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Abstract

Recent advances in neural information re-
trieval based on pre-trained language models
reveal that directly fine-tuning the [CLS] vec-
tor for downstream retrieval tasks might not
yield a robust bi-encoder retriever on out-of-
distribution (OOD) datasets. Therefore, many
methods are proposed to increase OOD gen-
eralization, among which the multi-vector re-
trievers achieve the best balance between the
in-domain and OOD effectiveness. In this pa-
per, we explore whether late interaction, the
building stone of multi-vector, is also helpful to
neural rerankers that rely on the [CLS] vector
alone to compute the similarity score. Although
many would argue that the rerankers already
gather the token-interaction information via the
attention mechanism, we find adding late in-
teraction still brings an extra 5% improvement
“for free” on average on OOD datasets, with
little increase in latency and no degradation
in in-domain effectiveness. Extensive experi-
ments show that this finding is consistent across
different model sizes and first-stage retrievers,
and that the improvement is more prominent
on longer queries. Our findings suggest that for
neural rerankers, boiling all information into
the [CLS] token is not the optimal choice for
all scenarios, and more studies are required to
better utilize the reranker’s structure.

1 Introduction

The two-stage retrieve-then-rerank pipeline has
been the de facto design for many information
retrieval systems. With the advancement in pre-
trained language models, these retrieval systems
also benefit from the rich semantics in the contex-
tualized representations which could be fine-tuned
for measuring the similarity between queries and
documents. Commonly, the [CLS] token vector
at the last layer is often chosen to be the sequence-
level representation. However, neural retrievers
that only use the [CLS] vector might be less ro-
bust on out-of-distribution (OOD) datasets as some

Add LI? MS MARCO BEIR Avg. Search
MRR@10 nDCG@10 Latency

X 0.390 0.467 1.18s

v 0.392 0.491 1.28s

Table 1: The in-domain score (on MS MARCO), OOD
score (on BEIR), and search latency of rerankers w/o
and w/ adding late interaction. Rerankers are initialized
from MiniLM. LI: Late Interaction.

of the token-level granularity might not be captured.
Therefore, methods such as further pre-training or
adding token-level interaction have been applied
to improve the OOD generalization of the neu-
ral retrievers. Among them, late interaction mod-
els (Khattab and Zaharia, 2020; Gao et al., 2021a),
also known as the multi-vector retrievers, strikes a
perfect balance between the in-domain and OOD
effectiveness among neural retrievers. This is usu-
ally credited to its design which takes the last layer
of contextualized token embeddings to compute
the final similarity other than just using the [CLS]
vector. Given its powerful design, in this paper, we
raise the following question:

Can neural rerankers that only use the [CLS]
vector for computing similarity scores also benefit
from adding the late interaction?

Intuitively, many would argue that the attention
mechanism at the previous layers already gath-
ers the token-level interaction between the query
and the document. However, in this paper, we
show that late interaction at the last layer actually
brings “free” OOD capacity to rerankers. As shown
Table 1, after adding late the interaction, the av-
eraged nDCG@ 10 on BEIR is improved by 5%
(from 0.467 to 0.491), while the in-domain score
(MRR @10 on MS MARCO) is not affected and the
search latency is only slightly increased. We also
show that this improvement is orthogonal to the
better OOD capacity brought by larger model size,
and consistent when reranking candidates from all
categories of retrievers.



2 Related Work

Nogueira and Cho (2019) was one of the first work
on cross-encoders, which serve to rerank a subset
of documents returned from the “first-stage” re-
trievers. It considers retrieval as a classification
task, and uses Transformer encoders following the
formulation of the next sentence prediction (NSP)
pretraining task in BERT, where only the [CLS]
vector is used in classifying the (query, document)
pair and computing the relevant score. Afterward,
CEDR (MacAvaney et al., 2019) also proposes to
integrate token information rather than use only
[CLS], but it processes token representations at
all Transformer layers using the pre-BERT neural
rerankers (Xiong et al., 2017; Guo et al., 2016; Hui
et al., 2017), which is more complex in structure
and adds higher computational overhead.

Recent works on first-stage retrieval have demon-
strated the effectiveness of adding sparse informa-
tion into dense retrieval. Chen et al. (2021) The
combination of the token information and dense
[CLS] vector could also be done explicitly, by ei-
ther adding the scores computed from [CLS] and
token information, or concatenated aggregated to-
ken vectors to the [CLS] vector (Gao et al., 2021a;
Lin et al., 2022). The multi-vector dense models
could also be viewed under this category, where the
token representation vectors jointly contribute to
the relevancy computation along with the [CLS]
vector (Khattab and Zaharia, 2020; Li et al., 2022).

