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Abstract: Goal-conditioned policies for robotic navigation can be trained on1

large, unannotated datasets, providing for good generalization to real-world set-2

tings. However, particularly in vision-based settings where specifying goals re-3

quires an image, this makes for an unnatural interface. Language provides a more4

convenient modality for communication with robots, but contemporary methods5

typically require expensive supervision, in the form of trajectories annotated with6

language descriptions. We develop a system, LM-Nav, for robotic navigation that7

enjoys the benefits of training on unannotated large datasets of trajectories, while8

still providing a high-level interface to the user. Instead of utilizing a labeled9

instruction following dataset, we show that such a system can be constructed en-10

tirely out of pre-trained models for navigation (ViNG), image-language associa-11

tion (CLIP), and language modeling (GPT-3), without requiring any fine-tuning12

or language-annotated robot data. We instantiate LM-Nav on a real-world mobile13

robot and demonstrate long-horizon navigation through complex, outdoor envi-14

ronments from natural language instructions.115

Keywords: instruction following, language models, vision-based navigation16

1 Introduction17

One of the central challenges in robotic learning is to enable robots to perform a wide variety of18

tasks on command, following high-level instructions from humans. This requires robots that can19

understand human instructions, and are equipped with a large repertoire of diverse behaviors to20

execute such instructions in the real world. Prior work on instruction following in navigation has21

largely focused on learning from trajectories annotated with textual instructions [1–5]. This enables22

understanding of textual instructions, but the cost of data annotation impedes wide adoption. On23

the other hand, recent work has shown that learning robust navigation is possible through goal-24

conditioned policies trained with self-supervision. These utilize large, unlabeled datasets to train25

vision-based controllers via hindsight relabeling [6–11]. They provide scalability, generalizability,26

and robustness, but usually involve a clunky mechanism for goal specification, using locations or27

images. In this work, we aim to combine the strengths of both approaches, enabling a self-supervised28

system for robotic navigation to execute natural language instructions by leveraging the capabilities29

of pre-trained models without any user-annotated navigational data. Our method uses these models30

to construct an “interface” that humans can use to communicate desired tasks to robots. This system31

enjoys the impressive generalization capabilities of the pre-trained language and vision-language32

models, enabling the robotic system to accept complex high-level instructions.33

Our main observation is that we can utilize off-the-shelf pre-trained models trained on large corpora34

of visual and language datasets — that are widely available and show great few-shot generaliza-35

tion capabilities — to create this interface for embodied instruction following. To achieve this, we36

1Please see the supplemental material for experiment videos and a Colab with the implementation.
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Figure 1: Embodied instruction following with LM-Nav: Our system takes as input a set of raw observations
from the target environment and free-form textual instructions (left), deriving an actionable plan using three pre-
trained models: a large language model (LLM) for extracting landmarks, a vision-and-language model (VLM)
for grounding, and a visual navigation model (VNM) for execution. This enables LM-Nav to follow textual
instructions in complex environments purely from visual observations (right) without any fine-tuning.

combine the strengths of two such robot-agnostic pre-trained models with a pre-trained navigation37

model. We use a visual navigation model (VNM: ViNG [11]) to create a topological “mental map”38

of the environment using the robot’s observations. Given free-form textual instructions, we use a39

pre-trained large language model (LLM: GPT-3 [12]) to decode the instructions into a sequence of40

textual landmarks. We then use a vision-language model (VLM: CLIP [13]) for grounding these41

textual landmarks in the topological map, by inferring a joint likelihood over the landmarks and42

nodes. A novel search algorithm is then used to maximize a probabilistic objective, and find a plan43

for the robot, which is then executed by VNM.44

Our primary contribution is Large Model Navigation, or LM-Nav, an embodied instruction follow-45

ing system that combines three large independently pre-trained models — a self-supervised robotic46

control model that utilizes visual observations and physical actions (VNM), a vision-language model47

that grounds images in text but has no context of embodiment (VLM), and a large language model48

that can parse and translate text but has no sense of visual grounding or embodiment (LLM) — to49

enable long-horizon instruction following in complex, real-world environments. We present the first50

instantiation of a robotic system that combines the confluence of pre-trained vision-and-language51

models with a goal-conditioned controller, to derive actionable plans without any fine-tuning in52

the target environment. Notably, all three models are trained on large-scale datasets, with self-53

supervised objectives, and used off-the-shelf with no fine-tuning — no human annotations of the54

robot navigation data are necessary to train LM-Nav. We show that LM-Nav is able to success-55

fully follow natural language instructions in new environments over the course of 100s of meters of56

complex, suburban navigation, while disambiguating paths with fine-grained commands.57

