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Abstract

There is a growing interest in automatic knowledge discov-
ery in plain text documents. Automation enables the analysis
of massive collections of information. Such efforts are espe-
cially relevant in the health domain as advancements could
use the large volume of available resources to transform ar-
eas important for society when addressing various health re-
search challenges. However, knowledge discovery is usually
aided by annotated corpora, which are scarce resources in the
literature. This situation is particularly critical in the Span-
ish language, for which the volume of training resources is
less widespread. This work considers as a start point existent
health-oriented Spanish dataset. In addition, it also creates
an English variant using the same tagging system. Further-
more, we design and analyze two separated architectures for
Entity Extraction and Relation Recognition that outperform
previous works in the Spanish dataset. With such promising
results, we also evaluate their performance in the English ver-
sion.

Introduction
In recent decades there has been a significant growth in
the generation and collection of data in text form. This has
caused a great interest of the scientific community in de-
veloping systems that assist the transformation of text into
useful knowledge. However, the sheer volume of informa-
tion and the poorly unified semantic structure of documents
written in natural language makes it difficult for researchers
to find good results efficiently. In this domain is located the
area of automatic information extraction in which, in turn,
is present the problems of entity extraction and the relation-
ships that are established between them.

The search for related research becomes much more com-
plex when considering multiple languages. There are re-
search areas where there are relevant results in more than
one language, as is the case of medicine. We can find in-
fluencing results in English and also Spanish to give an ex-
ample. However, because Spanish is a less generalized lan-
guage than English in terms of available computational re-
sources, there are not many automatic information extraction
systems available (Piad-Morffis et al. 2020).
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The entity extraction and classification problem are for-
mulated in the literature as Named Entity Recognition
(NER) (Li et al. 2020). It is defined as the process of ob-
taining, from unstructured natural language text, a list of
the sections of that text that contain entities. Entities have
been described in the literature differently, depending on the
context, domain, and corpus used (Li et al. 2020). A re-
lated problem of Relation Extraction (RE) (Pawar, Palshikar,
and Bhattacharyya 2017), and classification is vent broader.
It aims at determining which relations are established be-
tween the entities previously recognized in an input docu-
ment (Pawar, Palshikar, and Bhattacharyya 2017).

This paper improves on the models introduced by
Rodrı́guez-Péreza et al. (2020), obtaining two new separated
architectures for the Entity Extraction and Relation Recog-
nition problem, respectively. Next, it studies its performance
in the Spanish dataset of the event eHealth-KD 20201 and an
English dataset created by us based on the Spanish dataset.

The paper is organized as follows. First, we present a
section of related work. The next section elaborates on the
datasets used and how the new English dataset was built.
Then, Section 3 presents the design and details of both archi-
tectures for the NER and RE problems, respectively. Section
4 presents performed experiments. Finally, the last section
concludes the paper and suggests futures work.

Background
The area of information extraction comprises problems that
allow obtaining structured information from unstructured or
semi-structured documents, usually using Natural Language
Processing (NLP) techniques. Its general problem area in-
cludes NER, RE, and automatic ontology construction.

NER and RE are essential preprocessing steps for vari-
ous problems such as Information Retrieval, Question An-
swering, Machine Translation, and others (Li et al. 2020).
Several approaches have been found for NER in the liter-
ature like rules based (Zhang and Elhadad 2013), unsuper-
vised learning (Nadeau and Sekine 2007), supervised based
in features (Settles 2004; Li et al. 2020). In the last years, the
most successful approaches have been found in deep learn-
ing techniches (Li et al. 2020). Successful deep learning ap-

1https://knowledge-learning.github.io/ehealthkd-2020/
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Datasets (Train) (Development) (Testing)

Spanish 800 200 100
English 250 50 50

Table 1: Distribution of both datasets, by number of sen-
tences for traning, development and testing.

proaches are based on contextual encoders as Bidirectional
Long Short Term Memory (BiLSTM), Convolutional Neu-
ral Networks (CNN), and Transformer architectures (Li et al.
2020). One final step in deep learning techniques for NER is
the tag decodification stage, where the literature shows the
use of Multilayer Perceptron with softmax activation, Re-
current Neural Networks (RNN) (Li et al. 2020) and Condi-
tional Random Field (CRF) (Li et al. 2020; Lafferty, McCal-
lum, and Pereira 2001).

