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Abstract

Machine Learning has invariantly found its way into various Credit Risk applica-1

tions. Due to the intrinsic nature of Credit Risk, quantifying the uncertainty of the2

predicted risk metrics is essential, and applying uncertainty-aware deep learning3

models to credit risk settings can be very helpful. In this work, we have explored4

the application of a scalable UQ-aware deep learning technique, Deep Evidence5

Regression and applied it to predicting Loss Given Default. We contribute to the6

literature by extending the Deep Evidence Regression methodology to learning7

target variables generated by a Weibull process and provide the relevant learning8

framework. We demonstrate the application of our approach to both simulated9

and real-world peer to peer lending data.10

1 Introduction11

1.1 Credit Risk Management12

Credit risk management is assessing and managing the potential losses that may arise from the13

failure of borrowers or counterparties to fulfil their financial obligations. In other words, it identifies,14

measures, and mitigates the risks associated with lending money or extending credit to individuals,15

businesses, or other organizations.16

Credit risk’s anticipated loss (EL) comprises three components: Probability of Default (PD), Loss17

Given Default (LGD), and Exposure at Default (EAD). PD is the likelihood that a borrower will fail18

to fulfill their financial commitments in the future. LGD refers to the proportion of the outstanding19

amount that is lost in the event of default. Lastly, EAD refers to the outstanding amount at the time20

of default.[8]21

LGD prediction is important as accurate prediction of LGD not only supports a healthier and risk-22

less allocation of capital, but is also vital for pricing the security properly. [8] & [14]. There is a23

large body of literature using advanced statistical and machine learning methods for prediction of24

LGD [8]. However the machine learning literature on LGD has yet to address an essential aspect,25

which is the uncertainty surrounding the estimates and predictions.[4].26

UQ techniques like Bayesian Neural Network, Monte Carlo Dropout and ensemble methods as27

outlined in [1] present a natural first step towards quantifying uncertainty. However, almost all these28

methods are computationally and memory intensive, and require sampling on test data after fitting29

the network, making them difficult to adapt for complex neural network architectures that involve a30

large number of parameters.31
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1.2 Deep Evidence Regression32

The primary inspiration of this work is taken from the work done by Amini et al in [2]. The paper33

develops a unique approach, Deep Evidence Regression as a scalable and accurate UQ aware deep34

learning technique for regression problems. This approach predicts the types of uncertainty directly35

within the neural network structure, by learning prior distributions over the parameters of the target36

distribution, referred to as evidential distributions. Thus this method is able to quantify uncertainty37

without extra computations after training, since the estimated parameters of the evidential distri-38

bution can be plugged into analytical formulas for epistemic and aleatoric uncertainty, and target39

predictions.40

The setup of the problem is to assume that the observations from the target variable, yi are drawn41

i.i.d. from a Normal distribution with unknown mean and variance parameters θ = µ, σ2. With42

this we can write the log likelihood of the observation as:43

Lik(µ, σ2) = log(p(yi|µ, σ2) = −1

2
log(2πσ2)− (yi − µ)2

2σ2

Learning θ that maximises the above likelihood successfully models the uncertainty in the data,44

also known as the aleatoric uncertainty. However, this model is oblivious to its predictive epistemic45

uncertainty. [2]. Epistemic uncertainty, is incorporated by placing higher-order prior distributions46

over the parameters θ. In particular a Gaussian prior is placed on the unknown mean and an Inverse-47

Gamma prior on the unknown variance.48

µ ∼ N (γ, σ2ν−1) σ2 ∼ Γ−1(α, β)

