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Abstract

Recent advances in neural information re-001
trieval based on pre-trained language models002
reveal that directly fine-tuning the [CLS] vec-003
tor for downstream retrieval tasks might not004
yield a robust bi-encoder retriever on out-of-005
distribution (OOD) datasets. Therefore, many006
methods are proposed to increase OOD gen-007
eralization, among which the multi-vector re-008
trievers achieve the best balance between the009
in-domain and OOD effectiveness. In this pa-010
per, we explore whether late interaction, the011
building stone of multi-vector, is also helpful to012
neural rerankers that rely on the [CLS] vector013
alone to compute the similarity score. Although014
many would argue that the rerankers already015
gather the token-interaction information via the016
attention mechanism, we find adding late in-017
teraction still brings an extra 5% improvement018
“for free” on average on OOD datasets, with019
little increase in latency and no degradation020
in in-domain effectiveness. Extensive experi-021
ments show that this finding is consistent across022
different model sizes and first-stage retrievers,023
and that the improvement is more prominent024
on longer queries. Our findings suggest that for025
neural rerankers, boiling all information into026
the [CLS] token is not the optimal choice for027
all scenarios, and more studies are required to028
better utilize the reranker’s structure.029

1 Introduction030

The two-stage retrieve-then-rerank pipeline has031

been the de facto design for many information032

retrieval systems. With the advancement in pre-033

trained language models, these retrieval systems034

also benefit from the rich semantics in the contex-035

tualized representations which could be fine-tuned036

for measuring the similarity between queries and037

documents. Commonly, the [CLS] token vector038

at the last layer is often chosen to be the sequence-039

level representation. However, neural retrievers040

that only use the [CLS] vector might be less ro-041

bust on out-of-distribution (OOD) datasets as some042

Add LI?
MS MARCO

MRR@10
BEIR Avg.
nDCG@10

Search
Latency

× 0.390 0.467 1.18s
✓ 0.392 0.491 1.28s

Table 1: The in-domain score (on MS MARCO), OOD
score (on BEIR), and search latency of rerankers w/o
and w/ adding late interaction. Rerankers are initialized
from MiniLM. LI: Late Interaction.

of the token-level granularity might not be captured. 043

Therefore, methods such as further pre-training or 044

adding token-level interaction have been applied 045

to improve the OOD generalization of the neu- 046

ral retrievers. Among them, late interaction mod- 047

els (Khattab and Zaharia, 2020; Gao et al., 2021a), 048

also known as the multi-vector retrievers, strikes a 049

perfect balance between the in-domain and OOD 050

effectiveness among neural retrievers. This is usu- 051

ally credited to its design which takes the last layer 052

of contextualized token embeddings to compute 053

the final similarity other than just using the [CLS] 054

vector. Given its powerful design, in this paper, we 055

raise the following question: 056

Can neural rerankers that only use the [CLS] 057

vector for computing similarity scores also benefit 058

from adding the late interaction? 059

Intuitively, many would argue that the attention 060

mechanism at the previous layers already gath- 061

ers the token-level interaction between the query 062

and the document. However, in this paper, we 063

show that late interaction at the last layer actually 064

brings “free” OOD capacity to rerankers. As shown 065

Table 1, after adding late the interaction, the av- 066

eraged nDCG@10 on BEIR is improved by 5% 067

(from 0.467 to 0.491), while the in-domain score 068

(MRR@10 on MS MARCO) is not affected and the 069

search latency is only slightly increased. We also 070

show that this improvement is orthogonal to the 071

better OOD capacity brought by larger model size, 072

and consistent when reranking candidates from all 073

categories of retrievers. 074
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2 Related Work075

