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ABSTRACT

Computational models that accurately identify high-affinity protein-chemical
pairs can accelerate drug discovery pipelines. These models, trained on available
protein-chemical interaction datasets, can be used to predict the binding affin-
ity of an input protein-chemical pair. However, the training datasets may con-
tain surface patterns, or dataset biases, such that the models memorize dataset-
specific biomolecule properties instead of learning affinity prediction rules. As
a result, the prediction performance of models drops for unseen biomolecules.
Here, we present DebiasedDTA, a novel drug-target affinity (DTA) prediction
model training framework that addresses dataset biases to improve affinity pre-
diction for novel biomolecules. DebiasedDTA uses ensemble learning and sample
weight adaptation to identify and avoid biases and is applicable to most DTA
prediction models. The results show that DebiasedDTA can boost models while
predicting the interactions between unseen biomolecules. In addition, prediction
performance for seen biomolecules also improves when the surface patterns are
debiased. The experiments also show that DebiasedDTA can avoid biases of dif-
ferent sources and augment DTA prediction models of different input and model
structures. An open-source python package, pydta, is published to facilitate the
adoption of DebiasedDTA by future DTA prediction studies. Out-of-the-box, py-
dta allows debiasing custom DTA prediction models with only two lines of code
and eliminates two sources of bias. pydta is designed to be the go-to library for
model debiasing in the field of computational drug discovery.

1 INTRODUCTION

The first step toward drug discovery is to identify high affinity protein-chemical pairs. However,
the number of possible protein-chemical combinations makes this task a “needle in the haystack”
problem (∼560K proteins in UniProt (Apweiler et al., 2004) and ∼2.1M chemicals in ChEMBL
(Davies et al., 2015)). This is where drug-target affinity (DTA) prediction models come into play;
they can rapidly identify high-affinity protein-chemical pairs in the combination space after learning
generalizable affinity prediction rules from large interaction datasets.

The interaction datasets report affinity measurements for millions of protein-chemical pairs and
stand as invaluable resources to learn rules of affinity prediction. However, they also contain spuri-
ous patterns that can misguide the learning (Chaput et al., 2016; Wallach & Heifets, 2018; Sieg et al.,
2019; Yang et al., 2020; Scantlebury et al., 2020). For instance, a single atom may be separating
actives and inactives of a target (Bietz et al., 2015) and the prediction models can learn to predict in-
teraction strength through that atom exclusively, instead of learning generalizable affinity prediction
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rules. Consequently, models struggle to estimate the binding affinity between unseen biomolecules,
for which the learned shortcuts are unavailable (Chen et al., 2019; Tran-Nguyen et al., 2020; Yang
et al., 2020; Boyles et al., 2020; Özçelik et al., 2021). These dataset shortcuts are the dataset biases
and form a major problem to discover drugs for rare diseases or to identify novel chemical moieties
to which proteins have not yet acquired resistance.

To the best of our knowledge, there is no study with a focus on boosting drug-target affinity pre-
diction on novel biomolecules. Recent works studied the generalizability problem in a similar task,
drug-target interaction prediction. They focused on the datasets and designed train-test splits with
dissimilar biomolecules so that the training set biases are less rewarding on the test set (Wallach
& Heifets, 2018; Tran-Nguyen et al., 2020). However, counter to the aim, these “dataset-oriented”
approaches introduced the risk of degrading model generalizability and inaccurate estimation of
dissimilar test set performance (Sundar & Colwell, 2019). Furthermore, their use in the affinity pre-
diction task would require non-trivial adaptations, as they exploit the two-class structure (active or
inactive) in the drug-target interaction task.

An alternative perspective to cope with biases and improve model generalizability is to focus on the
prediction models instead of datasets. This “model-oriented” perspective is free from the limitations
of the task and has been recently successfully used in natural language processing (Clark et al., 2020;
Sanh et al., 2021; Utama et al., 2020), computer vision (Bissoto et al., 2020; Majumdar et al., 2021),
as well as for structure-based virtual screening (Scantlebury et al., 2020). Unfortunately, the impact
of the model-oriented perspective on computational drug discovery was limited by the number of
available 3D structures (Scantlebury et al., 2020).