Following from above the posterior p(µ, σ2|γ, ν, α, β) can be approximated as p(µ|γ, ν) ∗49

p(σ2|α, β). Hence:50

p(µ, σ2|γ, ν, α, β) = βα
√
ν

Γ(α)
√
2πσ2

(1/σ2)α+1 exp
(
−2β + ν(γ − µ)2

2σ2

)
Amini et al [2] thus find the likelihood of target variable given evidential parameters, as:51

p(yi|γ, ν, α, β) =
∫
θ

p(yi|θ)p(θ|γ, ν, α, β)

where θ = {µ, σ2}. Then a Neural Network is trained t infer, the parameters m = {γ, ν, α, β}, of52

this higher-order, evidential distribution.53

1.3 Weibull distribution54

The Weibull distribution is a continuous probability distribution commonly used in reliability anal-55

ysis to model the failure time of a system or component.[7] The probability density function (PDF)56

of the Weibull distribution is given by:57

f(x;λ, k) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k if x ≥ 0,

0 if x < 0,
(1)

where λ > 0 is the scale parameter and k > 0 is the shape parameter. The scale parameter de-58

termines the location of the distribution, while the shape parameter controls the rate at which the59

failure rate changes over time. There is a body of lietrature that explores the application of the60

weibull distribution to various credit risk applications. [9] [11].61

The work by [12] assumes a normal distribution on LGD values. While this assumption might be62

true in a lot of settings, however it does not follow in the context of Loss Given Default. While63

normal distribution is symmetric and has a support over entire real line, however the LGD values64

are restricted to a range of [0, 1] and might not necessarily be symmetric.65
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Hence in the section below we provide a novel theoretical framework to learn target variables which66

follow Weibull distribution. We provide the following theoretical results, in the setting of target67

variables following a Weibull dataset.68

• Log Likelihood69

• Mean Prediction70

• Prediction Uncertainty71

We also provide results testing our approach on both simulated and real world dataset.72

2 Deep Evidence Regression for Weibull Data73

2.1 Problem setup74

We consider the problem where the observed targets, yi, are drawn iid from a Weibull distribution,75

with a known shape or rate parameter k and an unknown scale λ. Although ideally we would want76

to keep both the parameters unknown, however with both λ and k there are no priors with which77

likelihood can be computed analytically [3]. Hence we have decided to simplify the problem setup78

by assuming known shape k.79

yi ∼ Weibull(k, λ) (2)

where k ∈ R+, λ ∈ R+ (3)
Hence pdf of yi is (4)

=⇒ p(yi;λ, k) =

{
k
λ

(
yi

λ

)k−1
e−(yi/λ)

k

, if yi ≥ 0

0, otherwise
(5)

For the above setting we want to place priors on the unknown parameter, λ, such that we are able80

to get solve for the likelihood of yi given the parameters of the prior distribution. Hence similar to81

work in [17] and [5], we define the following prior.82

θ = λk (6)
Hence the pdf of yi becomes: (7)

p(yi|θ, k) =
k

θ
yi

k−1 exp (−yki /θ) (8)

And we place a Inverse Gamma Prior on θ (9)
θ ∼ Γ(α, β) (α > 2) (10)

Hence pdf of θ is (11)

p(θ|α, β) = βα

Γ(α)

1

θα+1
exp (−β

θ
) (12)

2.2 Learning Log-Likelihood83

Hence we can define likelihood of yi given the higher order evidential parameters α, β can be defined84

as :85
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Lik = p(yi|α, β) =
∫
θ

p(yi|θ, k)p(θ|α, β)dθ (13)

Now given λ, k > 0 =⇒ θ > 0 (14)

p(yi|α, β) =
∫ ∞

θ=0

(k
θ
yi

k−1 exp (−yki /θ)
)( βα

Γ(α)

1

θα+1
exp (−β

θ
)
)
dθ (15)

= kyk−1
i

βα

Γ(α)

∫ ∞

θ=0

1

θα+2
exp(−yki + β

θ
) (16)

= kyk−1
i

βα

Γ(α)

Γ(1 + α)

(yki + β)
1+α (17)

=
αkyk−1

i βα

(yki + β)α+1
(18)

Hence the log-likelihood for i’th observation is defined as:86

Log − Liki = Llik
i = logαi + log k + (k − 1) log yi + αi log βi − (αi + 1)(yi

k + βi) (19)