3 Methods

In this section, we introduce monoBERT, the
reranker we used in this work, and how we apply
late interaction on the reranker.

3.1 monoBERT

monoBERT (Nogueira and Cho, 2019) is one of
the first works that applied pretrained transformers
in passage retrieval. The model is fed with con-
catenated query g and document d and computes
relevance scores s, ¢ from the [CLS] representa-
tion on the last layer of the Transformer encoder.
We borrow the following formulations from Lin
et al. (2020) and Pradeep et al. (2022):

Sm(q,d) :T[CLS]W+b (1)

where T'jc1s) € RP is the [CLS] representation
on the final layer, and W € RP*! and b € R are
the weight and bias for classification.

The model may also use other pretrained Trans-
formers checkpoints following the standard par-
lance in the community, such as ELECTRA (Clark
et al., 2020) which is often referred to as mono-
ELECTRA. To avoid confusion with other cross
encoders that do not follow this naming scheme,
we always refer to the model as monoBERT, and
specify the backbone that it is initialized from.

3.2 Late Interaction

In this work, we use the simplest version of late in-
teraction proposed by Khattab and Zaharia (2020).
We first obtain the representation of each token in
the query ¢ and document d:

Vg, = Tg; Wy, + by, Vd; = de de + bd].; 2)

where ¢; and d; represent the i-th token of query
q and the j-th token of document d, respectively.
Similar to Eq. 1, T € RP is the representation of
each token on the final layer. W € RP*Ptor and
b € RPok are the weight and bias in a projection
layer, which projects the T}, to a lower dimension
Dyor. < D.

Eq. 2 is the default setting in all experiments. In
Section 5.3, we investigate another variant where
the token representations are not projected.

With token representations vy, and vg;, the late
interaction then computes the token interaction
scores score by summing up the inner product be-
tween all tokens in queries and documents:

siq,d) = ) max(vgva,) 3)
qi J

It shares the same formulation with the first-
stage retrievers, and only differ in that the token rep-
resentation 7, and 7y, are computed jointly with
both query and document information, whereas in
retrievers, they are computed independently from
each other, with 77, perceiving no information from
document d and vice versa.

At training time, we compute the losses L, and
L; based on s,,, and s; (or 32), respectively:

L=Lom(q.dtdy, .. d;) + Lol db dy,...d;)

where d* is the positive document and {d; }7 ,
are the negative documents to the query q. We use
LCE (Gao et al., 2021b; Pradeep et al., 2022) for
both losses in this work. At inference time, we
sum the two scores as the final relevance score, i.e.,
Sfinal = Sm + Si.!

'We explored adding weighting terms for s,,, and s., but



Backbone Add MSMARCO BEIR Avg Add Sparse Multi-vector Dense
LI?  MRR@10 nDCG@10 L BM25 uniCOIL SPLADE  CoIBERT v2
MiniLM x 0.390 0.467 x 0.467 0.426 0.469 0.467
mt v 0.392 0.491 v 0.491 0.452 0.492 0.493
X 0.400 0.481 Add Single-vector Dense
ELECTRA,
"V 0.402 0.494 LI? "ppR (Wikii DPR(MS) ANCE TCT  TAS-B
x 0.413 0.507 x 0.451 0.474 0471 047 0.472
ELECTRAarge v 0.413 0.524 v 0.472 0.495 0493  0.494 0.494

Table 2: MRR@ 10 on MS MARCO and the averaged
nDCG@ 10 scores on BEIR. Rerankers are initialized
from MiniLM, ELECTR Ay, and ELECTRA . Re-
sults on BEIR rerank the top-1k passages from BM25.
LI: late-interaction. *Scores on each BEIR dataset are re-
ported in Appendix Table 5 due to space limitation.

4 Experimental Setup

In this work, we follow the exact same training
procedure as Pradeep et al. (2022), detailed in Ap-
pendix A. For evaluation, we use MS MARCO (Ba-
jaj et al., 2018) for the in-domain evaluation and 13
datasets from BEIR (Thakur et al., 2021) for OOD
evaluation, chosen due to license reasons. BEIR
covers 10 domains including Wikipedia, Finance,
Scientific, Quora, etc.

At the inference stage, we always rerank top-
1k results from the first-stage retrievers. On MS
MARCO, we use TCT-ColBERT (Lin et al., 2021b)
as the retriever following Pradeep et al. (2022). On
BEIR, we use a list of retrievers that covers the
categories of sparse, single- and multi-vector dense
retrievers. Retrievers results are produced using
one of Pyserini (Lin et al., 2021a), BEIR (Thakur
et al., 2021) repository, and ColBERT (Khattab
and Zaharia, 2020) repository.> More details are
provided along with the code release.

