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Abstract

Encoder-decoder networks with attention have proven to be a powerful way to solve
many sequence-to-sequence tasks. In these networks, attention aligns encoder and
decoder states and is often used for visualizing network behavior. However, the
mechanisms used by networks to generate appropriate attention matrices are still
mysterious. Moreover, how these mechanisms vary depending on the particular
architecture used for the encoder and decoder (recurrent, feed-forward, etc.) are also
not well understood. In this work, we investigate how encoder-decoder networks
solve different sequence-to-sequence tasks. We introduce a way of decomposing
hidden states over a sequence into temporal (independent of input) and input-
driven (independent of sequence position) components. This reveals how attention
matrices are formed: depending on the task requirements, networks rely more
heavily on either the temporal or input-driven components. These findings hold
across both recurrent and feed-forward architectures despite their differences in
forming the temporal components. Overall, our results provide new insight into the
inner workings of attention-based encoder-decoder networks.

1 Introduction

Modern machine learning encoder-decoder architectures can achieve strong performance on sequence-
to-sequence tasks such as machine translation (Bahdanau et al., 2014; Luong et al., 2015; Wu et al.,
2016; Vaswani et al., 2017), language modeling (Raffel et al., 2020), speech-to-text (Chan et al.,
2015; Prabhavalkar et al., 2017; Chiu et al., 2018), etc. Many of these architectures make use of
attention (Bahdanau et al., 2014), a mechanism that allows the network to focus on a specific part of
the input most relevant to the current prediction step. Attention has proven to be a critical mechanism;
indeed many modern architectures, such as the Transformer, are fully attention-based (Vaswani et al.,
2017). However, despite the success of these architectures, an understanding of how said networks
solve such tasks using attention remains largely unknown.

Attention mechanisms are attractive because they are interpretable, and often illuminate key com-
putations required for a task. For example, consider neural machine translation—trained networks
exhibit attention matrices that align words in the encoder sequence with the appropriate correspond-
ing position in the decoder sentence (Ghader & Monz, 2017; Ding et al., 2019). In this case, the
attention matrix already contains information about which words in the source sequence are relevant
for translating a particular word in the target sequence; that is, forming the attention matrix itself

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



constitutes a significant part of solving the overall task. How is it that networks are able to achieve
this? What are the mechanisms underlying how networks form attention, and how do they vary across
tasks and architectures?

In this work, we study these questions by analyzing three different encoder-decoder architectures on
sequence-to-sequence tasks. We develop a method for decomposing the hidden states of the network
into a sum of components that let us isolate input driven behavior from temporal (or sequence) driven
behavior. We use this to first understand how networks solve tasks where all samples use the same
attention matrix, a diagonal one. We then build on that to show how additional mechanisms can
generate sample-dependent attention matrices that are still close to the average matrix.

Our Contributions

• We propose a decomposition of hidden state dynamics into separate pieces, one of which explains
the temporal behavior of the network, another of which describes the input behavior. We show
such a decomposition aids in understanding the behavior of networks with attention.

• In the tasks studied, we show the temporal (input) components play a larger role in determining
the attention matrix as the average attention matrix becomes a better (worse) approximation for a
random sample’s attention matrix.

• We discuss the dynamics of architectures with attention and/or recurrence and show how the
input/temporal component behavior differs across said architectures.

• We investigate the detailed temporal and input component dynamics in a synthetic setting to
understand the mechanism behind common sequence-to-sequence structures and how they might
differ in the presence of recurrence.

Related Work As mentioned in the introduction, a common technique to gain some understanding
is to visualize learned attention matrices, though the degree to which such visualization can explain
model predictions is disputed Wiegreffe & Pinter (2019); Jain & Wallace (2019); Serrano & Smith
(2019). Input saliency Bastings & Filippova (2020) and attribution-propagation Chefer et al. (2020)
methods have also been studied as potential tools for model interpretability.

Complementary to these works, our approach builds on a recent line of work analyzing the computa-
tional mechanisms learned by RNNs from a dynamical systems perspective. These analyses have iden-
tified simple and interpretable hidden state dynamics underlying RNN operation on text-classification
tasks such as binary sentiment analysis (Maheswaranathan et al., 2019; Maheswaranathan & Sussillo,
2020) and document classification (Aitken et al., 2020). Our work extends these ideas into the domain
of sequence-to-sequence tasks.

