
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Reward is enough for convex MDPs

Abstract
Maximising a cumulative reward function that
is Markov and stationary, i.e., defined over state-
action pairs and independent of time, is sufficient
to capture many kinds of goals in a Markov De-
cision Process (MDP) based on the Reinforce-
ment Learning (RL) problem formulation. How-
ever, not all goals can be captured in this manner.
Specifically, it is easy to see that Convex MDPs
in which goals are expressed as convex functions
of stationary distributions cannot, in general, be
formulated in this manner. In this paper, we refor-
mulate the convex MDP problem as a min-max
game between the policy and cost (negative re-
ward) players using Fenchel duality and propose
a meta-algorithm for solving it. We show that
the average of the policies produced by an RL
agent that maximizes the non-stationary reward
produced by the cost player converges to an opti-
mal solution to the convex MDP. Finally, we show
that the meta-algorithm unifies several disparate
branches of reinforcement learning algorithms
in the literature, such as apprenticeship learning,
variational intrinsic control, constrained MDPs,
and pure exploration into a single framework.

1. Introduction
In Reinforcement Learning (RL), an agent learns how to
map situations to actions so as to maximize a cumulative
numerical reward signal. The learner is not told which ac-
tions to take, but instead must discover which actions lead
to the most cumulative reward (Sutton and Barto, 2018).
Mathematically, the RL problem can be written as finding a
policy whose state occupancy has the largest inner product
with a reward vector, known as the dual linear problem of
RL (Puterman, 1984), i.e., the goal of the agent is to solve

RL: max
dπ∈K

∑
s,a

r(s, a)dπ(s, a), (1)

where dπ is the state-action stationary distribution induced
by policy π andK is the set of admissible stationary distribu-
tions (Definition 1). A significant body of work is dedicated
to solving the RL problem efficiently in challenging do-
mains (Mnih et al., 2015; Silver et al., 2017). However, not
all decision making problems of interest take this form. In
particular we consider the more general convex RL problem,

Convex RL: min
dπ∈K

f(dπ), (2)

where f : K → R is a convex function. Sequential decision
making problems that take this form include Apprenticeship
Learning (AL), diverse skill discovery, pure exploration, and
constrained MDPs, among others; see Table 1. In this paper
we prove the following claim:

We can solve Eq. (2) by using any algorithm that solves
Eq. (1) as a subroutine.

In other words, any algorithm that solves the standard RL
problem can be used to solve the more general convex RL
problem. More specifically, we make the following contri-
butions.

First, we adapt the meta-algorithm of Abernethy and Wang
(Abernethy and Wang, 2017) for solving Eq. (2). The key
idea is to use Fenchel duality to convert the convex RL prob-
lem into a two-player zero-sum game between the agent
(henceforth, policy player) and an adversary that produces
rewards (henceforth, cost player) that the agent must maxi-
mize (Abernethy and Wang, 2017). From the agent’s point
of view, the game is bilinear, and so for fixed rewards pro-
duced by the adversary the problem reduces to the standard
RL problem with non-stationary reward (Fig. 1). Our main
result is that the average of the policies produced by the pol-
icy player converges to a solution to the convex RL problem
(Eq. (2)).

History
Cost Player

Agent

Environment

State
Action

Reward

Figure 1: Convex MDP as an RL problem

Second, we explain how to use RL algorithms to implement
policy players. The best response, for example, can be im-
plemented as an RL algorithm that solves an RL problem
in each iteration. The caveat here is that, for a given sample
budget, RL algorithms only find the best response approxi-
mately. Instead, we propose a more sample efficient policy
player that uses a standard RL algorithm (e.g., (Jaksch et al.,
2010; Shani et al., 2020b)), and computes an optimistic pol-
icy w.r.t the non-stationary reward at each iteration. In other
words, we use algorithms that were developed to achieve
low regret in the standard RL setup, to achieve low regret
as policy players. Since they achieve low regret w.r.t any
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Reward is enough for convex MDPs

Convex objective f Cost player Policy player Application

λ · dπ FTL RL (Standard) RL with −λ as stationary reward function
||dπ − dE ||22 FTL Best response Apprenticeship learning (AL) (Abbeel and Ng, 2004; Zahavy et al., 2020)
dπ · log(dπ) FTL Best response Pure exploration∗ (Hazan et al., 2019)
||dπ − dE ||∞ OMD Best response AL (Syed et al., 2008; Syed and Schapire, 2008)
Ec [λc · (dπ − dE(c))]

† OMD Best response Inverse RL in contextual MDPs (Belogolovsky et al., 2021)
λ1 · dπ, s.t. λ2 · dπ ≤ c OMD RL Constrained MDPs (Altman (1999); Szepesvári (2020); Borkar (2005); Tessler et al. (2019),

Efroni et al. (2020); Calian et al. (2021); Bhatnagar and Lakshmanan (2012))
dist(dπ, C)†† OMD Best response Feasibility of convex-constrained MDPs (Miryoosefi et al., 2019)
minλ1,...,λk dπk · λk OMD RL Adversarial Markov Decision Processes (Rosenberg and Mansour, 2019)
maxλ∈Λ λ · (dπ − dE) OMD RL Online AL (Shani et al., 2021),Wasserstein GAIL (Xiao et al., 2019; Zhang et al., 2020b)
KL(dπ||dE) FTL RL GAIL (Ho and Ermon, 2016), state marginal matching (Lee et al., 2019),
−EzKL(dπz ||Ekdπk)‡ FTL RL Diverse skill discovery (Gregor et al. (2017); Eysenbach et al. (2019); Hausman et al. (2018),

Florensa et al. (2016); Tirumala et al. (2020); Achiam et al. (2018))

Table 1: Instances of Algorithm 1 in various convex MDPs. ∗ as well as other KL divergences. † c is a context variable. †† C
is a convex set. ‡ f is concave. See Sections 4 & 5 for more details.

sequence of rewards, they also achieve that w.r.t the rewards
that are generated by the cost player, and as a result, they
are guaranteed to approximate the policy that minimizes
the function f. Inspired by this principle, we also propose
a recipe for using (Deep-RL) DRL agents to solve convex
MDPs: provide the agent non-stationary rewards from the
cost player and the RL agent code base does not require any
modifications. We explore this principle in our experiments.

Finally, we show that choosing specific algorithms for the
policy and cost players unifies several disparate branches of
RL problems, such as apprenticeship learning, variational
intrinsic control, constrained MDPs, and pure exploration
into a single framework, as we summarize in Table 1.

2. Reinforcement learning preliminaries
In RL an agent interacts with an environment over a number
of time steps and seeks to maximize its cumulative reward.
We consider two cases, the average reward case and the
discounted case. The Markov decision process (MDP) is
defined by the tuple (S,A, P,R) for the average reward case
and by the tuple (S,A, P,R, γ, d0) for the discounted case.
We assume an infinite horizon, finite state-action problem
where initially, the agent is sampled according to s0 ∼ d0,
then at each time t the agent is in state st ∈ S, selects
action at ∈ A according to some policy π(st, ·), receives
reward rt ∼ R(st, at) and transitions to new state st+1 ∈ S
according to the probability distribution P (·, st, at). The
two performance metrics we consider are given by

Javg
π = lim

T→∞

1

T
E

T∑
t=1

rt, Jγπ = (1− γ)E
∞∑
t=1

γtrt. (3)

The goal of the agent is to find a policy that maximizes
Javg
π or Jγπ . Any stationary policy π induces a state-action

occupancy measure dπ , which relates to how often the agent
visits each state-action when following π. Depending on
whether the goal is average reward or discounted reward the
definition changes slightly. Let Pπ(st = ·) be the probability

measure over states at time t under policy π, then

davg
π (s, a) = lim

T→∞

1

T
E

T∑
t=1

Pπ(st = s)π(s, a),

dγπ(s, a) = (1− γ)E
∞∑
t=1

γtPπ(st = s)π(s, a).

With these, we can rewrite the objective in Eq. (1) in terms
of the occupancy measure using the following well-known
result, which for completeness we prove in Appendix A.
Proposition 1. For both the average and the discounted
case, the agent objective function Eq. (3) can be writ-
ten in terms of the occupancy measure as Jπ =∑
s,a r(s, a)dπ(s, a).