RE also had its best results in the last year with deep
learning approaches (Pawar, Palshikar, and Bhattacharyya
2017). Deep learning-based solutions to the RE problem
are focused on sentence encoders using BiLSTM, CNN,
and Transformers architectures (Pawar, Palshikar, and Bhat-
tacharyya 2017). Also, deep learning solutions to the NER
and RE problems need distributed representations of the in-
put (Li et al. 2020; Pawar, Palshikar, and Bhattacharyya
2017). The most used representations in the last years
are contextual embeddings of the word that can be ob-
tained using pretrained Transformer models in large collec-
tions of text as BERT (Devlin et al. 2018), word embed-
dings (Mikolov et al. 2013) pretrained in large corpora or
trained together with the model. In addition are used charac-
ter embeddings that are trained with the model also, usually
using BiLSTM or CNN based architectures (Li et al. 2020)
and also Part of Speech tags (POS-tags) (Li et al. 2020).
Particularly in RE, another highly used representation is the
dependency tree associated with the sentence (Pawar, Pal-
shikar, and Bhattacharyya 2017; Liu et al. 2015).

Research has also been done using the tagging system
proposed in (Piad-Morffis et al. 2020). This tagging sys-
tem is composed of four types of entities: Concept, Action,
Reference, Predicate and a set of relations as is-a, part-of,
causes, has-property, entails, same-as. Several models have
been developed for the extraction and classification of en-
tities and relations using this tagging system and a Span-
ish medical dataset in the event of eHealth-KD 2020 (Piad-
Morffis et al. 2020).

From the output of these tasks (NER and RE), ontolo-
gies can be built and used in multiple problems as Informa-
tion Retrieval (Asim et al. 2018). However, one limitation of
the ontology learning supervised approaches is that it can-
not always be used in numerous languages since there are
not many datasets in more than one language that use the
same tagging system (Piad-Morffis et al. 2020; Asim et al.
2018).

Datasets
The dataset used is the one proposed in the event eHealth-
KD in its 2020 edition (Piad-Morffis et al. 2020). This

dataset is composed of two collections of tagged sentences
with the entities and relations present in them. The training
collection is used to optimize the proposed models’ param-
eters, and the development collection is used for the model
selection. Finally, there is a testing collection to determine
the final performance of the systems developed by the con-
testants. This event also is divided into two tasks. One task
is for entity extraction and classification, and the second is
for relation extraction and classification.

The English version of this dataset was created based on
the Spanish dataset’s sentences translated to English and
with adjusted relations (additional dataset creation specifics
are in the supplementary material). However, solely trans-
lating the dataset is not sufficient because the words used
in English often express the same as in Spanish but do not
mean the same in the full context, and the grammar is dif-
ferent. Therefore, entities change positions in the sentence,
which implies that the relations have to be adjusted. Table 1
shows the distributions of both datasets.

Architectures
The Biarchitecture system proposed in this paper solves
both tasks separately and sequentially. Thus, independent
models were defined to solve NER and RE problems. The
NER task is posed as a tag prediction problem that takes
the raw text of the input sentence and outputs two inde-
pendent tag sequences: one in the BMEWO-V tag (Zavala,
Martı́nez, and Segura-Bedmar 2018) system for entity pre-
diction (Rodrı́guez-Péreza et al. 2020), and another with tags
corresponding to entity types (Concept, Action, Reference,
Predicate) for classification purposes. The tag None is in-
cluded in the latter; consider the cases where no entity is
present. Meanwhile, the RE task is interpreted as a series
of pairwise queries amongst the entities present in the target
sentence. A particular relation’s existence is predicted upon
features derived from both the sentence and the pair of enti-
ties.

Preprocessing Given the target sentence and the high-
lighted entities input as raw text, some preprocessing is done
to derive functional structures from such text. Since both
models make use of word-piece information, the input sen-
tence must be tokenized first. Other preprocessing steps in-
clude character-level word decomposition, syntactic features
extraction, and dependency parsing. To obtain a representa-
tion of the corresponding inputs, the models make use of the
following features for each word:

Contextual embedding: BERT-based contextual embed-
dings with no further hyper tuning. Due to the BERT
model’s tokenization algorithm, a specific strategy is
needed to merge words divided into multiple BERT to-
kens (e.g.the word cáncer might be divided [cán, cer]).
In our case, it is done using the mean of the given vectors.