Notation Let T and S be the input and output sequence length of a given sample, respectively.
We denote the encoder and decoder hidden states by hE

t ∈ Rn with t = 1, . . . , T . Similarly, we
denote decoder hidden states by hD

s ∈ Rn, with s = 1, . . . , S. The encoder and decoder hidden state
dimensions are always taken to be equal in this work. Inputs to the encoder and decoder are denoted
by xE

t ∈ Rd and xD
s ∈ Rd̃. When necessary, we subscript different samples from a test/train set using

α, β, γ, e.g. xE
t,α for α = 1, . . . ,M .

Outline We begin by introducing the three architectures we investigate in this work with varying
combinations of recursion and attention. Next we introduce our temporal and input component
decomposition and follow this up with a demonstration of how such a decomposition allows us to
understand the dynamics of attention in a simple one-to-one translation task. Afterwards, we apply
this decomposition to two additional tasks with increasing levels of complexity and discuss how our
decomposition gives insight into the behavior of attention in these tasks.

2 Setup

A schematic of the three architectures we study is shown in Fig. 1 (see SM for precise expressions).

Vanilla Encoder Decoder (VED) is a recurrent encoder-decoder architecture with no attention
(Sutskever et al., 2014). The encoder and decoder update expression are hE

t = FE(hE
t−1,x

E
t ) and

hD
s = FD(hD

s−1,x
D
s ), respectively. Here, FD and FE are functions that implement the hidden

state updates, which in this work are each one of three modern RNN cells: LSTMs (Hochreiter &
Schmidhuber, 1997), GRUs (Cho et al., 2014), or UGRNNs (Collins et al., 2016).
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Figure 1: Schematic of the three primary architectures analyzed in this work. The orange, purple, and
green boxes represent the encoder RNNs, decoder RNNs, and linear readout layers, respectively. Recurrent
connections are shown in blue, attention-based connections and computational blocks are shown in gold. The
grey circles add positional encoding to the inputs.

Encoder-Decoder with Attention (AED) is identical to the VED architecture above with a simple
attention mechanism added (Bahdanau et al., 2014; Luong et al., 2015). For time step s of the decoder,
we compute a context vector cs, a weighted sum of encoder hidden states, cs :=

∑T
t=1 αsth

E
t , with

αt := softmax (a1t, . . . , aSt) the tth column of the attention matrix and ast := hD
s ·hE

t the alignment
between a given decoder and encoder hidden state. While more complicated attention mechanisms
exist, in the main text we analyze the simplest form of attention for convenience of analysis.1

Attention Only (AO) is identical to the AED network above, but simply eliminates the recurrent
information passed from one RNN cell to the next and instead adds fixed positional encoding vectors
to the encoder and decoder inputs (Vaswani et al., 2017). Due to the lack of recurrence, the RNN
functions FE and FD simply act as feedforward networks in this setting.2 AO can be treated as a
simplified version of a Transformer without self-attention, hence our analysis may also provide a hint
into their inner workings (Vaswani et al., 2017).

2.1 Temporal and Input Components

In architectures with attention, we will show that it is helpful to write the hidden states using what we
will refer to as their temporal and input components. This will be useful because each hidden state
has an associated time step and input word at that same time step (e.g. s and xD

s for hD
s ), therefore

such a decomposition will often allow us to disentangle temporal and input behavior from any other
network dynamics.

We define the temporal components of the encoder and decoder to be the average hidden state at a
given time step, which we denote by µE

t and µD
s , respectively. Similarly, we define an encoder input

component to be the average of all hE
t − µE

t for hidden states that immediately follow a given input
word. We analogously define the decoder input components. In practice, we estimate such averages
using a test set of size M , so that the temporal and input components of the encoder are respectively
given by

µE
t ≈

∑M
α=1 1≤EoS,αh

E
t,α∑M

β=1 1≤EoS,β
, χE (xt,α) ≈

∑M
β=1

∑T
t′=1 1xt,α,xt′,β

(
hE
t′,β − µE

t′

)
∑M
γ=1

∑T
t′′=1 1xt,α,xt′′,γ

, (1)

where hE
t,α the encoder hidden state of the αth sample, 1≤EoS,α is a mask that is zero if the αth

sample is beyond the end of sentence, 1xt,α,xt′,β is a mask that is zero if xt,α 6= xt′,β , and we
have temporarily suppressed superscripts on the inputs for brevity.3 By definition, the temporal
components only vary with time and the input components only vary with input/output word. As such,

1In the SM, we implement a learned-attention mechanism using a scaled-dot product attention in the form of
queries, keys, and value matrices (Vaswani et al., 2017). For the AED and AO architectures, we find qualitatively
similar results to the simple dot-product attention presented in the main text.