Given the occupancy measure we can recover the policy us-
ing π(s, a) = dπ(s, a)/

∑
a dπ(s, a). Accordingly, in this

paper we shall formulate the RL problem using the state-
action occupancy measure, in which case both the standard
RL problem (Eq. (1)) and the convex RL problem (Eq. (2))
are convex optimization problems. For the purposes of this
manuscript we do not make a distinction between the aver-
age and discounted settings, other than through the convex
polytopes of feasible occupancy measures, which we define
next.
Definition 1 (State-action occupancy’s polytope (Puterman,
1984)). For the average reward case the set of admissible
state-action occupancies is

Kavg = {dπ | dπ ≥ 0,
∑
s,a

dπ(s, a) = 1,

∑
a

dπ(s, a) =
∑
s′,a′

P (s, s′, a′)dπ(s′, a′) ∀s ∈ S},

and for the discounted case it is given by

Kγ = {dπ | dπ ≥ 0,
∑
a

dπ(s, a) = (1− γ)d0(s)

+ γ
∑
s′,a′

P (s, s′, a′)dπ(s′, a′) ∀s ∈ S}.
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3. A Meta Algorithm for Solving Convex
MDPs via RL

To solve the convex RL problem (Eq. (2)) we need to dis-
cover an occupancy measure dπ (and the associated policy)
that minimizes the function f . Since both f : K → R and
the set K are convex this is a convex optimization problem.
However, it is a significantly challenging one due to the
nature of learning about the environment through stochastic
interactions. In this section we show how to reformulate
the convex RL problem (Eq. (2)), such that standard RL
algorithms can be used to solve it. Doing so will allow us to
build on a significant body of work that provably solve the
standard RL problem. To do that we will need the following
definition.

Definition 2 (Fenchel conjugate). For a function f : Rn →
R ∪ {−∞,∞}, its Fenchel conjugate is f∗ : Rn → R ∪
{−∞,∞} defined as f∗(x) := supy x · y − f(y).

Remark 1. The Fenchel conjugate function f∗ is always
convex (when it exists) even if f is not. Furthermore, the
biconjugate f∗∗ := (f∗)∗ equals f if and only if f is convex
and lower semi-continuous.

Using this we can rewrite the convex RL problem (Eq. (2))
as

f? = min
dπ∈K

f(dπ) = min
dπ∈K

max
λ

(
λ>dπ − f∗(λ)

)
(4)

= max
λ

min
dπ∈K

(
λ>dπ − f∗(λ)

)
where we were able to swap the order of minimization and
maximization using the minimax theorem (Von Neumann,
1928). This is a convex-concave saddle-point problem and a
zero-sum two-player game (Osborne and Rubinstein, 1994;
O’Donoghue et al., 2020a). With this we define the La-
grangian as

L(dπ, λ) := λ>dπ − f∗(λ)

For a fixed λ minimizing the Lagrangian is a standard RL
problem of the form of Eq. (1), i.e., equivalent to maxi-
mizing a reward r = −λ. Thus, one might hope that by
producing an optimal dual variable λ? we could simply
solve d?π = argmindπ∈K L(·, λ?). However the next lemma
states that this is not possible in general.

Lemma 1. There exists an MDP M and convex function f
for which there is no stationary reward r ∈ RS×A such that
arg maxdπ∈K dπ · r = arg mindπ∈K f(dπ).

To see this consider the fact that for any reward r there is
a deterministic policy that optimizes the reward (Puterman,
1984), but for some choices of f no deterministic policy
is optimal, e.g., when f is the negative entropy function.
In other words, even if we have access to an optimal dual-
variable we cannot simply use it to recover the stationary
distribution that solves the convex RL problem in general
(though doing so does yield the optimal objective value f?).

To overcome this issue we develop an algorithm that gen-
erates a sequence of rewards {rk}k∈N and a sequence
of policies {πk}k∈N such that the average converges to
an optimal policy for Eq. (2), i.e., (1/K)

∑K
k=1 dπk →

d?π ∈ arg mindπ∈K f(dπ). To do so, we adapted the meta-
algorithm from (Abernethy and Wang, 2017) to solve the
minimax problem Eq. (4); this is described in Algorithm 1.
It is a meta-algorithm since it depends on the individual al-
gorithms employed by the policy and cost players, denoted
Algπ and Algλ. The reinforcement learning algorithm Algπ
takes as input a reward vector and returns a state-action
occupancy measure dπ (e.g., it might return the optimal dπ
for that reward). We allow the algorithm Algλ to be a more
general function of the entire history. We discuss concrete
examples of Algπ and Algλ in Section 4.

Algorithm 1 Meta Algorithm for convex RL
1: Input: convex-concave payoff L : K × Λ→ R, algo-

rithms Algλ,Algπ , K ∈ N
2: for k = 1, . . . ,K do
3: λk = Algλ(d1

π, . . . , d
k−1
π ;L)

4: dπk = Algπ(−λk)
5: end for
6: Return d̄Kπ = 1

K

∑K
k=1 dπk , λ̄

K = 1
K

∑K
k=1 λ

k

In order to analyze this algorithm and select the algo-
rithms Algλ,Algπ we will need a small detour into on-
line convex optimization (OCO). In OCO, a learner is
presented with a sequence of K convex loss functions
`1(·), `2(·), . . . , `K(·) : K → R and at each round k must
select a point xk ∈ K after which it suffers a loss of `k(xk).
At time period k the learner is assumed to have perfect
knowledge of the loss functions `1, . . . , `k−1. The learner
wants to minimize its average regret, defined as

R̄K :=
1

K

(
K∑
k=1

`k(xk)−min
x∈K

K∑
k=1

`k(x)

)
.

In the context of convex reinforcement learning and meta-
algorithm 1, the loss functions for the cost player are `kλ =
L(·, λk), and for the policy player are `kπ = −L(dkπ, ·), with
associated average regrets R̄πK and R̄λK . This brings us to
the following theorem.
Theorem 1 (Theorem 5, (Abernethy and Wang, 2017)).
Assume that Algπ and Algλ have guaranteed average
regret bounded as R̄πK ≤ εK and R̄λK ≤ δK , re-
spectively. Then Algorithm 1 outputs d̄Kπ and λ̄K sat-
isfying mindπ∈K L(dπ, λ̄

K) ≥ f? − εK − δK and
maxλ∈Λ L(d̄Kπ , λ) ≤ f? + εK + δK .

This theorem tells us that so long as the RL algorithm we
employ has guaranteed low-regret, and assuming we choose
a reasonable low-regret algorithm for deciding the costs,
then the meta-algorithm will produce a solution to the con-
vex RL problem (Eq. (2)) to any desired tolerance, this is
because f? ≤ f(d̄Kπ ) = maxλ L(d̄Kπ , λ) ≤ f? + εK + δK .
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Reward is enough for convex MDPs

For example, we shall later present algorithms that have
regret bounded as εK = δK ≤ O(1/

√
K), in which case

we have
f(d̄Kπ )− f? ≤ O(1/

√
K). (5)

Fenchel dual in related work. In (Zhang et al., 2020a),
the authors proposed a policy gradient algorithm for con-
vex MDPs in which each step of policy gradient involves
solving a new saddle point problem (formulated using the
Fenchel dual). This is different from our approach that in-
volves solving a single saddle point problem iteratively, and
furthermore we do not need to commit to a specific RL al-
gorithm. Moreover, for the convergence guarantee (Zhang
et al., 2020a, Theorem 4.5) to hold, the saddle point prob-
lem has to be solved exactly, while in practice it is only
solved approximately (Zhang et al., 2020a, Algorithm 1),
which hinders its sample efficiency. We discuss a similar
scenario in the context of approximating the best response in
Section 4. Fenchel duality was also used in off policy eval-
uation (OPE) in (Nachum et al., 2019; Yang et al., 2020).
The difference between these works and ours is that we train
a policy to minimize an objective, while in OPE a target
policy is fixed and its value is estimated from data that is
produced by a behaviour policy.