2 Related Work58

Early works in augmenting navigation policies with natural language commands use statistical ma-59

chine translation [14] to discover data-driven patterns to map free-form commands to a formal lan-60

guage defined by a grammar [15–19]. However, these approaches tend to operate on structured state61

spaces. Our work is closely inspired by methods that instead reduce this task to a sequence predic-62

tion problem [1, 20, 21]. Notably, our goal is similar to the task of VLN — leveraging fine-grained63

instructions to control a mobile robot solely from visual observations [1, 2].64

However, most recent approaches to VLN use a large dataset of simulated trajectories — over 1M65

demonstrations — annotated with fine-grained language labels in indoor [1, 3–5, 22] and driv-66

ing scenarios [23–28], and rely on sim-to-real transfer for deployment in simple indoor environ-67

ments [29, 30]. However, this necessitates building a photo-realistic simulator resembling the target68

environment, which can be challenging for unstructured environments, especially for the task of69

outdoor navigation. Instead, LM-Nav leverages free-form textual instructions to navigate a robot in70

complex, outdoor environments without access to any simulation or any trajectory-level annotations.71

Recent progress in using large-scale models of natural language and images trained on diverse data72

has enabled applications in a wide variety of textual [31–33], visual [13, 34–38], and embodied73
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domains [39–44]. In the latter category, Shridhar et al. [39], Khandelwal et al. [44] and Jang et al.74

[40] fine-tune embeddings from pre-trained models on robot data with language labels, Huang et al.75

[41] assume that the low-level agent can execute textual instructions (without addressing control),76

and Ahn et al. [42] assumes that the robot has a set of text-conditioned skills that can follow atomic77

textual commands. All of these approaches require access to low-level skills that can follow rudi-78

mentary textual commands, which in turn requires language annotations for robotic experience and79

a strong assumption on the robot’s capabilities. In contrast, we combine these pre-trained vision and80

language models with pre-trained visual policies that do not use any language annotations [11, 45]81

without fine-tuning these models in the target environment or for the task of VLN.82

Data-driven approaches to vision-based mobile robot navigation often use photorealistic simula-83

tors [46–49] or supervised data collection [50] to learn goal-reaching policies directly from raw84

observations. Self-supervised methods for navigation [6–11, 51] instead can use unlabeled datasets85

of trajectories by automatically generating labels using onboard sensors and hindsight relabeling.86

Notably, such a policy can be trained on large, diverse datasets and generalize to previously unseen87

environments [45, 52]. Being self-supervised, such policies are adept at navigating to desired goals88

specified by GPS locations or images, but are unable to parse high-level instructions such as free-89

form text. LM-Nav uses self-supervised policies trained in a large number of prior environments,90

augmented with pre-trained vision and language models for parsing natural language instructions,91

and deploys them in novel real-world environments without any fine-tuning.92

3 Preliminaries93
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Figure 2: LM-Nav uses VLM to infer a joint prob-
ability distribution over textual landmarks and image
observations. VNM constitutes an image-conditioned
distance function and policy that can control the robot.

LM-Nav consists of three large, independently94

pre-trained models for processing language, as-95

sociating images with language, and associat-96

ing images with robotic control and naviga-97

tional affordances.98

Large language models are generative mod-99

els based on the Transformer architecture [53],100

trained on large corpora of internet text. LM-101

Nav uses the GPT-3 LLM [12], to parse textual102

instructions into a sequence of landmarks.103

Vision-and-language models refer to models that can associate images and text, e.g. image cap-104

tioning, visual question-answering, etc. [54–56]. We use the CLIP VLM [13], a model that jointly105

encodes images and text into an embedding space that allows it to determine how likely some string106

is to be associated with a given image. We can jointly encode a set of landmark descriptions t ob-107

tained from the LLM and a set of images ik to obtain their VLM embeddings {T, Ik} (see Fig. 3).108

Computing the cosine similarity between these embeddings, followed by a softmax operation results109

in probabilities P (ik|t), corresponding to the likelihood that image ik corresponds to the string t.110

LM-Nav uses this probability to align landmark descriptions with images.111

Visual navigation models learn navigation behavior and navigational affordances directly from vi-112

sual observations [11, 51, 57–60], associating images and actions through time. We use the ViNG113

VNM [11], a goal-conditioned model that predicts temporal distances between pairs of images and114

the corresponding actions to execute (see Fig. 3). This provides an interface between images and115

embodiment. The VNM serves two purposes: (i) given a set of observations in the target environ-116

ment, the distance predictions from the VNM can be used to construct a topological graph G(V,E)117

that represents a “mental map” of the environment; (ii) given a “walk”, comprising of a sequence of118

connected subgoals to a goal node, the VNM can navigate the robot along this plan. The topological119

graph G is an important abstraction that allows a simple interface for planning over past experience120

in the environment and has been successfully used in prior work to perform long-horizon naviga-121

tion [52, 61, 62]. To deduce connectivity in G, we use a combination of learned distance estimates,122

temporal proximity (during data collection), and spatial proximity (using GPS measurements). For123
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Figure 3: System overview: (a) VNM uses a goal-conditioned distance function to infer connectivity between
the set of raw observations and constructs a topological graph. (b) LLM translates natural language instruc-
tions into a sequence of textual landmarks. (c) VLM infers a joint probability distribution over the landmark
descriptions and nodes in the graph, which is used by (d) a graph search algorithm to derive the optimal walk
through the graph. (e) The robot drives following the walk in the real world using the VNM policy.

