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ABSTRACT

Deep learning models have been widely used in commercial acoustic systems
in recent years. However, adversarial audio examples can cause abnormal be-
haviors for those acoustic systems, while being hard for humans to perceive.
Various methods, such as transformation-based defenses and adversarial train-
ing, have been proposed to protect acoustic systems from adversarial attacks,
but they are less effective against adaptive attacks. Furthermore, directly apply-
ing the methods from the image domain can lead to suboptimal results because
of the unique properties of audio data. In this paper, we propose an adversar-
ial purification-based defense pipeline, AudioPure, for acoustic systems via off-
the-shelf diffusion models. Taking advantage of the strong generation ability of
diffusion models, AudioPure first adds a small amount of noise to the adversar-
ial audio and then runs the reverse sampling step to purify the noisy audio and
recover clean audio. AudioPure is a plug-and-play method that can be directly
applied to any pretrained classifier without any fine-tuning or re-training. We
conduct extensive experiments on speech command recognition task to evaluate
the robustness of AudioPure. Our method is effective against diverse adversar-
ial attacks (e.g. L2 or L∞-norm). It outperforms the existing methods under
both strong adaptive white-box and black-box attacks bounded by L2 or L∞-
norm (up to +20% in robust accuracy). Besides, we also evaluate the certified ro-
bustness for perturbations bounded by L2-norm via randomized smoothing. Our
pipeline achieves a higher certified accuracy than baselines. Code is available at
https://github.com/cychomatica/AudioPure.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated great successes in different tasks in the audio do-
main, such as speech command recognition, keyword spotting, speaker identification, and automatic
speech recognition. Acoustic systems built by DNNs (Amodei et al., 2016; Shen et al., 2019) are
applied in safety-critical applications ranging from making phone calls to controlling household se-
curity systems. Although DNN-based models have exhibited significant performance improvement,
extensive studies have shown that they are vulnerable to adversarial examples (Szegedy et al., 2014;
Carlini & Wagner, 2018; Qin et al., 2019; Du et al., 2020; Abdullah et al., 2021; Chen et al., 2021a),
where attackers add imperceptible and carefully crafted perturbations to the original audio to mis-
lead the system with incorrect predictions. Thus, it becomes crucial to design robust DNN-based
acoustic systems against adversarial examples.

To address it, existing works (e.g., Rajaratnam & Alshemali, 2018; Yang et al., 2019) have tried to
leverage the temporal dependency property of audio to defend against adversarial examples. They
apply the time-domain and frequency-domain transformations to the adversarial examples to im-
prove the robustness. Although they can alleviate this problem to some extent, they are still vulner-
able against strong adaptive attacks where the attacker obtains full knowledge of the whole acoustic
system (Tramer et al., 2020). Another way to enhance the robustness against adversarial examples
is adversarial training (Goodfellow et al., 2015; Madry et al., 2018) that adversarial perturbations
have been added to the training stage. Although it has been acknowledged as the most effective
defense, the training process will require expensive computational resources and the model is still
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vulnerable to other types of adversarial examples that are not similar to those used in the training
process (Tramer & Boneh, 2019).

Adversarial purification (Yoon et al., 2021; Shi et al., 2021; Nie et al., 2022) is another family
of defense methods that utilizes generative models to purify the adversarial perturbations of the
input examples before they are fed into neural networks. The key of such methods is to design an
effective generative model for purification. Recently, diffusion models have been shown to be the
state-of-the-art models for images (Song & Ermon, 2019; Ho et al., 2020; Nichol & Dhariwal, 2021;
Dhariwal & Nichol, 2021) and audio synthesis (Kong et al., 2021; Chen et al., 2021b). It motivates
the community to use it for purification. In particular, in the image domain, DiffPure (Nie et al.,
2022) applies diffusion models as purifiers and obtains good performance in terms of both clean and
robust accuracy on various image classification tasks. Since such methods do not require training
the model with pre-defined adversarial examples, they can generalize to diverse threats. Given the
significant progress of diffusion models made in the image domain, it motivates us to ask: is it
possible to obtain similar success in the audio domain?

Unlike the image domain, audio signals have some unique properties. There are different choices
of audio representations, including raw waveforms and various types of time-frequency representa-
tions (e.g., Mel spectrogram, MFCC). When designing an acoustic system, some particular audio
representations may be selected as the target features, and defenses that work well on some features
may perform poorly on other features. In addition, one may think of treating the 2-D time-frequency
representations (i.e., spectrogram) as images, where the frequency-axis is set as height and the time-
axis is set as width, then directly apply the successful DiffPure (Nie et al., 2022) from the image
domain for spectrogram. Despite the simplicity, there are two major issues: i) the acoustic system
can take audio with variable time duration as the input, while the underlying diffusion model within
DiffPure can only handle inputs with fixed width and height. ii) Even if we apply it in a fixed-length
segment-wise manner for the time being, it still achieves the suboptimal results as we will demon-
strate in this work. These unique issues pose a new challenge of designing and evaluating defense
systems in the audio domain.

In this work, we aim to defend against diverse unseen adversarial examples without adversarial
training. We propose a play-and-plug purification pipeline named AudioPure based on a pre-trained
diffusion model by leveraging the unique properties of audio. In specific, our model consists of
two main components: (1) a waveform-based diffusion model and (2) a classifier. It takes the audio
waveform as input and leverages the diffusion model to purify the adversarial audio perturbations.
Given an adversarial input formatted with waveform, AudioPure first adds a small amount of noise
via the diffusion process to override the adversarial perturbations, and then uses the truncated reverse
process to recover the clean sample. The recovered sample is fed into the classifier.

We conduct extensive experiments to evaluate the robustness of our method on the task of speech
command recognition. We carefully design the adaptive attacks so that the attacker can accurately
compute the full gradients to evaluate the effectiveness of our method. In addition, we also com-
prehensively evaluate the robustness of our method against different black-box attacks and the Ex-
pectation Over Transformation (EOT) attack. Our method shows a better performance under both
white-box and black-box attacks against diverse adversarial examples. Moreover, we also evaluate
the certified robustness of AudioPure via randomized smoothing, which offers a provable guaran-
tee of model robustness against L2-based perturbation. We show that our method achieves better
certified robustness than baselines. Specifically, our method obtains a significant improvement (up
to +20% at most in robust accuracy) compared to adversarial training, and over 5% higher certified
robust accuracy than baselines. To the best of our knowledge, we are the first to use diffusion mod-
els to enhance the security of acoustic systems and investigate how different working domains of
defenses affect adversarial robustness.