Non-convex f . Remark 1 implies that the game
maxλ mindπ∈K

(
λ>dπ − f∗(λ)

)
is concave-convex for

any function f , so we can solve it with Algorithm 1. From
weak duality, we get that the output of Algorithm 1, d̄π, λ̄,
is a lower bound on the optimal solution f?. In addition, we
know that f(dπ) is always an upper bound on f?, thus we
get an upper bound and a lower bound on the optimal value:
L(d̄π, λ̄) ≤ f? ≤ f(d̄π). When the function f is convex,
strong duality implies that the duality gap is zero, so solving
the game in Eq. (4) implies solving the convex RL problem
as Theorem 1 states.

3.1. Extending to Convex MDPs with Convex
constraints

We have restricted the presentation so far to unconstrained
convex problems, in this section we generalize the above
results to the constrained case. The problem we consider is

min
dπ∈K

f(dπ) subject to gi(dπ) ≤ 0, i = 1, . . .m,

where f and the constraint functions gi are convex. Previous
work focused on the case that both f and gi are linear (Alt-
man, 1999; Szepesvári, 2020; Borkar, 2005; Tessler et al.,
2019; Efroni et al., 2020; Calian et al., 2021; Bhatnagar and
Lakshmanan, 2012). We can use the same Fenchel dual ma-
chinery we developed before, but now taking into account
the constraints. Consider the Lagrangian

L(dπ, µ) = f(dπ) +
∑m

i=1
µigi(dπ)

= max
ν

(
ν>dπ − f∗(ν)

)
+
∑m

i=1
µi max

vi
(dπvi − g∗i (vi)) .

over dual variables µ ≥ 0, with new variables vi and ν. At
first glance this does not look convex-concave, however we
can introduce new variables ζi = µivi to obtain

L(dπ, µ, ν, ζ1, . . . , ζm) = ν>dπ − f∗(ν)

+
∑m

i=1
(dπζi − µig∗i (ζi/µi)) .

This is convex-concave in dπ, (ν, µ, ζ1, . . . , ζm), since it
includes the perspective transform of the functions gi (Boyd
and Vandenberghe, 2004). Again the Lagrangian involves a
cost vector, ν +

∑m
i=1 ζi, linearly interacting with dπ, and

therefore we can use the algorithms we shall develop for the
convex MDP case with minor adjustment to solve the more
general constrained convex MDP case.

4. Policy and cost players for convex MDPs
In this section we present several algorithms for the pol-
icy and cost players that can be used in Algorithm 1. Any
combination of these algorithms is valid and will come with
different practical and theoretical performance. In the next
section we show that several well known methods in the
literature correspond to particular choices of cost and policy
players and so fall under our framework.

4.1. Cost player

Follow The Leader (FTL) is a classic OCO algorithm that
selects λk to be the best point in hindsight. In the special
case of convex MDPs, as defined in Eq. (4), FTL has a
simpler form:

λk = arg max
λ

∑k−1

j=1
L(djπ, λ) (6)

= arg max
λ
−λ ·

∑k−1

j=1
dπk + f∗(λ) = ∇f(d̄k−1

π ),

where the last equality follows from the fact that
(∇f∗)−1 = ∇f (Rockafellar, 1970). Thus, for the FTL
cost player, λk is the gradient of the function f evaluated
on d̄k−1

π =
∑k−1
j=1 dπk (the average of the state occupancies

of the last (k − 1) policies). The average regret of FTL is
guaranteed to be R̄K ≤ c/

√
K in general (Hazan et al.,

2007). In some cases, and specifically when the set K is a
polytope and the function f is strongly convex, FTL can
enjoy logarithmic or even constant regret; see (Huang et al.,
2016; Hazan et al., 2007) for more details.

Online mirror descent (OMD), an online version of mirror
decent (Nemirovskij and Yudin, 1983; Beck and Teboulle,
2003) with the following iterates

λk = arg max
λ

(∇λ′L(dk−1
π , λ′)|λ′=λk−1 · (λ− λk−1)

+ αkBr(λ, λ
k−1)),

where αk is a learning rate and Br is a Bregman diver-
gence. For Br(x) = 0.5||x||22, we get online gradient de-
scent (Zinkevich, 2003, OGD) and for Br(x) = x · log(x)
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we get the multiplicative weights (Freund and Schapire,
1997) as special cases. We also note that OMD is equivalent
to a linearized version of Follow the Regularized Leader
(FTRL) (McMahan, 2011; Hazan, 2016). Finally, the aver-
age regret of OMD is R̄K ≤ c/

√
K, see (Hazan, 2016).

4.2. Policy player

Best Response. In OCO, the best response is to simply
ignore the history and play the best option on the current
round, which has guaranteed average regret bound of R̄K ≤
0. When applied to Eq. (4), it is possible to find the best
response dkπ using standard RL techniques since

dπk = arg min
dπ∈K

Lk(dπ, λ
k) = arg min

dπ∈K
dπ · λk − f∗(λk)

= arg max
dπ∈K

dπ · (−λk),

which is an RL problem for maximizing the reward (−λk).
In principle, any RL algorithm that eventually solves the
RL problem can be used to find the best response, which
substantiates our claim in the introduction. For example,
tabular Q-learning executed for sufficiently long and with
a suitable exploration strategy will converge to the optimal
policy (Watkins and Dayan, 1992). In the non-tabular case
we could parameterize a deep neural network to represent
the Q-values (Mnih et al., 2015) and if the network has suffi-
cient capacity then similar guarantees might hold. We make
no claims on efficiency or tractability of this approach, just
that in principle such an approach would provide the best-
response at each iteration and therefore satisfy the required
conditions to solve the convex RL problem.

Approximate best response. The caveat in using the best
response as a policy player is that in practice, it can only
be found approximately by executing an RL algorithm in
the environment. In terms of sample complexity, finding
an ε-optimal solution to an RL problem requires O(1/ε2)
samples, and there are algorithms achieving a matching up-
per bound (Jaksch et al., 2010; Dann and Brunskill, 2015).
This implies that in each iteration of Algorithm 1, the agent
interacts with a new MDP and has to learn from scratch how
to solve it without using the samples it gathered in previ-
ous iterations. The following Lemma analyzes the sample
complexity of Algorithm 1 with approximate best response
policy player. Other relaxations to the best response for spe-
cific algorithms can be found in (Syed and Schapire, 2008;
Miryoosefi et al., 2019; Jaggi, 2013; Hazan et al., 2019).
Lemma 2 (The sample complexity of approximate best
response in convex MDPs). A cost player with regret
R̄λK = O(1/K) and an approximate best response pol-
icy player that solves the RL problem in iteration k to
accuracy εk = 1/k requires O(1/ε3) samples to find an
ε-optimal solution to the convex RL problem. Similarly, for
R̄λK = O(1/

√
K), setting εk = 1/

√
k is guaranteed to find

an ε-optimal solution with O(1/ε4) samples.

Non-stationary RL algorithms. We now discuss a differ-
ent type of policy players; instead of solving an MDP to

accuracy ε, these algorithms perform a single RL update to
the policy with respect to −λk. In our setup the reward is
known, deterministic but non-stationary, while in the stan-
dard RL setup it is unknown, stochastic and stationary. We
conjecture that any model-based stochastic RL algorithm
can be adapted to the known non-stationary reward setup we
consider here. In most cases both Bayesian (Osband et al.,
2013; O’Donoghue, 2018) and frequentist (Azar et al., 2017;
Jaksch et al., 2010) approaches to the stochastic RL problem
solve a modified (e.g., to add optimism) Bellman equation
at each time period, and so swapping in a known but non-
stationary reward is unlikely to present a problem. We shall
prove that this is exactly the case for two RL algorithms
from the literature, UCRL2 (Jaksch et al., 2010) and MDPO
(Shani et al., 2020b). These were designed and analyzed
in the standard RL setup, and we shall show that they are
easily adapted to the non-stationary but known reward setup
that we require. UCRL2 is a model based algorithm that
maintains an estimation of the reward and the transition ma-
trix. In addition, it maintains confidence sets around these
estimations Pk,Rk that shrink as the agent collects more
samples. UCRL2 guarantees that in any iteration k, the true
reward and dynamics are in the confidence set with high
probability R ∈ Rk, P ∈ Pk. In our case the reward at time
k is known, so we only consider uncertainty in the dynam-
ics. If we denote by JP,Rπ the value of policy π in an MDP
with dynamics P and reward R then the optimistic policy
is π̃k = arg maxπ maxP ′∈Pk J

P ′,−λk
π . Acting according to

this policy is guaranteed to attain low regret as the following
Lemma states.
Lemma 3 (Non stationary regret of UCRL2). For an MDP
with dynamics P, diameterD (Jaksch et al., 2010, Definition
1), an arbitrary sequence of known rewards r1, . . . , rK ,
such that the optimal average reward at time k, w.r.t P and
rk is J?k , then with probability of at least 1− δ, the average
regret of UCRL2 is at most R̄K = 1

K

∑K
k=1 J

?
k − J

π̃k
k ≤

O(DS
√
A log(K/δ)/K).