In this paper, we propose DebiasedDTA, a novel model training framework to address dataset biases
and boost the generalizability of DTA prediction models. DebiasedDTA adopts the model-oriented
perspective and, unlike the dataset-oriented approaches proposed for drug-target interaction predic-
tion, it is applicable to datasets with continuous and discrete labels without requiring modifications.
In addition, DebiasedDTA can be used to debias DTA prediction models with any biomolecule rep-
resentation and finds a wider application range than 3D-structure based approaches.

DebiasedDTA ensembles a “guide” and a “predictor” to train debiased DTA prediction models.
The guide quantifies a particular type of training set bias and prepares a debiasing roadmap for the
predictor. The predictor utilizes the roadmap in order to adapt the sample weights during training to
avoid biases and to achieve higher generalizability on novel biomolecules.

We test DebiasedDTA with two guides on different bias sources and with three predictors to eval-
uate across biomolecule representations. Experiments on two datasets and ten test sets show that
the proposed approach is robust to different bias sources and can boost prediction performance of
DTA models with different drug-target representations. Noteworthy, the improvement is not only
observed for novel biomolecules but also for the seen ones.

DebiasedDTA is a novel approach that boosts the generalizability of DTA prediction models. Using a
model-oriented perspective and a biomolecule representation independent sample weight adaptation
strategy, DebiasedDTA can be adopted to enhance the prediction performance of any DTA prediction
model that allows sample weighting.

2 DEBIASEDDTA

DebiasedDTA is a model debiasing framework to boost drug-target affinity prediction on novel
biomolecules and consists of two DTA prediction models, the guide and the predictor. The guide
aims to identify dataset biases only, and thus uses biomolecule representations that target a specific
bias source in the dataset. When the guide is trained on the training set, it prepares a training
roadmap for the predictor and the predictor follows the roadmap to drive its training away from
dataset biases; towards generalizable information. The debiased model is used standalone to predict
the affinity between target protein-chemical pairs. Figure 1 illustrates the DebiasedDTA training
framework.
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Figure 1: DebiasedDTA. DebiasedDTA training framework boosts the generalizability of DTA pre-
diction models on novel biomolecules by driving them away from spurious dataset patterns called
dataset biases. In DebiasedDTA, the guide models adopt biomolecule representation schemes to
identify the training samples that contain targeted biasing patterns. Here, we target bimolecular
word and identity-driven biases with BoW-DTA and ID-DTA models. The guides are trained on
the training protein-chemical pairs with 10-fold cross validation and median squared error of each
training sample is calculated. The predictors use these errors to prioritize training samples and at-
tribute more importance to the instances that challenge the guides. The biomolecule representation
of the predictors can take any form and we experiment with three models, DeepDTA, BPE-DTA,
and LM-DTA. The experiments show that all models leverage DebiasedDTA training framework to
boost their performance on unseen biomolecules.

2.1 THE GUIDE

The guides in DebiasedDTA are designed to learn merely dataset biases and should have limited
learning capacity. So, we design two weak learners with simple biomolecule representations to
identify different bias sources: an identifier-based model (ID-DTA) and a biomolecule word-based
model (BoW-DTA). ID-DTA is motivated by the fact that mere use of random biomolecule identi-
fiers can produce high-achieving models for similar test sets (Özçelik et al., 2021), and thus, can be
a strong bias source. ID-DTA featurizes the interactions by concatenating the one-hot encoded vec-
tors of chemicals and proteins. BoW-DTA, on the other hand, bases on natural language inference
studies in which the use of certain words in a sentence produces a strong bias with its semantic label
(Gururangan et al., 2018; Poliak et al., 2018). Here, we investigate a similar bias in biomolecular se-
quences and create BoW-DTA. BoW-DTA represents the proteins and chemicals with bag-of-words
vectors and concatenates their vectors to represent the interaction.