2We train non-gated feedforward networks and find their dynamics to be qualitatively the same, see SM.
3See SM for more details on this definition and the analogous decoder definitions.
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Figure 2: Summary of attention dynamics on synthetic tasks. (a-f) All three architectures trained on an
N = 3 one-to-one translation task of variable length ranging from 15 to 20. Plots in the top row are projected
onto the principal components (PCs) of the encoder and decoder temporal components, while those in the
bottom row are projected onto the PCs of the input components. (a) For AED, the path formed by the temporal
components of the encoder (orange) and decoder (purple), µE

t and µD
s . We denote the first and last temporal

component by a square and star, respectively, and the color of said path is lighter for earlier times. The inset
shows the softmaxed alignment scores for µD

s · µE
t , which we find to be a good approximation to the full

alignment for the one-to-one translation task. (b) The input-delta components of the encoder (light) and decoder
(dark) colored by word (see labels). The encoder input components, χE

x are represented by a dark colored ‘X’.
The solid lines are the readout vectors (see labels on (d)). Start/end of sentence characters are in purple. (c, d)
The same plots for the AO network. (e, f) The same plots for the VED network (with no attention inset). (g)
Temporal components for the same task with a temporally reversed output sequence. (h) Attention matrices
for a test example from a network trained to alphabetically sort a list of letters. Clockwise from top left, the
softmaxed attention from the full hidden states (hD

s · hE
t ), temporal components only (µD

s · µE
t ), decoder input

components and encoder delta components (χD
y · ∆hE

t ), and decoder delta components and encoder input
components (∆hD

s · χE
x).

it will be useful to denote the encoder and decoder input components by χE
x and χD

y , with x and y
respectively running over all input and output words (e.g. χE

yes and χD
oui). We can then write any

hidden state as

hE
t = µE

t + χE
x + ∆hE

t , hD
s = µD

s + χD
y + ∆hD

s , (2)

with ∆hE
t := hE

t − µE
t − χE

t and ∆hD
s := hD

s − µD
s − χD

y the delta components of encoder and
decoder hidden states, respectively. Intuitively, we are simply decomposing each hidden state vector
as a sum of a component that only varies with time/position in the sequence (independent of input),
a component that only varies with input (independent of position), and whatever else is left over.
Finally, we will often refer to hidden states without their temporal component, i.e. χE

x + ∆hE
t and

χD
y + ∆hD

s , so for brevity we refer to these combinations as the input-delta components.

Using the temporal and input components in (2), we can decompose the attention alignment between
two hidden states as

ast =
(
µD
s + χD

y + ∆hD
s

)
·
(
µE
t + χE

x + ∆hE
t

)
. (3)

We will show below that in certain cases several of the nine terms of this expression approximately
vanish, leading to simple and interpretable attention mechanisms.

3 One-to-One Results

To first establish a basis of how each of the three architectures learn to solve tasks and the role of
their input and temporal components, we start by studying their dynamics for a synthetic one-to-one
translation task. The task is to convert a sequence of input words into a corresponding sequence of
output words, where there is a one-to-one translation dictionary, e.g. converting a sequence of letters
to their corresponding position in the alphabet, {B,A,C,A,D} → {2, 1, 3, 1, 4}. We generate the
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input phrases to have variable length, but outputs always have equal length to their input (i.e. T = S).
While a solution to this task is trivial, it is not obvious how each neural network architecture will
solve the task. Although this is a severely simplified approximation to realistic sequence-to-sequence
tasks, we will show below that many of the dynamics the AED and AO networks learn on this task
are qualitatively present in more complex tasks.

