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ABSTRACT

Critical thinking is essential for rational decision-making and problem-solving.
This skill hinges on the ability to provide precise and reasoned critiques and is
a hallmark of human intelligence. In the era of large language models (LLMs),
this study explores the ability of LLMs to deliver accurate critiques across various
tasks. We are interested in this topic as a capable critic model could not only serve
as a reliable evaluator, but also as a source of supervised signals for model tun-
ing. Particularly, if a model can self-critique, it has the potential for autonomous
self-improvement. To examine this, we introduce a unified evaluation framework
for assessing the critique abilities of LLMs. We develop a benchmark called
CRITICBENCH, which comprises 3K high-quality natural language queries and
corresponding model responses; and annotate the correctness of these responses.
The benchmark cover tasks such as math problem-solving, code completion, and
question answering. We evaluate multiple LLMs on the collected dataset and
our analysis reveals several noteworthy insights: (1) Critique is generally chal-
lenging for most LLMs, and this capability often emerges only when models are
sufficiently large. (2) In particular, self-critique is especially difficult. Even top-
performing LLMs struggle to achieve satisfactory performance. (3) Models tend
to have lower critique accuracy on problems where they are most uncertain. To
this end, we introduce a simple yet effective baseline named self-check, which
leverages self-critique to improve task performance for various models. We hope
this study serves as an initial exploration into understanding the critique abilities
of LLMs, and aims to inform future research, including the development of more
proficient critic models and the application of critiques across diverse tasks.

1 INTRODUCTION

“Self-criticism is an art not many are qualified to practice.” — Joyce Carol Oates

Large language models (LLMs) have demonstrated impressive capacities in a wide range of tasks
(Google et al., 2023; OpenAI, 2023). Consequently, the evaluation of LLMs has shifted focus from
basic sentence coherence to more advanced capabilities, e.g., knowledge acquisition and logical rea-
soning (Hendrycks et al., 2021; BIG-Bench authors, 2023). One capability that is overlooked in
current evaluation frameworks is the ability of critical thinking, which is an important hallmark of
human intelligence that requires logic, reasoning, and knowledge. This ability ensures that LLMs
can provide precise and reasoned critiques towards model responses. A model with robust cri-
tique ability can identify potential misinformation, errors or context misalignment in model outputs,
thereby showing their specific shortcomings that can serve as a feedback for improvement. While
recent studies have used LLMs for various forms of critique across diverse applications (Madaan
et al., 2023; Saunders et al., 2022; Shinn et al., 2023), they primarily focus on advancing the state of
the art for specific tasks instead of providing a comprehensive assessment of critique ability.

To address this gap, we propose a standardized benchmark CRITICBENCH to assess the critique
abilities of LLMs in diverse tasks. We define a model’s critique ability as “the capacity to identify
flaws in model responses to queries”. Figure 1 provides an example of a flaw in the response to a
query, and how it is identified by a critique. The benchmark consists of query-response-judgment
triplets. During evaluation, we always prompt a model to perform a chain-of-thought analysis to
identify flaws and explain the reason; and then provide a final judgment on the response’s correct-
ness. Comparing this judgment to ground-truth labels allows us to explicitly evaluate a model’s
critique accuracy and implicitly assess its analytical process toward an accurate judgment.
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Query: Heather's razors come 4 to a pack and cost $4.00 a pack. They are currently on sale for buy one get one free. She also has a
$2.00 coupon. How much will each individual razor cost, in cents, after the discount if she buys 2 packs of razors?
Response: She bought 2 packs. Each pack has 4 razors, so in total she has 2 * 4 = 8 razors. Each pack costs $4. She has a coupon of
$2. So she paid 2 * $4 - $2 = $6. Each razor costs $6/8 = $0.75. The answer is 75.
Certainty Score: 0.11
Correctness Rate: 0.93

Analysis: The student correctly calculated the total cost of 2 packs of razors with the coupon. However, they didn't consider the fact
that the second pack is free. So, Heather only paid for one pack, not two. Therefore, the cost per razor is $2 / 8 = $0.25. The answer is
incorrect.
Judgment: incorrect.