Character embeddings: CNN-based character embed-
dings. The input to such CNN is a sequence of alphabet
indexes, those of the characters contained in the word.

POS-tag and Dependency embeddings: Embeddings in-
tended to encode word-level syntactic features such as



the POS-tag of the given the word and the dependency
with its ancestor in the dependency parse tree.

BMEWO-V and Entity Type tags: BMEWO-V and en-
tity type tags are used in the RE task and are obtained
from Task A model outputs.

Named Entity Recognition Model
The model receives the sentence as a sequence of word
vectors S. A distributed representation of each word is ob-
tained concatenating contextual, character, and POS-tag em-
beddings, as described in the previous subsection. At a sec-
ond level, the sequence of tokens is processed in both direc-
tions by a BiLSTM layer, resulting in two sequence vec-
tors. The vectors on complementary positions of the two
sequences are concatenated, resulting in a new sequence P
with contextual-dependent vectors assigned to each token in
the sentence. This sequence is looking to encapsulate seman-
tic dependencies between the tokens of the sentence. The
output sequence of the first BiLSTM is processed in both di-
rections by a stacked BiLSTM on top of the first one, getting
more representational power and resulting in the sequence of
vectors P’:

P = BiLSTM(S) (1)

P ′ = StackedBiLSTM(P ). (2)

The model has to assign tags in the BMEWO-V tag sys-
tem to each word, and also a classification type in the classes
Concept, Action, Reference, Predicate and None. To do so,
the next steps were split into two cases. Both architectures
are shown in the figures 1a and 1b

To assign tags in the BMEWO-V tag system to each word,
the sequence P’ is fed into a linear chain CRF layer that out-
puts the most likely tag sequence according to the Viterbi
algorithm (Viterbi 1967). Let xtag be the output correspond-
ing to the BMEWO-V tag system and CRFtag the CRF layer,
then:

xtag = CRFtag(P
′). (3)

In the second case, where a type must be assigned to each
word, the sequence P’ is fed into a Multiheaded Attention
layer with eight heads, initialized with the value, key, and
query vectors with the sequence P’. This layer will return a
sequence of attention vectors called Z, denoted as follows:

Z = MultiHeadedAttention(P ′, P ′, P ′). (4)

Finally, the sequence Z is also fed to another CRF layer
that outputs the most likely type sequence. Let xtype be the
output corresponding to the entity type and CRFtype the lin-
ear chain CRF layer, then:

xtype = CRFtype(Z). (5)

The first CRF layer produces a sequence of tags in the
BMEWO-V tag system. Table 2 shows the description of
the tag system. A process is necessary to transform a tag
sequence obtained from the CRF layer into a list of entities
expected as output in Task A (Rodrı́guez-Péreza et al. 2020).
This process from now on will be referred to as decoding. An
essential challenge in this process is that tokens belonging

Tag Meaning

B Beginning of an entity
M Middle of an entity
E End of an entity
W Single-token entity
V Two or more entities overlap in that token
O Token does not represent anything

Table 2: BMEWO-V tag system meaning.

to an entity are not necessarily continuous in the sentence.
Thus, the decoding process is divided into two stages. First,
discontinuous entities are detected and then, at a second mo-
ment, continuous entities.

The set of tag sequences that must be interpreted as a
group of discontinuous entities were narrowed to those that
match the regular expressions:

(V+)((M ∗ EO∗)+)(M ∗ E) (6)
and ((BO)+)(B)(V+). (7)

The former 6 corresponds to entities that share the initial
tokens, and the latter 7 to those that share the final tokens.
These two capture most of the desired discontinuous enti-
ties. Among the examples of the former case, it is found the
fragment cáncer de pulmón y de mama, tagged as V-M-
E-O-M-E, where entities cáncer de pulmón and cáncer de
mama are found. And, as example of the latter, the fragment
tejidos y órganos humanos, tagged as B-O-B-V, where enti-
ties tejidos humanos and órganos humanos are found. When
a match is detected and the entities are extracted, then all the
tags in that fragment are set to the tag O.