We experimented with three backbones in this
work: MiniLM (Wang et al., 2020), ELECTR Apase,
and ELECTRA e (Clark et al., 2020). All models
are available on HuggingFace (Wolf et al., 2020).

5 Results and Analysis

Table 1 provides a preview of the effect of adding
late interaction on top of rerankers, where we ob-
served it brings a free gain on OOD capacity. In this
section, we examine our findings in multiple set-
tings, showing its consistency over different model
sizes and first-stage retrievers of different natures.

only observed marginal gains. Thus we report the simplest
formulation here.

*https://github.com/
stanford-futuredata/ColBERT

Table 3: Averaged nDCG@ 10 scores on BEIR, rerank-
ing the top-1k passages from each first-stage retriever.
TCT: TCT-ColBERT. LI: late-interaction. *Scores on
each BEIR dataset are reported in Appendix Table 6 due to
space limitation.

5.1 Model Size

Previous papers found that the generalization abil-
ity could depend on the model scale. Specifically,
models with a more extensive set of parameters
can better generate on unseen distribution (Ni et al.,
2021). This leads to our question: does late inter-
action remain helpful in improving OOD capacity
when initialized from larger backbone models?

Surprisingly, the contribution of late interac-
tion barely depends on the model size. Ta-
ble 2 shows both in-domain (on MS MARCO)
and OOD (on BEIR) scores on rerankers with-
out and with adding late interaction after the
final layer, where the rerankers are initial-
ized from three different sizes of backbones:
MiniLM, ELECTRAy,,sc and ELECTRA 4e. The
size of ELECTRAp;se/ELECTRA 3¢ is Toughly
3.3%/10.3x of MiniLM.?

While we observe higher average scores on
BEIR as the model size increases, which echoes the
previous finding that better generalization ability
could be gained as the model scales up. The relative
improvement brought by token information is simi-
lar across the backbones. On both ELECTRApse
and ELECTRA g, adding late interaction drasti-
cally improves the average nDCG@10 on BEIR,
from 0.474 to 0.502 with ELECTRAp,s. and from
0.507 to 0.524 with ELECTRA|,ge. Additionally,
the in-domain scores on the other two backbones
are not affected as well, suggesting that the “free’
gain is consistent over different model sizes.

>

5.2 First-stage Retriever

We categorize first-stage retrievers into dense and
sparse retrievers, and the dense retrievers can be
further categorized into single- and multi-vector

*MiniLM, ELECTR Apyse, and ELECTRArge have 33M,
110M, and 340M parameters respectively.


https://github.com/stanford-futuredata/ColBERT
https://github.com/stanford-futuredata/ColBERT

Projected Token Dimension | MS MARCO BEIR

(Diok) MRR@10 | nDCG@10
(1) Dk =1 0.3920 0.4890
(2) Dok = 32 0.3920 0.4914
(3) Dy =128 0.3920 0.4910
(4) Dok =384 0.3900 0.4911

Table 4: MRR@ 10 of MS MARCO and nDCG@10 of
BEIR, using different dimensions of token representa-
tion (Dyok in Eq. 2). We report scores to 4 digits here as
the values are close in all conditions.

dense retrievers. We want to explore whether late
interaction gives higher improvement when rerank-
ing the results of any specific type of retrievers.

Table 3 shows the reranking results on BEIR on
an extensive list of retrievers, covering all three cat-
egories above. Looking at the averaged nDCG@10
on BEIR, we do not observe any clear preference
for any specific category of retrievers. That is, we
found that late interaction consistently improves
the OOD capacity when using retrievers in different
natures, bringing a similar degree of improvement
of 0.02-0.03 on average.

5.3 Token Dimensions

In first-stage retrievals, it is common to project
the token representation into lower dimensions as
restricted by indexing storage space and search effi-
ciency. However, the representations are computed
on the fly for rerankers without any index storage.
That is, in the context of rerankers, using repre-
sentations in higher dimensions does not bring any
additional storage cost and only minor searching
latency. We thus examine whether using higher
token dimensions Dy is helpful.

Results are shown in Table 4, where row (2) cor-
responds to the BM25 results reported in Table 3.
Comparing rows (1-4), we found that the token
dimensions have little impact on effectiveness on
BEIR: on row (1), using dim = 1 already obtains
0.4890 on average BEIR, while increasing the di-
mension to dim = 32 and onwards only provides
marginal improvement.