2 RELATED WORK

Adversarial attacks and defenses. Szegedy et al. (2014) introduce adversarial examples, which
look similar to normal examples but will fool the neural networks to give incorrect predictions.
Usually, adversarial examples are constrained by Lp norm to ensure the imperceptibility. Recently,
stronger attack methods are emerging (Madry et al., 2018; Carlini & Wagner, 2017; Andriushchenko
et al., 2020; Croce & Hein, 2020; Xiao et al., 2018a;b; 2019; 2022b;a; Cao et al., 2019b;a; 2022a).
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Figure 1: The architecture of the whole acoustic system protected by AudioPure (black line in the figure) and
the adaptive attack (orange line in the figure). AudioPure first adds noise to the adversarial audio and then
runs the reverse process to recover purified audio. Next, the purified audio is transformed into the spectrogram,
and the spectrogram is fed into the classifier to get predictions. The attacker updates the adversarial audio
based on the gradients backpropagated through SDE. Without AudioPure , the adversarial audio transfers to
the spectrogram and feeds into the classifier directly.

In the audio domain, Carlini & Wagner (2018) introduce audio adversarial examples, and Qin et al.
(2019) manage to make them more imperceptible. Black-box attacks (Du et al., 2020; Chen et al.,
2021a) are also developed, aiming to mislead the end-to-end acoustic systems.

In order to protect neural networks from adversarial attacks, different defense methods are proposed.
The most widely used one is adversarial training (Madry et al., 2018), which deliberately uses adver-
sarial examples as the training data of neural networks. The main problems of adversarial training
are the accuracy drop of benign examples and the expensive computational cost. Many improved
versions of adversarial training aim to alleviate these problems (Wong et al., 2020; Shafahi et al.,
2019; Zhang et al., 2019b;a; Sun et al., 2021; Cao et al., 2022b; Zhang et al., 2019c). Another line of
work is adversarial purification (Yoon et al., 2021; Shi et al., 2021; Nie et al., 2022), which uses gen-
erative models to remove the adversarial perturbations before classification. Both of these two types
of defenses are mainly developed for computer vision tasks and cannot be directly applied to the
audio domain. In this paper, we explicitly design a defense pipeline according to the characteristics
of audio data.

Speech processing. Many speech processing applications are vulnerable to adversarial attacks,
including speech command recognition (Warden, 2018), keyword spotting (Chen et al., 2014; Li
et al., 2019), speaker identification (Reynolds et al., 2000; Ravanelli & Bengio, 2018; Snyder et al.,
2018), and speech recognition (Amodei et al., 2016; Shen et al., 2019; Ravanelli et al., 2019). In
particular, speech command recognition is closely related to keyword spotting, and can be viewed as
speech recognition with limited vocabulary. In this work, we choose speech command recognition
as the testbed for the proposed AudioPure pipeline. The proposed pipeline is applicable for keyword
spotting and speech recognition.

A speech command recognition system consists of a feature extractor and a classifier. The feature
extractor processes the raw audio waveforms and outputs acoustic features, e.g. Mel spectrograms
or Mel-frequency cepstral coefficients (MFCC). Then these features are fed into the classifier, and
the classifier gives predictions. Given the 2-D spectrogram features, convolutional neural networks
for images are readily applicable (Simonyan & Zisserman, 2015; He et al., 2016; Zagoruyko &
Komodakis, 2016; Xie et al., 2017; Huang et al., 2017).

3 METHOD

3.1 BACKGROUND OF DIFFUSION MODELS

A diffusion model normally consists of a forward diffusion process and a reverse sampling process.
The forward diffusion process gradually adds gaussian noise to the input data until the distribution
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of the noisy data converges to a standard Gaussian distribution. The reverse sampling process takes
the standard gaussian noise as input and gradually denoises the noisy data to recover clean data. At
present, diffusion models can be divided into two different types: discrete-time diffusion models
based on sequential sampling, such as SMLD Song & Ermon (2019), DDPM (Ho et al., 2020),
and DDIM (Song et al., 2021a), and continuous-time diffusion models based on SDEs (Song et al.,
2021c). Song et al. (2021c) also build the connection between these two types of diffusion models.

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) is one of the most widely used
diffusion models. Many of the subsequently proposed diffusion models, including DiffWave for
audio (Kong et al., 2021), are based on the DDPM formulation. In DDPM, both the diffusion and
reverse processes are defined by Markov chains. For input data x0 ∈ Rd, we denote x0 ∼ q(x0) as
the original data distribution, and x1, . . . ,xN are intermediate latent variables from the distributions
q(x1|x0), . . . , q(xN |xN−1), where N is the total number of steps. Generally, with a pre-defined
or learned variance schedule β1, . . . , βN (usually linearly increasing small constants), the forward
transition probability q(xn|xn−1) can be formulated as:

q(xn|xn−1) = N (xn;
√

1− βnxn−1, βnI), (1)

Based on the variance schedule {βn}, a set of constants is defined as:

αn = 1− βn, ᾱn =

N∏
n=1

αn, β̃n =

{
1−ᾱn−1

1−ᾱn
βn, n > 1
β1, n = 1

, (2)

and using the reparameterization trick, we have:

q(xn|x0) = N (xn;
√
ᾱnx0, (1− ᾱn)I) (3)

When n gradually gets larger to infinity, q(xn|x0) will converge to a standard Gaussian distribution.
Meanwhile, for the reverse process, we have:

xn−1 ∼ pθ(xn−1|xn) = N (xn−1;µθ(xn, n), σ
2
θ(xn, n)I), (4)

where the mean term µθ(xn, n) and the variance term σ2
θ(xn, n) is instantiated by parameter θ. Ho

et al. (2020); Kong et al. (2021) use a neural network ϵθ to define µθ, and σθ is fixed to a constant:

µθ(xn, n) =
1

√
αn

(
xn − βn√

1− ᾱn
ϵθ(xn, n)

)
, σθ(xn, n) =

√
β̃n. (5)

We denote xn(x0, ϵ) =
√
ᾱnx0 +

√
(1− ᾱn)ϵ, ϵ ∼ N (0, I), and the optimization objective is:

θ⋆ = argmax
θ

N∑
n=1

λnEx(0)

∥∥∥ϵ− ϵθ(
√
ᾱnx0 +

√
(1− ᾱn)ϵ, n)

∥∥∥2
2

(6)

where λn is the weighting coefficient (Ho et al., 2020).

