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Abstract

Typically, unordered image datasets are individ-
ually and sequentially compressed in random
order. Unfortunately, general set compression
methods that improve over the default sequential
treatment yield only small rate gains for high-
dimensional objects such as images. We propose
an approach for compressing image datasets by
using an image-to-image conditional generative
model on a reordered dataset. Our approach is
inspired by Associative Compression Networks
(Graves et al., 2018). Even though this variation
of variational auto-encoders was primarily devel-
oped for representation learning, the authors of
the paper show substantial gains in the lossless
compression of latent variables. We apply the
core idea of the aforementioned work; adapting
the generative prior to a previously seen neighbor
image, to a commonly used neural compression
model; the mean-scale hyperprior model (MSHP)
(Ballé et al., 2018; Minnen et al., 2018). How-
ever, the architecture changes we propose here
are applicable to other methods such as ELIC (He
et al., 2022) as well. We train our model on sub-
sets of an ordered version of ImageNet, and report
rate-distortion curves on the same dataset. Unfor-
tunately, we only see gains in latent space. Hence
we speculate as to the reason why the approach is
not leading to more significant improvements.

1. Introduction

Our photo albums and memories have largely moved to the
cloud through data centers owned by large tech corporations.
In 2012 there existed half a million data centers compared
to the 8 million today. Our hunger for archiving our lives
at high definition comes at a high environmental cost: data
centers are responsible for yearly CO2 emissions compara-
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ble to those produced by the global airline industry. This
is due to the fact that millions of data centers worldwide
consume electricity equivalent to that of entire countries
such as South Africa, Egypt or Argentina and Columbia
combined. Without intervention, models predict that data
center energy usage could surpass 10% of the global elec-
tricity supply by 2030 (McNerney, 2019). Improving the
consumption of data centers involves various strategies such
as optimizing server usage, implementing effective cooling
strategies and optimizing storage. While different types of
data may require specific storage solutions (e.g., archival
versus active use data), data compression is one of the most
effective ways to enhance storage efficiency. (Moore, 202)

We can improve the compression rate of an image dataset if
we were to compress it holistically as a multi-set. Under the
assumption that images are drawn i.i.d. from an unknown
source, the best possible rate improvement amounts to all in-
formation hidden in the ordering of the sequence (Varshney
& Goyal, 2006b). For a multi-set of size [V, the rate im-
provement is bounded by — log, (/N!) bits. In other words,
a dataset of 10,000 images would save roughly only 15 MB
or 11.8 bits per data point. Recent advances in bits-back
coding have enabled the realization of optimal coders that
efficiently achieve this precise rate with small margins of
error (Severo et al., 2023).

However, for image data-sets these gains are negligible even
for optimal implementations. We instead offer an alterna-
tive approach to image dataset compression. Since image
datasets are rarely considered as i.i.d. samples from the nat-
ural image distribution, we assume that a dataset will often
cluster in groups, e.g. around classes or perspectives. Hence,
we may model them via a predictive coding approach, see
e.g. (Barowsky et al., 2021; Graves et al., 2018) for similar
ideas. We demonstrate the effectiveness of this principle
next with a toy example.

To compress a data instance from a discrete alphabet X’
without error, we need at least - px(x)log, px(x)
bits (Shannon, 1948; Cover & Thomas, 1991; MacKay,
2003). This quantity is also known as the Shannon en-
tropy H(Px) = Ep, [—log, Px] of X. Next, assume a
dataset sampled i.i.d. from a mixture Px = Zi ™ P)(;),
>, ™ = 1. We could sort the dataset and hope to assign
each datapoint to the cluster component that its neighbors
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Figure 1. Toy example: Imagine we had a dataset of i.i.d random samples from a Gaussian mixture source distribution (left). Its
associated discrete entropy is 3.8 bits per data point, discretized at 2 bit precision. The entropy indicates the optimal rate for symbols
sampled form the mixture. Further imagine we sort all samples of the dataset and we compressed one datapoint. This compressed
datapoint can now inform the source model for the next incoming datapoint to be compressed. For example, we could update the source
model to be only one of the two modes of the mixture (middle or right). This adaptation of the source model allows us to compress at the
component’s source entropy i.e. 4.05 or 2.35 bit per symbol (assuming we did guess the component correctly). Considering, that in our
example one third of samples will stem from the first component and two thirds from the second; this comes out to 2.92 bit per symbol in

total or 0.88 bit in savings.

