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Abstract

Large language models (LLMs), despite their001
breakthroughs on many challenging benchmark002
tasks, prefer to generate verbose responses and003
lack the controllability of output complexity,004
which is usually preferred by human users in005
practice. In this paper, we study how to pre-006
cisely control multiple linguistic complexities007
of LLM output by finetuning using off-the-shelf008
data. To this end, we propose multi-control009
tuning (MCTune), which includes multiple lin-010
guistic complexity values of ground-truth re-011
sponses as controls in the input for instruction012
tuning. We finetune LLaMA2-7B on Alpaca-013
GPT4 and WizardLM datasets. Evaluations on014
widely used benchmarks demonstrate that our015
method does not only improve LLMs’ multi-016
complexity controllability substantially but also017
retains or even enhances the quality of the re-018
sponses as a side benefit.019

1 Introduction020

Large language models have achieved remarkable021

success in generating free-from texts for different022

downstream tasks or human instructions. However,023

existing LLMs still lack precise control over the024

linguistic complexity of their outputs, e.g., the to-025

tal number of nouns, the variation of verbs, etc.026

Linguistic controllability is crucial to creating per-027

sonalized outputs since those complexity indices028

directly reflect human reading complexity in mul-029

tiple aspects. For example, a short yes/no answer030

is required by some users while a detailed explana-031

tion is preferred by others. Moreover, recent studies032

have discovered a spurious correlation between the033

quality reward used in LLM alignment and the out-034

put length (i.e., a specific linguistic complexity).035

Consequently, LLMs favor generating verbose re-036

sponses due to the length bias, which may increase037

unnecessary reading complexity. It is still an open038

problem to mitigate the bias without hurting the039

output quality.040

While existing LLM finetuning techniques such 041

as instruction-tuning and reinforcement learning 042

from human feedback (RLHF) has been demon- 043

strated to be effective in aligning the output with 044

human intent or preference, they only focus on 045

maximizing a single objective. Instead, achieving 046

the controllability of multiple complexity indices 047

requires a non-trivial multi-objective optimization 048

that has not been thoroughly studied on LLMs. 049

Rather than solely maximizing or minimizing the 050

complexities, it aims to reach different target com- 051

plexity values on the Pareto frontier. This requires 052

LLMs to adjust the trade-off among objectives and 053

capture their potential correlations or constraints in 054

the text generation process. In addition, due to the 055

huge space of possible combinations of complexity 056

indices, it could be expensive to collect training 057

data for multi-objective control. 058

In this paper, we take the first step towards multi- 059

objective control of the linguistic complexity of 060

LLM outputs. Instead of collecting new data, our 061

strategy allows the reuse of existing instruction- 062

tuning data. In particular, we annotate the ground- 063

truth responses in a dataset by their complexity 064

metrics evaluated using tools developed in com- 065

putational linguistics. The multiple complexity 066

indices and their values are appended as tags to the 067

input so finetuning an LLM on the linguistic-label 068

augmented data helps build a strong connection be- 069

tween the input tags and the linguistic complexity 070

of the output, hence enforcing the LLM to adhere 071

to the complexity requirements during sequential 072

decoding. Surprisingly, we observe that randomly 073

sampling a small subset of tags for each training 074

example suffice to obtain controllability over all 075

the complexities of test examples, thereby reducing 076

the required amount of training data. 077

We examine our approach by finetuning 078

LLaMA2-7B using a linguistic-complexity labeled 079

Alpaca-GPT4 dataset (i.e., the prompts are from 080

the original Alpaca dataset while the responses 081
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are composed by GPT-4) and a WizardLM dataset.082