every connected pair of vertices {vi, vj}, we assign this distance estimate to the corresponding edge124

weight D(vi, vj). For more details on the construction of this graph, see Appendix C.125

4 LM-Nav: Instruction Following with Pre-Trained Models126

LM-Nav combines the components discussed earlier to follow textual instructions in the real world.127

The LLM parses free-form instructions into a list of landmarks l̄ (Sec. 4.2), the VLM associates128

these landmarks with nodes in the graph by estimating the probability that each node v̄ corresponds129

to each l̄, Pl(v̄|l̄) (Sec. 4.3), and the VNM is then used to infer how effectively the robot can navigate130

between each pair of nodes in the graph, which we convert into a probability P (vi, vj) derived from131

the estimated temporal distances. To find the optimal “walk” on the graph that both (i) adheres to the132

provided instructions and (ii) minimizes traversal cost, we derive a probabilistic objective (Sec. 4.1)133

and show how it can be optimized using a graph search algorithm (Sec. 4.4). This optimal walk is134

then executed in the real world by using the actions produced by the VNM model.135

4.1 Problem Formulation136

We formulate the task of instruction following on the graph as that of maximizing the probability137

of successfully executing a walk that matches the instruction. As we will discuss in Section 4.2, we138

first parse the instruction into a list of landmarks l̄ = l1, l2, . . . , ln that should be visited in order.2139

Recall that the VNM is used to build a topological graph that represents the connectivity of the140

environment from previously seen observations, with nodes {vi} corresponding to previously seen141

images. For a walk v̄ = v1, v2, . . . , vT , we factorize the probability that it corresponds to the given142

instruction into: (i) Pl, the probability that the walk visits all landmarks from the description; (ii)143

Pt, the probability that the walk v̄ can be executed successfully. Let l̄ = l1, l2, . . . , ln be the list144

of landmarks described in the natural language instructions, and let P (li|vj) denote the probability145

that node vj corresponds to the landmark description li. Then we have:146

Pl(v̄|l̄) = max
1≤t1≤t2≤...≤tn≤T

∏
1≤k≤n

P (lk|vtk), (1)

where t1, t2, . . . , tn is assignment of a subsequence of walk’s node to landmark descriptions.147

To obtain the probability Pt(v̄), we must convert the distance estimates provided by the VNM model148

into probabilities. This has been studied in the literature on goal-conditioned policies [63, 64]. A149

simple model based on a discounted MDP formulation is to model the probability of successfully150

reaching the goal as γ to the power number of time steps, which corresponds to a probability of151

termination of 1− γ at each time step. We then have152

Pt(v̄) =
∏

1≤j<n

P (vj , vj+1) =
∏

1≤j<n

γD(vj ,vj+1), (2)

2LM-Nav discards any such information beyond landmarks (e.g. verbs), and this represents a limitation of
our approach. Incorporating more nuanced commands is an important direction for future work.
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where D(vj , vj+1) refers to the length (in the number of time steps) of the edge between nodes vj153

and vj+1, which is provided by the VNM model. The final probabilistic objective that our system154

needs to maximize becomes:155

PM (v̄) = Pt(v̄)Pl(v̄|l̄) =
∏

1≤j<n

γD(vj ,vj+1) max
1≤t1≤t2≤...≤tn≤t

∏
1≤k≤n

P (lk|vtk). (3)

4.2 Parsing Free-Form Textual Instructions156

The user specifies the route they want the robot to take using natural language, while the objective157

above is defined in terms of a sequence of desired landmarks. To extract this sequence from the user’s158

natural language instruction we employ a standard large language model, which in our prototype is159

GPT-3 [12]. We used a prompt with 3 examples of correct landmarks’ extractions, followed up by160

the description to be translated by the LLM. Such an approach worked for the instructions that we161

tested it on. Examples of instructions together with landmarks extracted by the model can be found162

in Fig. 4. The appropriate selection of the prompt, including those 3 examples, was required for163

more nuanced cases. For details of the “prompt engineering” please see Appendix A.164

4.3 Visually Grounding Landmark Descriptions165

As discussed in Sec. 4.1, a crucial element of selecting the walk through the graph is computing166

P (li|vj), the probability that landmark description li refers to node vj (see Equation 1). With each167

node containing an image taken during initial data collection, the probability can be computed using168

CLIP [13] in the way described in Sec. 3 as the retrieval task. As presented in Fig. 2, to employ169