After detecting possible discontinuous entities, the sec-
ond stage begins assuming that all the remaining entities ap-
pear as continuous sequences of tokens. Extracting the con-
tinuous entities is carried out as an iterative process over
the tags sequence produced by the model. Due to limita-
tions in the BMEWO-V system, the procedure also assumes
that the maximum overlapping depth is 2. Assuming other-
wise only makes the process ambiguous and does not cap-
ture much more information since a deeper overlapping is
not frequent on the training and development collections.
Given this, at most, two partially-constructed entities are
maintained across the procedure. In each iteration, these two
entities are created, extended with new tokens, or reported
as completed, following rules defined considering only the
previous and the current tag.

According to evaluations performed in the training and
development collections, the process of decoding correctly
labeled sequences extracts more than 98% of the entities
present in the Spanish dataset.

After identifying the entities, we classify each of them ac-
cording to its type, using a voting system based on the sec-
ond CRF layer’s output. The system had previously assigned
to each word in the input sentence, one of the entity types, in
this case one between: Concept, Action, Predicate
or Reference. Each word produces a vote for each en-
tity it belongs to, according to the assigned type. Then, each



(a) Entity Extraction Model Architecture for BMEWO-V tags. (b) Entity Extraction Model Architecture for Classification.

Figure 1: On the left the Entity Extraction Model Architecture for BMEWO-V tags. On the right the Entity Extraction Model
Architecture for Classification.

entity is classified according to the type that obtained the
highest number of votes. If the voting is even, Concept is
assumed since it is the most frequent by a wide margin in
the collections studied.

Relation Extraction Model
The complete information to solve the RE task is found in
the whole input sentence. However, some authors claim that
the dependency tree associated with the input sentence con-
denses the essential pieces of information and discards the
misleading ones (Liu et al. 2015; Xu et al. 2015). Aiming
at determining a possible relation between two entities, the
system presented uses input structures derived from the de-
pendency parse tree associated with the target sentence to
obtain information from the sentence and the entity pair.

One of the criteria taken into consideration to establish
a dependency relationship with a header H in a syntactic
construction C, is the fact that H could replace C (Zwicky
1985). Moreover, H could semantically determine C. On
the other hand, multiple-word entities often occur entirely
in a dependency subtree rooted at one of its tokens. Given a
sentence and its dependency tree T , we define such subtree
of T corresponding to an entity e, as relevant tree for e, and
it is denoted further on as Se. The root is called the core of
the entity e, and it is denoted ne.

Another important definition, vastly used in literature to
address this task, the is dependency path between two
tokens t1 and t2. From now on, it will be referred to as
C(t1, t2). The before-mentioned structures are fed into a
Deep Neural Network that outputs a vector whose length is
the same as the relations set. Each component of such vector
is independent of each other and measures how certain is the
model that the respective relation between the input entities
appears.

To do so, the model first encodes each of the structures
Se1 , Se2 and C(ne1 , ne2) in a vector. Either Se1 and Se2
or C(ne1 , ne2) are formed by words from the input sen-
tence. A distributed representation of each word is obtained
concatenating contextual, character, POS-tag, dependency,
BMEWO-V and entity type embeddings, as described in the
previous subsection.

To compute the output vector, a BiLSTM layer en-
codes the sequence of vectors associated to the words in
C(ne1 , ne2) to include bidirectional information in the rep-
resentation:

P = BiLSTM(C(ne1 , ne2)). (8)

Then the sequence P is fed into a Multiheaded Attention
layer with five heads, initialized with the value, key, and
query vectors with the sequence P. This layer returns a se-
quence of attention vectors called Z, defined as follows:

Z = MultiHeadedAttention(P, P, P ). (9)

This output is fed into a unidirectional LSTM layer to em-
phasize the direction of the potential relation, processing the
sequence Z from the origin to the destination. This results in
a vector p encoding the information present in C(ne1 , ne2):

p = LSTM(Z). (10)

At the same time, a ChildSum Tree-LSTM (Tai, Socher,
and Manning 2015) is applied independently over Se1 and
Se2 (i.e the representations are obtained separately but using
the same set of weights):

te1 = TreeLSTM(Se1) (11)

te2 = TreeLSTM(Se2) (12)



Figure 2: Relation Extraction Model Architecture.