According to Song et al. (2021c), as N → ∞, DDPM becomes VP-SDE, a continuous-time formu-
lation of diffusion models. Particularly, the forward SDE is formulated as:

dx = −1

2
β(t)xdt+

√
β(t)dw. (7)

where t ∈ [0, 1], dt is an infinitesimal positive time step, w is a standard Wiener process, β(t) is the
continuous-time noise schedule. Similarly, the reverse SDE can be defined as:

dx = −1

2
β(t)[x+ 2∇x log pt(x)]dt+

√
β(t)dw̄, (8)

where dt is an infinitesimal negative time step, and w̄ is a reverse-time standard Wiener process.

3.2 AUDIOPURE: A PLUG-AND-PLAY DEFENSE FOR ACOUSTIC SYSTEMS

To standardize the formulation of the defense, as suggested by Nie et al. (2022), we use the
continuous-time formulation defined by Eq. 7 and Eq. 8. Note that since the existing pretrained
DiffWave models (Kong et al., 2021) are based on DDPM, we will use their equivalent VP-SDE.
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If we use the Euler-Maruyama method to solve the VP-SDE and the step size ∆t = 1
N , the sampling

of the reverse-time SDE will be equivalent to the reverse sampling of DDPM (detailed proofs can be
found in Song et al. (2021c)). Under this prerequisite, we have t = n

N where n ∈ {1, . . . , N}. We
define β( n

N ) := βn, ᾱ( n
N ) := ᾱn, β̃( n

N ) := β̃n, and x( n
N ) := xn. Given an adversarial example

xadv as the input at t = 0, i.e. x0 = xadv , we first run the forward SDE from t = 0 to t⋆ = n⋆

N by
solving Eq. 7 (it is equivalent to running n∗ DPPM steps), which yields:

x(t⋆) =
√
ᾱ(t⋆)xadv +

√
1− ᾱ(t⋆)z, z ∼ N (0, I), (9)

Next, we run the truncated reverse SDE from t = t⋆ to t = 0 by solving Eq. 8. Similar to Nie et al.
(2022), we define an SDE solver sdeint that uses the Euler-Maruyama method, and sequentially
takes in six inputs: initial value, drift coefficient, diffusion coefficient, Wiener process, initial time,
and end time. The reverse output x̂(0) at t = 0 can be formulated as:

x̂(0) = sdeint(x(t⋆), frev, grev, w̄, t⋆, 0). (10)

where the drift and diffusion coefficients are:

frev(x, t) := −1

2
β(t)[x+ 2sθ(x, t)], grev(t) :=

√
β̃(t). (11)

Note that we use a diffusion coefficient different from Nie et al. (2022) for the purpose of cleaner
output (see the detailed explanation in Section 3.3). Next, we use the discrete-time noise estima-
tor ϵθ(xn, n) to compute the continuous-time score estimator sθ(x, t). By defining ϵ̃θ(x(t), t) :=
ϵθ(x(

n
N ), n) = ϵθ(xn, n) with t := n

N , the score function in the reverse VP-SDE can be estimated
as:

sθ(x, t) = − ϵ̃θ(x, t)√
1− ᾱ(t)

≈ ∇x log pt(x). (12)

Accordingly, x̂(0), the purified output of the adversarial input x(0) = xadv , is fed into the later
stages of the acoustic system to make predictions. The whole purification operation can be denoted
as a function Purifier : Rd × R → Rd:

Purifier(xadv, n
⋆) = sdeint

(√
ᾱ(

n⋆

N
)xadv +

√
1− ᾱ(

n⋆

N
)z, frev, grev, w̄,

n⋆

N
, 0

)
(13)

The acoustic systems are usually built on the features extracted from the raw audio. For example,
the system can extract Mel spectrogram as the features: 1) it first applies short-time Fourier transfor-
mation (STFT) on the time-domain waveform to get linear-scale spectrogram, and 2) it then rescales
the frequency band to the Mel-scale. We denote this process as Wave2Mel : Rd → Rm × Rn,
which is a differentiable function. Then the classifier F : Rm × Rn → Rc (usually a convolutional
network) takes the Mel spectrogram as the input and gives predictions.

Since both the time domain waveform and time-frequency domain spectrogram go through the
pipeline, the purifier can be applied in either the time domain or time-frequency domain. If the
purifier is applied in the time domain, the whole defended acoustic system AS : Rd × R → Rc can
be formulated as:

AS(xadv, n
⋆) = F (Wave2Mel(Purifier(xadv, n

⋆))) (14)
where the waveform Purifier is based on DiffWave.

Meanwhile, if we want to purify the input adversarial examples in the time-frequency domain, we
can choose a diffusion model used for image synthesis, and apply it to the output spectrogram of
Wave2Mel. We denote this purifier as Purifierspec : Rm ×Rn ×R → Rm ×Rn. In this scenario,
the whole defended acoustic system will be:

AS(xadv, n
⋆) = F (Purifierspec(Wave2Mel(xadv)), n

⋆) (15)

The architecture of the whole pipeline is illustrated in Figure. 1. For the purification in the time-
frequency domain spectrogram, we use an Improved DDPM (Nichol & Dhariwal, 2021) trained
on the Mel spectrograms of audio data and denote it as DiffSpec. We compare these two purifiers
and discover that the purification in the time domain waveform is more effective to defend against
adversarial audio. Detailed experimental results can be found in Sec. 4.2.
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3.3 TOWARDS EVALUATING AUDIOPURE

Adaptive attack For the forward diffusion process formulated as Eq. 9, the gradients of the output
x(t⋆) w.r.t. the input x(0) is a constant. For the reverse process formulated as Eq. 10, the adjoint
method (Li et al., 2020) is applied to compute the full gradients of the objective function L w.r.t.
x(t⋆) without any out-of-memory issues, by solving another augmented SDE:(

x(t⋆)
∂L

∂x(t⋆)

)
= sdeint

((
x(0)
∂L

∂x(0)

)
,

(
frev

∂frev
∂x z

)
,

(
grev1
0

)
,

(
−w(1− t)
−w(1− t)

)
, 0, t⋆

)
(16)

where 1 and 0 represent the vectors of all ones and all zeros, respectively.