Figure 1: An example from CRITICBENCH is presented. The query originates from GSM8K (Cobbe
et al., 2021), and the response is generated by PaLM-2-L (Google et al., 2023). A flaw in the
response is highlighted in red. The model shows low confidence in this query, as evidenced by a
certainty score of only 0.11. Below the dashed line, a critique is generated by few-shot prompting
PaLM-2-L. It successfully identifies the flaw in the response and makes an accurate judgment. As the
policy model and critic model are the same, this example also serves as an instance of self-critique.

To construct CRITICBENCH (Section 3), we gather natural language queries from multiple scientific
benchmarks, covering tasks like math problem-solving (Cobbe et al., 2021), code completion (Chen
et al., 2021), and question answering (Lin et al., 2021). We employ PaLM-2 models (Google et al.,
2023) of various sizes to generate responses, which are then annotated for correctness. To ensure
data quality, a complexity-based selection strategy (Fu et al., 2023b) is used to identify high-quality
responses among the candidates. Furthermore, to select queries of suitable difficulty, we introduce
an auxiliary metric that quantifies a model’s certainty regarding a query. Such a metric can help
select queries that poses a moderate level of challenge to models. As a result, we collect 3K high-
quality examples from an initial pool of 780K candidates to form the benchmark mixture. This data
collection method is both scalable and generalizable, requiring no extra human intervention and
suitable for a variety of tasks.

Given CRITICBENCH, we can now analyze the critique abilities of LLMs (Section 4). There are
specific aspects that particularly interest us. First, critique inherently involves logic, reasoning, and
knowledge, making it a complex process even for humans. Therefore, it is not clear how well LLMs
can emulate this capability. It is possible that critique ability is yet another emergent ability, i.e.,
ability not present in smaller-scale models that are present in larger-scale models (Jang, 2023). In-
vestigating how critique ability scales with model size could offer insights into model size selection
and whether fine-tuning is needed for smaller models (Section 4.1). Additionally, self-critique, i.e.,
when a model critiques its own outputs, is a format of critique of particular interest to us, as it is
relevant to a model’s potential for self-improvement (Section 4.2). Finally, we are also interested in
what types of queries pose more challenges for LLMs to critique (Section 4.3).

To investigate these aspects, we evaluate various widely-used LLMs on CRITICBENCH and reveal
several intriguing findings: (1) Critique tasks pose a considerable challenge for LLMs. Only large-
scale models exhibit performance with a notable difference from a random guess baseline, indicating
that the capacity for critique serves as an emergent indicator of a capable LLM. (2) Self-critique,
i.e., a model critiquing its own output, is particularly difficult. Even the strongest LLMs struggle to
achieve satisfactory performance. (3) A challenging query is not only difficult for LLMs to directly
answer correctly, but also poses a challenge in assessing an answer’s correctness to that query.

To this end, we also propose a simple yet effective baseline called self-check (Section 5). The basic
idea is to prompt the model to confirm the accuracy of their generated answers by self-critique before
presenting them. The method consistently enhances the baseline performance (Wang et al., 2023)
on math word problems across multiple models, achieving an average of 9.55% error reduction rate,
which demonstrates the potential utility of critiques from LLMs.

Our contributions are three-fold:

• New Benchmark CRITICBENCH is the first benchmark that comprehensively assesses the cri-
tique abilities of LLMs across diverse tasks and scenarios, which fills a gap in the current LLM
evaluation framework by introducing this important ability.
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• New Findings Our findings on CRITICBENCH underscore the nuances and depth of LLM’s
critique abilities (Section 4). These revelations enhance our understanding of the inherent com-
plexities in LLMs and emphasize the need for advanced training and evaluation techniques.

• New Capacity The proposed self-check method (Section 5) not only advances the performance
on math word problems over the baseline, but also indicates the new capacity of critique ability
with LLMs, which is a fruitful avenue for LLM’s self-improvement strategies.