CLIP to compute P (li|vj), we use the image at node vj and caption prompts in the form of “This170

is a photo of a [li]”. The resulting probability P (li|vj), together with the inferred edges’ distances171

will be used to select the optimal walk in the graph.172

4.4 Graph Search for the Optimal Walk173

As described in Sec. 4.1, LM-Nav aims at finding a walk v̄ = (v1, v2, . . . , vT ) that maximizes174

the probability of successful execution that adheres to the given instructions. We formalized this175

probability PM defined by Eqn. 3. We can define a function R(v̄, t̄) for a monotonically increasing176

sequence of indices t̄ = (t1, t2, . . . , tn):177

R(v̄, t̄) :=

n∑
i=1

logP (li|vti)− α

T−1∑
j=1

D(vj , vj+1),whereα = − log γ. (4)

which has the property that (v̄) maximizes PM if and only if there exists t̄ such that v̄, t̄ maximizes178

R. In order to find such v̄, t̄, we employ dynamic programming. In particular we define a helper179

function Q(i, v) for i ∈ {0, 1, . . . , n}, v ∈ V :180

Q(i, v) = max
v̄=(v1,v2,...,vj),vj=v

t̄=(t1,t2,...,ti)

R(v̄, t̄). (5)

Q(i, v) represents the maximal value of R for a walk ending in v that visited the landmarks up to181

index i. The base case Q(0, v) visits none of the landmarks, and its value of R is simply equal to182

minus the length of shortest path from node S. For i > 0 we have:183

Q(i, v) = max

(
Q(i− 1, v) + logP (li|v), max

w∈neighbors(v)
Q(i, w)− α ·D(v, w)

)
. (6)

The base case for DP is to compute Q(0, V ). Then, in each step of DP i = 1, 2, . . . , n we compute184

Q(i, v). This computation resembles the Dijkstra algorithm ([65]). In each iteration, we pick the185

node v with the largest value of Q(i, v) and update its neighbors based on the Eqn. 6. Algorithm 1186

summarizes this search process. The result of this algorithm is a walk v̄ = (v1, v2, . . . , vT ) that187

maximizes the probability of successfully carrying out the instruction. Given such a walk, VNM188

can execute the path by using its action estimates to sequentially navigate to these nodes.189
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Figure 4: Qualitative examples of LM-Nav in real-world environments executing textual instructions (left).
The landmarks extracted by LLM (highlighted in text) are grounded into visual observations by VLM (center;
overhead image not available to the robot). The resulting walk of the graph is executed by VNM (right). LM-
Nav can follow instructions over 100s of meters and visits all specified landmarks except a fire hydrant (c).

5 System Evaluation190

Algorithm 1: Graph Search
1: Input: Landmarks (l1, l2, . . . , ln).
2: Input: Graph G(V,E).
3: Input: Starting node S.
4: ∀i=0,...,n

v∈V
Q[li, v] = −∞

5: Q[0, S] = 0
6: Dijkstra algorithm(G, Q[0, ∗])
7: for i in 1, 2, . . . , n do
8: ∀v∈V Q[i, v] = Q[i− 1, v] + CLIP(li, v)
9: Dijkstra algorithm(G, Q[i, ∗])

10: end for
11: destination = argmax(Q[n, ∗])
12: return backtrack(destination, Q[n, ∗])

We now describe our experiments191

deploying LM-Nav in a variety of192

outdoor settings to follow high-level193

natural language instructions with a194

small ground robot. For all experi-195

ments, the weights of LLM, VLM,196

and VNM are frozen — there is no197

fine-tuning or annotation in the tar-198

get environment. We evaluate the199

complete system, as well as the in-200

dividual components of LM-Nav, to201

understand its strengths and limita-202

tions. Our experiments demonstrate203

the ability of LM-Nav to follow high-204

level instructions, disambiguate paths, and reach goals that are up to 800m away.205

5.1 Mobile Robot Platform206

We implement LM-Nav on a Clearpath Jackal UGV platform (see Fig. 1(right)). The sensor suite207

consists of a 6-DoF IMU, a GPS unit for approximate localization, wheel encoders for local odom-208

etry, and front- and rear-facing RGB cameras with a 170◦ field-of-view for capturing visual obser-209

vations and localization in the topological graph. The LLM and VLM queries are pre-computed on210

a remote workstation and the computed path is commanded to the robot wirelessly. The VNM runs211

on-board and only uses forward RGB images and unfiltered GPS measurements.212

5.2 Following Instructions with LM-Nav213

In each evaluation scene, we first construct the graph by manually driving the robot and collecting214

image and GPS observations. The graph is constructed automatically using the VNM from this data,215

and in principle such data could also be obtained from past traversals, or even with autonomous216

exploration methods [45]. Once the graph is constructed, the robot can carry out instructions in that217

environment. We tested our system on a total of 5 queries (presented in Fig. 4,5), corresponding to218

a total combined length of about 2 km. Out of the 19 landmarks, LM-Nav correctly visited all but219

one. This mistake is attributed to the failure of detecting the landmark by the VLM (See Missing220

landmarks below). We did not observe any issues with LLM, VNM, or the graph search algorithm.221

Fig. 4 shows qualitative examples of the path taken by the robot, along with the number of landmarks222

that are visited successfully in the right order; note that the overhead image and spatial localization223
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LLM Candidate Parsing Success

Noun Chunks 0.79
GPT-2 [66] 0.48
GPT-J-6B [67] 0.70
GPT-3 [12] (Ours) 1.0

Table 1: GPT-3 consistently outperforms alternatives
in parsing free-form instructions into landmarks.