SDE modifications for clean output We observe that directly applying the framework of Nie et al.
(2022) to the audio domain will cause the performance degradation. That is, when converting the
discrete-time reverse process of DiffWave (Kong et al., 2021) to its corresponding reverse VP-SDE
in Eq. 8, the output audio still contains much noise, resulting in lower classification accuracy. We
identify two influencing factors and solve this problem by modifying the SDE formulation.

The first factor is the diffusion error due to the mismatch of the reverse variance between the discrete
and continuous cases. Ho et al. (2020) observed that both σ2

θ = β̃t and σ2
θ = βt get similar results

experimentally in the image domain. However, we find that it is not the case in the audio modeling
with diffusion models. For audio synthesis using DiffWave trained with σ2

θ = β̃t, if we switch the
reverse variance schedule to σ2

θ = βt, the output audio becomes noisy. Thus, in Sec. 3.2 we define

β̃( n
N ) = β̃n and use the diffusion coefficient grev =

√
β̃(t) in Eq. 11 instead of grev =

√
β(t) to

match the variance β̃t in DiffWave.

The second factor is the inaccuracy from the continuous-time noise schedule β(t) = β0+(βN−β0)t

and α̃(t) = e−
∫ t
0
β(s)ds used by Nie et al. (2022). The impact of the difference between β(t) =

β0+(βN−β0)t and βNt cannot be negligible, especially when N is not large enough (e.g. N = 200

for the pretrained DiffWave model we use). Besides, when t is close to 0, α̃(t) = e−
∫ t
0
β(s)ds is

not a good approximation of ᾱNt any more. Thus, we define the continuous-time noise schedule
directly based on the discrete schedule, namely, β( n

N ) := βn and ᾱ( n
N ) := ᾱn, for the purpose of

better denoised output and more accurate gradient computation.

4 EXPERIMENTS

In this section, we first introduce the detailed experimental settings. Then we compare the perfor-
mance of our method and other defenses under strong white-box adaptive attack where the attacker
has full knowledge about the defense and black-box attacks. To further show the robustness of our
method, we also evaluate the certified accuracy via randomize smoothing Cohen et al. (2019), which
provides a provable guarantee of model robustness against L2 norm bounded adversarial perturba-
tions.

4.1 EXPERIMENTAL SETTINGS

Dataset. Our method is evaluated on the task of speech command recognition. We use the Speech
Commands dataset (Warden, 2018), which consists of 85,511 training utterances, 10,102 validation
utterances, and 4,890 tests utterances. Following the setting of Kong et al. (2021), we choose the
utterances which stand for digits 0 ∼ 9 and denote this subset as SC09.

Models. We use DiffWave (Kong et al., 2021) and DiffSpec (based on Improved DDPM (Nichol &
Dhariwal, 2021)) as our defensive purifiers, which are representative diffusion models on the wave-
form domain and the spectral domain respectively. We use the unconditional version of Diffwave
with the officially provided pretrained checkpoints. Since the Improved DDPM model does not pro-
vide the pretrained checkpoint for audio, we train it from scratch on the Mel spectrograms of audio
from SC09. The training details and hyperparameters are in the appendix A. For the classifier, we
use ResNeXt-29-8-64(Xie et al., 2017) for spectrogram representation and M5 Net(Dai et al., 2017)
for waveform except the experiments for ablation studies.
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Table 1: Performance against adaptive attacks among different methods.

Defense Clean L∞ white-box L2 white-box L∞ black-box
PGD10 PGD20 PGD30 PGD50 PGD70 PGD100 PGD10 PGD20 PGD30 PGD50 PGD100 FAKEBOB

None 100 3 1 1 1 1 1 2 0 0 0 0 21
AS (Yang et al., 2019) 100 4 2 1 1 1 1 1 0 0 0 0 24
MS (Yang et al., 2019) 100 6 3 2 1 1 1 4 1 0 0 0 21
DS (Yang et al., 2019) 99 2 1 1 1 1 1 0 0 0 0 0 16

LPF (Rajaratnam & Alshemali, 2018) 100 5 2 1 1 1 1 2 0 0 0 0 20
BPF (Rajaratnam & Alshemali, 2018) 99 5 1 1 1 1 1 1 1 0 0 0 18

AdvTr (Madry et al., 2018) 100 86 79 78 74 72 71 73 70 68 65 65 92
AudioPure 97 89 89 89 85 84 84 89 86 83 85 84 86

Attacks. For white-box attacks, we use PGD (Madry et al., 2018) with different iteration steps from
10 to 100 among L∞ and L2 norms. The attack budget is set to ϵ = 0.002 for L∞-norm constraint
except the ablation study and ϵ = 0.253 for L2 norm constraint. For black-box attacks, we apply a
query-based attack, FAKEBOB (Chen et al., 2021a), and set the iteration steps to 200, NES samples
to 200, and the confidence coefficient κ = 0.5.

Baselines. We compare our method with two types of baselines including: (1) transformation-based
defense (Yang et al., 2019; Rajaratnam & Alshemali, 2018) including average smoothing (AS),
median smoothing (MS), downsampling (DS), low-pass filter (LPF), and band-pass filter (BPF),
and (2) adversarial training based defense (AdvTr) (Madry et al., 2018). For adversarial training, we
follow the setting of Chen et al. (2022), using L∞ PGD10 with ϵ = 0.002 and ratio = 0.5.