Encoder-Decoder with Attention. After training the AED architecture, we apply the decomposi-
tion of (2) to the hidden states. Plotting the temporal components of both the encoder and decoder,
they each form an approximate circle that is traversed as their respective inputs are read in (Fig. 2a).4
Additionally, we find the encoder and decoder temporal components are closest to alignment when
s = t. We also plot the input components of the encoder and decoder together with the encoder
input-delta components, i.e. χE

x + ∆hE
t , and the network’s readout vectors (Fig. 2b).5 We see for

the encoder hidden states, the input-delta components are clustered close to their respective input
components, meaning for this task the delta components are negligible. Also note the decoder
input-delta components are significantly smaller in magnitude than the decoder temporal components.
Together, this means we can approximate the encoder and decoder hidden states as hE

t ≈ µE
t + χE

x
and hD

s ≈ µD
s , respectively. Finally, note the readout vector for a given output word aligns with the

input components of its translated input word, e.g. the readout for ‘1’ aligns with the input component
for ‘A’ (Fig. 2b).6

For the one-to-one translation task, the network learns an approximately diagonal attention matrix,
meaning the decoder at time s primarily attends to the encoder’s hidden state at t = s. Additionally, we
find the temporal and input-delta components to be close to orthogonal for all time steps, which allows
the network’s attention mechanism to isolate temporal dependence rather than input dependence.
Since we can approximate the hidden states as hE

t ≈ µE
t + χE

x and hD
s ≈ µD

s , and the temporal
and input components are orthogonal, the alignment in (3) can be written simply as ast ≈ µD

s · µE
t .

This means that the full attention is completely described by the temporal components and thus
input-independent (this will not necessarily be true for other tasks, as we will see later).

With the above results, we can understand how AED solves the one-to-one translation task. After
reading a given input, the encoder hidden state is primarily composed of an input and temporal
component that are approximately orthogonal to one another, with the input component aligned with
the readout of the translated input word (Fig. 2b). The decoder hidden states are approximately made
up of only a temporal component, whose sole job is to align with the corresponding encoder temporal
component. Temporal components of the decoder and encoder are closest to alignment for t = s,
so the network primarily attends to the encoder state hE

t=s. The alignment between encoder input
components and readouts yields maximum logit values for the correct translation.

Attention Only. Now we turn to AO architecture, which is identical to AED except with the recurrent
connections cut, and positional encoding added to the inputs. We find that AO has qualitatively
similar temporal components that give rise to diagonal attention (Fig. 2c) and the input components
align with the readouts (Fig. 2d). Thus AO solves the task in a similar manner as AED. The only
difference is that the temporal components, driven by RNN dynamics in AED, are now driven purely
by the positional encoding in AO.

Vanilla Encoder-Decoder. After training the VED architecture, we find the encoder and decoder
hidden states belonging to the same time step form clusters, and said clusters are closest to those
corresponding to adjacent time steps. This yields temporal components that are close to one another
for adjacent times, with µE

T next to µD
1 (Figs. 2e). Since there is no attention in this architecture,

there is no incentive for the network to align temporal components of the encoder and decoder as we
saw in AED and AO.

4Here and in plots that follow, we plot the various components using principal component analysis (PCA)
projections simply as a convenient visualization tool. Other than observation that in some cases the temporal/input
components live in a low-dimensional subspace, none of our quantitative analysis is dependent upon the PCA
projections. For all one-to-one plots, a large percentage (> 90%) of the variance is explained by the first 2 or 3
PC dimensions.

5For N possible input words, the encoder input components align with the vetrices of an (N − 1)-simplex,
which is similar to the classification behavior observed in Aitken et al. (2020).

6Since in AED we pass both the decoder hidden state and the context vector to the readout, each readout
vector is twice the hidden state dimension. We plot only the readout weights corresponding to the context vector,
since generally those corresponding to the decoder hidden state are negligible, see SM for more details.
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Figure 3: Summary of dynamics for AED and AO architectures trained on eSCAN. (a) Example attention
matrix for the AED architecture. (b) AED network’s temporal components, with the inset showing the attention
matrix from said temporal components. Once again, encoder and decoder components are orange and purple,
respectively and we are projecting onto the temporal component PCs. (c) AED network’s input-delta components,
input components, and readouts, all colored by their corresponding input/output words (see labels). All quantities
projected onto input component PCs. (d, e, f) The same plots for AO.