We do not only observe an expected substantial083

improvement in linguistic controllability but also084

a side benefit of enhanced response quality, in-085

dicating that finetuning under multiple linguistic086

constraints can improve the LLM for general pur-087

poses. Compared to unconstrained RLHF and IFT088

methods, which suffer from the length bias, our ap-089

proach does not introduce the bias but can improve090

both the controllability and quality simultaneously.091

2 Related Work092

Linguistic Features and Complexity. The ex-093

ploration of linguistic features and complexity in094

language models encompasses a diverse range of095

research. Seminal studies have investigated the096

syntactic abilities of LSTMs (Linzen et al., 2016).097

Ficler and Goldberg (2017) has introduced methods098

for manipulating the stylistics and syntactic output099

of test generation models. Additionally, linguistic100

style transfer (Shen et al., 2017) has also show-101

cased the adaptability of language models to cap-102

ture and replicate varied linguistic features. Build-103

ing on the previous efforts to understand the multi-104

faceted nature of linguistics complexity, our work105

concentrates on producing responses endowed with106

specific linguistic characteristics, which is less ex-107

plored in the previous work.108

Controllability of LLMs. The topic of personal-109

ized language modeling has attracted significant at-110

tention across various research papers. Techniques111

such as user embedding have become common for112

customizing language models to individual needs113

(Welch et al., 2020; Rocca and Yarkoni, 2022).114

More recently, Mireshghallah et al. (2022); Oba115

et al. (2023) propose prompt based personalized116

fine-tuning for specific users, and producing per-117

sonalized responses. Our research shifts the fo-118

cus from personalization for specific users to the119

broader goal of controlling large language models120

(LLMs) to produce outputs with linguistic diversity121

and complexity, addressing a gap not explored by122

the aforementioned works.123

Another prevalent technique for guiding the out-124

put of large language models involves Tagging125

(Korbak et al., 2023; Prabhumoye et al., 2023; Lu126

et al., 2022). This method incorporates appending127

human-readable text during the training of LLMs.128

Contrary to previous studies that concentrated on129

managing aspects like toxicity (Korbak et al., 2023;130

Prabhumoye et al., 2023) and controlling repetition131

(Lu et al., 2022), our approach employs tagging 132

techniques to control linguistic features across mul- 133

tiple attributes. Additionally, we utilize multiple 134

tags to enable simultaneous consideration of vari- 135

ous attributes, a difference from earlier work that 136

primarily uses of a single tag. 137

Finetuning and Alignment of LLMs. With the 138

emergence of large-scale language models, such 139

as those in the GPT series, aligning language mod- 140

els has become prevalent. Studies like those by 141

(Zhou et al., 2023; Xu et al., 2023; Li et al., 2023) 142

have concentrated on the process of data curation 143

for instruction fine-tuning to enhance models’ in- 144

structions following capabilities. Unlike these data- 145

centric approaches, we keep the original instruction 146

dataset but augment instructions with various tags 147

to introduce a richer array of linguistic features, 148

thereby elevating the instruction-following capabil- 149

ities of the models. 150

3 Finetuning LLMs for Linguistic 151

Controllability 152

In this section, we delineate our approach to multi- 153

control tuning. Section 3.1 outlines the linguistic 154

features of interest and describes how we extract 155

them from a given text segment. In Section 3.2, we 156

explain how the extracted features are incorporated 157

into the multi-control tuning process. 158

3.1 Handcrafted Linguistic Features 159

We are specifically interested in controlling the 160

handcrafted linguistic properties of the model’s 161

generation. This type of feature has been used 162

throughout the NLP field (Bogdanova et al., 2017; 163

Anshika Choudhary, 2021; Lee et al., 2021) and is 164

loosely defined in Lee and Lee (2023) as “a single 165

numerical value produced by a uniquely identifi- 166

able method on any natural language.” An ex- 167

ample of a linguistic feature not considered hand- 168

crafted is text embeddings produced by deep neural 169

networks, which usually take the form of a vector. 170

We extract such features from a text segment using 171

the LFTK package proposed in Lee and Lee (2023). 172

It encompasses a diverse set of 220 features that are 173

grouped into different linguistic families. Within 174

the scope of this paper, we sample a reasonably- 175

sized set of 14 features for multi-control tuning, 176

which are presented in Table 1. These features are 177

selected to cover most of the feature families while 178

being simple to understand and verify by human 179

users. 180
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ID Name Description
1 t_word number of words
2 n_noun number of nouns
3 n_verb number of verbs
4 n_adj number of adjectives
5 t_uword number of unique words
6 n_unoun number of unique nouns
7 n_uverb number of unique verbs
8 n_uadj number of unique adjectives
9 ttr type-token ratio
10 noun_var noun variation
11 verb_var verb variation
12 adj_var adjective variation
13 fkre Flesch-Kincaid reading ease
14 rt_average average reading time

Table 1: The list of linguistic features for controllability
tuning. The second column shows the name of each
feature with the corresponding descriptions in the third
column. We include a detailed explanation of how these
features are computed in Appendix A.