BoW-DTA segments the biomolecule sequences into their words via BPE vocabularies and this
might create an inconsistency between BoW-DTA and the predictor, if the predictor uses different
vocabularies. So, we fork BoW-DTA and create BoW-LM-DTA to use with LM-DTA, a predic-
tor introduced in Section 2.2, which has different vocabularies. BoW-LM-DTA adopts the same
word segmentation strategy as LM-DTA and same vectorization method as BoW-DTA. ID-DTA,
BoW-DTA, BoW-LM-DTA use decision tree regression for prediction, as decision trees have lim-
ited learning capacity and yet are effective to learn spurious patterns.

We adopt 5-fold cross-validation to quantify dataset biases with the guides. First, we randomly
divide the training set into five folds and construct five different mini-training and mini-validation
sets. We train the guide on each mini-training set and compute the squared errors of its predictions
on the corresponding mini-validation set. One run of cross-validation yields one squared-error mea-
surement per protein-chemical pair as each pair is placed in the mini-validation set exactly once.
In order to better estimate the performance on each sample, we run the 5-fold cross-validation 10
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times and obtain 10 error measurements per sample. We compute the median of the 10 squared
errors and name it as the “importance coefficient” of a protein-chemical pair. If the affinity of pair
is easily predictable via exploiting dataset biases, i.e. the guide has a low prediction error, then the
pair might contain biasing patterns for DTA prediction models and has a low importance coefficient.
Otherwise, the pair is more likely to contain generalizable information about binding affinity and
has a high importance coefficient. The importance coefficients guide the training of the predictor.

2.2 THE PREDICTOR

In DebiasedDTA training framework, the predictor is the model to debias and use on the target
protein-chemical pairs. The predictor is free to adopt any biomolecule representation, but have to
be able to weight the training samples during training to comply with the weight adaptation strategy
proposed in DebiasedDTA.

The proposed strategy initializes the training sample weights to 1 and updates them at each epoch
such that the weight of each training sample converges to its importance coefficient at the last epoch.
When trained with this strategy, the predictor attributes more importance to samples with less bias-
ing patterns as the learning continues, that is the bias in the model decays over time. Our weight
adaptation strategy is formulated in Equation 1.

w⃗e = (1− e

E
) + i⃗× e

E
(1)

where we is the vector of training sample weights at epoch e, E is the number of training epochs,
and i⃗ is the importance coefficients vector. Here, e/E increases as the training continues, and so
does the impact of i⃗ on the sample weights. This ensures that the importance of samples with less
biasing patterns is increased towards the end of training.

We implement three drug-target affinity prediction models to observe the performance of Debi-
asedDTA training framework with different predictors. The first one is DeepDTA (Öztürk et al.,
2018), an influential affinity prediction model that uses SMILES strings of chemicals and amino-
acid sequences of proteins to represent biomolecules. DeepDTA applies three layers of character-
level convolutions over input sequences and uses a three-layered fully-connected neural network for
prediction. Here, we slightly modify DeepDTA and treat chemical groups in the SMILES strings
([OH], [COH], [COOH] etc.) as a single token, while the original DeepDTA processes these groups
as character-by-character, too.

In the second model, we alter DeepDTA to use biomolecular word-level convolutions, where the
words are identified via BPE algorithm and name the resulting model BPE-DTA. We experiment
with BPE vocabulary sizes of 8K, 16K, and 32K for SMILES and protein sequences and pick the
combination of 8K-32K as it yields the highest scores on datasets of our previous studies (Özçelik
et al., 2021). We report the results for all vocabulary combinations in our GitHub repository for
completeness.

Third, we utilize ChemBERTa (Chithrananda et al., 2020) and ProtBERT (Elnaggar et al., 2020) to
create another drug-target affinity prediction model, LM-DTA. LM-DTA vectorizes SMILES and
amino-acid sequences via the language models and concatenates their vectors to represent the inter-
action. Finally, LM-DTA uses a two-layered fully connected neural network for prediction.