In the supplementary material (Appendix E), we provide
a proof sketch that closely follows (Jaksch et al., 2010).
We also note that UCRL2 was analyzed in (Rosenberg and
Mansour, 2019) in the adversarial setup, that includes our
setup as a special case. In a finite horizon MDP with horizon
H it was shown that with probability 1− SA/K its regret
is bounded by R̄K ≤ O(HS

√
A log(K)/K) (Rosenberg

and Mansour, 2019, Corollary 5).

Another optimistic algorithm is Mirror Descent Policy Op-
timization (Shani et al., 2020b, MDPO), a model free RL
algorithm that is very similar to popular DRL algorithms
like TRPO (Schulman et al., 2015) and MPO (Abdolmaleki
et al., 2018). In (Geist et al., 2019; Shani et al., 2020a;
Agarwal et al., 2020), the authors established the global
convergence of MDPO and in (Cai et al., 2020; Shani et al.,
2020b), the authors showed that MDPO with optimistic ex-
ploration enjoys efficient regret. In a finite horizon MDP
with horizon H and known non-stationary rewards, the re-
gret of MDPO was bounded as the following Lemma states.



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Reward is enough for convex MDPs

Lemma 4 (Non stationary regret of MDPO (Lemma 4,
(Shani et al., 2021))). For an arbitrary sequence of known
rewards r1, . . . , rK , the average regret of MDPO is at most
R̄K ≤ O(H2S

√
A/K).

While UCRL2 attains a regret that is better by a factor of H
than MDPO, MDPO is much closer to practical DRL algo-
rithms and was shown to perform well as a DRL algorithm
(Tomar et al., 2020). We note that MDPO analysis assumes
that we can solve the mirror descent sub problem exactly
which is only feasible for small tabular problems (Shani
et al., 2020a). When function approximation is used, e.g. in
the DRL setup, the mirror descent problem is usually solved
with gradient descent (Schulman et al., 2015; Abdolmaleki
et al., 2018; Tomar et al., 2020), and as a result the error that
comes from not solving it exactly has to be considered.

Finally, the two algorithms we considered here achieve re-
gret of R̄πK ≤ O(1/

√
K). Thus, according to Eq. (5), com-

bining these policy players with any cost player with regret
R̄λK = O(1/

√
K) implies that it is enough to run Algo-

rithm 1 for O(1/ε2) iterations to find an ε−optimal solution
to the convex RL problem (Eq. (2)). This makes the non-
stationary RL algorithm more efficient and more practical
compared to the algorithm based on approximate best re-
sponse. To the best of our knowledge, this is the first result
that shows an O(1/ε2) sample complexity guarantee for the
convex RL problem.

5. Examples
In this section we explain how existing algorithms can be
seen as instances of the meta algorithm for various choices
of the objective function f , the cost and policy player algo-
rithms Algλ and Algπ . We summarizes the relationships in
Table 1. In the case of vanilla RL, i.e., f = dπ · λ, and if
the cost player is playing FTL then we recover the vanilla
RL problem.

5.1. Apprenticeship Learning

In AL, there is an MDP without an explicit reward function.
Instead, there is an expert that acts according to some policy
and provides demonstrations, which are used to estimate its
state occupancy de. Abbeel and Ng (Abbeel and Ng, 2004)
formalized the AL problem as finding a policy π whose
state occupancy is close to that of the expert by minimizing
the convex function f = ||dπ − dE ||22.

Consider a slightly more general formulation of the AL prob-
lem where the function f measures the distance between
the state occupancy of the agent dπ and de under a general
norm || · ||, i.e., f = ||dπ − de||. The convex conjugate of
f is given by f∗(y) = y · c if ||y||∗ ≤ 1 and∞ otherwise,
where || · ||∗ is the dual norm. Plugging f∗ in Eq. (4) results
in the following max-min game:

max
dπ∈K

min
||λ||∗≤1

λ · dE − λ · dπ. (7)

Eq. (7) implies that the norm, which measures the distance
from the expert in the function f, induces the constraint
set of the cost variable to be a unit ball in the dual norm.
We note that Eq. (7) can also be used without an expert
(dE = 0) to find a policy that is robust to the worst case
reward (Zahavy et al., 2021).

Algλ=OMD, Algπ=best response/RL. The Multiplica-
tive Weights AL algorithms (Syed and Schapire, 2008,
MWAL) was proposed to solve the AL problem with
f = ||dπ − dE ||∞, such that the dual norm in Eq. (7) is
|| · ||1. It uses the best response as the policy player and
multiplicative weights as the cost player (a special case of
OMD). MWAL was also used to solve AL in contextual
MDPs (Belogolovsky et al., 2021) and to find feasible solu-
tions to convex-constrained MDPs (Miryoosefi et al., 2019).
We note that in practice, the best response can only be solved
approximately, as we discussed in Section 4. Instead, in On-
line AL (Shani et al., 2021), the authors proposed to use
MDPO as the policy player which gurantess regret of at
most R̄K ≤ c/

√
K. They showed that their algorithm is

equivalent to Wasserstein GAIL (Xiao et al., 2019; Zhang
et al., 2020b) and performs similarly to GAIL.

Algλ=FTL, Algπ=best response. When the policy player
plays the best response and the cost player plays FTL, Algo-
rithm 1 is equivalent to the Frank-Wolfe algorithm (Frank
and Wolfe, 1956; Abernethy and Wang, 2017) for mini-
mizing the function f (Eq. (2)), pseudo-code for which
is included in the appendix (Algorithm 3). The algorithm
finds a point dπk ∈ K that has the largest correlation (best
response) with the negative gradient (FTL).

Abbeel and Ng (Abbeel and Ng, 2004) proposed two algo-
rithms for AL, the projection algorithm and the max margin
algorithm. The projection algorithm is essentially a FW al-
gorithm, as was suggested in the supplementary (Abbeel
and Ng, 2004) and was later shown formally in (Zahavy
et al., 2020). Thus, it is a projection free algorithm in the
sense that it avoids projecting dπ intoK, despite the perhaps
confusing name. Specifically, in this case, the gradient is
∇f = dπ − dE ; thus, finding the best response is equivalent
to solving an MDP whose reward is dE − dπ. In a similar
fashion, FW can be used to solve any other convex MDP
(Hazan et al., 2019). Specifically, in (Hazan et al., 2019),
the authors considered the problem of pure exploration –
finding a policy that visits all the states uniformly – de-
fined as finding a policy with the maximum entropy dπ :
maxdπ∈KH(dπ), where H(dπ) = −dπ · log(dπ).

Fully corrective FW. The FW algorithm has many variants
(see (Jaggi, 2013) for a survey) and some of them can enjoy
faster rates of convergence in special cases. Specifically,
when the constraint set is a polytope, which is the case in
convex MDPs (Definition 1), some variants achieve a linear
rate of convergence (Jaggi and Lacoste-Julien, 2015; Za-
havy et al., 2020). One such variant is the Fully corrective
FW, which replaces the learning rate update (line 4 of Al-
gorithm 3), with a minimization problem over the previous
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state-occupancy’s. This step is guaranteed to be at least as
good as the learning rate update since:

f
(
(1− αk)d̄kπ + αkd

k+1
π

)
≥ min
x∈Co(d̄kπ,d

k+1
π )

f(x) (8)

≥ min
x∈Co(d1π,d

2
π,...,d

k+1
π )

f(x).

Interestingly, the second algorithm of Abbeel and Ng
(Abbeel and Ng, 2004), the max margin algorithm, is exactly
equivalent to this fully corrective FW variant. This implies
that the max-margin algorithm enjoys a much better con-
vergence rate than the ‘projection’ variant, as was observed
empirically in (Abbeel and Ng, 2004).