VLM Candidate Detection Rate

Faster-RCNN [68] 0.07
ViLD [36] 0.38
CLIP-ViT [13] (Ours) 0.87

Table 2: CLIP-ViT produces the most reliable
landmark detections from visual observations.

of the landmarks is not available to the robot and is shown for visualization only. In Fig. 4(a), LM-224

Nav is able to successfully localize the simple landmarks from its prior traversal and find a short225

path to the goal. While there are multiple stop signs in the environment, the objective in Eqn. 3226

causes the robot to pick the correct stop sign in context, so as to minimize overall travel distance.227

Fig. 4(b) highlights LM-Nav’s ability to parse complex instructions with multiple landmarks speci-228

fying the route — despite the possibility of a shorter route directly to the final landmark that ignores229

instructions, the robot finds a path that visits all of the landmarks in the correct order.230

Go straight toward the white 

building. Continue straight 

passing by a white truck until you 

reach a stop sign.

After passing a white building, 

take right next to a white truck. 

Then take left and go towards a 

square with a large tree. Go 

further, until you find a stop sign.

Start Goal Landmarks

Figure 5: LM-Nav can successfully disam-
biguate instructions with same start-goal loca-
tions that differ slightly, and execute them. Ex-
tracted landmarks and their corresponding lo-
cations are highlighted and marked with a pin,
respectively.

Disambiguation with instructions. Since the objec-231

tive of LM-Nav is to follow instructions, and not merely232

to reach the final goal, different instructions may lead233

to different traversals. Fig. 5 shows an example where234

modifying the instruction can disambiguate multiple235

paths to the goal. Given the shorter prompt (blue), LM-236

Nav prefers the more direct path. On specifying a more237

fine-grained route (magenta), LM-Nav takes an alter-238

nate path that passes a different set of landmarks.239

Missing landmarks. While LM-Nav is effective at240

parsing landmarks from instructions, localizing them241

on the graph, and finding a path to the goal, it relies242

on the assumption that the landmarks (i) exist in the243

environment, and (ii) can be identified by the VLM.244

Fig. 4(c) illustrates a case where the executed path fails245

to visit one of the landmarks — a fire hydrant — and246

takes a path that goes around the top of the building rather than the bottom. This failure mode is247

attributed to the the inability of the VLM to detect a fire hydrant from the robot’s observations. On248

independently evaluating the efficacy of our the VLM at retrieving landmarks (see Sec. 5.3), we249

find that despite being the best off-the-shelf model for our task, CLIP is unable to retrieve a small250

number of “hard” landmarks, including fire hydrants and cement mixers. In many practical cases,251

the robot is still successful in finding a path that visits the remaining landmarks.252

5.3 Dissecting LM-Nav253

To understand the influence of each of the components of LM-Nav, and to evaluate them against254

suitable baselines, we conduct experiments to evaluate these components in isolation. For more255

details about these experiments, see Appendix D.256

We evaluated the performance of different methods at extracting ordered list of landmarks given a257

free-form instruction. We compare GPT-3 used by LM-Nav to alternative pre-trained transformer258

models — GPT-2 [66] and GPT-J-6B [67] — and a simple baseline using spaCy NLP library [69]259

that extracts base noun phrases and filters out certain words (e.g.: you, right). We report the average260

number of correctly extracted landmarks in Table 1. GPT-3 significantly outperforms other models,261

owing to its superior capacity and in-context learning [70]. Surprisingly, noun chunking performs262

reliably in small, direct prompts (e.g. Fig. 4(a)). For further details on these experiments and prompt263

engineering for the models, see Appendix A.264

To evaluate the VLM’s ability to ground these textual landmarks in visual observations, we set up265

an object detection experiment. Given an unlabeled image from the robot’s on-board camera and a266
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set of textual landmarks, the task is to retrieve the corresponding label. We run this experiment on267

a set of 100 images from the environments discussed earlier, and a set of 30 commonly-occurring268

landmarks. These landmarks are a combination of the landmarks retrieved by the LLM in our269

experiments from Sec. 5.2 and manually curated ones. We report the detection successful if any270

of the top 3 predictions adhere to the contents of the image. We compare the retrieval success of271

our VLM (CLIP) with some credible object detection alternatives — Faster-RCNN-FPN [68, 71], a272

state-of-the-art object detection model pre-trained on MS-COCO [72, 73], and ViLD [36], an open-273

vocabulary object detector based on CLIP and Mask-RCNN [74]. To evaluate against the closed-274

vocabulary baseline, we modify the setup by projecting the landmarks onto the set of MS-COCO275

class labels. We find that CLIP outperforms baselines by a wide margin, suggesting that its visual276

model transfers very well to robot observations (see Table 2). Despite deriving from CLIP, ViLD277

struggles with detecting complex landmarks like “manhole cover” and “glass building”. Faster-278

RCNN is unable to detect common MS-COCO objects like “traffic light”, “person” and ”stop sign”,279

likely due to the on-board images being out-of-distribution for the model.280

Start Goal Collision

Figure 6: LM-Nav with a GPS-only con-
troller fails to execute a plan due to its inabil-
ity to reason about traversability through ob-
stacles.