Formally, given a text segment x =181

[x1, x2, ..., xl], with xi being the i-th token of182

x, we denote the feature extractor as a function183

f : X → Rd that maps x to a d-dimensional vector184

f(x) = [f1(x), ..., fd(x)], where fj(x) represents185

the j-th linguistic feature of interest and X rep-186

resents the space of all texts. In this paper, the187

function f refers to the LFTK feature extractor.188

3.2 Multi-Objective Control Tuning189

Consider the standard instruction tuning setting
where an LLM, denoted as pθ(x) =

∏l
i=1 pθ(xi |

x<i), is trained on a dataset of N instruction-output
pairs, Dtrain = {(xi,yi)}Ni=1. The training objec-
tive is to generate yi given xi; thus, the loss is

L = −
N∑
i=1

|yi|∑
k=1

log pθ(yi,k | xi,yi,<k)

We address multi-control tuning by framing it as
a conditional instruction tuning problem, where
we utilize the target response yi from Dtrain to
generate a linguistic control vector f(yi) and ap-
pend it to xi. The model is then trained to gen-
erate yi condition on both xi and f(yi). How-
ever, to enhance data diversity and better simulate
real-world scenarios, where a user may wish to
control only a few features, we do not utilize all
features for every data example. For each pair
(xi,yi) ∈ Dtrain, we randomly sample an integer
ni ∼ Uniform {1, . . . ,m} , m ≤ d. The set of ni

feature indices, denoted by Ci, is then randomly
sampled from the pool of all feature indices, i.e.,
Ci ∼ Uniform ({A ⊆ {1, . . . , d} : |A| = ni}).
The linguistic control vector used for the i-th ex-
ample is denoted as fCi(yi), where fCi(yi) =[
fCi,1(yi), . . . , fCi,ni

(yi)
]
. The resulting training

loss becomes

L = −
N∑
i=1

|yi|∑
k=1

log pθ(yi,k | xi, fCi(yi),yi,<k)