As recurrence is the only method of transferring information across time steps, encoder and de-
coder hidden states must carry all relevant information from preceding steps. Together, this results
in the delta components deviating significantly more from their respective input components for
VED relative to AED and AO (Fig. 2f). That is, since hidden states must hold the information of
inputs/outputs for multiple time steps, we cannot expect them to be well approximated by µE

t + χE
x

because, by definition, it is agnostic to the network’s inputs at any time other than t (and similarly for
µE
s + χE

y). As such, the temporal and input component decomposition gains us little insight into the
inner workings of the VED architecture. Additional details of the VED architecture dynamics are
discussed in the SM.

Additional Tasks. In this section, we briefly address how two additional synthetic tasks can be
understood using the temporal and input component decomposition. First, consider a task identical to
the one-to-one task, with the target sequence reversed in time, e.g. {B,A,C,A,D} → {4, 1, 3, 1, 2}.
For this task, we expect an attention matrix that is anti-diagonal (i.e. it is nonzero for t = S + 1− s).
For the AED and AO networks trained on this task, we find their temporal and input component
behavior to be identical to the original one-to-one task with one exception: instead of the encoder and
decoder temporal components following one another, we find one trajectory is flipped in such a way
as to yield an anti-diagonal attention matrix (Fig. 2g). That is, the last encoder temporal component
is aligned with the first decoder temporal component and vice versa.

Second, consider the task of sorting the input alphabetically, e.g. {B,C,A,D} → {A,B,C,D}.
For this example, we expect the network to learn an input-dependent attention matrix that correctly
permutes the input sequence. Since there is no longer a correlation between input and output sequence
location, the average attention matrix is very different from that of a random sample, and so we expect
the temporal components to insignificantly contribute to the alignment. Indeed, we find µD

s ·µE
t to be

negligible, and instead ∆hD
s · χE

x dominates the alignment values (Fig. 2h).

4 Beyond One-to-One Results

In this section we analyze the dynamics of two tasks that have “close-to-diagonal” attention: (1)
what we refer to as the extended SCAN dataset and (2) translation between English and French
phrases. Since we found temporal/input component decomposition to provide little insight into VED
dynamics, our focus in this section will be on only the AED and AO architectures. For both tasks we
explore below, parts of the picture we established on the one-to-one task continues to hold. However,
we will see that in order to succeed at these tasks, both AO and AED must implement additional
mechanisms on top of the dynamics we saw for the one-to-one task.

Extended SCAN (eSCAN) is a modified version of the SCAN dataset (Lake & Baroni, 2018), in
which we randomly concatenate a subset of the phrases to form phrases of length 15 to 20 (see SM for
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Figure 4: Summary of features for AO trained on English to French translation. (a) Sample attention
matrix. (b) The encoder (orange) and decoder (purple) temporal components, with a square and star marking the
first and last time step, respectively. Once again, quantities are projected onto the temporal component PCs. The
inset shows the attention matrix from the temporal components, i.e. the softmax of µD

s · µE
t . (c) The dot product

between the most common output word readouts and the most common input word input components, χE
x.

details). The eSCAN tasks is close to one-to-one translation, but is augmented with several additional
rules that modify its structure. For example, a common sequence-to-sequence structure is that a
pair of outputs can swap order relative to their corresponding inputs: the English words ‘green field’
translate to ‘champ vert’ in French (with ‘field’↔ ‘champ’ and ‘green’↔ ‘vert’). This behavior is
present in eSCAN: when the input word ‘left’ follows a verb the output command must first turn the
respective direction and then perform said action (e.g. ‘run left’→ ‘LTURN RUN’).

The AED and AO models both achieve ≥ 98% word accuracy on eSCAN. Looking at a sample
attention matrix of AED, we see consecutive words in the output phrase tend to attend to the same
encoder hidden states at the end of subphrases in the input phrase (Fig. 3a). Once again decomposing
the AED network’s hidden states as in (2), we find the temporal components of the encoder and
decoder form curves that mirror one another, leading to an approximately diagonal attention matrix
(Fig. 3b). The delta components are significantly less negligible for this task, as evidence by the fact
χE
x + ∆hE

t aren’t nearly as clustered around their corresponding input component (Fig. 3c). As we
will verify later, this is a direct result of the network’s use of recurrence, since now hidden states
carry information about subphrases, rather than just individual words.