We set up our neural network to minimise the negative Log-Likelihood plus some regularisation87

cost, discussed in section below.88

2.3 Mean Prediction and UQ of prediction89

Given the main advanatge of Deep Evidence Regression over other UQ aware deep learning methods90

like Bayesian NN, esembling etc, is due to existence of analytical solution for both predictions and91

unceratinty from NN output, without the need for sampling. Hence this section details the derivation92

of mean prediction and total prediction uncertainty.93

2.3.1 Mean Prediction94

We define the mean prediction as E[Z|α, β] (20)
where Z = E[yi] (21)

Now given yi ∼ Weibull(k, λ) (22)

E[Z] = E[λ ∗ Γ(1 + 1

k
)] = E(λ) ∗ Γ(1 + 1

k
) (k is known) (23)

E[λ] =

∫
λ

λp(λ)dλ (24)

(25)

Hence to solve for mean prediction we need to find pdf p(λ). Because we know θ = λk ∼95

Γ−1(α, β), we can use change of variable to find pdf of λ [18].96

=⇒ E[λ|α, β] = kβα

Γ(α)
∗ Γ(kα− 1

k
) ∗ 1

k
∗ 1

β
kα−1

k

(26)

The mean prediction can thus be simplified as:97

E[Z|α, β] = E(λ) ∗ Γ(1 + 1

k
) (27)

=
kβα

Γ(α)
∗ Γ(kα− 1

k
) ∗ 1

k
∗ 1

β
kα−1

k

∗ Γ(1 + 1

k
) (28)

= Γ(1 +
1

k
)

1

Γ(α)
Γ(α− 1

k
) ∗ β1/k (29)
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2.3.2 Prediction Uncertainty98

We quantify the total uncertainty as V ar(Z) with defined as above, i.e. Z = E[yi]99

V ar(Z|α, β) = V ar(λ) ∗ Γ2(1 +
1

k
) (30)

= (E[λ2]− E[λ]) ∗ Γ2(1 +
1

k
) (31)

With E(λ) defined as in 26, we only need E(λ2) (32)

E[λ2] =

∫
λ

λ2p(λ)dλ (33)

(34)

Similar to approach outlined in 2.3.1, we get:100

E[λ2|α, β] = Γ(
kα− 2

k
)
β2/k

Γ(α)
(35)

Hence we can write101

V ar(Z) = Γ2(1 +
1

k
) ∗

[
Γ(

kα− 2

k
)
β2/k

Γ(α)
−
(
Γ(

kα− 1

k
)
β1/k

Γ(α)

)2]
(36)

or102

V ar(Z) ∝ β2/k

Γ(α)2
[
Γ(α)Γ(

kα− 2

k
)− Γ2(

kα− 1

k
)
]

2.4 Regularisation Cost103

In this section, we outline the process of regularization during training by implementing a regular-104

isation penalty, which involves assigning a high uncertainty cost. The purpose of this penalty is to105

inflate the uncertainty associated with incorrect predictions, thereby improving the overall efficacy106

of the model. As followed in [2], the intuition behind the regularisation cost is to increases the vari-107

ance of prediction in cases where it’s unsure. This utility of this approach has been demonstrated in108

classification setting by [13] and in regression setting by [2].109

Hence we define the Regularisation cost for the i’th observation as110

Lreg
i = |errori| ∗ (

αi

βi
)

where errori = yi − Zi and Z is defined in 27.111

Note The regularization cost mentioned earlier has been determined as the most effective through112

experimentation. However, in order to precisely determine the coefficients of α and β in the regu-113

larization cost, further theoretical analysis is required. By conducting a deeper theoretical investiga-114

tion, we can establish the optimal values for these coefficients, which will enhance the regularization115

process and improve the overall performance of the model.116

2.5 Neural Network training schematic117

The learning process is then set up with a deep neural network with two output neurons to predict118

the parameters of the prior/evidential distribution, α and β. The neural network is trained using the119

cost function:120

LNN
i = −Llik

i + c ∗ Lreg
i

where c is the hyper-parameter governing the strength of regularisation.121
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Figure 1: NN training schematic

3 Results and Experiments122

In this section, we present the results of experiments conducted on both simulated and real data. The123

aim was to evaluate the performance of our proposed method and compare it with existing methods.124