The benefits of our training strategy are twofold: 190

(1) it improves the controllability and instruction- 191

following capability simultaneously, thus avoid- 192

ing the catastrophic forgetting problem that may 193

degrade the model’s generation quality. In fact, 194

we will later show in Section 5.6.2 that LLMs 195

trained with our approach achieve even stronger 196

instruction-following ability compared to those 197

trained with vanilla instruction tuning; (2) it al- 198

lows us to utilize off-the-shelf datasets without the 199

need to collect new ones. 200

3.3 Prompt Template 201

In practice, we format both the instruction x and 202

the output y into a predefined template before 203

they are input into the LLMs. This paper adopts 204

the template outlined in (Taori et al., 2023), 205

wherein x is decomposed into an instruction and 206

an input component. Regarding linguistic controls, 207

we format them into a sequence of the form 208

[name_1: value_1] ... [name_n: value_n], 209

aiming for conciseness by utilizing the features’ 210

abbreviated names listed in Table 1. To assist the 211

LLM in better understanding these abbreviations, 212

we provide a comprehensive list of feature 213

descriptions within the system prompt, which has 214

been confirmed to enhance the effectiveness of 215

our approach in preliminary experiments. This 216

sequence of controls is subsequently attached to 217

the input component. Figure 1 illustrates a detailed 218

example of how an input prompt is constructed. 219

4 Evaluation of Linguistic Controllability 220

During evaluation on a reserved test dataset Dtest, 221

we aim to measure how the model performs as the 222

linguistic control vector f changes. To conduct 223

such an evaluation, we develop a sampling strategy 224

to sample different control vectors for an instruc- 225

tion xi. Specifically, we need a sampling strategy 226

that: (1) is specific to an instruction xi, i.e., the 227
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Below is an instruction that describes a task, paired with an input that provides further context. At the end of the
input, there will be a list of tags specifying the desired properties of the response. The following tags are available:
[t_word] for the total number of words; [n_noun] for the total number of nouns;
[n_verb] for the total number of verbs; [n_adj] for the total number of adjectives;
[t_uword] for the total number of unique words; [n_unoun] for the total number of unique nouns;
[n_uverb] for the total number of unique verbs; [n_uadj] for the total number of unique adjectives;
[simp_ttr] for the simple type-token ratio; [simp_noun_var] for simple noun variation;
[simp_verb_var] for simple verb variation; [simp_adj_var] for simple adjective variation;
[fkre] for the Flesch-Kincaid Reading Ease; [rt_average] for the average reading time.
Write a response that appropriately completes the request and satisfies the tags.
### Instruction:
Arrange the words in the given sentence to form a grammatically correct sentence.
### Input:
quickly the brown fox jumped [t_word: 6] [n_noun: 1] [fkre: 102.05]
### Response:
The brown fox jumped quickly.

Figure 1: An example of how data is formatted before being fed into LLMs in this paper. The first paragraph
presents a system prompt containing a complete list of feature descriptions. Our preliminary results indicate that
including descriptions enhances the effectiveness of our approach.

sampled control vectors should not stray too far228

from the reasonable range for a specific xi. For229

example, an instruction to "Generate a short story"230

should not have a large value for t_word; (2) en-231

sures the sampled control vectors are always valid,232

meaning that no linguistic controls conflict with233

each other (e.g., t_uword should always be less234

than or equal to t_word), and no control is out-of-235

bound (e.g., fkre should always be less than or236

equal to 121.22).237

To achieve the first goal, we utilize yi’s linguis-
tic feature vector as a reference point and sample
new control vectors f ′ from the Gaussian distribu-
tion centered at f(yi), i.e., f ′ ∼ N (f(yi), Iσ

2).
However, since each feature fi(y) has a different
range, a small σ for some features may be large for
others. To avoid this inconsistency, we standardize
all features to unit variance before sampling. More
formally, the new control vector f ′ is computed by

f ′ = z−1(z(f(yi)) + σϵ), ϵ ∼ N (0, I)

where z : Rd → Rd standardizes each feature to238

unit variance, and z−1 is the inverse operation.239

While sampling a valid control vector can be240

a challenging problem, verifying its validity is241

straightforward. This can be done using a simple242

rule-based method, which we outline in Appendix243

B. We utilize this observation to achieve the second244

goal by performing rejection-based sampling, i.e.,245

keep resampling a new control vector f ′ until we246

find a valid one. We will show in Section 5.7.3247

that σ can serve as a hyperparameter to control the248

evaluation difficulty. 249

Lastly, for each example in Dtest, we randomly 250

sample a number n, a set of n feature indices C, 251

and K new control vectors f ′
C for controllability 252

and generation quality evaluation. 253

5 Experiments 254

5.1 Implementation Details 255

By default, we set K = 5 and σ = 0.1 unless 256

specified otherwise. We set the maximum number 257

of linguistic controls per example to m = 5 and 258

will show in Section 5.7.2 that limiting m to 5 does 259

not affect the model’s controllability, even when 260

more than 5 controls are used in the evaluation. 261

For all datasets, we fine-tune LLaMA2-7B using 262

the AdamW optimizer with a linear learning rate 263

schedule. We set the learning rate to 2× 10−5, the 264

batch size to 128, and the number of warmup steps 265

to 100. All models are trained on 8 RTX A6000 266

GPUs for 5 epochs. 267

5.2 Datasets. 268

Data Preprocessing. Because LFTK cannot ex- 269

tract linguistic features with perfect accuracy, it 270

sometimes generates invalid control vectors f(yi) 271

(e.g., producing an fkre greater than 121.22). This 272

situation complicates the process of sampling new 273

control vectors, as f(yi) may deviate significantly 274

from the feasible region, drastically reducing the 275

probability of sampling a valid one. Therefore, we 276

exclude data examples with invalid f(yi). 277
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Alpaca-GPT4. We utilize the Alpaca-GPT4278