Nogueira and Cho (2019) was one of the first work076

on cross-encoders, which serve to rerank a subset077

of documents returned from the “first-stage” re-078

trievers. It considers retrieval as a classification079

task, and uses Transformer encoders following the080

formulation of the next sentence prediction (NSP)081

pretraining task in BERT, where only the [CLS]082

vector is used in classifying the (query, document)083

pair and computing the relevant score. Afterward,084

CEDR (MacAvaney et al., 2019) also proposes to085

integrate token information rather than use only086

[CLS], but it processes token representations at087

all Transformer layers using the pre–BERT neural088

rerankers (Xiong et al., 2017; Guo et al., 2016; Hui089

et al., 2017), which is more complex in structure090

and adds higher computational overhead.091

Recent works on first-stage retrieval have demon-092

strated the effectiveness of adding sparse informa-093

tion into dense retrieval. Chen et al. (2021) The094

combination of the token information and dense095

[CLS] vector could also be done explicitly, by ei-096

ther adding the scores computed from [CLS] and097

token information, or concatenated aggregated to-098

ken vectors to the [CLS] vector (Gao et al., 2021a;099

Lin et al., 2022). The multi-vector dense models100

could also be viewed under this category, where the101

token representation vectors jointly contribute to102

the relevancy computation along with the [CLS]103

vector (Khattab and Zaharia, 2020; Li et al., 2022).104

3 Methods105

In this section, we introduce monoBERT, the106

reranker we used in this work, and how we apply107

late interaction on the reranker.108

3.1 monoBERT109

monoBERT (Nogueira and Cho, 2019) is one of110

the first works that applied pretrained transformers111

in passage retrieval. The model is fed with con-112

catenated query q and document d and computes113

relevance scores sq,d from the [CLS] representa-114

tion on the last layer of the Transformer encoder.115

We borrow the following formulations from Lin116

et al. (2020) and Pradeep et al. (2022):117

sm(q, d) = T[CLS]W + b (1)118

where T[CLS] ∈ RD is the [CLS] representation119

on the final layer, and W ∈ RD×1 and b ∈ R are120

the weight and bias for classification.121

The model may also use other pretrained Trans- 122

formers checkpoints following the standard par- 123

lance in the community, such as ELECTRA (Clark 124

et al., 2020) which is often referred to as mono- 125

ELECTRA. To avoid confusion with other cross 126

encoders that do not follow this naming scheme, 127

we always refer to the model as monoBERT, and 128

specify the backbone that it is initialized from. 129

3.2 Late Interaction 130

In this work, we use the simplest version of late in- 131

teraction proposed by Khattab and Zaharia (2020). 132

We first obtain the representation of each token in 133

the query q and document d: 134

vqi = TqiWqi + bqi ; vdj = TdjWdj + bdj ; (2) 135

where qi and dj represent the i-th token of query 136

q and the j-th token of document d, respectively. 137

Similar to Eq. 1, T ∈ RD is the representation of 138

each token on the final layer. W ∈ RD×Dtok and 139

b ∈ RDtok are the weight and bias in a projection 140

layer, which projects the Ttok to a lower dimension 141

Dtok < D. 142

Eq. 2 is the default setting in all experiments. In 143

Section 5.3, we investigate another variant where 144

the token representations are not projected. 145

With token representations vqi and vdj , the late 146

interaction then computes the token interaction 147

scores score by summing up the inner product be- 148

tween all tokens in queries and documents: 149

sl(q, d) =
∑
qi

max
dj

(vTqivdj ) (3) 150

It shares the same formulation with the first- 151

stage retrievers, and only differ in that the token rep- 152

resentation Tqi and Tdj are computed jointly with 153

both query and document information, whereas in 154

retrievers, they are computed independently from 155

each other, with Tqi perceiving no information from 156

document d and vice versa. 157

At training time, we compute the losses Lm and 158

Ll based on sm and sl (or s′l), respectively: 159

L = Lm(q, d+, d−1 , ..., d
−
n ) + Ll(q, d

+, d−1 , ..., d
−
n ) 160

where d+ is the positive document and {d−i }ni=1 161

are the negative documents to the query q. We use 162

LCE (Gao et al., 2021b; Pradeep et al., 2022) for 163

both losses in this work. At inference time, we 164

sum the two scores as the final relevance score, i.e., 165

sfinal = sm + sl.1 166

1We explored adding weighting terms for sm and sc, but
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Backbone Add
LI?