2 DEFINITION OF CRITIQUE ABILITY

The concept of critique has diverse interpretations and is often applied informally in everyday con-
texts. Recent research employs large language models to offer critiques across multiple applica-
tions (Madaan et al., 2023; Paul et al., 2023; Saunders et al., 2022; Shinn et al., 2023), resulting
in varying formats and requirements for their “critiques”. These studies primarily aim to enhance
performance in specific tasks, neglecting to clarify the meaning of the term critique. In this paper,
we consider the definition of a language model’s critique ability as

the capacity to identify flaws in model responses to queries.

These flaws can differ depending on the task, ranging from incorrect reasoning or calculation in
mathematical problems to syntax errors in code completion.

When a model self-assesses its own outputs, we term this as self-critique, a notion that particu-
larly intrigues us. If models can engage in self-critique and reflection, they can potentially do self-
improvement, requiring minimal human intervention. On the risky side, this autonomy also raises
concerns about reduced human oversight (Bowman et al., 2022). Yet we posit that self-critique
may still remain a challenging capability for large language models, as a flaw-aware model would
logically not produce faulty output in the first place (Saunders et al., 2022).

3 CONSTRUCTION OF CRITICBENCH

As discussed in Section 2, prior research employs large language models to offer critiques, yet
requires particular process and formats to meet their task-specific objectives. Currently, there is no
standard or generalizable way to assess the critique abilities of language models across diverse tasks.
This section proposes CRITICBENCH, a unified, standardized evaluation framework to tackle this
issue. The framework aims to fulfill three criteria:

• Scalability Given the broad range of tasks already established within the community, and the
anticipation of more to emerge, a scalable data collection method is essential. The method should
minimize human annotation efforts and ideally be fully autonomous.

• Generalizability The framework should be task-agnostic, capable of generalizing across vari-
ous tasks and domains.

• Quality We believe quality matters more than quantity. When volume of data is substantial, we
prioritize selecting those that most effectively differentiate between stronger and weaker models.

The following subsections illustrate the detailed construction process. Specifically, Section 3.1
presents the initial data generation on three different tasks, where we get the collection of query-
response-judgment triplets as shown in Figure 1. Section 3.2 then shows how to select data based
on the initial collection to guarantee the quality of responses and queries.

3.1 DATA GENERATION

For the tasks of interest, we begin by employing existing scientific datasets from relevant domains.
These datasets are expected to include queries that large language models, which here we refer to as
generators, aim to respond.

To ensure scalability, it is essential to have an automated approach for assessing the correctness of a
model’s responses. Classification tasks naturally meet this criterion, as model outputs can be auto-
matically compared to ground-truth labels. Similarly, tasks that involve auto-verifiable answers also
comply; for instance, in code completion tasks with unit tests available, the validity of the generated
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code can be confirmed by passing all tests. For free-form generation tasks such as summarization
and translation, assessing the quality of a response remains non-trivial. However, recent advances in
LLM-based automated evaluation for generation tasks mitigate this issue to some extent, enabling
the assessment without human intervention (Liu et al., 2023).

While not exhaustive, these already cover a significant range of tasks and domains. We acknowledge
the limitations in some auto-assessment approaches, especially for generation tasks. Improving the
reliability of these automated evaluation methods, however, is beyond the scope of this paper.

We employ five different sizes of PaLM-2 models (Google et al., 2023) as our generators. These
models are pretrained solely for next-token prediction and do not undergo supervised fine-tuning
or reinforcement learning from human feedback. For coding-related tasks, apart from the standard
PaLM-2 models, we also employ the specialized PaLM-2-S* variant. The latter is obtained through
continual training of PaLM-2-S on a data mixture enriched with code-heavy corpus.

Query Collection We extract queries from three datasets: GSM8K (Cobbe et al., 2021), Hu-
manEval (Chen et al., 2021), and TruthfulQA (Lin et al., 2021), covering the tasks of math-problem
solving, code completion and question answering. For datasets with distinct training and test splits,
we use the test data; for datasets intended only for evaluation, all examples are used. Detailed
considerations and rationale behind the selection of these datasets are provided in Appendix B.