5.2. GAIL and DIAYN: Algλ=FTL, Algπ=RL

We now show how mutual-information based diversity ob-
jectives (Gregor et al., 2017; Eysenbach et al., 2019) can
be derived through the lens of convex MDPs. To do so,
we reformulate the objective of DIAYN (Eysenbach et al.,
2019) as a convex RL problem with the following objective
function (see Appendix D for details):

EzKL(dπz ||Ekdπk). (9)

Intuitively, Eq. (9) implies that the policies π1, . . . , πz are
diverse when they visit different states, measured using
the KL distance between their respective state occupan-
cies d1

π, . . . , dπz . It is easy to see that Eq. (9) is convex be-
cause the KL-divergence is jointly convex in both arguments
(Boyd and Vandenberghe, 2004, Example 3.19). Recall that
according to Eq. (6) the FTL cost player is∇f (d̄k−1

π ). Thus,
we now compute the gradient of Eq. (9) w.r.t dπz and com-
pare it to the intrinsic reward in DIAYN. The gradient is a
vector of size |s|, given by ∇dπzKL(dπz ||

∑
k p(k)dπk) =

E
z∼p(z)

[
log

dπz∑
k dπkp(k)

+ 1− dπzp(z)∑
k dπkp(k)

]
(10)

= E
z∼p(z)

[
log(p(z|s))− log(p(z))︸ ︷︷ ︸

Mutual Information

+1− p(z|s)︸ ︷︷ ︸
Gradient correction

]
,

where the equality follows from writing the posterior as a
function of the per-skill state occupancy dπz = p(s | z),
and using Bayes rules, p(z|s) = dπz (s)p(z)∑

k dπk (s)p(k) . Replac-
ing the posterior p(z|s) with a learnt discriminator qφ(z|s)
recovers the mutual-information rewards of DIAYN, with
additional terms 1 − p(z | s) which we refer to as “gra-
dient correction” terms. Inspecting the common scenario
of a uniform prior over the latent variables, p(z) = 1/|Z|,
we get that the expectation of the gradient correction term∑

z p(z)(1 − p(z|s)) = 1 − 1/|z| in each state. From the
perspective of the policy player, adding a constant to the
reward does not change the best response policy, nor the
optimistic policy. Therefore, the gradient correction term
does not have an effect on the optimization under a uniform
prior, and we retrieved DIAYN as a convex MDP algorithm.
These algorithms differ however for more general priors

p(z), which we explore empirically in Section 6. Finally,
note that the reward in DIAYN is the first term in Eq. (10)
without a negative sign. This implies that DIAYN performs
convex maximization, which is a hard problem in general.

GAIL. We further show how Eq. (9) extends to GAIL (Ho
and Ermon, 2016) via a simple construction. Consider a
binary latent space of size 2 corresponding to the agent and
the expert and a uniform prior over the latents. By removing
the constant terms in Eq. (10), one retrieves the GAIL (Ho
and Ermon, 2016) algorithm. The cost log(p(z|s)) is the
probability of the discriminator to identify the agent, and
the policy player is MDPO (which is similar to TRPO in
GAIL). This implies that GAIL and DIAYN have the same
objective function, where in one setup it is maximized and
in the other minimized.

6. Experiments
Above, we presented a principled approach to using standard
RL algorithms to solve convex MDPs. We also suggested
that DRL agents can use this principle and solve convex
MDPs by optimizing the reward from the cost player. We
now demonstrate this by performing experiments with Im-
pala (Espeholt et al., 2018), a distributed actor-critic DRL
algorithm. Our main message is that in domains where Im-
pala can solve RL problems (e.g., problems without hard
exploration), it can also solve convex RL problems.

DIAYN. In our first experiment, we focus on the convex
RL formulation of DIAYN as we defined in Eq. (9). We
compare the intrinsic reward that results from an FTL cost
player in Eq. (10) and the original mutual-information based
reward in DIAYN by performing ablative analysis on the
gradient correction terms in Eq. (10). In both cases, we also
include the standard action entropy regularizer. Since the
two intrinsic rewards were shown to be equivalent under a
uniform prior, we consider a fixed but non-uniform prior.1
The environment is a simple 9×9 gridworld, where the agent
can move along the four cardinal directions. We maximize
undiscounted rewards over episodes of length 32. Given
trajectories generated by the distributed actors, a central
learner computes the gradients and updates the parameters
for the policy, critic and the (variational) reverse predictor.
Fig. 2b plots the average (per timestep) mutual information
I(z, s), between code z and states s ∼ dπz , which is equiv-
alent to the objective in Eq. (9), see Appendix D for the
derivation. Performance is averaged over 10 seeds, with the
shaded area representing the standard error on the mean. In-
specting Fig. 2b we can see that DIAYN reaches around 4.5
bits. We can also see that using the full gradient correction
term in Eq. (10) (“DIAYN w/ gc”) degrades performance
both in terms of convergence and final performance. On the
other hand, removing the constant from the gradient correc-
tion (“DIAYN w/ gc (no const)”), which does not affect the
optimal policy, recovers the performance of DIAYN.

1p(z) is a Categorical distribution over n = 25 outcomes, with
p(z = i) = ui/

∑n
j=1 uj , ui ∼ U(0, 1).



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Reward is enough for convex MDPs

(a) Entropy constrained RL
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Entropy constrained RL. Here we focus on an MDP
with a convex constraint, where the goal is to maximize
the extrinsic reward provided by the environment with
the constraint that the entropy of the state-action occu-
pancy measure must be bounded below. In other words, the
agent must solve maxdπ∈K

∑
s,a r(s, a)dπ(s, a) subject to

H(dπ) ≥ C, where H denotes entropy and C > 0 is a
constant. The policy that maximizes the entropy over the
MDP acts to visit each state as close to uniformly often as is
feasible. So, a solution to this convex MDP is a policy that,
loosely speaking, maximizes the extrinsic reward under the
constraint that it explores the state space sufficiently. The
presence of the constraint means that this is not a standard
RL problem in the form of Eq. (1). However, the agent can
solve this problem using the techniques developed in this
paper, in particular those discussed in Section 3.1.

We evaluated the approach on the bsuite environment ‘Deep
Sea’, which is a hard exploration problem where the agent
must take the exact right sequence of actions to discover
the sole positive reward in the environment; more details
can be found in (Osband et al., 2019). In this domain, the
features are one-hot state features, and we estimate dπ by
counting the state visitations. For these experiments we
chose C to be half the maximum possible entropy for the
environment, which we can compute at the start of the exper-
iment and hold fixed thereafter. We equipped the agent with
the (non-stationary) Impala algorithm, and the cost-player
used FTL. We present the results in Figure 2a where we
compare the basic Impala agent, the entropy-constrained
Impala agent and bootstrapped DQN (Osband et al., 2016).
As made clear in (O’Donoghue et al., 2020b) algorithms
that do not properly account for uncertainty cannot in gen-
eral solve hard exploration problems. This explains why
vanilla Impala, considered a strong baseline, has such poor
performance on this problem. Bootstrapped DQN accounts
for uncertainty via an ensemble, and consequently has good
performance. Surprisingly, the entropy regularized Impala
agent performs approximately as well as bootstrapped DQN,
despite not handling uncertainty. This suggests that the en-
tropy constrained approach, solved using Algorithm 1, can
be a reasonably good heuristic in hard exploration problems.

7. Summary
In this work we reformulated the convex RL problem as a
convex-concave game between the agent and another player

that is producing costs (negative rewards). We proposed a
meta algorithm for solving this game, and discussed various
options for each player. For the policy player, we discussed
the best response and showed that it is equivalent to the
FW algorithm used in related work (Abbeel and Ng, 2004;
Zahavy et al., 2020; Hazan et al., 2019). We then considered
the scenario that an ε−optimal best response is computed
by executing an RL algorithm and suggested that it is not
sample efficient. Instead, we proposed using standard RL
algorithms, with a non-stationary reward, as policy players.
We proved a regret bound for a UCRL2 player and proposed
that any efficient RL algorithm can be used instead. For the
cost player, we have shown that choosing FTL for the cost
player, results in non-stationary reward that is equivalent
to the gradient of the convex objective evaluated on d̄k−1

π .
Using this equivalence, we demonstrated that many intrinsic
rewards in the literature can be understood as gradients of
objectives in convex MDPs. We experimented with a vanilla
actor-critic agent and showed that in domains where the
baseline agent can solve an RL problem, it can also solve
convex RL problems simply by using the non-stationary
reward from the cost player. Finally, we demonstrated that
many attributes of intelligence, such as learning to mimic an
expert, learning diverse policies, and learning to maximize
reward while satisfying constraints, can be well understood
as convex RL problems and solved via the maximization
of a non-stationary reward. We hope that our formulation
of the convex RL problem will help to define and solve
more aspects of intelligence in future work, for example, in
unsupervised RL.