MS MARCO
MRR@10

BEIR Avg
nDCG@10

MiniLM × 0.390 0.467
✓ 0.392 0.491

ELECTRAbase
× 0.400 0.481
✓ 0.402 0.494

ELECTRAlarge
× 0.413 0.507
✓ 0.413 0.524

Table 2: MRR@10 on MS MARCO and the averaged
nDCG@10 scores on BEIR. Rerankers are initialized
from MiniLM, ELECTRAbase, and ELECTRAlarge. Re-
sults on BEIR rerank the top-1k passages from BM25.
LI: late-interaction. *Scores on each BEIR dataset are re-
ported in Appendix Table 5 due to space limitation.

4 Experimental Setup167

In this work, we follow the exact same training168

procedure as Pradeep et al. (2022), detailed in Ap-169

pendix A. For evaluation, we use MS MARCO (Ba-170

jaj et al., 2018) for the in-domain evaluation and 13171

datasets from BEIR (Thakur et al., 2021) for OOD172

evaluation, chosen due to license reasons. BEIR173

covers 10 domains including Wikipedia, Finance,174

Scientific, Quora, etc.175

At the inference stage, we always rerank top-176

1k results from the first-stage retrievers. On MS177

MARCO, we use TCT-ColBERT (Lin et al., 2021b)178

as the retriever following Pradeep et al. (2022). On179

BEIR, we use a list of retrievers that covers the180

categories of sparse, single- and multi-vector dense181

retrievers. Retrievers results are produced using182

one of Pyserini (Lin et al., 2021a), BEIR (Thakur183

et al., 2021) repository, and ColBERT (Khattab184

and Zaharia, 2020) repository.2 More details are185

provided along with the code release.186

We experimented with three backbones in this187

work: MiniLM (Wang et al., 2020), ELECTRAbase,188

and ELECTRAlarge (Clark et al., 2020). All models189

are available on HuggingFace (Wolf et al., 2020).190

5 Results and Analysis191

Table 1 provides a preview of the effect of adding192

late interaction on top of rerankers, where we ob-193

served it brings a free gain on OOD capacity. In this194

section, we examine our findings in multiple set-195

tings, showing its consistency over different model196

sizes and first-stage retrievers of different natures.197

only observed marginal gains. Thus we report the simplest
formulation here.

2https://github.com/
stanford-futuredata/ColBERT

Add
LI?

Sparse Multi-vector Dense

BM25 uniCOIL SPLADE ColBERT v2

× 0.467 0.426 0.469 0.467
✓ 0.491 0.452 0.492 0.493

Add
LI?

Single-vector Dense

DPR (Wiki) DPR (MS) ANCE TCT TAS-B

× 0.451 0.474 0.471 0.47 0.472
✓ 0.472 0.495 0.493 0.494 0.494

Table 3: Averaged nDCG@10 scores on BEIR, rerank-
ing the top-1k passages from each first-stage retriever.
TCT: TCT-ColBERT. LI: late-interaction. *Scores on
each BEIR dataset are reported in Appendix Table 6 due to
space limitation.

