog, Siberian husky, affenpinscher, basenji, pug, Leonberg, Newfoundland,

Great Pyrenees, Samoyed, Pomeranian, chow, keeshond, Brabancon griffon, Pembroke, toy poodle, miniature poodle, Mexican hairless,
white wolf, dingo, tabby, tiger cat, Persian cat, Siamese cat, Egyptian cat, lynx, bath towel, bucket, carton,

plastic bag, quilt, sleeping bag, space heater, tennis ball, window screen

StanfordCars
ambulance, amphibian, beach wagon, cab, car wheel, convertible, grille, jeep, minibus,

limousine, minivan, mobile home, moving van, parking meter, passenger car, pickup, police van,
racer, recreational vehicle, snowplow, sports car, tow track, trailer truck

StanfordDogs

Chihuahua, Japanese spaniel, Maltese dog, Pekinese, Shih-Tzu, Blenheim spaniel, papillon, toy terrier, Rhodesian ridgeback,
Afghan hound, basset, beagle, bloodhound, bluetick, black-and-tan coonhound, Walker hound, English foxhound, redbone,

borzoi, Irish wolfhound, Italian greyhound, whippet, Ibizan hound, Norwegian elkhound,otterhound, Saluki, Scottish deerhound,
Weimaraner, Staffordshire bullterrier, American Staffordshire terrier, Bedlington terrier, Border terrier, Kerry blue terrier,
Irish terrier, Norfolk terrier,Norwich terrier, Yorkshire terrier, wire-haired fox terrier, Lakeland terrier, Sealyham terrier,

Airedale, cairn, Australian terrier, Dandie Dinmont, Boston bull, miniature schnauzer, giant schnauzer,standard schnauzer,
Scotch terrier, Tibetan terrier, silky terrier, soft-coated wheaten terrier, West Highland white terrier, Lhasa, flat-coated retriever,

curly-coated retriever, golden retriever, Labrador retriever,Chesapeake Bay retriever, German short-haired pointer, vizsla,
English setter, Irish setter, Gordon setter, Brittany spaniel, clumber, English springer, Welsh springer spaniel, cocker spaniel,

Sussex spaniel,Irish water spaniel, kuvasz, schipperke, groenendael, malinois, briard, kelpie, komondor, Old English sheepdog,
Shetland sheepdog, collie, Border collie, Bouvier des Flandres, Rottweiler, German shepherd,Doberman, miniature pinscher,

Greater Swiss Mountain dog, Bernese mountain dog, Appenzeller, EntleBucher, boxer, bull mastiff, Tibetan mastiff, French bulldog,
Great Dane, Saint Bernard, Eskimo dog,malamute, Siberian husky, affenpinscher, basenji, pug, Leonberg, Newfoundland, Great Pyrenees,

Samoyed, Pomeranian, chow, keeshond, Brabancon griffon, Pembroke, Cardigan, toy poodle, miniature poodle,
standard poodle, Mexican hairless, dingo, dhole, African hunting dog
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