were assigned to as well. This is the key idea presented
in (Graves et al., 2018), dubbed associative compression.
The gains we expect are H(Px) — >, mH(P)(;)). In Fig-
ure 1, we show rate savings on a concrete example of a
two-component Gaussian mixture model.

Our objective in this study is to explore the application of
associative compression principles to lossy compression of
image datasets. To achieve this, we build upon the exist-
ing body of research on neural image compression, which
extensively utilizes deep variational auto-encoder (VAE)
architectures. Specifically, we extend the work done on
the MSHP architecture, a two-level latent VAE that uses a
hyperprior model to generate the mean and scale parame-
ters of the latent model. Instead of associating neighboring
data points with specific mixture components, we condition
the networks responsible for compressing parameters on
the same data point. In principle, the latter approach gen-
eralizes beyond the former. To train our model, we learn
to compress pairs of neighboring images and compare the
performance of the MSHP architecture against our newly
proposed conditional mean-scale hyperprior (cMSHP) ar-
chitecture. Although we observe consistent improvements
in compressing the second latent variable, the overall en-
hancements are still relatively small. This outcome prompts
us to delve into the possible reasons behind these findings,
which we discuss in the final section of this paper.

2. Background

Lossless compression, as demonstrated in our toy exam-
ple, is not always necessary. In many cases, relaxing the
hardness threshold on image distortion can result in signifi-
cant rate savings. Historically, distortion is measured with
a reference-based distortion metric p(z, Z) such as peak

signal-to-noise ratio (PSNR) or multi-scale structural sim-
ilarity index (MS-SSIM) (Wang et al., 2003; 2004). For a
given distortion metric and a defined tolerance level 7, Shan-
non (1948) established the limits of the optimal compres-
sion rate for lossy compression, known as the rate-distortion
function:

Ropt (1) = inf  I(X;X) 1)
Qxx Elp(X.X)]<7

The infimum is taken over possible distributions XX that

satisfy the condition E[p(X, X)] < 7, ensuring the average
distortion, i.e. mutual information I, remains within the
defined tolerance. It is worth noting that while vector quan-
tization can theoretically achieve the optimal rate (Cover &
Thomas, 1991), it becomes intractable for high-dimensional
data due to the inherent complexity of the associated algo-
rithm.

In practice, lossy compression relies on a non-optimal ap-
proach. A typical framework for lossy compression involves
three functions: an encoder, a decoder, and an entropy bot-
tleneck. The encoder function maps input images to discrete
latent representations Y = f(X), while the decoder func-
tion performs the reverse process X = g(Y). The entropy
bottleneck, often implemented as an entropy coder, per-
forms lossless compression on the latent representations
~(Y"). In this context, the entropy bottleneck plays a crucial
role. Given a model Py, it optimally compresses the data
at a rate equal to cross-entropy R = H(Px Py |x,Py) =
Ep, Py|x [— log, Py]. These three functions together form
what we refer to as a neural compression codec, following
(Yang et al., 2023). Our objective is to adopt a data-driven
approach and parameterize these functions to learn them
from the available data. To facilitate backpropagation for
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training, we relax Equation 1 using Lagrangian multipliers:
L(\0) = H(Px Py x, PY) + X - Ep, [p (X, X)} 2)

where ) is a Lagrange multiplier that relates to 7 in the
rate-distortion trade-off. The Lagrangian relaxation enables
us to optimize the parameters 6 of the neural compression
codec using backpropagation. For instance, Y = f?(X)
and X = ¢°(Y') could be neural networks, and P{. a param-
eterized distribution model of Y, e.g. a discetized Gaussian
N (Y |1, o) where both distribution parameters are learned.