3 EXPERIMENTAL SETUP

3.1 DATASETS

We test DebiasedDTA on BDB (Özçelik et al., 2021) and KIBA (Tang et al., 2014) datasets. KIBA
contains 118K affinity measurements of 229 kinase family proteins and 2111 chemicals, such that
the affinities are reported in terms of KIBA score. KIBA score combines different measurement
sources such as Kd, IC50, and Ki, and ranges from 1.3 to 17.2 in the dataset, the latter denoting a
higher binding affinity.
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BDB is a dataset filtered from BindingDB database (Liu et al., 2007) and comprises 31K bind-
ing affinity measurements of 490 proteins and 924 chemicals. The binding affinities are recorded
in terms of pKd (Özçelik et al., 2021), which correlates positively with the binding strength and
changes between 1.6 and 13.3 in the dataset. Protein diversity is higher in BDB than KIBA as it
contains fewer interactions, but more proteins from different families.

3.2 EXPERIMENTAL SETTINGS

We create five distinct train-test setups per dataset to evaluate the models. To create different setups,
we cluster the proteins and chemicals in the datasets and randomly divide the clusters into two as
“warm” and “cold”. We interpret the warm clusters as already known biomolecules and the cold
clusters as novel biomolecules. The dissimilarity of known and novel biomolecules is enforced by
the clustering-based split.

To produce training and test sets from warm and cold biomolecule clusters, we first filter the inter-
actions between proteins and chemicals in the warm clusters. We use these interactions mainly as
the training set, but also separate small subsets as “validation” and “warm test” sets. The validation
fold is used to tune model hyper-parameters, whereas the warm test set is to evaluate models on the
interactions between known biomolecules.

We create two more test sets called “cold chemical” and “cold protein”, where the cold chemical
test set consists of the interactions between chemicals in the cold cluster and proteins in the warm
cluster. This test set is used to measure model performance in the scenarios in which new drugs are
searched to target existing proteins. The cold protein test set is created similarly and used to evaluate
models in the scenarios where existing drugs are searched to target a novel protein.

Last, we create a “cold both” test set, that is the set of interactions between the proteins and chemi-
cals in the cold clusters. This is the most challenging test set of every setup, as both the proteins and
the chemicals are unavailable in the training set.

To tune the hyper-parameters, we train models on the training set of each setup and measure the
performance on the corresponding validation set. We pick the hyper-parameter combination that
scores the lowest validation average mean squared error to predict the test set interactions.

3.3 EVALUATION METRICS

We evaluate DebiasedDTA models with two metrics, concordance index (CI) (Gönen & Heller,
2005) and R2. We use CI in order to evaluate the consistency of the predicted binding affinity
ranking of protein-chemical pairs with the expected one. Evaluating a ranking, CI is independent of
the output range and allows comparisons across datasets. CI is expected to be around 0.5 for random
predictions and reaches 1 when two rankings match exactly.

We also calculate R2, a regression metric that measures how much of the variance in the expected
labels is explained by the predictions. R2 is 0 when all predictions are equal to mean of labels and
equals to 1 when labels and predictions are the same. We use its scikit-learn (Pedregosa et al.,
2011) implementation.

4 RESULTS

We debias three DTA prediction models, namely DeepDTA, BPE-DTA, and LM-DTA with two de-
biasing approaches, BoW-DTA and ID-DTA, on BDB and KIBA datasets in DebiasedDTA training
framework and report CI and R2 on the test sets in Table 1.

The Overall Gain of Debiasing We first examine the performance boost due to DebiasedDTA
and compare the best DebiasedDTA score on each setup with no debiasing score. Table 2 reports
the percent increase in CI and absolute increase in R2 thanks to debiasing.

Table 2 demonstrates that in 17 of 24 (∼71%) evaluation setups, at least one model trained in De-
biasedDTA outperforms the non-debiased counterpart, highlighting the strength of the proposed
training framework to boost DTA prediction performance. To show that the performance increase
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Table 1: The effect of debiasing on the model performance.