5.4 Query Length

Finally, we present our analysis on how the late in-
teraction improves the OOD capacity of rerankers.
We explored many aspects of query properties on
finding the groups of queries that benefit the most
from the late interaction, including the challenging
level of the query, the completeness of the positive
document, the ranking similarity among different

Quora HotpotQA
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Query Length
Figure 1: nDCG@ 10 improvement from late interaction
on queries over different lengths. Each point represents
the average of nDCG@ 10 improvements over the query
of the corresponding length. The line is the least square
polynomial fit of the points.

5 10 15 20 25 30 35 40 45
Query Length

retrievers, and so on. In the end, we found that
query length is the most prominent indicator of the
per-query improvement.

Figure 1 plots the distribution of nDCG@10
improvement by late interaction according to the
query length on Quora and HotpotQA, two datasets
included in BEIR.* Specifically, each point repre-
sents the average of nDCG @ 10 improvements over
the query of the same length (same coordinate on
the x-axis). We additionally plot an approximated
polynomial line based on the points to better re-
veal the relationship between the query length and
nDCG@ 10 improvement.

On both datasets, we observe a clear tendency
that late interaction brings higher improvement on
longer queries. Here we report results using BM25
as the retriever, while the observation is similar
when reranking candidates from other retrievers.

6 Conclusion

In this work, we presented our finding that adding
late interaction to existing rerankers brings visible
improvement to out-of-distribution capacity with-
out any degradation on in-domain effectiveness,
even though the reranker already processes the to-
ken interaction via the attention mechanism at pre-
vious layers. Extensive experiments on different
model sizes and first-stage retrievers show that this
improvement is consistent, and according to our
analysis, the improvement is more prominent on
longer queries. Our findings suggest that boiling
all information into the [CLS] token may not be
the optimal choice for neural rerankers, and more
studies are required to better explore its capacity.

*Length determined as the number of query tokens delim-
ited by whitespace.



7 Limitations

While adding late interaction on top of the cross-
encoder provides consistent free gains on the out-
of-distribution scenario, one limitation of the work
is that the architecture of late interaction is not
novel, but rather borrowed from the multi-vector
retrieval models (Khattab and Zaharia, 2020). How-
ever, we chose to start with this architecture, since
it is the simplest form of the between query—
document tokens interaction while also achieving
top-tier OOD results among the retrievers, espe-
cially when adding distillation from cross-encoder
and hard negatives training (Santhanam et al., 2022;
Formal et al., 2021; Li et al., 2022; Chen et al.,
2021). We believe that a simple and effective archi-
tecture facilitates its usage by other research works
and thus better benefits the community.
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A Training Configuration

In all experiments, we train the cross-encoders on
MS MARCO (Bajaj et al., 2018), a dataset where
the queries are prepared from Bing search log, and
the collection contains paragraphs from the general
Web. It contains 8.8M passages, over 500k query—
document pairs for training.

We implement the model based on Capreo-
lus (Yates et al., 2020a,b), an IR toolkit for end-to-
end neural ad hoc retrieval that focuses on cross-
encoders. We use the logic of training and infer-
ence in Capreolus for MS MARCO, and implement
the inference on BEIR based on its sample script.’

All training configurations follow Pradeep et al.
(2022): We train MS MARCO on 30k steps with a
learning rate 1e—>5 and batch size 16. We use linear
warmup on the first 3k steps, then linearly decay
the learning rate on the following steps. Cross-
encoders were trained on LCE loss (Gao et al.,
2021b; Pradeep et al., 2022) with the number of
negative samples to be 7.

All experiments used Quadro RTX 8000 GPUs.
It took approximately 8 hours for cross-encoder
training and 0.5-24 hours to rerank top-1k docu-
ments of BEIR, time depending on the dataset. For
each cross-encoder setting, we only performed one
training with a fixed seed.

B Results on BEIR

Due to the space limitation, we only report the
averaged scores on BEIR in the main paper. In
this section, Table 5 and Table 6 presents the full
nDCG@ 10 scores on each BEIR dataset, corre-
sponding to the Table 2 in Section 5.1 (Model Size),
and Table 3 in Section 5.2 (First-Stage Retriever).

C License

The MS MARCO dataset is licensed under Creative
Commons Attribution 4.0 International, whereas
BEIR datasets and Capreolus toolkit are under
Apache License 2.0. The usage of the artifacts
in this work is consistent with their intended use.
Since our codebase is extended from Capreolus, it
would inherit the Apache License 2.0.