4.2 MAIN RESULTS

We evaluate AudioPure (n⋆=3 by default) under adaptive attacks, assuming the attacker obtains full
knowledge of our defense. We use the adaptive attack algorithm described in the previous section so
that the attacker is able to accurately compute the full gradients for attacking. The results are shown
in Table 1. We find that the baseline transformation-based defenses (Yang et al., 2019; Rajaratnam
& Alshemali, 2018), including average smoothing (AS), median smoothing (MS), downsampling
(DS), low-pass filter (LPF), and band-pass filter (BPF), are virtually broken through by white-box
attacks with up to 4% robust accuracy. For the adversarial training-based method (AdvTr) trained
on L∞-norm adversarial examples, although it achieves 71% robust accuracy against L∞-based
adversarial examples, such the method does not work so well on other types of adversarial examples
(i.e., L2-based method), achieving 65% robust accuracy under L2-based PDG100 attack. Compared
with all baselines, AudioPure can obtain much higher robust accuracy, about 10% improvements on
average, on L∞-based adversarial examples, and is equally effective against L2-based white-box
attacks, achieving 84% robust accuracy.

We also evaluate AudioPure on black-box attacks including: FAKEBOB (Chen et al., 2021a) and
transferability-based attacks. The results of FAKEBOB are shown in Table 1, indicating that our
method can keep effective under the query-based black-box attack. The results of the transferability-
based attack are in the appendix B. They draw the same conclusion. These results further verify the
effectiveness of our method. All results indicate that AudioPure can work under diverse attacks with
different types of constraints, while adversarial training has to apply different training strategies
and re-train the model, making it less effective among unseen attacks than our method. We report
the actual inference time in Appendix J and compare out method with more existing methods in
Appendix F, G and H. Additionally, we conduct experiments on the Qualcomm Keyword Speech
Dataset (Kim et al., 2019), and the results and details are in Appendix E. In this dataset, our method
is still effective against adversarial examples.

4.3 ABLATION STUDY

PGD steps To ensure the effectiveness of PGD attacks, we test different iteration steps from 10 to
150. As Figure. 2a illustrates, the robust accuracy converges after iteration steps n ≥ 70.

Effectiveness against Expectation over transformation (EOT) attack. Besides, since the diffu-
sion and reverse process of AudioPure consist of many randomized sampling operations, we apply
the expectation over transformation (EOT) attack to evaluate the effectiveness of AudioPure with
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Figure 2: The performance of baseline (no defense, denoted as None), adversarial training (denoted as AdvTr),
and AudioPure under attacks with different iteration steps and EOT size. (a) indicates the step of convergence,
and the attack is almost optimal when iterating over 70 steps. (b) shows that increasing EOT size can barely
affect the robustness of our method.

Table 2: The robust accuracy under PGD10 with different attack budget ϵ when using different reverse steps
n⋆. Larger ϵ requires larger n⋆ to ensure better robustness.

Attack Budget Diffusion Steps
n⋆ = 0 n⋆ = 1 n⋆ = 2 n⋆ = 3 n⋆ = 5 n⋆ = 7 n⋆ = 10

ϵ = 0.002 3 94 90 89 84 77 67
ϵ = 0.004 0 76 89 86 83 74 66
ϵ = 0.008 0 27 70 85 84 74 68
ϵ = 0.016 0 0 21 53 69 57 63

Table 3: Ablation studies among different model architectures. The robust accuracy is evaluated under L∞-
PGD70. Our method is effective on various models with different architectures.

Defense
ResNeXt-29-8-64 VGG-19-BN WideResNet-28-10 DenseNet-BC-100-12 M5
Clean Robust Clean Robust Clean Robust Clean Robust Clean Robust

None 100 1 100 2 100 1 100 5 94 12
AudioPure 97 84 99 81 99 85 96 79 94 70

different EOT sample sizes. Figure 2b demonstrates the result. We find that AudioPure is effective
among different EOT sizes.

Attack budget ϵ. We evaluate the effectiveness of our method among different ϵ including
ϵ = {0.002, 0.004, 0.008, 0.016}. Since the diffusion steps n⋆ are the hyperparameters for Au-
dioPure , we conduct experiments among different n⋆. As shown in Table 2, if n⋆ is larger than 2,
AudioPure will show strong effectiveness among different ϵ. When ϵ increases, it requires a larger
n⋆ to achieve the optimal robustness since a larger adversarial perturbation requires a large noise
from the forward process of the diffusion model to override the adversarial perturbations and the
corresponding larger step to recover purified audio. However, if the n⋆ is too large, it will override
the original audio information as well so that the recovered audio from the diffusion model will lose
the original audio information, contributing to the performance drop. Furthermore, we explore the
extent of the diffusion model for purification in Appendix I.
Architectures. Moreover, we apply AudioPure to different classifiers, including spectrogram-
based classifier: VGG-19-BN(Simonyan & Zisserman, 2015), ResNeXt-29-8-64(Xie et al., 2017),
WideResNet-28-10(Zagoruyko & Komodakis, 2016) DenseNet-BC-100-12(Huang et al., 2017) and
wave-form based classifier: M5 (Dai et al., 2017). Table 3 shows that our method is effective for
various neural network classifiers.

Audio representations Audio has different types of representations including raw waveforms or
time-frequency representations (e.g., Mel spectrogram). We conduct an ablation study to show the
effectiveness of diffusion models by using different representations, including DiffWave, a diffusion
model for waveforms (Kong et al., 2021) and DiffSpec, a diffusion model for spectrogram based on
the original image model (Nichol & Dhariwal, 2021). The results are shown in Table 4. We find
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Table 4: Ablation studies among different audio representations. We implement AudioPure using two differ-
ent diffusion models as purifiers, DiffWave and DiffSpec, that respectively process the representations in the
time domain and time-frequency domain.

Defense Clean L∞ white-box L2 white-box
PGD10 PGD20 PGD30 PGD50 PGD70 PGD100 PGD10 PGD20 PGD30 PGD50 PGD100

DiffWave 97 89 89 89 85 84 84 89 86 83 85 84
DiffSpec 99 92 84 78 75 72 71 74 62 58 54 49

Table 5: Certified accuracy for different methods. For each noise level σ, we add the same level of noise to
train the classifier and apply it to RS-Gaussian.