Training the AO architecture on eSCAN, we also observe non-diagonal attention matrices, but in
general their qualitative features differ from those of the AED architecture (Fig. 3d). Focusing on
the subphrase mapping ‘run twice’→ ‘RUN RUN’, we see the network learns to attend to the word
preceding ‘twice’, since it can no longer rely on recurrence to carry said word’s identity forward.
Once again, the temporal components of the encoder and decoder trace out paths that roughly follow
one another (Fig. 3e). We see input-delta components cluster around their corresponding input
components, indicating the delta components are small (Fig. 3f). Finally, we again see the readouts
of particular outputs align well with the input components of their corresponding input word.

English to French Translation is another example of a nearly-diagonal task. We train the AED
and AO architectures on this natural language task using a subset of the para_crawl dataset Bañón
et al. (2020) consisting of over 30 million parallel sentences. To aid interpetation, we tokenize each
sentence at the word level and maintain a vocabulary of 30k words in each language; we train on
sentences of length up to 15 tokens.

Since English and French are syntactically similar with roughly consistent word ordering, the attention
matrices are in general close to diagonal (Fig. 4a). Again, note the presence of features that require
off-diagonal attention, such as the flipping of word ordering in the input/output phrases and multiple
words in French mapping to a single English word. Using the decomposition of (2), the temporal
components in both AED and AO continue to trace out similar curves (Fig. 4b). Notably, the
alignment resulting from the temporal components is significantly less diagonal, with the diagonal
behavior clearest at the beginning of the phrase. Such behavior makes sense: the presence of off-
diagonal structure means, on average, translation pairs become increasingly offset the further one
moves into a phrase. With offsets that increasingly vary from phrase to phrase, the network must rely
less on temporal component alignments, which by definition are independent of the inputs. Finally,
we see that the the dot product between the input components and the readout vectors implement
the translation dictionary, just as it did for the one-to-one task (Fig. 4c, see below for additional
discussion).
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Figure 5: Temporal and input component features. In the first three plots, the data shown in red, blue, and
green corresponds to networks trained on the one-to-one, eSCAN, and English to French translation tasks,
respectively. (a) Breakdown of the nine terms that contribute to the largest alignment scores (see (3)) averaged
across the entire decoder sequence for each task/architecture combination (see SM for details). For each bar,
from top to bottom, the alignment contributions from µD

s · µE
t (dark), µD

s · χE
x + µD

s · ∆hE
t (medium), and the

remaining six terms (light). (b) For the AO architecture, the dot product of the temporal components, µD
s · µE

t ,
as a function of the offset, t− s, shown at different decoder times. Each offset is plotted from [−5, 5] and the
dotted lines show the theoretical prediction for maximum offset as a function of decoder time, s. Plots for the
AED architecture are qualitatively similar. (c) For all hidden states corresponding to an input word, the ratio of
variance of hE

t − µE
t to hE

t . (d) For AO trained on eSCAN, the dot product of input components, χE
x, with each

of the readouts (AED is qualitatively similar).

4.1 A Closer Look at Model Features

As expected, both the AED and AO architectures have more nuanced attention mechanisms when
trained on eSCAN and translation. In this section, we investigate a few of their features in detail.

Alignment Approximation. Recall that for the one-to-one task, we found the alignment scores
could be well approximated by ast ≈ µD

s · µE
t , which was agnostic to the details of the input

sequence. For eSCAN, the µD
s · µE

t term is still largely dominant, capturing > 77% of ast in
the AED and AO networks (Fig. 5a). A better approximation for the alignment scores is ast ≈
µD
s · µE

t + µD
s · χE

x + µD
s ·∆hE

t , i.e. we include two additional terms on top of what was used for
one-to-one. Since χE

x and ∆hE
t are dependent upon the input sequence, this means the alignment has

non-trivial input dependence, as we would expect. In both architectures, we find this approximation
captures > 87% of the top alignment scores. For translation, we see the term µD

s · µE
t makes up a

significantly smaller portion of the alignment scores, and in general we find none of the nine terms in
(3) dominate above the rest (Fig. 5a). However, at early times in the AED architecture, we again see
µD
s · µE

t is the largest contribution to the alignment. As mentioned above, this matches our intuition
that words at the start of the encoder/decoder phrase have a smaller offset from one another than later
in the phrase, so the network can rely more on temporal components to determine attention.