Warm Cold Chemical Cold Protein Cold Both
The Guide CI R2 CI R2 CI R2 CI R2

B
D

B

D
ee

pD
TA None 0.888 (0.009) 0.781 (0.028) 0.687 (0.096) 0.039 (0.243) 0.759 (0.006) 0.315 (0.049) 0.554 (0.047) -0.154 (0.164)

BoW-DTA 0.899 (0.004) 0.799 (0.013) 0.698 (0.037) 0.043 (0.108) 0.777 (0.014) 0.351 (0.090) 0.568 (0.044) -0.092 (0.132)
ID-DTA 0.898 (0.005) 0.804 (0.011) 0.693 (0.058) 0.026 (0.109) 0.771 (0.007) 0.339 (0.067) 0.585 (0.040) -0.128 (0.056)

B
PE

-D
TA None 0.883 (0.006) 0.774 (0.013) 0.657 (0.083) -0.143 (0.202) 0.653 (0.060) -0.256 (0.411) 0.522 (0.054) -0.442 (0.349)

BoW-DTA 0.888 (0.008) 0.781 (0.016) 0.687 (0.082) -0.091 (0.302) 0.664 (0.067) -0.386 (0.593) 0.568 (0.084) -0.334 (0.347)
ID-DTA 0.891 (0.005) 0.777 (0.019) 0.692 (0.065) -0.045 (0.252) 0.650 (0.039) -0.689 (0.476) 0.565 (0.090) -0.426 (0.231)

L
M

-D
TA

None 0.876 (0.005) 0.745 (0.011) 0.688 (0.046) -0.027 (0.175) 0.780 (0.016) 0.384 (0.083) 0.572 (0.028) -0.226 (0.205)
BoW-DTA 0.882 (0.006) 0.762 (0.003) 0.688 (0.069) -0.005 (0.169) 0.781 (0.017) 0.386 (0.081) 0.563 (0.032) -0.182 (0.136)
ID-DTA 0.883 (0.006) 0.758 (0.003) 0.683 (0.067) -0.016 (0.270) 0.782 (0.017) 0.387 (0.080) 0.581 (0.017) -0.198 (0.174)
BoW-LM-DTA 0.884 (0.009) 0.761 (0.008) 0.662 (0.074) -0.096 (0.227) 0.784 (0.016) 0.395 (0.078) 0.548 (0.033) -0.244 (0.137)

K
IB

A

D
ee

pD
TA None 0.873 (0.005) 0.756 (0.021) 0.753 (0.018) 0.337 (0.081) 0.719 (0.029) 0.330 (0.109) 0.654 (0.019) 0.087 (0.099)

BoW-DTA 0.888 (0.005) 0.775 (0.019) 0.761 (0.004) 0.349 (0.046) 0.713 (0.036) 0.308 (0.115) 0.639 (0.028) 0.045 (0.147)
ID-DTA 0.887 (0.006) 0.775 (0.018) 0.761 (0.020) 0.350 (0.101) 0.725 (0.038) 0.333 (0.124) 0.660 (0.034) 0.084 (0.195)

B
PE

-D
TA None 0.881 (0.005) 0.760 (0.016) 0.735 (0.025) 0.274 (0.105) 0.680 (0.020) 0.185 (0.077) 0.605 (0.033) -0.006 (0.117)

BoW-DTA 0.891 (0.003) 0.774 (0.016) 0.736 (0.018) 0.231 (0.093) 0.679 (0.030) 0.174 (0.103) 0.604 (0.017) -0.046 (0.082)
ID-DTA 0.893 (0.003) 0.776 (0.012) 0.736 (0.021) 0.229 (0.099) 0.684 (0.023) 0.179 (0.060) 0.590 (0.014) -0.037 (0.079)

L
M

-D
TA

None 0.858 (0.005) 0.756 (0.012) 0.749 (0.012) 0.409 (0.067) 0.713 (0.049) 0.366 (0.137) 0.650 (0.041) 0.107 (0.122)
BoW-DTA 0.865 (0.005) 0.769 (0.013) 0.756 (0.013) 0.435 (0.064) 0.717 (0.051) 0.382 (0.139) 0.653 (0.028) 0.159 (0.121)
ID-DTA 0.864 (0.006) 0.767 (0.014) 0.759 (0.011) 0.436 (0.056) 0.718 (0.053) 0.385 (0.143) 0.652 (0.036) 0.151 (0.126)
BoW-LM-DTA 0.864 (0.005) 0.768 (0.012) 0.758 (0.010) 0.441 (0.055) 0.719 (0.054) 0.382 (0.145) 0.646 (0.032) 0.139 (0.115)

due to DebiasedDTA is statistically significant, we conduct a one-sided one-sample t-tests with the
null hypotheses that mean CI and R2 gains are 0. The statistical tests result in the rejection of the
null hypothesis with p-value < 0.01, suggesting that DebiasedDTA boosts prediction performance
in general, with 99% significance.