Method Noise level Certified radius (L2)
0 0.25 0.50 0.75 1.0 1.25 1.50

RS-Vanilla σ = 0.5 30 21 12 6 4 3 3
σ = 1.0 8 8 8 7 4 3 3

RS-Gaussian σ = 0.5 49 39 33 23 14 6 3
σ = 1.0 18 15 11 10 5 5 4

AudioPure σ = 0.5 45 40 35 27 21 17 13
σ = 1.0 27 22 16 15 12 11 8

that the DiffWave consistently outperforms DiffSpec against L2 and L∞-based adversarial examples.
Moreover, compared with DiffWave, despite DiffSpec achieve higher clean accuracy, it only achieves
49% robust accuracy, a significant 35% performance drop against L2-based adversarial examples.
We think the potential reason is that the short-time Fourier transform (STFT) is an operation of infor-
mation compression. The spectrogram contains much less information than the raw audio waveform.
This experiment shows that the domain difference contributes to significantly different results, and
directly applying the method from the image domain can lead to suboptimal performance for audio.
It also verifies the crucial design of AudioPure for adversarial robustness.

4.4 CERTIFIED ROBUSTNESS

In this section, we evaluate the certified robustness of AudioPure via randomized smoothing(Cohen
et al., 2019). Here we draw N = 100, 000 noise samples and select noise levels σ ∈ {0.5, 1.0}
for certification. Note that we follow the same setting from Carlini et al. (2022) and choose to
use the one-shot denoising method. The detailed implementation of our method could be found in
Appendix C. We compare our results with randomized smoothing using the vanilla classifier and
Gaussian augmented classifier, denoted RS-Vanilla and RS-Gaussian respectively. The results are
shown in Table 5. We also provide the certified robustness under different L2 perturbation budget
with different Gaussian noise σ = {0.5, 1.0} in Figure A of Appendix C. By observing our results,
we find that our method outperforms baselines for a better certified accuracy except σ = 0.5 at 0
radius. We also notice that the performance of our method will be even better when the input noise
gets larger. This may be due to AudioPure can still recover the clean audio with a large L2-based
perturbation while Gaussian augmented model could even not be converged when training with such
large noise.

5 CONCLUSION

In this paper, we propose an adversarial purification-based defense pipeline for acoustic systems.
To evaluate the effectiveness of AudioPure , we design the adaptive attack method and evaluate our
method among adaptive attacks, EOT attacks, and black-box attacks. Comprehensive experiments
indicate that our defense is more effective than existing methods (including adversarial training)
among the diverse type of adversarial examples. We show AudioPure achieves better certifiable ro-
bustness via Randomized Smoothing than other baselines. Moreover, our defense can be a universal
plug-and-play method for classifiers with different architectures.

Limitations. AudioPure introduces the diffusion model, which increases the time and computa-
tional cost. Thus, how to improve time and computational efficiency is an important future work.
For example, it is interesting to investigate the distillation technique (Salimans & Ho, 2022) and
fast sampling method (Kong & Ping, 2021) to reduce the computation complexity introduced by
diffusion models.
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APPENDIX

A DETAILS ON TRAINING THE IMPROVE DDPM.

We train an Improved DDPM using the official repository (https://github.com/openai/improved-
diffusion). For the UNet model, we set image size = 32, num channels = 3, and
num res blocks = 128. For diffusion flags, we set N = 200, β1 = 0.0001, βN = 0.02 and
use the linear variance schedule. For the model training, we set the learning rate to 1e − 4 and
the batch size to 230. The training loss has converged after 80,000 training steps, and we use this
checkpoint to build our purifier.

B ADDITIONAL EXPERIMENTS OF TRANSFER-BASED ATTACK

We additionally evaluate our method under transfer-based attack, where we assume the attacker can
only get the output logits of the acoustic system but have no knowledge about the used defense.

We use model functional stealing to train a surrogate model. Specifically, we first feed input ex-
amples into the acoustic system consisting of DiffWave and a ResNeXt classifier and get the output
logits. Then we use these output logits of the acoustic system as labels and train a new surrogate
ResNeXt model, which has the same architecture as the classifier in the acoustic system. The results
are shown in Table A. The Stealing Acc. denotes the accuracy of the surrogate classifier using the
predictions of the defended acoustic system as ground truth. The Transfer to Vanilla and Trans-
fer to Defended represent the undefended vanilla classifier and the defended acoustic system. The
surrogate classifier is attacked to generate adversarial examples, and these adversarial examples are
transferred to evaluate the robustness of the undefended vanilla classifier and the defended acoustic
system.

Table A: Transfer-based attack via model functional stealing. We train a surrogate model, using
the outputs of the defended acoustic system as labels. Then adversarial examples are generated by
attacking the surrogate model and transferred to the undefended vanilla classifier and the defended
acoustic system.

Stealing Target Stealing Acc. Transfer to Vanilla Transfer to Defended
Clean Robust Clean Robust

AudioPure (n⋆ = 1) 100 100 22 100 99
AudioPure (n⋆ = 5) 98 100 58 96 94

C DETAILS ABOUT CERTIFIED ROBUSTNESS

Randomized smoothing (Cohen et al., 2019) provides a provable robustness guarantee in L2-norm
by evaluating models under noise. Usually, the performance of the vanilla classifier will degrade
when feeding the Gaussian perturbed inputs. To alleviate this problem, we can re-train a new net-
work or fine-tune a pretrained network on Gaussian augmented data. However, both of them could
take a lot of time on training. Another way is to apply a denoiser before the vanilla classifier, named
denoised smoothing (Salman et al., 2020). Since the reverse process of the diffusion model can be
seen as a good denoiser, we can use a pretrained diffusion model as a plug-and-play method to make
any model certifiably robust. For a given noise level σ, we can compute the corresponding diffusion
step t⋆ which adds the same level of noise to the input examples. The diffusion process can be
reformulated as:

xn =
√
ᾱnx0 +

√
1− ᾱtz =

√
ᾱn(x0 +

√
1− ᾱn

ᾱn
z), z ∼ N (0, I), (S17)

while the noisy input x̂ of randomized smoothing is

x̂ = x0 +
√
σz, z ∼ N (0, I). (S18)
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So we can obtain n⋆ s.t. 1−ᾱn

ᾱn
= σ after multiplying a rescale coefficient

√
ᾱn on the input x̂.