Vectors encoding the input structures are concatenated.
The final output x is obtained by applying a sigmoid func-
tion to a linear transformation of it as follows:

r = [te1 ; te2 ; p] (13)

x = σ(W (x)r + b(x)) (14)
According to the scores present in the output vector x, if

any of its components exceeds a given threshold, then the
relation with the maximum score is said to exist. If none of
the scores is greater than such threshold, then no relation is
reported. The threshold value is added as a hyperparameter
and optimized using the development collection. Notice that
this approach allows us to disregard the use of a fake relation
none. Figure 2 shows the described architecture.

Parameters Setup and Training
For both models, the training procedure was carried out us-
ing only the training collection.

Since the CRF layer is intended to maximize the probabil-
ity of obtaining a desired tag sequence y given an input fea-
ture vector X , the Task A model is trained to minimize the
negative log of the probability P (y|X). Let U and T be the
CRF emissions and transition matrixes, respectively. Then,
that probability is defined as the normalized exponential:

P (y|X) =
exp

(∑l
k=1 U(xk, yk) +

∑l−1
k=1 T (yk, yk+1)

)
Z(X)

,

where Z is a normalization factor depending on the input
vectorX . And the loss function is defined in terms ofX and
y as follows:

`(X, y) = − log(P (y|X)).

In the case of Task B model, since each output component
is independent to each other, the model is trained to mini-
mize a binary cross-entropy function over the output vector.
Let k be the number of relations, x the output vector and y
the target vector, the loss function is computed as follows:

`(x, y) =
1

k

∑
1≤i≤k

[yi · log xi + (1− yi) · log(1− xi)].

Parameter Value Parameter Value

Input embeddings size

Contextual† 3072 Contextual? 768
Character 50 Character 50
POS-tag 50 POS-tag 50

Dependency 50
BMEWO-V tags 50
Entity type 50

Neural network

CNN hid. sz. 100 CNN hid. sz. 100
2D Dropout 0.5 BiLSTM h. sz. 100
BiLSTM1 h.sz. 300 Dropout rate 0.2
Dropout1 rate 0.5 LSTM hid. sz. 50
BiLSTM2 h. sz. 300 Dropout rate 0.5
Multihead att hds 8 Multihead att hds 5
Dropout2 rate 0.5 Tree-LSTM sz. 50

Dropout rate 0.5

Training

Optimizer Adam Optimizer Adam
Learning rate 0.001 Learning rate 0.001
Epochs 50 Epochs 30

Total params 9,935,538 Total params 5,947,763

Table 3: Hyperparameter setup for NER (left) and RE (right)
models. Annotations: †last four, ?last layer.

As explained before, the model output does not make use
of the fake none relation. A negative sampling strategy is
used to optimize the model with examples where no relation
is present. A negative sample is nothing more than a train-
ing example where the target output is the null vector. Such
sampling is performed using a fixed proportion of unrelated
entity pairs.

Dropout strategies were used during the training proce-
dure in both models to reduce overfitting. For Task A, two
dropouts layers were stacked after the first and the second
BiLSTM, and a spatial dropout 2D was added after the
CNN layer was used to compute the character embedding
of words. In the Task B model, three dropout layers were
stacked after BiLSTM, LSTM, and TreeLSTM layers, re-
spectively.

The number of epochs was selected empirically, based on
the convergence of the models, as learning curves showed.
We carried cross-validation for hyperparameter tuning and
model selection using the development collection. Table 3
shows the hyperparameter setup for both models.

Data Augmentation
Also, the implementation of a word replacement data aug-
mentation algorithm (Dai and Adel 2020) will automatically
increase the dataset’s size. This algorithm first goes for each
sentence in the dataset and searches for an entity composed
of only one word. Then it changes that word with the token



System-Data-Augment (A+B) (A) (B) Size

Models with Spanish 0.633 0.829 0.637 1587
Models with English 0.572 0.781 0.550 1168

Table 4: Results (measure F1) obtained from the evaluation
of the systems in the Spanish dataset provided in the event
eHealth-KD 2020 and the newly created English dataset. In
both datasets a data augmentation strategy was used. The
size column shows the size in sentences of the augmented
dataset. Scenario A is only entities, B is only relations, and
(A+B) is the result using both at the same time.