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Reward is enough for convex MDPs

References
P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, page 1.
ACM, 2004.

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos,
N. Heess, and M. Riedmiller. Maximum a posteriori
policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

J. D. Abernethy and J.-K. Wang. On frank-wolfe and
equilibrium computation. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper/2017/
file/7371364b3d72ac9a3ed8638e6f0be2c9-Paper.pdf.

J. Achiam, H. Edwards, D. Amodei, and P. Abbeel. Vari-
ational option discovery algorithms. arXiv preprint
arXiv:1807.10299, 2018.

A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. Op-
timality and approximation with policy gradient methods
in markov decision processes. In Conference on Learning
Theory, pages 64–66. PMLR, 2020.

E. Altman. Constrained Markov decision processes, vol-
ume 7. CRC Press, 1999.

M. G. Azar, I. Osband, and R. Munos. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, pages 263–272, 2017.

A. Beck and M. Teboulle. Mirror descent and nonlinear
projected subgradient methods for convex optimization.
Operations Research Letters, 31:167–175, 2003.

S. Belogolovsky, P. Korsunsky, S. Mannor, C. Tessler, and
T. Zahavy. Inverse reinforcement learning in contextual
mdps. Machine Learning, 2021.

S. Bhatnagar and K. Lakshmanan. An online actor–critic
algorithm with function approximation for constrained
markov decision processes. Journal of Optimization The-
ory and Applications, 153(3):688–708, 2012.

V. S. Borkar. An actor-critic algorithm for constrained
markov decision processes. Systems & control letters, 54
(3):207–213, 2005.

S. Boyd and L. Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient
exploration in policy optimization. In International Con-
ference on Machine Learning, pages 1283–1294. PMLR,
2020.

D. A. Calian, D. J. Mankowitz, T. Zahavy, Z. Xu, J. Oh,
N. Levine, and T. Mann. Balancing constraints and
rewards with meta-gradient d4{pg}. In International
Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=TQt98Ya7UMP.

C. Dann and E. Brunskill. Sample complexity of episodic
fixed-horizon reinforcement learning. In Advances in Neu-
ral Information Processing Systems, pages 2818–2826,
2015.

Y. Efroni, S. Mannor, and M. Pirotta. Exploration-
exploitation in constrained mdps. arXiv preprint
arXiv:2003.02189, 2020.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih,
T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning,
S. Legg, and K. Kavukcuoglu. IMPALA: Scalable dis-
tributed deep-RL with importance weighted actor-learner
architectures. In Proceedings of the 35th International
Conference on Machine Learning, 2018.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diver-
sity is all you need: Learning skills without a reward
function. In International Conference on Learning Rep-
resentations, 2019. URL https://openreview.net/forum?
id=SJx63jRqFm.

C. Florensa, Y. Duan, and P. Abbeel. Stochastic neural net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Learning Representations, 2016.

M. Frank and P. Wolfe. An algorithm for quadratic program-
ming. Naval research logistics quarterly, 3(1-2):95–110,
1956.

Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

M. Geist, B. Scherrer, and O. Pietquin. A theory of regu-
larized markov decision processes. In International Con-
ference on Machine Learning, pages 2160–2169. PMLR,
2019.

K. Gregor, D. J. Rezende, and D. Wierstra. Variational
intrinsic control. International Conference on Learning
Representations, Workshop Track, 2017. URL https://
openreview.net/forum?id=Skc-Fo4Yg.

K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and
M. Riedmiller. Learning an embedding space for transfer-
able robot skills. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/
forum?id=rk07ZXZRb.

E. Hazan. Introduction to online convex optimization.
Foundations and Trends in Optimization, 2(3-4):157–325,
2016.

https://proceedings.neurips.cc/paper/2017/file/7371364b3d72ac9a3ed8638e6f0be2c9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7371364b3d72ac9a3ed8638e6f0be2c9-Paper.pdf
https://openreview.net/forum?id=TQt98Ya7UMP
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=Skc-Fo4Yg
https://openreview.net/forum?id=Skc-Fo4Yg
https://openreview.net/forum?id=rk07ZXZRb
https://openreview.net/forum?id=rk07ZXZRb


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Reward is enough for convex MDPs

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algo-
rithms for online convex optimization. Machine Learning,
69(2-3):169–192, 2007.

E. Hazan, S. Kakade, K. Singh, and A. Van Soest. Prov-
ably efficient maximum entropy exploration. In Inter-
national Conference on Machine Learning, pages 2681–
2691. PMLR, 2019.

J. Ho and S. Ermon. Generative adversarial imitation learn-
ing. arXiv preprint arXiv:1606.03476, 2016.

R. Huang, T. Lattimore, A. György, and C. Szepesvári.
Following the leader and fast rates in linear prediction:
Curved constraint sets and other regularities. In Advances
in Neural Information Processing Systems, pages 4970–
4978, 2016.

M. Jaggi. Revisiting frank-wolfe: Projection-free sparse
convex optimization. In Proceedings of the 30th interna-
tional conference on Machine learning. ACM, 2013.

M. Jaggi and S. Lacoste-Julien. On the global linear conver-
gence of frank-wolfe optimization variants. Advances in
Neural Information Processing Systems, 28, 2015.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(Apr):1563–1600, 2010.

L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and
R. Salakhutdinov. Efficient exploration via state marginal
matching. arXiv preprint arXiv:1906.05274, 2019.

B. McMahan. Follow-the-regularized-leader and mirror
descent: Equivalence theorems and l1 regularization. In
Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pages 525–533.
JMLR Workshop and Conference Proceedings, 2011.

S. Miryoosefi, K. Brantley, H. Daumé III, M. Dudík, and
R. Schapire. Reinforcement learning with convex con-
straints. arXiv preprint arXiv:1906.09323, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidje-
land, G. Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533,
2015.

O. Nachum, Y. Chow, B. Dai, and L. Li. Dualdice: Behavior-
agnostic estimation of discounted stationary distribution
corrections. arXiv preprint arXiv:1906.04733, 2019.

A. S. Nemirovskij and D. B. Yudin. Problem complexity and
method efficiency in optimization. In Wiley-Interscience,
1983.

B. O’Donoghue. Variational Bayesian reinforcement learn-
ing with regret bounds. arXiv preprint arXiv:1807.09647,
2018.

B. O’Donoghue, T. Lattimore, and I. Osband. Stochas-
tic matrix games with bandit feedback. arXiv preprint
arXiv:2006.05145, 2020a.

B. O’Donoghue, I. Osband, and C. Ionescu. Making sense
of reinforcement learning and probabilistic inference. In
International Conference on Learning Representations,
2020b.

I. Osband, D. Russo, and B. Van Roy. (More) efficient
reinforcement learning via posterior sampling. In Ad-
vances in Neural Information Processing Systems, pages
3003–3011, 2013.

I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep
exploration via bootstrapped dqn. In Proceedings of the
30th International Conference on Neural Information
Processing Systems, pages 4033–4041, 2016.

I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener,
A. Saraiva, K. McKinney, T. Lattimore, C. Szepesvari,
S. Singh, et al. Behaviour suite for reinforcement learning.
In International Conference on Learning Representations,
2019.

M. J. Osborne and A. Rubinstein. A course in game theory.
MIT press, 1994.

M. L. Puterman. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
1984.

R. T. Rockafellar. Convex analysis. Princeton university
press, 1970.

A. Rosenberg and Y. Mansour. Online convex optimization
in adversarial markov decision processes. In Interna-
tional Conference on Machine Learning, pages 5478–
5486. PMLR, 2019.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz.
Trust region policy optimization. In International con-
ference on machine learning, pages 1889–1897. PMLR,
2015.