Upon examining Equation 2, we observe similarities to the
field of generative modeling. In generative modeling, it
is well-known that directly modeling a complex distribu-
tion Py can be challenging. To address this, a common
approach is to introduce latent variable models, which al-
leviate the modeling burden. In this context, a joint model
P(Y,Z) = Py 7Pz is considered, where variational in-
ference is often employed to provide an upper bound on
the log-likelihood of such models, leading to improved
overall performance in likelihood modelling. Motivated by
these insights, this principle was adapted to the lossy com-
pression framework by introducing a hyper-latent variable
7 = hG(Y). Therefore, there are two entropy bottlenecks;
the hyper-latent bottleneck and the latent bottleneck. The
rates of the latent variable bottleneck evaluate

Rioint = EPXPg‘XPSIY [—logy Pg — log, P)9/|Z]‘ 3)
It is important to note that this formulation is a loose vari-
ational bound, as it does not account for bits-back (for fur-
ther details, refer to (Ballé et al., 2018)). The inclusion
of latent variable models in the rate calculation improves
compression rates. Additionally, it highlights the possibility
of coding with multiple distributions. In section 5, we will
delve deeper into this concept, expanding on the idea of
using multiple distributions for coding.

3. Related Work

Neural lossy image compression Neural compression
codecs as described in the previous section were developed
and improved by (Ballé et al., 2018; Minnen et al., 2018;
Cheng et al., 2020; He et al., 2022; El-Nouby et al., 2023).
It is important to note that a large number of publications
in lossy neural image compression focuses on optimizing
perceptual metrics as opposed to reference based distortion
metrics. One of the most common approaches in the field is
to optimize weighted sum between the loss of a (conditional)
GAN and a handcrafted metric such as MSE/MS-SSIM
(Mentzer et al., 2020; Agustsson et al., 2019) but multiple
other approaches exist (Tschannen et al., 2018; Ledig et al.,
2017; Mentzer et al., 2020; Ding et al., 2021). Other meth-
ods in the field focus on improving the rate term Eq. 3 via
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Figure 2. Conditional MSHP (cMSHP) model. We condition the
entropy bottlenecks (blue) on previously compressed data x1. Our
alteration involves mixer modules (yellow) that map two variables
to one where all variables have the same alphabet size (W, S) —
T, W,S, T € W. This allows to leave the other components of
the architecture unmodified.

bits-back coding (Theis et al., 2022; Yang & Mandt, 2022).
For a more complete overview of the field see (Yang et al.,
2023).

Dataset compression The fundamental limits on lossless
compression of multisets of size NV were first determined
by (Varshney & Goyal, 2006a). The first implementation of
this rate for small alphabets was presented in (Gripon et al.,
2012; Steinruecken, 2015; Reznik, 2011), a more practical
method for general multisets was presented by (Severo et al.,
2023). As in real world scenarios, we can improve upon the
predicted bound when datasets can be assumed to be non-
ii.d. (Barowsky et al., 2021; Graves et al., 2018) leverage
this insight to compress datasets by adapting the entropy
bottleneck of one instance based on previously compressed
instances.

4. Method

As indicated in the introduction, we will leverage neural
codecs, as presented in the background section, to perform
associative compression (Graves et al., 2018). In this ap-
proach, we pair neighboring images and compress one im-
age conditionally on the other. The pairing is formulated
based on a notion of proximity, defined using a distance
metric in latent space. Instead of independently sampling
x ~ Px, we sample pairs (z1, z2) from the joint distribu-
tion (1, x2) ~ Px, Px,|x,. Consequently, our rate term is
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modified as follows:
5 Rioind(Px1s PY, 1 x, P2, v, )+ )
%EPX1 [Rjoint(PXz\Xl ) Plefz\xl;yl ng\yz;yl,zl)]

Just as in the toy example, we can speculate about the rate
savings by comparing Eq. 3 and 4. If the first term in Eq. 4
outweights the second we will see rate improvements.