The simulated data was generated based on example data given in [2], while the real dataset was125

obtained from a peer to peer lending company.126

3.1 Simulated Data127

Here generate a target variable following a Weibull distribution. The target variable is generated as:128

yi = x2
i + ϵ, ϵ ∼ Weibull(k = 1.6, λ)

The train set is comprised of uniformly spaced x ∈ [−4, 4] while test set is x ∈ [−5, 5]. The value129

of λ is varied between [0.2, 0.4] to test the effect of noise magnitude on the approach.130

Figure 2: Synthetic data generated for varying λ

Next we fit both the original deep evidence regression and proposed weibull version of deep evidence131

regression. Since our approach assumes known k, k is estimated from the training set.132

Comparing the two versions qualitatively, we observe that the original model’s predictions exhibit133

consistent uncertainty regardless of whether the data is within or outside the distribution. In contrast,134

the proposed version demonstrates improved capability in capturing prediction uncertainty. The135

proposed model’s prediction interval gradually expands beyond the training data range |x| > 4,136

indicating its ability to account for uncertainty in Out-of-distribution data. On comparison, for the137

benchmark version of the model displays a slightly narrower prediction interval at the edges of the138

training window, contrary to expectations of interval widening.139

Quantitatively to assess the performance of our proposed method, we compare it to the benchmark140

model by evaluating key metrics such as mean squared error (MSE) and negative log-likelihood141

(NLL).142

We can see that the proposed version exhibits significantly lower negative log likelihood compared143

to the original Deep Evidence Regression model. This indicates that the proposed model better144
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Figure 3: Deep evidence regression (left) vs Weibull evidence Regression (right). We see that
uncertainty is much better captured by proposed version.

Table 1: Deep Evidence regression original vs proposed results on simulated data for varying λ. We
see MSE (or mean squared error) is similar for both, while NLL (or Negative log likelihood) values
are much better captured by proposed version.

λ
MSE(test) NLL(test)

benchmark proposed benchmark proposed

0.2 0.099303 0.571519 70.64365 7.416122
0.25 0.119299 0.504875 41.71667 6.667958
0.3 0.142722 3.871369 36.16713 6.202275
0.35 0.143117 3.202328 57.02918 5.773156
0.4 0.172697 8.981477 42.53032 5.471559

aligns with the actual distribution of the data, capturing the uncertainty more accurately. However,145

despite this improvement, the original model outperforms in capturing the underlying signal beyond146

the training window, as evidenced by its lower mean squared error (MSE) values.147

3.2 Real Data: Loss Given Default for peer to peer lending148

In this subsection, we showcase the utility of our proposed learning approach by extending it to149

the intricate and complex domain of credit risk management in the context of peer to peer lending.150

Peer-to-peer lending, which is an emerging form of credit aimed at funding borrowers from small151

lenders and individuals seeking to earn interest on their investments. Through an online platform,152

borrowers can apply for personal loans, which are typically unsecured and funded by one or more153

peer investors. The P2P lender acts as a facilitator of the lending process and provides the platform,154

rather than acting as an actual lender.155

Credit risk management is crucial for peer-to-peer lending data as it helps mitigate the potential156

default risks associated with borrowers, ensuring a healthier loan portfolio and reducing financial157
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losses. By effectively analyzing and managing credit risk, P2P lending platforms can maintain158

investor confidence, attract more participants, and sustain the long-term viability of the lending159

ecosystem.160

The dataset under consideration pertains to peer to peer mortgage lending data during the period161

of 2007 to 2014 sourced from Kaggle [16]. However, the data does not include the loss given162

default values. Instead, the recovery rate has been used as a proxy, which is calculated as the ratio of163

recoveries made to the origination amount. The dataset contains approximately 46 variables denoted164

as ’x,’ which include features such as the time since the loan was issued, debt-to-income ratio (DTI),165

joint applicant status, and delinquency status, among others. In total, the dataset comprises around166

23,000 rows.167

Figure 4: Distribution and Weibull fit of the recovery rate (left). Histogram of recovery rate for
train/test split (right). It appears that Weibull distribution might not be a good fit to this data.