Temporal Component Offset. For the one-to-one task, the input sequence length was always equal
to the output sequence length, so the temporal components were always peaked at s = t (Fig. 5b). In
eSCAN, the input word ‘and’ has no corresponding output, which has a non-trivial effect on how
the network attends since its appearance means later words in input phrase are offset from their
corresponding output word. This effect also compounds with multiple occurrences of ‘and’ in the
input. The AED and AO networks learn to handle such behavior by biasing the temporal component
dot product, µD

s · µE
t , the dominant alignment contribution, to be larger for time steps t further along

in the encoder phrase, i.e. t > s (Fig. 5b). It is possible to compute the average offset of input and
output words in eSCAN training set, and we see the maximum of µD

s · µE
t follow this estimate quite

well. Similarly, in our set of English to French translation phrases, we find the French phrases to be
on average ∼ 20% longer than their English counterparts. This results in the maximum of µD

s · µE
t

to gradually move toward t < s, e.g. on average the decoder attends to earlier times in the encoder
(Fig. 5b). Additionally, note the temporal dot product falls off significantly slower as a function of
offset for later time steps, indicating the drop off for non-diagonal alignments is smaller and thus it is
easier for the network to off-diagonally attend.

Word Variance. The encoder hidden states in the one-to-one task had a negligible delta component,
so the hidden states could be approximated as hE

t ≈ µE
t + χE

x. By definition, χE
x is constant for a

given input word, so the variance in the hidden states corresponding to a given input word is primarily
contained in the temporal component (Fig. 5c). Since the temporal component is input-independent,
this led to a clear understanding of how all of a network’s hidden states evolve with time and input.
In the AED and AO architectures trained on eSCAN, we find the variance of the input word’s hidden
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Figure 6: How AO and AED networks implement off-diagonal attention in the eSCAN dataset. (a) For
AED, the input-delta components for various words and subphrases. (b) For AO, the alignment values, ast, are
shown in black when the input word ‘twice’ is at t = s. Three contributions to the alignment, µD

s · µE
t (gold),

µD
s · χE

x + µD
s · ∆hE

t (pink), and ast − µD
s · hE

t (grey) are also plotted. To keep the offset between ‘twice’ and
the output location of the repeated word constant, this plot was generated on a subset of eSCAN with T = S,
but we observe the same qualitative features when T ≥ S. (c) The dot product between χE

x + ∆hE
t and the

decoder’s temporal component, µD
s , for t = s. (d) How the dot product of χE

x + ∆hE
t and µD

s changes as a
function of their offset, t− s, for a few select input words. The vertical gray slice represents the data in (c) and
the input word colors are the same.

states drops by 90% and 95% when the temporal component is subtracted out, respectively (Fig. 5c).
Meanwhile, in translation, we find the variance only drops by 8% and 25% for the AED and AO
architectures, indicating there is significant variance in the hidden states beyond the average temporal
evolution and thus more intricate dynamics.

Input/Readout Alignment. Lastly, recall we saw that in the one-to-one case the input components’
alignment with readouts implemented the translation dictionary (Figs. 2b, d). For eSCAN, the dot
product of a given readout is again largest with the input component of its corresponding input word,
e.g. the readout corresponding to ‘RUN’ is maximal for the input component of ‘run’ (Fig. 5d).
Notably, words that produce no corresponding output such as ‘and’ and ‘twice’ are not the maximal
in alignment with any readout vector. Similarly, for translation, we see the French-word readouts
have the largest dot product their translated English words (Fig. 4c). For example, the readouts for
the words ‘la’, ‘le’, and ‘les’, which are the gendered French equivalents of ‘the’, all have maximal
alignments with χE

the.

4.2 A Closer Look at Dynamics

In this section, we leverage the temporal and input component decomposition to take a closer look at
how networks trained on the eSCAN dataset implement particular off-diagonal attentions. Many of
the sequence translation structures in eSCAN are seen in realistic datasets, so we this analysis will
give clues toward understanding the behavior of more complicated sequence-to-sequence tasks.