4.1. Neural Codec Architecture

To build a conditional neural codec, the MSHP architecture
(Ballé et al., 2018; Minnen et al., 2018) is altered as illus-
trated in Figure 4. The analysis and synthesis transforms
gq and g, respectively and the hyper-analysis and hyper-
synthesis transforms h, and h,, are convolutional neural
networks. In jointly training the cMSHP and MSHP, they
do not share both levels of analysis and synthesis networks
in the hierarchical compression model. Training the condi-
tional model using shared modules g,, g5, hy, and hy was
ablated but showed a slight decrease in performance. This
was interpreted as placing a heavier burden on the rather
shallow mixer modules to model the conditional probabil-
ity and hence was not incorporated in the final architecture
design.

The PMF of the hyper prior P is learned to encode Z with
an entropy bottleneck (blue diamond), whereas the entropy
bottleneck Pf,l ,, for the latents Y is a discrete conditional
Gaussian. Further, we follow the notation presented in the
original work. This differs from our previous presentation in
that we referred to the decoder as ¢g(Y") instead of g5(Y") and
we make quantization explicit (green box) to demonstrate
that a variable is discrete.

We modify the architecture to be conditional by introducing
a mixture module (yellow). This mixture module is a 1x1
convolution that has double the number of input channels as
output channels. In other words, this is a simple construc-
tion to concatenate two variables of the same size along
the channel dimension to obtain one variable of the same
size as the previous two as output. This trick allows us to
avoid modifying the entropy bottlenecks, or the analysis and
synthesis transforms.

5. Experiments

To sample image pairs we first transform the entire
dataset to latent space Y = g¢,(X) and project it onto
one dimension (Tenenbaum et al., 2000). We than sort
the latent representations via the isomap embedding algo-
rithm (Tenenbaum et al., 2000) and store the indices. Note
that sorting by latent space is one of many potential domains
of comparison. We can now sample (z1,72) ~ Px, Px,|x,
by first sampling an arbitrary image and than getting its
neighbor from the pre-computed index list. To compress
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Figure 3. LogRate-Distortion curves for cMSHP (purple). The
overall compression rate (bottom) is not improved significantly,
however, we see consistent gains in the hyper-latent compression
(top left).

x1 we train a regular MSHP and to compress zo we
train a cMSHP. We train and evaluate our model on
blurred Imagenet (Russakovsky et al., 2015). We compute
the rate distortion function for various tradeoffs A =
0.0004, 0.0008, 0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045.
We use a batchsie of 32, the Adam optimizer with learning
rate 3 - 10~4, about 100K gradient updates. While there are
potentially performance gains from training for millions of
steps, the training loss generally plateaus around 100k. We
found this shorter training setup to be sufficient comparison
across the two methods which should also be proportional
to what would be gained from any baseline performance
gains.

We present the results of our methods in Figure 3. The
purple line is the rate computed as in Eq. 4, the orange line
refers to the rate as in Eq. 3. We can observe gains only for
the hyper-latent variable.

6. Discussion

In this work, we have revisited the idea of associative com-
pression using neighboring data instances to achieve better
compression rates. We have integrated the idea in a com-
monly used model for neural image compression codec, the
MSHP. We see only negligable rate improvments mainly
pertaining to the latent Py, z, .

Following, we will discuss the failure of the proposal. In-
tuitively, it should be the case that the best conditioning
information would be obtained from the hyperprior. At the
stage of evaluating the Gaussian conditional, the perfect
conditioning information should hence be met. This could
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imply that the maximum performance gains from condition-
ing on the previous image would solely be to remove the
bits allocated to the hyperprior. Note that the gains we see
in Figure 3 (top left plot) are on the order of 10%, which
aligns with this intuition.