According to Carlini et al. (2022), a single reverse step is able to recover an image with a high
accuracy for the classifier and can largely save computational time by directly recovering the data
through x0 = 1√

ᾱn
(xn −

√
1− ᾱnϵθ(

√
ᾱnx̂, n)). So we can just apply one-shot denoising instead

of running full steps in our reverse process.

Figure A shows the certified accuracy of AudioPure compared with RS-Gaussian and RS-Vanilla.
The results show that the certified robustness of our method is consistently better than baselines
except at small certified radii when σ = 0.50.
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Figure A: Certified robustness (L2) with different input noise level σ. Larger σ ensures better ro-
bustness under larger perturbations, but the performance for benign inputs will be degraded.

D THEORETICAL ANALYSIS ON THE PURIFICATION ABILITY

Theorem D. 1. Assume that p(x) and q(x) are respectively the data distribution of clean examples
and the data distribution of adversarial examples. We use pt and qt to represent the respective
distribution of x(t) when x(t) ∼ p(x) and x(t) when x(t) ∼ q(x). Then we have

∂DKL(pt||qt)
∂t

≤ 0 (S19)

where the equality is established only if pt = qt. This inequality indicates that as t increases
from 0 to 1, the KL divergence of pt and qt monotonically decreases. In other words, when the
diffusion steps n⋆ increases, more of the adversarial perturbations will be removed. Considering
that the original semantic information will also be removed if n⋆ is too large, which affects the clean
accuracy, there should be a trade-off when we set n⋆ for the diffusion model purifier.

Proof: Following Nie et al. (2022); Song et al. (2021b), we firstly formulate the Fokker-Planck
equation (Särkkä & Solin, 2019) of the forward SDE in Eq. 7 (where we define f(x, t) := − 1

2β(t)

and g(t) :=
√

β(t)) as:

∂pt(x)

∂t
= −∇x

(
f(x, t)pt(x)−

1

2
g2(t)∇xpt(x)

)
= −∇x

(
f(x, t)pt(x)−

1

2
g2(t)pt(x)∇x log pt(x)

)
= ∇x · (hp(x, t)pt(x))

(S20)

where hp(x, t) :=
1
2g

2(t)∇x log pt(x)− f(x, t). Assuming pt and qt are smooth and fast decaying,
i.e. for any i = 1, . . . , d, we have

lim
xi→∞

pt(x)
∂

∂xi
log pt(x) = 0, lim

xi→∞
qt(x)

∂

∂xi
log qt(x) = 0 (S21)
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for xi, the i-th dimension of x ∈ Rd. Then we reformulate the KL divergence as
∂DKL(pt||qt)

∂t
= − ∂

∂t

∫
pt(x) log

pt(x)

qt(x)
dx

= −∇x

(
f(x, t)pt(x)−

1

2
g2(t)pt(x)∇x log pt(x)

)
=

∫
∇x · (hp(x, t)pt(x)) log

pt(x)

qt(x)
dx+

∫
pt(x)

qt(x)
∇x · (hp(x, t)pt(x))dx

= −
∫

pt(x)[hp(x, t)− hq(x, t)]
⊤[∇x log pt(x)−∇x log qt(x)]dx

= −1

2
g2(t)

∫
pt(x)∥∇x log pt(x)−∇x log qt(x)∥22dx

= −1

2
g2(t)DF (pt||qt)

(S22)

where DF (pt||qt) is the Fisher divergence. Considering that g2(t) = β(t) > 0, and the Fisher
divergence DF (pt||qt) ≥ 0 and the equality is established only if pt = qt, as a result, we have Eq
S19, where the equality is established only if pt = qt.

E EXPERIMENTS ON THE QUALCOMM KEYWORD SPEECH DATASET

In addition to the commonly used SC09, for a more comprehensive consideration, we also conduct
experiments on the Qualcomm Keyword Speech Dataset (Kim et al., 2019), denoted as QKW in the
following. QKW consists of 4270 utterances belonging to four classes, with variable durations from
0.48s to 1.92s. We split them into a training set (3770 utterances), a validation set (400 utterances),
and a test set (100 utterances). To handle the variable-sized input, we train an Attention Recurrent
Convolutional Network (Shan et al., 2018) and save the checkpoint with the highest accuracy on the
validation set. Then we finetuned the DiffWave model on QKW for 50,000 steps, with lr = 2e− 4
and batch size per gpu = 2 for 3 GPU. The results under L∞ PGD10 with ϵ = 0.002 are shown
in Table B. We can observe that AudioPure can still achieve non-trivial robustness and handle the
audio with variable time duration well.

Table B: We apply AudioPure to the Qualcomm Keyword Speech Dataset. The diffusion steps n⋆ is
set to 2.

Defense Clean Robust

None 100 0
AudioPure 91 61

F FINE-TUNING ON ADVERSARIAL EXAMPLES

AudioPure takes advantage of pretrained diffusion models. We wonder whether the purification
performance will be improved if fine-tuned on adversarial examples. And we further fine-tune the
DiffWave model by augmenting self-supervised perturbation (SSP) (Naseer et al., 2020). Specifi-
cally, we use STFT (rescaling to the Mel-scale) as our feature extractor and maximize the following
objective to generate perturbed examples:

argmax
x′

∆(x, x′) = ∥STFT (x), STFT (x′)∥∞, s.t.∥x− x′∥∞ (S23)

where x is the clean example and x′ is the perturbed example. We then use gradient descent to
optimize the perturbed example by:

x′
t+1 = clip(x′

t + α · sign(∇x∆(x, x′
t)), x− ϵ, x+ ϵ), (S24)

for t = 1, . . . , T . Here we use T = 100, ϵ = 0.002 and α = 0.0004. Next, we fine-tune the
pretrained DiffWave model on the SSP examples, minimizing the following loss:

Ltuning = Laudio + λLfeat, (S25)
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where

Laudio = MSE(x,Purifier(x′
t, n

⋆)), (S26)

Lfeat = MSE(STFT (x), STFT (Purifier(x′
t, n

⋆)). (S27)

We choose λ = 0.1 and use SGD to optimize Ltuning , setting the learning rate to 1e−5. The results
are shown in Table C. As a result, it does not improve the performance of AudioPure (with n⋆ = 3)
under L∞ PGD10 and PGD70 with ϵ = 0.002. These results further verify the effectiveness of using
pretrained models.