The improvement in performance due to debiasing is more evident in the cold test sets of BDB,
because BDB is a more diverse dataset than KIBA. Since the BDB biomolecules are more diverse,
the training biases are less applicable to the unknown test biomolecules and their elimination boosts
the DTA prediction performance more than KIBA.

Table 2 also highlights that, training models in DebiasedDTA improves the performance on ev-
ery warm test set, though it is mainly designed to boost DTA prediction on novel biomolecules.
This shows that eliminating the training set biases helps models to better represent the known
biomolecules, too.

Finally, Table 2 shows that debiasing improves the performance of all affinity prediction models in
the study on at least one test setup. This emphasizes that DTA prediction models are susceptible
to dataset biases irrespective of their input representation and the proposed training framework is
powerful and abstract enough to eliminate biases in different biomolecule representation settings.

Effect of The Guides We investigate the effect of the guide selection in DebiasedDTA on the
affinity prediction performance by comparing BoW-DTA models with ID-DTA. For BDB, models
debiased with BoW-DTA yield higher scores in both metrics in 5 cases and ID-DTA based models
outperform BoW-DTA 2 times in terms of CI and R2. 5 out of 12 times, no guide can outscore the
other in both metrics.

On KIBA, ID-DTA achieves higher CI and R2 than BoW-DTA in 7 cases whereas BoW-DTA out-
performs ID-DTA 4 times in terms of both metrics. The higher performance of ID-DTA on KIBA
compared to BDB (7 wins vs. 2 wins) suggests that biomolecule identities cause more bias in this
dataset. We relate this with the fact that KIBA contains more interactions per biomolecule and thus
the models can infer more information about the biomolecule identities from the training set. In
total, both guides outperform the other 9 times, indicating that the performance of ID-DTA and
BoW-DTA is comparable to each other and both chemical word based and identity based biases are
prevalent in the datasets.

Last, we examine the effect of using the same biomolecule vocabularies in the guide and predictor by
comparing BoW-DTA and BoW-LM-DTA. BoW-LM-DTA, which uses the same vocabulary as LM-
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Table 2: The gain of debiasing. The percentile improvement in CI and increase in R2 are displayed
for each model on every test set. The statistics are computed by comparing the best DebiasedDTA
score with the non-debiased one. Negative statistics are reported if the non-debiased model outper-
forms every debiasing configuration.

Warm Cold Ligand Cold Protein Cold Both
Model CI R2 CI R2 CI R2 CI R2

B
D

B DeepDTA 1.239% 0.023 1.601% 0.004 2.372% 0.036 5.596% 0.062
BPE-DTA 0.906% 0.007 5.327% 0.098 1.685% -0.141 8.812% 0.108
LM-DTA 0.913% 0.017 0.000% 0.022 0.513% 0.011 1.573% 0.044

K
IB

A DeepDTA 1.718% 0.019 1.062% 0.013 0.834% 0.003 0.917% -0.003
BPE-DTA 1.362% 0.017 0.136% -0.045 0.588% -0.006 -1.157% -0.031
LM-DTA 0.816% 0.013 1.335% 0.032 0.842% 0.019 0.462% 0.052

DTA, outperforms BoW-DTA based models on only 2 of 8 setups in Table 1, whereas BoW-DTA
outscores BoW-LM-DTA on 4 setups. This shows that the guide and the predictor architectures do
not have to be similar for a cohesive learning. Because, once the guides quantify the dataset biases,
the predictors acquire all the information they need for weight adaptation – they become indifferent
to the underlying computation.