To understand the importance of the VNM, we run an281

ablation experiment of LM-Nav without the navigation282

model. Using GPS-based distance estimates and a naı̈ve283

straight line controller between nodes of the topological284

graph. Fig. 6 shows that, while such a controller works285

well on open roads, it cannot reason about connectivity286

around buildings or obstacles, and results in collisions287

with a curb, a tree, and a wall in 3 individual attempts.288

This illustrates that using a learned policy and distance289

function from the VNM is critical for enabling LM-Nav290

to navigate in complex environments without collisions.291

6 Discussion292

We presented Large Model Navigation, or LM-Nav, a system for robotic navigation from textual293

instructions that can control a mobile robot without requiring any user annotations for navigational294

data. LM-Nav combines three pre-trained models: the LLM, which parses user instructions into a295

list of landmarks, the VLM, which estimates the probability that each observation in a “mental map”296

constructed from prior exploration of the environment matches these landmarks, and the VNM,297

which estimates navigational affordances (distances between landmarks) and robot actions. Each298

model is pre-trained on its own dataset, and we show that the complete system can execute a variety299

of user-specified instructions in real-world outdoor environments — choosing the correct sequence300

of landmarks through a combination of language and spatial context — and handle mistakes (such301

as missing landmarks). We also analyze the impact of each pre-trained model on the full system.302

Limitations and future work. The most prominent limitation of LM-Nav is its reliance on land-303

marks: while the user can specify any instruction they want, LM-Nav only focuses on the landmarks304

and disregards any verbs or other commands (e.g., “go straight for three blocks” or “drive past the305

dog very slowly”). Grounding verbs and other nuanced commands is an important direction for306

future work. Additionally, LM-Nav uses a VNM that is specific to outdoor navigation with the307

Clearpath Jackal robot. An exciting direction for future work would be to design a more general308

“large navigation model” that can be utilized broadly on any robot, analogous to how the LLM and309

VLM handle any text or image. However, we believe that in its current form, LM-Nav provides310

a simple and attractive prototype for how pre-trained models can be combined to solve complex311

robotic tasks, and illustrates that these models can serve as an “interface” to robotic controllers that312

are trained without any language annotations. One of the implications of this result is that further313

progress on self-supervised robotic policies (e.g., goal-conditioned policies) can directly benefit in-314

struction following systems. More broadly, understanding how modern pre-trained models enable315

effective decomposition of robotic control may enable broadly generalizable systems in the future,316

and we hope that our work will serve as a step in this direction.317
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A Prompt Engineering592

To use large language models for a particular task, as opposed to a general text completion, one593

needs to encode the task as a part of the text input to the model. There exist many ways to create594

such encoding and the process of the representation optimization is sometimes referred to as prompt595

engineering [13]. In this section, we discuss the prompts we used for LLM and VLM.596

A.1 LLM Prompt Engineering597

All our experiments use GPT-3 [12] as the LLM, accessible via OpenAI’s API:598

https://openai.com/api/. We used this model to extract a list of landmarks from free-599

form instructions. The model outputs were very reliable and robust to small changes in the input600

prompts. For parsing simple queries, GPT-3 was surprisingly effective with a single, zero-shot601

prompt. See the example below, where the model output is highlighted:602

First, you need to find a stop sign. Then take left and603

right and continue until you reach a square with a tree.604

Continue first straight, then right, until you find a white605

truck. The final destination is a white building.606

Landmarks:607

1. Stop sign608

2. Square with a tree609

3. White truck610

4. White building611

612

While this prompt is sufficient for simple instructions, more complex instructions require the model613

to reason about occurrences such as re-orderings, e.g. Look for a glass building after after you614

pass by a white car. We leverage GPT-3 ability to perform in-context learning [70] by adding three615

examples in the prompt, along with the word Ordered:616

Take right next to an old white building. Look for a fire617

station, which you will see after passing by a school.618
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Ordered landmarks:619