Table C: We fine-tune the pretrained DiffWave model on adversarial examples generated by SSP.
After fine-tuning, the performance is not improved.

Defense Clean PGD10 PGD70

None 100 3 1
AudioPure 97 89 84

SSP-Tuned AudioPure 97 89 82

G COMPARISON WITH OTHER DENOISER-BASED DEFENSE

We compare AudioPure with DefenseGAN (Samangouei et al., 2018) and Joint Adversarial Fine-
tuning (Joshi et al., 2022). For DefenseGAN, which is originally designed to defend against adver-
sarial images by finding the optimal noise that generates the most similar image to the adversarial
counterpart, we adopt it to the audio domain, choosing WaveGAN (Donahue et al., 2018) as the
GAN model in this pipeline. We train a WaveGAN on the SC09 dataset for 100 epochs, using the
Adam optimizer with lr = 1e − 3, β1 = 0.5, and β2 = 0.9. For Joint Adversarial Fine-tuning,
we follow the setting of Joshi et al. (2022), using a Conv-TasNet (Luo & Mesgarani, 2019) as the
denoiser. And like Joshi et al. (2022), we craft an offline adversarial SC09 dataset against the pre-
trained classifier by using L-inf PGD-100 attacks with ϵ = 0.002 (denoted as OffAdv-SC09). Then
we train a Conv-TasNet model on OffAdv-SC09 for 30 epochs to get the pretrained denoiser. We
denote the defense using the pretrained Conv-TasNet as CTN Baseline. Based on the adversarial ex-
amples generated by attacking the whole acoustic system, we only update the Conv-TasNet denoiser
while keeping the classifier frozen, and denote this method as CTN Adv-Finetune-Joint-frozen. Dur-
ing the adversarial tuning, we use L∞ PGD10 attack with ϵ = 0.002. After tuning for 1000 steps
with batch size = 20, we calculate the clean and robust accuracy (under L∞ PGD10 and PGD70

with ϵ = 0.002) on the same test used in our paper.

We report the results in Table D. We find that DefenseGAN based on WaveGAN cannot work well
in the audio domain. It shows the impact of domain differences with respect to the final results and
verifies the importance of our pipeline design. Besides, the Conv-TasNet denoiser is less effective
than diffusion models against adaptive attacks, even after fine-tuning.

Table D: We compare AudioPure with different denoiser-based defenses. DiffWave is proven to be
a more effective purifier.

Defense Clean PGD10 PGD70

None 100 3 1
AudioPure 97 89 84

DefenseGAN 8 0 0
CTN Baseline 98 13 1

CTN Adv-Finetune-Joint-frozen 90 52 41
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H COMPARISON WITH THE REGULARIZATION-BASED DEFENSE

Gu & Rigazio (2014); Hoffman et al. (2019) introduce the input-output Jacobian matrix of the net-
work as a regularization term in the optimization objective, formulated as

Lreg =
∑
i

(
L(xi, yi) + λ∥∂f(xi)

∂xi
∥F
)
, (S28)

where xi ∈ Rd is the input data, yi ∈ Rn is the label, L : Rd×Rn → R is the original loss function,
and f : Rd → Rn is the neural network. By minimizing the Frobenius norm of the Jacobian matrix,
the adversarial robustness of the network will be improved. For a more comprehensive study, we
also compare AudioPure with this regularization-based method, using different λ. The results are
shown in Table E, where we denote the regularization-based defense as Jacobian-Reg.

Table E: We compare AudioPure with the regularization-based defense, using different λ.

Defense Clean PGD10 PGD70

None 100 3 1
AudioPure 97 89 84

Jacobian-Reg (λ=1e-8) 45 9 5
Jacobian-Reg (λ=1e-9) 84 27 15

Jacobian-Reg (λ=1e-10) 91 31 18
Jacobian-Reg (λ=1e-11) 96 19 4

I EXPERIMENTS ON LARGER ATTACK BUDGETS.

Besides the results of different ϵ in Table 2, we conduct additional experiments to explore the po-
tential of the diffusion model for purification. We select ϵ = {0.01, 0.02, 0.03, 0.04, 0.05}, and set
the diffusion steps n⋆. The results are shown in Table F. We find that our method still achieves 42%
accuracy at ϵ = 0.03, which brings significant distortions to audio. Our method keeps the ability to
purify adversarial perturbations until ϵ = 0.05. We also visualize the audio waveforms under attacks
with different ϵ, illustrated in Figure B. It is easy to observe significant noise in them.

Table F: We explore the potential of DiffWave under larger attack budgets. The diffusion steps n⋆ is
set to 5.

Attack Budget ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05

Robust Acc. 82 67 42 14 0

J ADDITIONAL INFERENCE TIME COST.

Due to the introduction of diffusion models, AudioPure will bring additional time cost during infer-
ence. As shown in Table G, we compute the time cost per audio, averaged on 100 examples and
the time duration for each example is around one second. We evaluate it on an NVIDIA RTX 3090
GPU with Intel® Core™ i9-10920X CPU @ 3.50GHz and 64 GB RAM.

Table G: The inference time cost when using different diffusion steps n⋆.

Diffusion Steps n⋆ = 0 n⋆ = 1 n⋆ = 2 n⋆ = 3 n⋆ = 5 n⋆ = 7 n⋆ = 10

Time Cost (s) 0.0967 0.5522 0.7876 1.0162 1.4795 2.0125 2.6839
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(a)

(b)

(c)

Figure B: Visualizations of the clean audio and adversarial audio with different attack budgets.
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(d)

(e)

(f)

Figure B: Visualizations of the clean audio and adversarial audio with different attack budgets.
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