L. Shani, Y. Efroni, and S. Mannor. Adaptive trust region
policy optimization: Global convergence and faster rates
for regularized mdps. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 5668–
5675, 2020a.

L. Shani, Y. Efroni, A. Rosenberg, and S. Mannor. Op-
timistic policy optimization with bandit feedback. In
International Conference on Machine Learning, pages
8604–8613. PMLR, 2020b.

L. Shani, T. Zahavy, and S. Mannor. Online apprenticeship
learning. arXiv preprint arXiv:2102.06924, 2021.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Reward is enough for convex MDPs

A. L. Strehl and M. L. Littman. An analysis of model-
based interval estimation for markov decision processes.
Journal of Computer and System Sciences, 74(8):1309–
1331, 2008.

R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

U. Syed and R. E. Schapire. A game-theoretic approach to
apprenticeship learning. In Advances in neural informa-
tion processing systems, pages 1449–1456, 2008.

U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship
learning using linear programming. In Proceedings of
the 25th international conference on Machine learning,
pages 1032–1039. ACM, 2008.

C. Szepesvári. Constrained mdps and the reward hypothesis,
2020. URL https://readingsml.blogspot.com/2020/03/
constrained-mdps-and-reward-hypothesis.html.

C. Tessler, D. J. Mankowitz, and S. Mannor. Reward con-
strained policy optimization. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=SkfrvsA9FX.

D. Tirumala, A. Galashov, H. Noh, L. Hasenclever, R. Pas-
canu, J. Schwarz, G. Desjardins, W. M. Czarnecki,
A. Ahuja, Y. W. Teh, et al. Behavior priors for efficient
reinforcement learning. arXiv preprint arXiv:2010.14274,
2020.

M. Tomar, L. Shani, Y. Efroni, and M. Ghavamzadeh.
Mirror descent policy optimization. arXiv preprint
arXiv:2005.09814, 2020.

J. Von Neumann. Zur theorie der gesellschaftsspiele. Math-
ematische annalen, 100(1):295–320, 1928.

C. J. Watkins and P. Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

H. Xiao, M. Herman, J. Wagner, S. Ziesche, J. Etesami, and
T. H. Linh. Wasserstein adversarial imitation learning.
arXiv preprint arXiv:1906.08113, 2019.

M. Yang, O. Nachum, B. Dai, L. Li, and D. Schuurmans.
Off-policy evaluation via the regularized lagrangian.
arXiv preprint arXiv:2007.03438, 2020.

T. Zahavy, A. Cohen, H. Kaplan, and Y. Mansour. Appren-
ticeship learning via frank-wolfe. AAAI, 2020, 2020.

T. Zahavy, A. Barreto, D. J. Mankowitz, S. Hou,
B. O’Donoghue, I. Kemaev, and S. Singh. Discovering a
set of policies for the worst case reward. In International
Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=PUkhWz65dy5.

J. Zhang, A. Koppel, A. S. Bedi, C. Szepesvari, and
M. Wang. Variational policy gradient method for rein-
forcement learning with general utilities. arXiv preprint
arXiv:2007.02151, 2020a.

M. Zhang, Y. Wang, X. Ma, L. Xia, J. Yang, Z. Li, and
X. Li. Wasserstein distance guided adversarial imitation
learning with reward shape exploration. In 2020 IEEE 9th
Data Driven Control and Learning Systems Conference
(DDCLS), pages 1165–1170. IEEE, 2020b.

M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
international conference on machine learning (icml-03),
pages 928–936, 2003.

https://readingsml.blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html
https://readingsml.blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html
https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=PUkhWz65dy5


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Reward is enough for convex MDPs

A. Proposition 1
Proposition 1. For both the average and the discounted case, the agent objective function Eq. (3) can be written in terms of
the occupancy measure as Jπ =

∑
s,a r(s, a)dπ(s, a).

Proof. Beginning with the discounted case, the average cost is given by

Jγπ = (1− γ)E
∞∑
t=1

γtrt

= (1− γ)

∞∑
t=1

∑
s

Pπ(st = s)
∑
a

π(s, a)γtr(s, a)

= (1− γ)
∑
s,a

( ∞∑
t=1

γtPπ(st = s)π(s, a)

)
r(s, a)

=
∑
s,a

dγπ(s, a)r(s, a).

Similarly, for the average reward case

Javg
π = lim

T→∞

1

T
E

T∑
t=1

rt

= lim
T→∞

1

T

T∑
t=1

∑
s

Pπ(st = s)
∑
a

π(s, a)r(s, a)

=
∑
s,a

(
lim
T→∞

1

T

T∑
t=1

Pπ(st = s)π(s, a)

)
r(s, a)

=
∑
s,a

davg
π (s, a)r(s, a).

�
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B. FW algorithms
B.1. Pseudo code

Algorithm 3 Frank-Wolfe algorithm

Input: a convex and smooth function f
2: Initialize: Pick a random element d1

π ∈ K.
for i = 1, . . . , T do

4: dk+1
π = arg maxπ∈Π dπ · −∇f(d̄kπ)
d̄k+1
π = (1− αi)d̄kπ + αid

k+1
π

6: end for

B.2. Linear convergence

Theorem 2 (Linear Convergence (Jaggi and Lacoste-Julien, 2015)). Suppose that f has L-Lipschitz gradient and is µ-
strongly convex. Let D = {dπ,∀π ∈ Π} be the set of all the state occupancy’s of deterministic policies in the MDP and let
K = Co(D) be its Convex Hull. Such thatK a polytope with vertices D, and let M = diam(K). Also, denote the Pyramidal
Width of D, δ = PWidth(D) as in (Jaggi and Lacoste-Julien, 2015, Equation 9 1).

Then the suboptimality ht of the iterates of all the fully corrective FW algorithm decreases geometrically at each step, that is

f(d̄k+1
π ) ≤ (1− ρ)f(d̄kπ) , where ρ =

µδ2

4LM2

C. Proof of Lemma 2
Lemma (The sample complexity of approximate best response in convex MDPs). A cost player with regret R̄λK = O(1/K)
and an approximate best response policy player that solves the RL problem in iteration k to accuracy εk = 1/k requires
O(1/ε3) samples to find an ε−optimal solution to the convex RL problem. Similarly, for R̄λK = O(1/

√
K), setting

εk = 1/
√
k is guaranteed to find a solution with O(1/ε4) samples.

Recall that the regret of the best response is R̄K ≤ 0. If we solve the best response approximately at iteration k up to
accuracy εk, then the overall regret of the policy player is R̄πK = 1

K

∑
εk. The overall regret of the game is the sum of the

regret of the policy player and the cost player, and the regret of the game is asymptotically

R̄K = R̄πK + R̄λK = O
(
max(R̄πK , R̄

λ
K)
)

(11)

We consider two cases for the cost player. In the first, it will have constant regret, and therefore average regret of R̄λK =
O(1/K), which is possible to achieve under some assumptions (Huang et al., 2016). In the second scenario, we will consider
average regret of R̄λK = O(1/

√
K), which is feasible for any of the cost players we considered in this paper.

Consider the general case of εk = 1/kp. Note that for the average regret 1
K

∑K
k=1 1/kp to go to zero as K grows, the sum

1
K

∑K
k=1 1/kp must be smaller than K, so p must be positive. In addition, for larger values of p, εk is smaller. Thus the

regret is smaller, but at the same time, it requires more samples to solve each RL problem. Inspecting the maximum in
Eq. (11), we observe that it does not make sense to choose a value for p for which 1

K

∑K
k=1 1/kp < R̄λK , since it will not

improve the overall regret and will require more samples, than, for example, setting p such that 1
K

∑K
k=1 1/kp = R̄λK .

Thus, in the case that the cost player has constant regret, R̄λK = O(1/K), we set p ∈ (0, 1], and in the case that the cost
player has regret of R̄λK = O(1/

√
K), we set p ∈ (0, 0.5].

We now continue and further inspect the regret. We have that 1
K

∑K
k=1 εk = 1

K

∑K
k=1 1/kp = O(k−p) for p ∈ (0, 1),

and log(K)/K for p = 1. Neglecting logarithmic terms, we continued with O(k−p) for both cases. In other words, it is
sufficient to run the meta algorithm for K = 1/εp iterations to guarantee an error of at most ε for the convex RL problem.