As described in the approach the shape parameter was found as k = 1.254 by fitting a Weibull168

distribution on the train dataset. Also given the sensitivity of both the approaches to regression169

cost, hyper parameter optimisation was done to arrive at the best regularisation cost. After arriving170

at the best regularisation cost 10 trials of neural network training were conducted with this best171

regularization cost for benchmark and proposed model separately.172

Similar to the synthetic case, we see that the proposed model demonstrates superior performance173

compared to the benchmark model in terms of mean squared error (MSE) and negative log like-174

lihood. Additionally, it exhibits the ability to generate more accurate prediction intervals. The175

difference in performance between the benchmark and proposed models is even more pronounced176

in this case compared to the simulated data, and the benchmark fails even to retrieve the underlying177

signal, let alone the prediction uncertainty. To reinforce this, the benchmark model was also run178

with 0 regularisation cost and it was found to not improve the MSE. This behaviour outlines the179

difficulty of tuning regularisation parameter for benchmark model. It is also worth noting that the180

benchmark model also predicts ∞ as uncertainty for a significant number of observations.181

Table 2: Results for original vs proposed model for recovery rate. proposed version does not only
has both lower MSE and NLL

MSE NLL

benchmark proposed benchmark proposed
test 84.333 ± 0.352 40.498 ± 4.745 2.757 ± 0.012 2.311 ± 0.024

train 84.320 ± 0.216 39.909 ± 4.911 2.766 ± 0.009 2.314 ± 0.0228

4 Related Work182

This work is primarily inspired by the work done by Amini et al [2], which proposes Deep Evidentail183

Learning approach. Maximillian et al [12] have used the same approach and shown it’s utility to184

Loss given default for bonds from Moody’s recovery database. Additionally there’s a huge body of185
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Figure 5: Predicted UQ for Benchmark Regression (left) vs proposed model(right). Again we see
that the updated model is much better able to capture the UQ. With Uncertainty increasing after
recovery rate increases beyond 40, which is a less dense region and has much fewer observations 4

prior work on uncertainty estimation [10] [6] and the utilization of neural networks for modeling186

probability distributions. In another line of work, Bayesian deep learning utilizes priors on network187

weights estimated with variational inference [1]. There also exists alternative techniques to estimate188

predictive variance like as dropout and ensembling which require sampling. [1]189

5 Conclusion, limitations and future work190

We propose an improvement over Deep Evidence Regression, specifically targeted to usecases where191

the target might follow weibull distribution. We then test the proposed method both on simulated and192

real world dataset in the context of Credit risk management. The proposed model exhibits enhanced193

suitability for applications in which the target variable originates from a weibull distribution, better194

capturing the uncertainty characteristics of such data. Although we have specifically tested the195

model in the credit risk domain, this method can be applicable to wide variety of safety critical196

regression tasks where the target variable follows a weibull distribution. The proposed approach197

thus serves as a valuable tool for capturing and quantifying uncertainty in cases characterized by198

weibull distributions, thereby enhancing the trustworthiness and explainability of model predictions,199

ultimately leading to improved confidence in the modeling process and the corresponding decision200

making.201

However, we are not sure if the proposed approach would generalise to other distributions apart202

from Weibull. Additionally, the proposed model has only two outputs, which could limit its flexi-203

bility when compared to the benchmark model, which had four outputs from the neural network. In204

consequence the proposed model requires a deeper network architecture compared to the benchmark205

model. Furthermore we find that both the models exhibit a high sensitivity to regularization cost,206

which means that changes in the regularization coefficient can significantly impact the model’s per-207

formance. The cylical learning rate as outlined in the [15], which proposes varying the learning rate208

between reasonable boundary values might be of help to mitigate this issue. Overall, these points209

suggest that both models have their strengths and weaknesses, and selecting the most appropriate210

model depends on the specific task requirements and considerations.211

Considering the wide application of beta distributions in the credit risk domain, there may also be212

value in further extending the proposed technique to target variables characterized by beta distribu-213

tions, as it has the potential to provide valuable insights and improved modeling capabilities in the214

context of credit risk management.215
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