dataset (Peng et al., 2023) for instruction tuning279

and evaluation. This dataset shares the same set280

of instructions as the Alpaca dataset (Taori et al.,281

2023), but it employs OpenAI’s GPT-4 to generate282

high-quality responses. Our preliminary experi-283

ments demonstrate that training with this dataset284

yields better results in terms of both controllability285

and generation quality compared to training with286

the original Alpaca dataset. After preprocessing,287

the dataset is divided into a training set of 45,000288

examples and a test set of 2,000 examples.289

WizardLM. In addition to Alpaca-GPT4, we290

also evaluate our method on the WizardLM dataset291

(Xu et al., 2023). The original dataset contains292

70,000 examples of instruction-output pairs that293

were automatically generated by ChatGPT. We sub-294

sampled 50,000 examples from the original dataset.295

Similar to Alpaca-GPT4, after preprocessing, we296

split the data into a training set of 40,000 examples297

and a test set of 2,000 examples.298

5.3 Models.299

We use LLaMA2-7B (Touvron et al., 2023) as the300

base model for multi-control tuning in all experi-301

ments.302

5.4 Baselines303

To evaluate the impact of our method on controlla-304

bility and generation quality, we conduct compar-305

isons with the same LLaMA2-7B base model but306

trained with regular instruction fine-tuning. We307

also include OpenAI’s GPT-3.5 Turbo (gpt-3.5-308

turbo-0125) as a baseline to compare our model309

against state-of-the-art proprietary LLMs in terms310

of controllability. For each baseline, we control the311

linguistic complexity of their responses using the312

prompt template shown in Figure 1 in a zero-shot313

manner.314

5.5 Evaluation Metrics315

Controllability Error. Given an instruction x,316

a linguistic control vector fC , and a generated re-317

sponse ŷ ∼ pθ(y | x, fC), we measure controlla-318

bility error by computing the L1 error between the319

specified control vector fC and the response’s lin-320

guistic feature vector fC(ŷ). We denote this error321

as e = |fC(ŷ)− fC | ∈ R|C|.322

Quality Score. To evaluate generation quality,323

we follow Zheng et al. (2023) in using a powerful324

LLM (e.g., ChatGPT-4 Turbo) as a judge to assign 325

quality scores ranging from 1 to 10. 326

5.6 Main Results and Analysis 327

5.6.1 Linguistic Controllability Evaluation 328

This section presents the evaluation of linguistic 329

controllability between our method and various 330

baselines. We consider three evaluation settings: 331

Easy (σ = 0.1), Medium (σ = 0.2), and Hard (σ = 332

0.3). Our goal is to measure the controllability 333

error of each baseline on each linguistic control 334

and then visualize all of them on the same radar 335

plot for comparison. Formally, for each linguistic 336

control i, and each baseline j, we maintain a list 337

ei,j =
[
e1i,j , . . . , e

|ei,j |
i,j

]
of L1 errors made by j, 338

where the length of this list depends on the number 339

of text examples that contain i. The matrix of all 340

L1 errors for feature i is denoted as 341

Ei =


e1i,1 . . . e

|ei,1|
i,1

...
. . .

...
e1i,J . . . e

|ei,J |
i,J

 (1) 342

It is challenging to directly visualize Ei for all i 343

on the same radar plot because each linguistic con- 344

trol i has a different range of values. Therefore, 345

we normalize each element in Ei using min-max 346

normalization, with the minimum being minEi 347

and the maximum being the 95th percentile of 348

Ei, or P95(Ei). For each baseline j, its average 349

normalized L1 error on control i is calculated as 350∑
k norm(eki,j)/|ei,j |, where norm(·) denotes the 351