5 PYDTA: DEBIASING DRUG-TARGET AFFINITY PREDICTION IN PYTHON

DebiasedDTA boosts every predictor designed in this study with its low-cost guides and widely-
adoptable weight adaptation strategy. Its effectiveness, low training overhead, and compatibility
with most DTA prediction models promise that it can be a standard approach to train DTA prediction
models. We present a pip-installable python package, pydta, that can be used to train DTA models
within the DebiasedDTA framework with only a couple of lines of code.

pydta adopts object oriented programming to offer a simple and intuitive interface to use Debiased-
DTA. DebiasedDTA is a class in pydta and requires a guide definition, a predictor definition, and
a dictionary of predictor construction parameters for initialization. BoW-DTA and ID-DTA are al-
ready available as guide models in pydta and custom DTA prediction models can easily use these
guides to improve their performance.

To use DebiasedDTA, pydta enforces the custom prediction model to be implemented as a class
which has an n epochs attribute and a train method with arguments training chemicals, train-
ing proteins, training labels, and sample weights by epoch. DebiasedDTA imposes no restriction
on the inner-workings of the train function and the content of the arguments. Code 1 displays the
template to debias a custom DTA prediction model with ID-DTA and more examples are available
in the pydta repository.

6 CONCLUSION

Dataset bias is a major hurdle on the path to develop robust and generalizable ML models and one
approach is to obtain a sampling from all knowledge space. However, protein-chemical interaction
space is not sampled evenly, either because some protein targets are privileged due to their asso-
ciation with certain disease states, or because some chemicals or chemical moieties are privileged
due to their relatively easier synthesis, or because the study of some interactions is experimentally
infeasible. As some proteins or chemicals are over-represented, machine learning models tend to
overfit and memorize these patterns and perform well when the training and test sets are similar to
each other. However, it is difficult to learn generalizable patterns about protein-chemical interac-
tions and machine learning methodologies fail when they are tasked with predictions about unseen
biomolecules. In this work, we propose DebiasedDTA, a novel training framework that boosts the
performance of DTA prediction methods both on known and unknown biomolecules. The perfor-
mance improvement is observed for similar and distant test sets and underlines the value of Debi-
asedDTA.
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from p y d t a . models import IDDTA , DebiasedDTA

c l a s s CustomDTAModel :
# The c o n s t r u c t o r can have o t h e r argument s and / or t h e c l a s s

have o t h e r a t t r i b u t e s .
def i n i t ( s e l f , n e p o c h s ) :

s e l f . n e p o c h s = n e p o c h s

# The l a s t argument w i l l be f i l l e d by DebiasedDTA .
def t r a i n ( s e l f , t r a i n c h e m i c a l s , t r a i n p r o t e i n s , t r a i n l a b e l s ,

s a m p l e w e i g h t s b y e p o c h ) :
pass

t r a i n c h e m i c a l s , t r a i n p r o t e i n s , t r a i n l a b e l s = [ . . . ] , [ . . . ] ,
[ . . . ]

d e b i a s e d d t a = DebiasedDTA (IDDTA , CustomDTAModel , p r e d i c t o r p a r a m s
={ ’ n e p o c h s ’ : 100} )

d e b i a s e d d t a . t r a i n ( t r a i n c h e m i c a l s , t r a i n p r o t e i n s , t r a i n l a b e l s )

Code 1: Debiasing a custom model in pydta.

DebiasedDTA owes the performance boost to the guides that are designed to identify specific types
of bias sources. Here, we experiment with biomolecule word and identity driven biases and find that
elimination of either of the two can improve prediction performance. We also find that DebiasedDTA
does not require a similarity in biomolecule representations of guides and predictors and can improve
predictors of diverse architectures. We publish DebiasedDTA as a python package to promote its
use to debias assorted predictors.

The predictors weight training samples for debiasing, which tunes the contribution of input features
to the predictions. We show that elimination of biomolecule word biases pushes the models to learn
more from the proteins and can reduce the effect of pharmacologically unimportant substructures to
the predictions.

Here, we present DebiasedDTA as a pioneering work toward overcoming dataset bias from the
model’s perspective and creating more generalizable DTA prediction models. Prioritization of in-
formative training samples, proposed in DebiasedDTA can also find applications in debiasing natural
language processing and computer vision models, where out-of-distribution generalization is also an
essential problem.
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