Response Generation We sample k responses for each query, with k = 64 for GSM8K and
TruthfulQA, and k = 100 for HumanEval. In the case of TruthfulQA, we employ its multiple-
choice variation to facilitate autonomous answer annotation. After filtering out invalid outputs such
as empty ones, we collect a total of 780K responses as an initial pool of candidates.

Annotation for Correctness For GSM8K, we assess answer correctness by comparing its numeric
equality to the ground truth, as described by Lewkowycz et al. (2022). For HumanEval, correctness
is determined by the passage of provided unit tests. For TruthfulQA, we utilize its classification
format, judging correctness based on a match with the ground-truth label.

More details on hyper-parameter settings and prompt templates are available in Appendix C.

3.2 DATA SELECTION

Many existing evaluation benchmarks for large language models suffer from insufficient differentia-
bility, i.e., both stronger and weaker models yield similar performance (Fu, 2023). This issue likely
arises from the presence of either overly simple or exceedingly difficult examples in the benchmarks.
Such examples are less valuable for evaluation and can undermine the utility of the benchmarks
when average scores are calculated, leading to indistinguishable outcomes. To address the issue, we
introduce various filtering strategies aimed at selecting high-quality and differentiable examples.

3.2.1 HIGH-QUALITY RESPONSE SELECTION

Initially, we can narrow the example set from 780K to 15K by sampling one correct and one incorrect
response for each query and generator. While random uniform sampling is the the most straightfor-
ward strategy, it risks including examples with obvious errors, which offer little evaluative value. To
mitigate this, for the incorrect responses we focus on sampling convincing wrong-answers (Light-
man et al., 2023) that are more likely to fool the models. In cases suitable for majority voting, we
identify the most frequent incorrect answer for each query, and then sample from responses contain-
ing this answer. For coding tasks where majority voting is not applicable, we sample from responses
that pass the most unit tests, indicating that it is mostly correct but fails in certain corner cases.

To further enhance data quality, we employ the complexity-based sample selection strategy (Fu et al.,
2023b) for tasks that require chain-of-thought reasoning. Specifically, we opt for responses that
involve more reasoning steps, as this is positively correlated with higher accuracy (Fu et al., 2023b).
This approach is beneficial for sampling both types of responses. For correct ones, it minimizes the
likelihood of false positives; for incorrect ones, it yields more convincing responses that pose greater
challenges in flaw detection for weaker models.

Lastly, as many tasks are challenging and may require emergent abilities (Wei et al., 2022a) to per-
form well, smaller models generally underperform and produce lower-quality responses compared
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to larger ones. We include data from these smaller models only for analyzing self-critique abilities;
they are excluded from the final evaluation benchmarks.

3.2.2 CERTAINTY-BASED QUERY SELECTION

Thus far, our focus has been on choosing responses with higher quality and likelihood of accu-
racy. We now shift our focus to the quality of queries. Not all queries are equally valuable: trivial
queries that models easily answer correctly are generally less valuable, whereas queries consistently
answered incorrectly may either be too complex for LLMs or suffer from wrong “golden” labels.

To minimize the presence of such queries in our benchmark, we introduce two metrics to quantify
the levels of certainty when models answer a query: the certainty score and correctness rate. We
will use these metrics to help us select queries of moderate difficulty.

The metrics draw inspiration from the majority voting mechanism in the self-consistency approach
(Wang et al., 2023), which functions by generating multiple candidate outputs for a query, and then
aggregating them using a majority voting procedure to select the most commonly occurring answer.
Observing that different majority votes, even those resulting in the same outcome, can indicate vastly
different levels of certainty. To illustrate, consider a voting situation with 100 candidates where: (i)
all candidates are x; and (ii) 51 candidates are x and 49 are y. Although both situations result in
a majority vote for x, the level of certainty varies significantly: the former situation denotes a high
degree of confidence, whereas the latter reflects a considerable level of uncertainty.