5.1 Model Size 198

Previous papers found that the generalization abil- 199

ity could depend on the model scale. Specifically, 200

models with a more extensive set of parameters 201

can better generate on unseen distribution (Ni et al., 202

2021). This leads to our question: does late inter- 203

action remain helpful in improving OOD capacity 204

when initialized from larger backbone models? 205

Surprisingly, the contribution of late interac- 206

tion barely depends on the model size. Ta- 207

ble 2 shows both in-domain (on MS MARCO) 208

and OOD (on BEIR) scores on rerankers with- 209

out and with adding late interaction after the 210

final layer, where the rerankers are initial- 211

ized from three different sizes of backbones: 212

MiniLM, ELECTRAbase and ELECTRAlarge. The 213

size of ELECTRAbase/ELECTRAlarge is roughly 214

3.3×/10.3× of MiniLM.3 215

While we observe higher average scores on 216

BEIR as the model size increases, which echoes the 217

previous finding that better generalization ability 218

could be gained as the model scales up. The relative 219

improvement brought by token information is simi- 220

lar across the backbones. On both ELECTRAbase 221

and ELECTRAlarge, adding late interaction drasti- 222

cally improves the average nDCG@10 on BEIR, 223

from 0.474 to 0.502 with ELECTRAbase and from 224

0.507 to 0.524 with ELECTRAlarge. Additionally, 225

the in-domain scores on the other two backbones 226

are not affected as well, suggesting that the “free” 227

gain is consistent over different model sizes. 228

5.2 First-stage Retriever 229

We categorize first-stage retrievers into dense and 230

sparse retrievers, and the dense retrievers can be 231

further categorized into single- and multi-vector 232

3MiniLM, ELECTRAbase, and ELECTRAlarge have 33M,
110M, and 340M parameters respectively.
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Projected Token Dimension
(Dtok)

MS MARCO BEIR
MRR@10 nDCG@10

(1) Dtok = 1 0.3920 0.4890
(2) Dtok = 32 0.3920 0.4914
(3) Dtok = 128 0.3920 0.4910
(4) Dtok = 384 0.3900 0.4911

Table 4: MRR@10 of MS MARCO and nDCG@10 of
BEIR, using different dimensions of token representa-
tion (Dtok in Eq. 2). We report scores to 4 digits here as
the values are close in all conditions.

dense retrievers. We want to explore whether late233

interaction gives higher improvement when rerank-234

ing the results of any specific type of retrievers.235

Table 3 shows the reranking results on BEIR on236

an extensive list of retrievers, covering all three cat-237

egories above. Looking at the averaged nDCG@10238

on BEIR, we do not observe any clear preference239

for any specific category of retrievers. That is, we240

found that late interaction consistently improves241

the OOD capacity when using retrievers in different242

natures, bringing a similar degree of improvement243

of 0.02-0.03 on average.244

5.3 Token Dimensions245

In first-stage retrievals, it is common to project246

the token representation into lower dimensions as247

restricted by indexing storage space and search effi-248

ciency. However, the representations are computed249

on the fly for rerankers without any index storage.250

That is, in the context of rerankers, using repre-251

sentations in higher dimensions does not bring any252

additional storage cost and only minor searching253

latency. We thus examine whether using higher254

token dimensions Dtok is helpful.255

Results are shown in Table 4, where row (2) cor-256

responds to the BM25 results reported in Table 3.257

Comparing rows (1–4), we found that the token258

dimensions have little impact on effectiveness on259

BEIR: on row (1), using dim = 1 already obtains260

0.4890 on average BEIR, while increasing the di-261

mension to dim = 32 and onwards only provides262

marginal improvement.263

5.4 Query Length264

Finally, we present our analysis on how the late in-265

teraction improves the OOD capacity of rerankers.266

We explored many aspects of query properties on267

finding the groups of queries that benefit the most268

from the late interaction, including the challenging269

level of the query, the completeness of the positive270

document, the ranking similarity among different271
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Figure 1: nDCG@10 improvement from late interaction
on queries over different lengths. Each point represents
the average of nDCG@10 improvements over the query
of the corresponding length. The line is the least square
polynomial fit of the points.

retrievers, and so on. In the end, we found that 272

query length is the most prominent indicator of the 273

per-query improvement. 274

Figure 1 plots the distribution of nDCG@10 275

improvement by late interaction according to the 276

query length on Quora and HotpotQA, two datasets 277

included in BEIR.4 Specifically, each point repre- 278

sents the average of nDCG@10 improvements over 279

the query of the same length (same coordinate on 280

the x-axis). We additionally plot an approximated 281

polynomial line based on the points to better re- 282

veal the relationship between the query length and 283

nDCG@10 improvement. 284

On both datasets, we observe a clear tendency 285

that late interaction brings higher improvement on 286

longer queries. Here we report results using BM25 287

as the retriever, while the observation is similar 288

when reranking candidates from other retrievers. 289

6 Conclusion 290

In this work, we presented our finding that adding 291

late interaction to existing rerankers brings visible 292

improvement to out-of-distribution capacity with- 293

out any degradation on in-domain effectiveness, 294

even though the reranker already processes the to- 295

ken interaction via the attention mechanism at pre- 296

vious layers. Extensive experiments on different 297

model sizes and first-stage retrievers show that this 298

improvement is consistent, and according to our 299

analysis, the improvement is more prominent on 300

longer queries. Our findings suggest that boiling 301

all information into the [CLS] token may not be 302

the optimal choice for neural rerankers, and more 303

studies are required to better explore its capacity. 304

4Length determined as the number of query tokens delim-
ited by whitespace.
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7 Limitations305