normalization described above. 352

As shown in Figure 2, our method consistently 353

outperforms the other baselines across all settings. 354

Surprisingly, a state-of-the-art model like ChatGPT 355

underperforms in controllability compared to the 356

instruction-finetuned LLaMA2-7B. Upon manual 357

inspection, we observed that ChatGPT tends to 358

produce more verbose responses regardless of the 359

linguistic controls applied, which may explain the 360

observed poor performance. Another possible rea- 361

son for this discrepancy is that LLaMA2-7B is 362

finetuned on data sharing the same distribution as 363

the test set, giving it an advantage over ChatGPT. 364

Note that for noun_var, verb_var, and adj_var, 365

the differences between each baseline’s errors are 366

not significant. We hypothesize that, in contrast to 367

other linguistic complexities, the descriptions of 368

these features are somewhat more ambiguous, and 369

we also did not provide a clear description in the 370
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Figure 2: Comparison of controllability error (the average normalized L1 error) of ChatGPT
(gpt-3.5-turbo-0125), IFT (finetuning without controls), and MCTune (ours) on AlpacaGPT-4 and WizardLM
datasets and three test settings of target linguistic complexity with increasing σ (difficulty). To visualize each
linguistic feature’s average error on the same radar plot, we apply min-max normalization to normalize them to a
similar scale. To reduce the effect of outliers, the minimum L1 error of the i-th feature is the minimum among all
baselines, and the maximum L1 error refers to the 95th percentile of errors among all baselines.

system prompt, which may not be helpful for the371

model to understand and follow these features.372

5.6.2 Generation Quality Evaluation373

A natural concern when fine-tuning for controllabil-374

ity is how it affects the model’s generation quality.375

In this section, we answer this question by com-376

paring our method with standard instruction fine-377

tuning on MT-Bench (Zheng et al., 2023), a widely378

used benchmark for evaluating LLMs on multi-turn379

open-ended questions. Specifically, we use GPT-4380

Turbo (gpt-4-0125-preview) as a judge and com-381

pare the two methods in both single-answer and382

pairwise settings. In the single-answer setting, the383

judge assigns a single numeric score from 1 to 10384

for each model’s answer. In the pairwise setting,385

the judge receives two answers from both baselines386

and returns either a win, a loss, or a tie. The result387

for the single-answer setting is shown in Figure388

4. As shown in the figure, our method does not389

degrade the model’s general language ability but390

even improves it in most categories. Note that the391

performance of both baselines on Coding and Math392

questions is poor because the AlpacaGPT-4 dataset393

does not have a strong specialty in questions of394

this category. When evaluating under the pairwise 395

setting, MCTune achieves a 51.25% win rate over 396

instruction fine-tuning. These results suggest that 397

training for controllability is beneficial for improv- 398

ing LLMs’ natural language performance. 399

5.7 Analyses 400

5.7.1 Relationship Between Linguistic 401

Controllability and Generation Quality 402

This experiment focuses on studying the relation- 403

ship between generation quality and the control- 404

lability error of LLM responses. To start off, we 405

randomly select a set of 5 linguistic controls C 406

and fix it throughout the experiment for simplic- 407

ity. Given an LLM pθ and the Alpaca-GPT4 test 408

dataset Dtest = {(xi,yi)}Ni=1, we select 50 exam- 409

ples from Dtest then sample 50 responses ŷi from 410

pθ(yi | xi, fC(yi)). Each ŷi is then evaluated by 411

GPT-4 Turbo on how well it satisfies xi and a con- 412

trollability error of ŷi is computed by taking the 413

average of the normalized L1 errors across all con- 414

trols in C. We also consider three different settings 415

where σ = 0.1, σ = 0.3, and σ = 0.5 to see how 416

the pattern shifts as σ changes. The results are 417

shown in Figure 3. We can see that, compared to 418
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Figure 3: Trade-off between linguistic controllability and generation quality in three increasingly difficult test
settings. Each dot represents a model’s response ŷ to a specific query [x, fC ]. The response is given a quality score
from 1 to 10 by a judge LLM (GPT-4 Turbo) based on how well ŷ addresses x. A controllability error is measured
for ŷ, which is computed by taking the average of normalized L1 errors across all linguistic controls in fC . Blue and
orange dots respectively represent responses from models trained by IFT and MCTune using Alpaca-GPT4 dataset.
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Figure 4: Comparison between MCTune and IFT-
trained models on MT-Bench. We finetune LLaMA2-
7B on Alpaca-GPT4 dataset and GPT-4 Turbo is the
judge in the test. The average score per axis ranges
from 1 to 10 and are given by the judge.