1. an old white building620

2. a school621

3. a fire station622

623

Go straight for two blocks. Take right at a roundabout,624

before it you will pass a big, blue tree.625

Ordered landmarks:626

1. a big, blue tree627

2. a roundabout628

629

Look for a library, after taking a right turn next to a630

statue.631

Ordered landmarks:632

1. a statue633

2. a library634

635

[Instructions]636

Ordered landmarks:637

1. ...638

We use the above prompt in all our experiments (Section 5.2 and Appendix B), and GPT-3 was639

successfully able to extract landmarks with a parsing success of 98%. For the ablation experiments640

described in Section 5.3 we have discovered that GPT-2 [66] and GPT-J-6B [67] work better with641

the first, zero-shot prompt.642

A.2 VLM Prompt Engineering643

In the case of our VLM— CLIP [13] — we use a simple family of prompts: This is a photo of ,644

appended with the landmark description. This simple prompt was sufficient to detect over 95% of645

the landmarks encountered in our experiments. While our experiments did not require more careful646

prompt engineering, Radford et al. [13] and Zeng et al. [43] report improved robustness by using an647

ensemble of slightly varying prompts.648

B Quantitative Analysis of LM-Nav’s Performance649

This section presents a quantitative analysis of LM-Nav’s performance in complex, real-world envi-650

ronments. Following the recipe outlined in Section 5.2, we evaluate our system in two environments651

of varying scale and complexity by providing 10 instructions in each of them. For instructions,652

we chose a set of prominent landmarks in the environment that can be identified from the robot’s653

low-resolution camera observations, e.g. traffic cones, cars, stop signs, etc.654

To better quantify the performance of LM-Nav, we introduce some performance metrics. A walk655

produced by the graph search is considered successful, if (1) it matches the path intended by the656

user or (2) if the landmark images extracted by the search algorithm indeed contain said landmarks657

(i.e. if the produced path is valid, if not identical). The fraction of successful walks produced by the658

search algorithm is defined as planning success. For a successfully executed plan in the real world,659

we define efficiency as:660

min(1,
length of described route
length of executed route

).

The second term — corresponding to the optimality of the executed route — is clipped at a maximum661

of 1 to account for occasional cases when the VNM executes a shorter, more direct path than the662

user intended. For a set of queries, we report the average efficiency over successful experiments.663
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Environment Expt. Length (m) Efficiency ↑ # Diseng. ↓ Planning Success ↑
EnvSmall-10 168.2 0.96 0.1 0.9
EnvLarge-10 470.4 0.89 0 0.8

Table 3: Quantifying navigational instruction following with LM-Nav over 20 experiments. LM-Nav can
successfully plan a path to the goal, and follow it efficiently, over 100s of meters.

System Net Success ↑ Efficiency ↑ # Diseng. ↓ Planning Success ↑
GPS-Nav (No VNM) 23% 0.93 0.75 90%
LM-Nav (Ours) 88% 0.91 0.1 90%

Table 4: Ablating the navigation model VNM, we see that a naı̈ve GPS low-level controller is unable to reason
about obstacles and traversability, frequently resulting in collisions or disengagements.

The planning efficiency is analogously defined as:664

min(1,
length of described route
length of planned walk

).

Yet another metric — the number of disengagements — counts the average number of human in-665

terventions required per experiment, due to unsafe maneuvers like collisions or falling off a curb,666

etc.667

Table 3 summarizes the quantitative performance of the system over 20 instructions. LM-Nav can668

consistently follow the instructions in 85% of the experiments, without collisions or disengagements669

(an average of 1 intervention per 6.4km of traversals). In all the unsuccessful experiments, the failure670

can be attributed to the inability of the planning stage — the search algorithm is unable to visually671

localize certain “hard” landmarks in the graph — leading to incomplete execution of the instructions.672

Investigating these failure modes suggests that the performance of our system is bottlenecked by the673

ability of VLM to detect unfamiliar landmarks, e.g. a fire hydrant, and in challenging lighting674

conditions, e.g. underexposed images.675

As a baseline, we also report these performance metrics with an ablation of our system that replaces676

the VNM with GPS-based distance estimates and a naı̈ve bee-lining controller (see Section 5.3 for677

further discussion on this ablation). Table 4 summarizes these results — without VNM’s ability678

to reason about obstacles and traversability, the system frequently runs into small obstacles such679

as trees and curbs, resulting in failure. LM-Nav can leverage the strengths of all three pre-trained680

models to successfully follow instructions over large distances without disengagements.681

C Building the Topological Graph with VNM682

This section outlines finer details regarding how the topological graph is constructed using VNM.683

We use a combination of learned distance estimates (from VNM), spatial proximity (from GPS),684

and temporal proximity (during data collection), to deduce edge connectivity. If the corresponding685

timestamps of two nodes are close (< 2s), suggesting that they were captured in quick succession,686

then the corresponding nodes are connected — adding edges that were physically traversed. If the687