Shttps://github.com/beir-cellar/beir
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Add BEIR (nDCG@10)

Backbone MARCO TREC- NF Hotpot . Argu  Touche- DB SCI Climate-  Sci
2

L7 | vRr@10) | AV8 ‘ coviD Corpus Q@ a  FQA s 2020 O pegia pocs TEVER BEVER  Fact

MiniLM x 0390 | 0467 | 0699 0355 0504 0620 0359 0335 0308 0722 0426 0.I51 0754  0.164  0.679

v 0392|0491 | 0705 0349 0501 0.673 0360 0527 0324 0784 0424 0155 0723 0172  0.691

ELECTRA x 0400 | 0481 | 0727 0362 0523 0660 0389 0291 0317 0773 0436 0.152 0748  0.112  0.669

base 0402 | 0494 | 0736 0368 0527 0714 0401 0443 0320 0.690 0449 0.162 0740  0.152 0715

ELECTRA x 0413 | 0507 | 0.801 0380 0559 0733 0453 0250 0339 0772 0468 0.181 0791  0.149 0719

large 0413 | 0524 | 0786 0378 0559 0735 0457 0436 0335 0800 0460 0.182 0769  0.179 0.733

Table 5: MRR@10 on MS MARCO and nDCG @10 scores on BEIR. Rerankers are initialized from MiniLM,
ELECTRA;se, and ELECTRA ;. Results on BEIR rerank the top-1k passages from BM25. LI: late-interaction.

BEIR (nDCG@10)

. Add TREC- NF Hotpot . Argu  Touche- DB SCI Climate-  Sci
FirstStage o | A8 | couip compus N2 QA T Amn 2000 % pegia pocs TEVER FEVER  Fact
Sparse
BM25 x | 0467 | 0.699 0.355 0.504 0.620 0.359 0.335 0308 0.722 0426 0.151 0.754 0.164  0.679

v 10491 | 0.705 0.349 0.501 0.673 0.360 0.527 0324 0.784 0424 0.155 0.723 0.172  0.691
uniCOIL x | 0426 | 0711 0.337 0.556 0576 0.271 0335 0277 0727 0426 0.152  0.375 0.116  0.680
v 10452 | 0.713 0328 0.552 0.625 0.272 0.555 0285 0.784 0423 0.156  0.360 0.128  0.691
SPLADE x | 0469 | 0.706 0336 0.563 0.617 0362 0.320 0278 0.728 0.434 0.152  0.758 0.160  0.682
v 10492 | 0.699 0.330 0.560 0.671 0.361 0.526 0.288 0.786 0432 0.157 0.717 0.173  0.691
Single-vector Dense
DPR (Wiki) x | 0451 | 0.699 0335 0.571 0.600 0.341 0.333 0285 0.523 0433 0.154 0.753 0.175  0.662
v 0.472 | 0.715 0.330 0.568 0.643 0339 0.524 0.296 0.557 0432 0.156 0.721 0.180 0.673
DPR (MS) x | 0474 | 0.737 0334  0.562 0.613 0.364 0336 0278 0.718 0434 0.153 0.771 0.181 0.677
v 10495 | 0.738 0329 0.557 0.655 0364 0528 0287 0.782 0434 0.156  0.738 0.186  0.687
ANCE x | 0471 | 0.724 0331 0.554 0594 0360 0.338 0285 0.717 0419 0.155 0.781 0.192  0.676
v 10493 | 0.740 0.327 0.550 0.626 0.363 0.529 0.291 0.781 0.418 0.157  0.750 0.192  0.687
TCT- x | 0470 | 0.719 0336  0.564 0.620 0.360 0319 0.281 0.714 0437 0.154  0.767 0.170  0.676
ColBERT v 10494 | 0.725 0.330 0.560 0.665 0.360 0.524 0291 0.780 0.438 0.157 0.733 0.177  0.689
TAS-B X 0472 | 0.714 0.338 0.565 0.623 0.361 0.333 0.281 0.727 0.436 0.153 0.760 0.167 0.680
- v’ 10494 | 0.713 0.331 0.560 0.670 0.358 0.527 0292 0.787 0435 0.157 0.729 0.176  0.689
Multi-vector Dense
ColBERT v2 0.467 | 0.707 0333 0.564 0.621 0.360 0.316 0278 0.716 0434 0.152 0.756 0.156  0.679
0.493 | 0.709 0.327 0.560 0.672 0.361 0.525 0291 0.780 0431 0.157 0.724 0.178  0.691

Table 6: nDCG@10 scores on BEIR, reranking the top-1k passages from each first-stage retriever. LI: late-
interaction.