IFT, our method achieves better quality and con-419

trollability simultaneously. As σ increases, the420

controllability error increases, which is expected421

and consistent with the results in Section 6. We422

then start to notice a slight degradation in quality at423

σ = 0.5, where there are no responses with a score424

of 10, and more responses with low scores begin to425

appear. This observation suggests that there might426

be a positive correlation between controllability427

and generation quality.428
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Figure 5: Linguistic controllability error on the test set
as the number of linguistic controls n per sample in
MCTune’s training increases. The solid curves repre-
sent the linguistic controllability error averaged over all
linguistic complexities (lower is better) with the shaded
areas represent the 95%-confidence interval. The dotted
vertical line indicates the maximum number of controls
(5) used during MCTune’s training.

5.7.2 Analysis of Model Controllability with 429

Varying Linguistic Controls 430

In this experiment, we are interested in study- 431

ing how the model’s controllability is affected as 432

the number of linguistic controls increases. We 433

conduct this experiment using the Alpaca-GPT4 434

dataset, from which we randomly sample 100 ex- 435

amples from the test set. For each example, we 436

sample five new control vectors f ′ of length n, 437

compute the average normalized L1 error per con- 438

trol, and then average these over all controls to 439
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obtain a single numeric score. We repeat this pro-440

cess for n = 1 to n = 14. The results are shown441

in Figure 5. Surprisingly, controllability is worse442

when n is small. This is true for both MCTune443

and the IFT baseline, suggesting that this is not an444

inherent limitation of our approach. Notice that, as445

the number of linguistic controls increases beyond446

five, the maximum number of controls used during447

training, the controllability error of IFT fluctuates,448

while MCTune remains approximately stable. This449

demonstrates that our model, trained with MCTune,450

is able to generalize to a larger number of controls451

than it has seen in training.452

5.7.3 Analyzing the Impact of σ on Linguistic453

Controllability Evaluation454

t_word
n_noun

n_verb

n_adj

t_uword

n_unoun

n_uverb
n_uadj

ttr

noun_var

verb_var

adj_var

fkre

rt_average

0.1

0.2

0.3

0.4

= 0.1
= 0.2
= 0.3

Figure 6: Analysis of how the average normalized L1

error varies when changing the test difficulty level via
σ. We use the same model and only vary σ.

This section examines the effect of σ on control-455

lability evaluation. Given a model fine-tuned with456

MCTune and a test dataset, we follow the process457

described in Section 4 to sample new linguistic458

control vectors for evaluating controllability. We459

consider three settings: σ = 0.1, σ = 0.2, and460

σ = 0.3. The results are depicted in Figure 6. As461

illustrated by the results, as σ increases, the average462

normalized L1 error uniformly increases across all463

linguistic controls. This indicates that σ can serve464

as a hyperparameter to adjust the difficulty of the465

evaluation, which is intuitive since a larger σ en-466

ables the sampling of control vectors that are more467

distant from the reference control vector f(y).468

5.8 Case Studies469

This section presents examples of how different470

values of controls affect the model’s responses.471

As shown in Figure 7, increasing the t_word con-472

### Instruction: Given an economic concept, define it in simple terms.
### Input: Inflation [t_word: 109] [n_verb: 15] [n_uverb: 14]
### Response: Inflation is when the prices of goods and services rise
over time. Imagine a dollar bill losing value over time, where a single dollar
can't buy as much as it used to. That's inflation. It's important to note that
inflation is not the same as increasing prices on purpose, which is called
deflation. Inflation is generally considered a positive thing because it
means the economy is growing and people have more money to spend.
However, high inflation can also lead to rising prices for essentials like food
and housing, which can be a challenge for people on a fixed income.

Response's complexities:
t_word=113, n_verb=16, n_uverb=15.