Teams (A+B) (A) (B) (A+B T)
Vicomtech 0.666 0.821 0.583 0.563
Our Approach (DA) 0.633 0.829 0.637 0.587
Our Approach 0.631 0.828 0.637 0.561
Talp-UPC 0.627 0.816 0.575 0.584
UH-MAJA-KD 0.625 0.814 0.599 0.548
IXA-NER-RE 0.558 0.692 0.633 0.479
UH-MatCom 0.557 0.795 0.545 0.373
SINAI 0.421 0.825 0.462 0.281
HAPLAP 0.395 0.542 0.316 0.138
baseline 0.395 0.542 0.131 0.138
ExSim 0.246 0.314 0.131 0.122

Table 5: Results (measure F1) in each scenario of the com-
petition, sorted by scenario 1 in the event eHealth-KD 2020.
The (A + B T) scenario is both tasks together but in an
evaluation dataset of general purpose. The results are ob-
tained from the evaluation of the systems of each team in the
dataset provided in the event. The system using the models
of this work and the previous version of these models are
highlighted in black. The label (DA) means our approach
using the data augmentation strategy.

[MASK], and a pre-trained model of BERT is used to pre-
dict which word should replace the [MASK] token. If the
predicted word is different from the previous word, then a
new sentence is created using this new predicted word. The
idea is that there is a high probability that the word predicted
will also be an entity and will have the same classification.
Still, there exists the possibility of errors. One of those cases
is when words like prepositions or pronouns are used too
much. Therefore, to decrease the likelihood of an entity be-
ing replaced by a pronoun, preposition, or another non-entity
word, we restrict that the predicted word cannot be a stop-
word. Two strategies were implemented. The first strategy is
to add a new sentence for each word replaced. This means
that for only one sentence, more than one new sentence can
be generated, the number of new sentences will be bounded
by the number of words that fit the criteria to be replaced.
The second strategy is to add a new sentence for each ex-
isting sentence by changing all the possible words in the al-
ready existing sentence. This means that it will double the
size of the dataset at most, but new sentences will be varied.

Experiment and results

We evaluated the performance of the deep learning models
in the Spanish language using the same testing dataset that
in the competition eHealth-KD of 2020 (Piad-Morffis et al.
2020). Next, we evaluated the model training with the En-
glish dataset using a testing set of 50 sentences but with the
same metrics. Also, Table 5 shows the results of the other
approaches in the same competition in the Spanish language
in comparison with our approach. The results are presented
in F1 measure with the respective definitions of precision
and recall of the eHealth-KD of 2020 (Piad-Morffis et al.
2020; Piad-Morffis et al. 2020).

As can be seen in the Spanish dataset results in Table 5,
our approach obtains the best results in the task of only ex-
tracting and classifying entities (A) and also in the task of
only extracting and classifying the relations (B). Further-
more, our system simultaneously gets the best results in both
tasks but in a general-purpose testing dataset (A + B T).
However, a system is better in both tasks at the same time
but in a medical-specific testing dataset (A + B). We believe
the reason is the use of a joint model solving both tasks at
the same time, instead of a model-specific for entities and
others for relations (Garcı́a-Pablos et al. 2020). Obtaining
functions that jointly optimize both tasks have a great com-
plexity (Garcı́a-Pablos et al. 2020). However, the fact that
our proposal shows competitive results allows us to suppose
that training separate models to solve the two tasks is still a
promising line of research.

Table 4 shows the best results after using the data aug-
mentation algorithm proposed in Section . The strategy of
a new sentence for each word changed worked better for
the English dataset since its original size is still too small.
However, this strategy brings more noise and bias to a big-
ger dataset like the Spanish one. For that reason, we use the
strategy of a new sentence in the Spanish dataset to change
all the possible words in an already existing sentence. We
also believe that the use of this data augmentation strategy is
one of the main reasons for the improvement of the results in
the task (A + B T). Since that, the new words added by the
pre-trained model of BERT bert-base-multilingual-cased
during the prediction are general-purpose and not medical-
specific. Also, from the results in Table 4 can be seen that
the English dataset is still small since the performance of
the models trained on it is low.

Conclusions

This work designs two separated architectures for the NER
and RE problems and assesses them in both datasets, show-
ing that our models obtain great results compared to state-
of-the-art work in the Spanish dataset. Finally, we introduce
a new English dataset based on the health-oriented Spanish
dataset of the eHealth-KD 2020 using the same tagging sys-
tem, allowing future work from a multilingual approach us-
ing both datasets. We intend to continue increasing the size
of the English dataset, and improve the performance of the
models.
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