While adding late interaction on top of the cross-306

encoder provides consistent free gains on the out-307

of-distribution scenario, one limitation of the work308

is that the architecture of late interaction is not309

novel, but rather borrowed from the multi-vector310

retrieval models (Khattab and Zaharia, 2020). How-311

ever, we chose to start with this architecture, since312

it is the simplest form of the between query–313

document tokens interaction while also achieving314

top-tier OOD results among the retrievers, espe-315

cially when adding distillation from cross-encoder316

and hard negatives training (Santhanam et al., 2022;317

Formal et al., 2021; Li et al., 2022; Chen et al.,318

2021). We believe that a simple and effective archi-319

tecture facilitates its usage by other research works320

and thus better benefits the community.321
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A Training Configuration 476

In all experiments, we train the cross-encoders on 477

MS MARCO (Bajaj et al., 2018), a dataset where 478

the queries are prepared from Bing search log, and 479

the collection contains paragraphs from the general 480

Web. It contains 8.8M passages, over 500k query– 481

document pairs for training. 482

We implement the model based on Capreo- 483

lus (Yates et al., 2020a,b), an IR toolkit for end-to- 484

end neural ad hoc retrieval that focuses on cross- 485

encoders. We use the logic of training and infer- 486

ence in Capreolus for MS MARCO, and implement 487

the inference on BEIR based on its sample script.5 488

All training configurations follow Pradeep et al. 489

(2022): We train MS MARCO on 30k steps with a 490

learning rate 1e−5 and batch size 16. We use linear 491

warmup on the first 3k steps, then linearly decay 492

the learning rate on the following steps. Cross- 493

encoders were trained on LCE loss (Gao et al., 494

2021b; Pradeep et al., 2022) with the number of 495

negative samples to be 7. 496

All experiments used Quadro RTX 8000 GPUs. 497

It took approximately 8 hours for cross-encoder 498

training and 0.5–24 hours to rerank top-1k docu- 499

ments of BEIR, time depending on the dataset. For 500

each cross-encoder setting, we only performed one 501

training with a fixed seed. 502

B Results on BEIR 503

Due to the space limitation, we only report the 504

averaged scores on BEIR in the main paper. In 505

this section, Table 5 and Table 6 presents the full 506

nDCG@10 scores on each BEIR dataset, corre- 507

sponding to the Table 2 in Section 5.1 (Model Size), 508

and Table 3 in Section 5.2 (First-Stage Retriever). 509

C License 510

The MS MARCO dataset is licensed under Creative 511

Commons Attribution 4.0 International, whereas 512

BEIR datasets and Capreolus toolkit are under 513

Apache License 2.0. The usage of the artifacts 514

in this work is consistent with their intended use. 515

Since our codebase is extended from Capreolus, it 516

would inherit the Apache License 2.0. 517

5https://github.com/beir-cellar/beir
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Backbone Add
LI?

MS
MARCO

(MRR@10)

BEIR (nDCG@10)

Avg TREC-
COVID

NF
Corpus

NQ
Hotpot

QA
FiQA

Argu
Ana

Touche-
2020

Quora
DB

Pedia
SCI

DOCS
FEVER

Climate-
FEVER

Sci
Fact

MiniLM × 0.390 0.467 0.699 0.355 0.504 0.620 0.359 0.335 0.308 0.722 0.426 0.151 0.754 0.164 0.679
✓ 0.392 0.491 0.705 0.349 0.501 0.673 0.360 0.527 0.324 0.784 0.424 0.155 0.723 0.172 0.691