### Instruction: Given an economic concept, define it in simple terms.
### Input: Inflation [t_word: 54] [n_verb: 9] [n_uverb: 8]
### Response: Inflation is when the prices of goods and services increase
over time. This means that a dollar will buy less in the store as the year
goes by. While some inflation is expected to happen naturally due to
growth and increased demand, high inflation rates can harm the economy
and cause uncertainty.

Response's complexities:
t_word=56, n_verb=9, n_uverb=8.

Figure 7: Examples of MCTune model responding
to the same instruction under different linguistic
controls. The linguistic complexities of the responses
are extracted using LFTK with exact values shown at
the bottom of each example.

trol leads to a longer response and larger values 473

of n_verb and n_uverb increase the variation in 474

verb choice. Although it is challenging to strictly 475

control the complexities of the response, the lin- 476

guistic controls can serve as soft constraints on the 477

model’s generation. 478

6 Discussion and Conclusions 479

In this paper, we advance the precise control of 480

linguistic complexities in LLMs through multi- 481

objective control tuning. Our method is straight- 482

forward and can be seamlessly integrated with ex- 483

isting instruction-tuning datasets without the need 484

to gather new ones. Our training objective concur- 485

rently optimizes the LLM’s ability to follow instruc- 486

tions and its controllability. Through our experi- 487

ments, we find that incorporating this dual-focus 488

strategy significantly improves the LLM’s gener- 489

ative quality, surpassing the results of instruction 490

fine-tuning alone. This finding suggests that con- 491

trollability and instruction-following ability may 492

have a complementary effect on each other. Ad- 493

ditionally, we observe that while state-of-the-art 494

LLMs achieve impressive natural language perfor- 495

mance, they are not easy to control. This empha- 496

sizes the need for studying methods that improve 497

controllability in LLMs. 498
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7 Limitations499

While our method significantly improves controlla-500

bility compared to regular instruction fine-tuning,501

we observe that there is still room for improvement.502

The model trained with MCTune is able to loosely503

follow the linguistic controls but struggles to pro-504

duce responses with the exact complexities. An505

interesting next step would be to improve control-506

lability in a strict setting. Another limitation we507

observe is the fact that LFTK sometimes extracts508

incorrect linguistic complexities for a given text.509

This leads to noisy controls that may confuse and510

reduce the controllability of the model during train-511

ing.512
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A Computing Linguistic Features644

In this section, we describe in greater detail how
linguistic features are computed. We use LFTK
as a feature extractor, which is based on spaCy.
Given a string, spaCy tokenizes it into a sequence
of tokens along with their annotations (e.g., part-
of-speech). The number of words t_word is the
number of tokens. The n_noun, n_verb, and n_adj
are computed based on the POS provided by spaCy.
The t_uword, n_unoun, n_uverb, and n_uadj are
computed accordingly. The type-token ratio, noun
variation, verb variation, and adjective variation are
t_uword
t_word , n_unoun

n_noun , n_uverb
n_verb , and n_uadj

n_adj , respectively.
Let t_sent be the number of sentences and t_syll
is the number of syllables, the formula to compute
Flesch-Kincaid reading ease is

206.835− 1.015

(
t_word

t_sent

)
− 84.6

(
t_syll

t_word

)
Lastly, the average reading time rt_average is645
t_word
240 .646

B Verifying Validity of Control Vectors 647

Given a linguistic control vector, it is straightfor- 648

ward to check its validity by iterating through a list 649

of pre-defined rules. 650

• t_word > 0 651

• t_word ≥ n_noun+ n_verb+ n_adj 652

• t_word ≥ t_uword 653

• n_noun ≥ 0 654

• n_noun ≥ n_unoun 655

• n_verb ≥ 0 656

• n_verb ≥ n_uverb 657

• n_adj ≥ 0 658

• n_adj ≥ n_uadj 659

• t_uword > 0 660

• t_uword ≥ n_unoun+ n_uverb+ n_uadj 661

• n_unoun ≥ 0 662

• n_uverb ≥ 0 663

• n_uadj ≥ 0 664

• fkre ≤ 121.22 665

If any of the rules above is violated, we conclude 666

that the control vector is invalid. 667
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