VNM estimates of the images at two nodes are close, suggesting that they are reachable, then the688

corresponding nodes are also connected — adding edges between distant nodes along the same689

route and giving us a mechanism to connect nodes that were collected in different trajectories or690

at different times of day but correspond to the nearby locations. To avoid cases of underestimated691

distances by the model due to aliased observations, e.g. green open fields or a white wall, we692

filter out prospective edges that are significantly further away as per their GPS estimates — thus,693

if two nodes are nearby as per their GPS, e.g. nodes on different sides of a wall, they may not be694

disconnected if the VNM does not estimate a small distance; but two similar-looking nodes 100s of695

meters away, that may be facing a white wall, may have a small VNM estimate but are not added to696
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the graph to avoid wormholes. Algorithm 2 summarizes this process — the timestamp threshold ϵ is697

1 second, the learned distance threshold τ is 80 time steps (corresponding to ∼ 20 meters), and the698

spatial threshold η is 100 meters.699

Algorithm 2: Graph Building
1: Input: Nodes ni, nj ∈ G containing robot observations; VNM distance function fd;

hyperparameters {τ, ϵ, η}
2: Output: Boolean eij corresponding to the existence of edge in G, and its weight
3: learned distance Dij = fd(ni[‘image’], nj [‘image′])
4: timestamp distance Tij = |ni[‘timestamp’]− nj [‘timestamp’]|
5: spatial distance Xij = ∥ni[‘GPS’]− nj [‘GPS’])∥
6: if ( Tij < ϵ) then return {True, Dij}
7: else if (Dij < τ ) AND (Xij < η) then return {True, Dij}
8: else return False

Since a graph obtained by such an analysis may be quite dense, we perform a transitive reduction700

operation on the graph to remove redundant edges.701

D Miscellaneous Ablation Experiments702

D.1 Ablating the Search Objective703

The graph search objective described in Section 4.4 can be factored into two components: visiting704

the required landmarks (denoted by Pl(v̄|l̄)) and minimizing distance traveled (denoted by Pt(v̄)).705

To analyze the importance of these two components, we ran a set of experiments where the nodes706

to be visited are selected based only on Pl. This corresponds to a Max Likelihood planner, which707

only picks the most likely node for each landmark, without reasoning about their relative topological708

positions and traversability. This approach leads to a simpler algorithm: for each of the landmark709

descriptions, the algorithm selects the node with the highest CLIP score and connects it via the710

shortest path to the current node. The shortest path between each pair of nodes is computed using711

the Floyd–Warshall algorithm.712

Table 5 summarizes the performance metrics for the two planners. Unsurprisingly, the max likeli-713

hood planner suffers greatly in the form of efficiency, because it does not incentivize shorter paths714

(see Figure 7 for an example). Interestingly, the planning success suffers as well, especially in715

complex environments. Further analysis of these failure modes reveals cases where VLM returns716

erroneous detections for some landmarks, likely due to the contrastive objective struggling with717

variable binding (see Figure 8 for an example). While LM-Nav suffers from these failures as well,718

the second factor in the search objective Pt(v̄) imposes a soft constraint on the search space of the719

landmarks, eliminating most of these cases and resulting in a significantly higher planning success720

rate.721

EnvSmall-10 EnvLarge-10
Planner Pl. Success ↑ Pl. Efficiency ↑ Pl. Success ↑ Pl. Efficiency ↑
Max Likelihood 0.6 0.69 0.2 0.17
LM-Nav 0.9 0.80 0.8 0.99

Table 5: Comparison of the planning success and planning efficiency of LM-Nav and its modification selecting
nodes only based on the best CLIP score.
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Figure 7: Examples of path planned by LM-Nav (left) and maximum likelihood planning (right). The start
nodes and detected nodes are indicated with black arrows. In order to represent overlapping paths, we use
colors interchangeably (start → L1: blue, L1 → L2: orange, L2 → L3: blue). The path taken by LM-Nav is
significantly shorter, resulting in a 5× more efficient plan.

Figure 8: An example of failure to pick the correct image by maximum likelihood planning. Both images
were selected for a prompt A photo of a blue dumpster. The left one was selected as a part of the LM-Nav’s
graph search and the right was selected by maximum likelihood planning. In the latter case, the selected image
contains a blue semi-truck and an orange trailer, but no blue dumpsters. This might be an example of an issue
with the variable binding. The left image was edited to maintain anonymity.

E Interim Code Release722

We are sharing the code corresponding to the LLM interface, VLM scoring, and graph search723

algorithm — along with a user-friendly Jupyter notebook capable of running quantitative exper-724

iments from Section B. The code is available in the supplemental material (please see folder725

lmnav code release/). Due to upload size constraints, the pickled graph objects can be found726

at our project page: https://sites.google.com/view/lmnav-anon.727

F Experiment Videos728

We are sharing experiment videos of LM-Nav deployed on a Clearpath Jackal mobile robotic plat-729

form — please see lmnav video.mp4 in the supplemental material. The videos highlight the behav-730

ior learned by LM-Nav for the task of following free-form textual instructions and its ability to navi-731

gate complex environments and disambiguate between fine-grained commands. A higher resolution732

video is also available at the project page: https://sites.google.com/view/lmnav-anon.733
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