A common structure in sequence-to-sequence tasks is when an output word is modified by the words
preceding it. For example, the phrases ‘we run‘ and ‘they run’ translate to ‘nous courrons’ and ‘ils
courent’ in French, respectively (with the second word in each the translation of ‘run’). We can study
this phenomenon in eSCAN since the word ‘twice’ tells the network to repeat the command just
issued two times, e.g. ‘run twice’ outputs to ‘RUN RUN’. Hence, the output corresponding to the
input ‘twice’ changes based on other words in the phrase.

Since an AED network has recurrence, when it sees the word ‘twice’ it can know what verb preceded
it. Plotting input-delta components, we see the RNN outputs ‘twice’ hidden states in three separate
clusters separated by the preceding word (Fig. 6a). Thus for an occurrence of ‘twice’ at time step t,
we have χE

twice + ∆hE
t ≈ χE

verb + ∆hE
t−1. For example, this means the AED learns to read in ‘run

twice’ approximately the same as ‘run run’. This is an example of the network learning context.

AO has no recurrence, so it can’t know which word was output before ‘twice’. Hence, unlike the
AED case, all occurrences of ‘twice’ are the same input-delta component cluster regardless of what
word preceded it. Instead, it has to rely on attending to the word that modifies the output, which in
this case is simply the preceding word (Fig. 3d). As mentioned in Sec. 4.1, for the eSCAN task we
find the alignment to be well approximated by ast ≈ µD

s · hE
t . When the word ’twice’ appears in the

input phrase, we find µD
s · χE

twice + µD
s ·∆hE

t < 0 for s = t (Fig. 6b). This decreases the value of
the alignment as,s, and so the decoder instead attends to the time step with the second largest value
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of µD
s · µE

t , which the network has learned to be t = s− 1. Hence, as,s−1 is the largest alignment,
corresponding to the time step before ‘twice’ with the verb the network needs to output again. Unlike
the one-to-one case, the encoder input-delta and the decoder temporal components are no longer
approximately orthogonal to one another (Fig. 6c). In the case of ‘twice’, χE

twice + ∆hE
t is partially

antialigned with the temporal component, yielding a negative dot product.

This mechanism generalizes beyond the word ’twice’: in eSCAN we see input-delta components of
several input words are no longer orthogonal to the decoder’s temporal component (Fig. 6c). Like
‘twice’, the dot product of the input-delta component for a given word with its corresponding temporal
component determines how much its alignment score is increased/decreased. For example, we see
χE

and + ∆hE
t has a negative dot product with the temporal component, meaning it leans away from its

corresponding temporal component. Again, this make sense from eSCAN task: the word ‘and’ has
no corresponding output, hence it never wants to be attended to by the decoder.

Perhaps contradictory to expectation, χE
left + ∆hE

t has a negative dot product with the temporal
component. However, note that the alignment of χE

x + ∆hE
t with the hD

s is dependent on both t and s.
We plot the dot products of χE

x + ∆hE
t and hD

s as a function of their offset, defined to be the t− s
(Fig. 6d). Notably, χE

left + ∆hE
t has a larger dot product for larger offsets, meaning it increases its

alignment when t > s. This makes sense from the point of view that the word ‘left’ is always further
along in the input phrase than its corresponding output ‘LTURN’, and this offset is only compounded
by the presence of the word ‘and’. Thus, the word ‘left’ only wants to get noticed if it is ahead of the
corresponding decoder time step, otherwise it hides. Additionally, the words ‘and‘ and ‘twice‘ have
large negative dot products for all offsets, since they never want to be the subject of attention.

5 Discussion

In this work, we studied the hidden state dynamics of sequence-to-sequence tasks in architectures
with recurrence and attention. We proposed a decomposition of the hidden states into parts that
are input- and time-independent and showed when such a decomposition aids in understanding the
behavior of encoder-decoder networks.

Although we have started by analyzing translation tasks, it would be interesting to understand how said
decomposition works on different sequence-to-sequence tasks, such as speech-to-text. Additionally,
with our focus on the simplest encoder-decoder architectures, it is important to investigate how
much the observed dynamics generalize to more complicated network setups, such as networks with
bidirectional RNNs or multiheaded and self-attention mechanisms. Our analysis of the attention-
only architecture, which bears resemblance to the transformer architecture, suggests that a similar
dynamical behavior may also hold for the Transformer, hinting at the working mechanisms behind
this popular non-recurrent architecture.
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