ELECTRAbase
× 0.400 0.481 0.727 0.362 0.523 0.660 0.389 0.291 0.317 0.773 0.436 0.152 0.748 0.112 0.669
✓ 0.402 0.494 0.736 0.368 0.527 0.714 0.401 0.443 0.320 0.690 0.449 0.162 0.740 0.152 0.715

ELECTRAlarge
× 0.413 0.507 0.801 0.380 0.559 0.733 0.453 0.250 0.339 0.772 0.468 0.181 0.791 0.149 0.719
✓ 0.413 0.524 0.786 0.378 0.559 0.735 0.457 0.436 0.335 0.800 0.460 0.182 0.769 0.179 0.733

Table 5: MRR@10 on MS MARCO and nDCG@10 scores on BEIR. Rerankers are initialized from MiniLM,
ELECTRAbase, and ELECTRAlarge. Results on BEIR rerank the top-1k passages from BM25. LI: late-interaction.

First Stage Add
LI?

BEIR (nDCG@10)

Avg TREC-
COVID

NF
Corpus

NQ
Hotpot

QA
FiQA

Argu
Ana

Touche-
2020

Quora
DB

Pedia
SCI

DOCS
FEVER

Climate-
FEVER

Sci
Fact

Sparse

BM25 × 0.467 0.699 0.355 0.504 0.620 0.359 0.335 0.308 0.722 0.426 0.151 0.754 0.164 0.679
✓ 0.491 0.705 0.349 0.501 0.673 0.360 0.527 0.324 0.784 0.424 0.155 0.723 0.172 0.691

uniCOIL × 0.426 0.711 0.337 0.556 0.576 0.271 0.335 0.277 0.727 0.426 0.152 0.375 0.116 0.680
✓ 0.452 0.713 0.328 0.552 0.625 0.272 0.555 0.285 0.784 0.423 0.156 0.360 0.128 0.691

SPLADE × 0.469 0.706 0.336 0.563 0.617 0.362 0.320 0.278 0.728 0.434 0.152 0.758 0.160 0.682
✓ 0.492 0.699 0.330 0.560 0.671 0.361 0.526 0.288 0.786 0.432 0.157 0.717 0.173 0.691

Single-vector Dense

DPR (Wiki) × 0.451 0.699 0.335 0.571 0.600 0.341 0.333 0.285 0.523 0.433 0.154 0.753 0.175 0.662
✓ 0.472 0.715 0.330 0.568 0.643 0.339 0.524 0.296 0.557 0.432 0.156 0.721 0.180 0.673

DPR (MS) × 0.474 0.737 0.334 0.562 0.613 0.364 0.336 0.278 0.718 0.434 0.153 0.771 0.181 0.677
✓ 0.495 0.738 0.329 0.557 0.655 0.364 0.528 0.287 0.782 0.434 0.156 0.738 0.186 0.687

ANCE × 0.471 0.724 0.331 0.554 0.594 0.360 0.338 0.285 0.717 0.419 0.155 0.781 0.192 0.676
✓ 0.493 0.740 0.327 0.550 0.626 0.363 0.529 0.291 0.781 0.418 0.157 0.750 0.192 0.687

TCT-
ColBERT

× 0.470 0.719 0.336 0.564 0.620 0.360 0.319 0.281 0.714 0.437 0.154 0.767 0.170 0.676
✓ 0.494 0.725 0.330 0.560 0.665 0.360 0.524 0.291 0.780 0.438 0.157 0.733 0.177 0.689

TAS-B × 0.472 0.714 0.338 0.565 0.623 0.361 0.333 0.281 0.727 0.436 0.153 0.760 0.167 0.680
✓ 0.494 0.713 0.331 0.560 0.670 0.358 0.527 0.292 0.787 0.435 0.157 0.729 0.176 0.689

Multi-vector Dense

ColBERT v2 × 0.467 0.707 0.333 0.564 0.621 0.360 0.316 0.278 0.716 0.434 0.152 0.756 0.156 0.679
✓ 0.493 0.709 0.327 0.560 0.672 0.361 0.525 0.291 0.780 0.431 0.157 0.724 0.178 0.691

Table 6: nDCG@10 scores on BEIR, reranking the top-1k passages from each first-stage retriever. LI: late-
interaction.
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