Moreover, there could always be architectural limitations
where the mixer architecture might be too shallow. Per-
haps the entropy bottleneck of the latent should also depend
explicitly on Z; as did the Gaussian Conditional entropy
bottleneck used for the latents Py, |z, .

Besides architecture, the issues could run deeper in the
importance of ordering assumed when using our method.
The sorting algorithm used may be not suitable for our
needs. Specifically, if there is no clear way to assign which
image is x1 and x5, we might model the joint distribution
as Py, |y, Py, or as Py, |y, Py,, implying Py, vy, = Py, Py,.

On the other hand, while it cannot generally be assumed that
there exists two images in a dataset whose contents overlap
to a high degree, we can model the conditional distribution
Px1 x as opposed to the joint Px/x so that samples may
still be interpreted as i.i.d. For two different images, they
may still be similar under the conditional distribution and
hence the differences between two images of the same set
becomes reduced compared to their pure similarity score
under the marginal distribution Px.

In future explorations, we will investigate these issues and
extend the model to also work for chaining long sequences
of images. By doing this we might be able to only train one
model for compression that can be iteratively applied to a
sequence of pre-sorted data. We would need to change train-
ing on subsets of NV neighbors, but still evaluate on the entire
dataset in one chain at once. We leave the idiosyncrasies of
these ideas to future work.
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A. Notation

We denote (2, F,P) as a probability space where () is the sample space, F is the event space, and IP is the probability
function such that X : 2 — X is a random variable (r.v.) defined on the space. Equivalently, Y : 2 — ). We will use
capital letters for random variables, e.g. X and lower case letters for their realizations, e.g. * € X'. Additionally, Px is a
distribution of X and px is the probability mass function of Px. We will denote conditional distributions as Py, which
we think of as a collection of probability measures on X, as for each value y there exists Px|y—,. Expectations will be
denoted as E, . p, [¢(x)], or abbreviated as E [¢(z)].

B. Sequence Ordering

To sort our features in latent space, we simply run an out of box isomap algorithm on the latent space features of the
training set, which were obtained using a pre-trained MSHP model’s hyper analysis network. We then use the learned model
transform function to transform the evaluation set as well to account for the distributional shift between the training and test
sets. During training, we train the cM .S H P model using this re-ordered dataset.

C. Training Procedure

The baseline model was implemented as in the original MSHP paper (Ballé et al., 2018; Minnen et al., 2018) and trained on
the blurred ImageNet dataset (Russakovsky et al., 2015) for 100K steps. The cMSHP model was implemented with the
baseline MSHP modules and additional trainable parameters from separate mixer and hyper prior layers. We had also ablated
training a cMSHP that was always conditioned on zeros to mimic the basic case. We confirmed that we may successfully
recover the baseline MSHP module, which allowed us to experiment solely with the proposed conditional architecture
without needing to pre-train a separate MSHP module that can be used as a warm-start for the coinciding modules in the
cMSHP experiments.

D. Additional Ablations

We experimented with various other ablations on architecture and conditioning schemes. Neither significant improvements
on the rates nor differences between different levels of represnetation in the hierarchy were observed.

Below we report results on PSNR after chained compression of images using the cM S H P model. They were trained either
one chains or 3 or 4 images at a time where the conditioning layer was either a 1x1 convolution or a FiLM layer.

36 1 — 1x1 Conv, 3-Chain
FiLM, 3-Chain

34 { — 1x1 Conv, 4-Chain
—— FiLM, 4-Chain

36 1 — 1x1 Conv, 3-Chain
FiLM, 3-Chain

| — 1x1 conv, 4-chain
—— FiLM, 4-Chain

36 1 — 1x1 Conv, 3-Chain
FiLM, 3-Chain

| — 1x1 conv, 4-chain
—— FiLM, 4-Chain
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Figure 4. Hyperlatent rate. Figure 5. Latent rate. Figure 6. Total rate.