To solve an MDP to accuracy εk, it is sufficient to run an RL algorithm for O(1/ε2k) iterations. This is a lower bound and an
upper bound, see, for example (Dann and Brunskill, 2015) for an upper bound of CO(H2S2A log(1/δ) and a lower bound
of O(H2SA log(1/δ) in the finite horizon or (Jaksch et al., 2010) for the average case. Thus, to solve an MDP to accuracy
εk = 1/kp it requires k2p iterations, and the overall sample complexity is therefore

∑1/εp

k=1 k
2p = O(1/ε

2p+1
p ).
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The function 1/ε
2p+1
p is monotonically increasing in p, so it attains minimum for the highest value of p which is 0.5 or 1,

depending on the cost player. We conclude that the optimal sample complexity with approximate best response is O(1/ε3)

for the cost player that has constant regret and O(1/ε4) for a cost player with average regret of R̄λK = O(1/
√
K).

D. DIAYN
Discriminative approaches rely on the intuition that skills are diverse when they are entropic and easily discriminated by
observing the states that they visit. Given a probability space (Ω,F ,P), state random variables S : Ω → S and latent
skills Z : Ω→ Z with prior p, the key term of interest being maximized in DIAYN (Eysenbach et al., 2019) is the mutual
information:

I(S;Z) = Ez∼p;s∼dπz [log p(z|s)− log p(z)], (12)

where dπz is the stationary distribution induced by the policy π(a | s, z). For each skill z, this corresponds to a standard RL
problem with (conditional) policy π(a | s, z) and reward function r(s|z) = log p(z|s)− log p(z). The first term encourages
the policy to visit states for which the underlying skill has high-probability under the posterior p(z | s), while the second
term ensures a high entropy distribution over skills. In practice, the full DIAYN objective further regularizes the learnt policy
by including entropy terms − log π(a | s, z). For large state spaces, p(z|s) is typically intractable and Eq. 12 is replaced
with a variational lower-bound, where the true posterior is replaced with a learned discriminator qφ(z|s). Here, we focus on
the simple setting where z is a categorical distribution over n outcomes, yielding n policies πz , and q is a classifier over
these n skills.

We now show that a similar objective can be derived using the framework of convex MDPs. We start by writing the true
posterior as a function of the per-skill state occupancy dπz = p(s | z), and using Bayes rules, p(z|s) = dπz (s)p(z)∑

k dπk (s)p(k) .

Combing this with Eq. (12) yields:

Ez∼p(z),s∼d(πz)[log p(z|s)− p(z)] =
∑
z

p(z)
∑
s

dπz (s)

[
log

(
dπz (s)p(z)∑
k dπk(s)p(k)

)
− log p(z)

]
=
∑
z

p(z)KL(dπz ||
∑
k

p(k)dπk) = EzKL(dπz ||Ekdπk). (13)

E. Proof sketch for Lemma 3
We denote by r∗k the optimal average reward at time k in an MDP with dynamics P and reward rk = −λk. We want to show
that

Rk =
∑
k

r∗k − rk(sk, ak) ≤ c/
√
K,

that is, that the total reward that the agent collects has low regret compared to the sum of optimal average rewards.

To show that, we make two minor adaptations to the UCRL2 algorithm and then verify that its original analysis also applies
to this non-stationary setup. The first modification is that the nonstatioanry version of UCRL2 uses the known reward rk at
time k (which in our case is the output of the cost player) instead of estimating the unknown, stochastic, stationary, extrinsic
reward. Since the current reward rk is known and deterministic, there is no uncertainty about it, and we only have to deal
with uncertainty w.r.t to the dynamics. The second modification is that we compute a new optimistic policy (using extended
value iteration) in each iteration. This optimistic policy is computed with the current reward rk, and the current uncertainty
set about the dynamics Pk. This also means that all of our episodes are of length 1.

After making these two clarifications, we follow the proof of UCRL2 and make changes when appropriate. We note that the
analysis, basically, does not require any modifications, but we repeat the relevant parts for completeness. We begin with the
definition of the regret at episode k, which is now just the regret at time k :

∆k =
∑
s,a

vk(s, a)(r∗k − rk(s, a)),

where vk(s, a) in our case is an indicator on the state action pair sk, ak, and Rk =
∑
k ∆k.

The instantaneous regret ∆k measures the difference between the optimal average reward r∗k, w.r.t reward rk, and the reward
rk(s, a) that the agent collected at time k by visiting state s and taking action k from the reward that is produced by the cost
player.
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Section 4.1 in the UCRL2 paper is the first step in the analysis. It bounds possible fluctuations in the random reward. This
step is not required in our case since our reward at time k is the output of the cost player, which is known in all the states
and deterministic.

Section 4.2 considers the regret that is caused by failing confidence regions, that is, the event that the true dynamics and true
reward are not in the confidence region. In our case there is only confidence region for the dynamics (since the reward is
known), which we denote by Pk. Summing the expected regret from episodes in which P /∈ Pk results in a

√
K term in the

regret,
∆k ≤

∑
s,a

vk(s, a)(r∗k − rk(s, a)) +
√
K,

where from now on, we continue with the event that P ∈ Pk.

Next, we denote the optimistic policy and optimistic MDP as the solution of the following problem π̃k, P̃k =

arg maxπ∈Π,P ′∈Pk J
P ′,rk
π . In addition, we denote by r̃k the optimstic average reward, that is, the average reward of

the policy π̃k in the MDP with the optimstic dynamics P̃k and reward rk. We also note that π̃k is the optimal average reward
policy in this MDP by its definition.

We now continue with the case that P ∈ Pk. The next step is to bound the difference between the optimal average reward r∗k
and the optimistic average reward r̃k. We note that both r̃k and r∗k are average rewards that correspond to rk. The difference
between them is that r∗k is the optimal average reward in an MDP with the true dynamics P and r̃k is the optimal average
reward in an MDP with the optimistic dynamics P̃k. Thus, the fact that the reward is known, in our case, does not change
the fact that that the optimstic reward is a function of the dynamics uncertainty set Pk.

To compute the optimstic policy and dynamics, UCRL2 uses the extended value iteration procedure of (Strehl and Littman,
2008) to efficiently compute the following iterations:

u0(s) = 0 (14)

ui+1(s) = max
a∈A

{
rk(s, a) + max

P∈P̃k

∑
s′∈S

P (s′|s, a)ui(s
′)

}
,

Using Theorem 7 from (Jaksch et al., 2010) we have that running extended value iteration to find the optimistic policy in the
optimistic MDP for tk iterations guarantees that r̃k ≥ r∗k − 1/

√
tk. Thus, we have that:

∆k ≤
∑
s,a

vk(s, a)(r∗k − rk(s, a)) +
√
K ≤

∑
s,a

vk(s, a)(r̃k − rk(s, a)) + 1/
√
tk +

√
K

Using Eq. (14), we write the last iteration of the extended value iteration procedure as:

ui+1(s) = rk(sk, π̃k(s)) +
∑
s′∈S

P̃k(s′|s, (π̃k(s)))ui(s
′) (15)

Theorem 7 from (Jaksch et al., 2010) guarantees that after running extended value iteration for tk we have that

‖ui+1(s)− ui(s)− r̃k‖ ≤ 1/
√
tk. (16)

Plugging Eq. (15) in Eq. (16) we have that:

‖rk(sk, π̃k(s))− r̃k +
∑
s′∈S

P̃k(s′|s, (π̃k))ui(s
′)− ui(s)‖ ≤ 1/

√
tk, (17)

and therefore
r̃k − rk(sk, ak) = r̃k − rk(sk, π̃k(s)) ≤ vk(P̃k − I)ui + 1/

√
tk.
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In the next step in the proof, the vector ui is replaced with wk, which is later upper bounded by the diameter of the MDP D.
To conclude, we have that

∆k ≤
∑
s,a

vk(s, a)(r̃k − rk(s, a)) + 1/
√
tk +

√
K ≤ vk(P̃k − I)wk + 2/

√
tk +

√
K.

From this point on, the proof follows by bounding the term vk(P̃k − I)wk, which is only related to the dynamics, and
combines all of the previous results into the final result, thus, it is possible to follow the original proof without any
modification. Since the leading terms in the original proof come from uncertainty about the dynamics, we obtain the same
bound as in the original paper.
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