Motivated by the observations above, we propose the following method to measure levels of un-
certainty in language model responses. Suppose we prompt a language model LM : P (a|q) with
a query q and sample a bag of k answers A = {ai}ki=1, where ai ⇠ P (a|q). We denote the most
and the second most frequent answers among these k responses as a(1) and a(2), respectively. Un-
certainty is measured by the frequency ratio of a(2) to a(1), where a larger ratio indicates a higher
level of uncertainty. We term this ratio as uncertainty rate. An uncertainty rate of 1 — where the
two most frequent answers appear with equal frequency — indicates extremely high model uncer-
tainty. Conversely, an uncertainty rate of 0, implying that a(2) = 0, suggests that all responses are
consistent, indicating the model’s strong confidence in its answer.

Formally, we use fA(a) =
P

ai2A 1condition (ai = a) to denote the frequency of an answer a among
a bag of responses A and mode(A) = argmaxa fA(a) to denote the mode, i.e., the most frequently
occurring item , of A. The uncertainty rate over model responses A to the query q is then defined
as URLM(q; k) = fA(mode(A\A(1)))

fA(mode(A)) , where A(1) = {a | a = mode(A), a 2 A} represents the most
frequent responses in A. For the sake of conciseness and readability in our subsequent discussion,
we also define a metric by the negative logarithm of the uncertainty rate to measure model certainty,
represented as CertaintyLM(q; k) = � log (URLM(q; k)), where a larger value indicates a higher
level of certainty. We term it as the certainty score.

In cases where the expected correct answer to a query is available, such as during model evaluation
on a test dataset, the definitions above can be slightly adapted to introduce a new metric called
correctness rate. This metric is defined as the frequency ratio of the correct answer to the most
common wrong answer: CRLM(q; k) = fA(a(e))

fA(mode(Awrong))
, where a(e) denotes the expected answer

and Awrong =
�
a | a 6= a(e), a 2 A

 
denotes the incorrect responses. Using self-consistency, the

model votes a correct answer when the correctness rate exceeds 1, and conversely, it produces an
incorrect answer when the rate falls below 1. In addition, as the rate approaches 1, the model exhibits
increasing levels of uncertainty regarding the answer, no matter if it is correct or not. This metric
naturally reflects the difficulty of a query to the model.

We present a simple case study to intuitively demonstrate the properties of our proposed metrics.
We evaluate PaLM-2-S (Google et al., 2023) on GSM8K (Cobbe et al., 2021) using a 64-path self-
consistency. The relationship between model certainty, correctness rate (CR), and model accuracy
is depicted in Figure 2.

Figure 2a displays the correlation between model certainty and correctness rate (CR). Test examples
with lower CR present greater challenges to models. As evidenced in the figure, lower certainty cor-
relates with more low-CR examples, leading to more incorrect predictions. As certainty increases,
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(a) Relation of certainty to CR. (b) Relation of certainty to accuracy.

Figure 2: Certainty of PaLM-2-S on GSM8K: Relation to correctness rate (CR) and accuracy; based
on the 8-shot chain-of-thought prompt from Wei et al. (2022b) and a 64-path self-consistency.

the instances of low CR diminish, resulting in higher accuracy. Figure 2b illustrates the correlation
between model certainty and accuracy in a more straightforward way. As the certainty level rises,
the proportion of incorrect predictions markedly decreases, signifying increased accuracy.

We now adopt a certainty-based sample selection strategy. We calculate the correctness rate for each
query, selecting those with a CR close to 1. This suggests that models exhibit considerable hesitation
and uncertainty when responding to these queries, indicating a moderate level of difficulty that is
neither excessively simple (CR ! +1) nor overly challenging (CR ! 0). For coding tasks, where
certainty metrics cannot be computed, we use the ratio of correct to incorrect answers as a surrogate
for CR. Moreover, due to the limited size of HumanEval, we only exclude the simpler queries with
a CR > 1, and retain the challenging examples. We will analyze the correlation between critique
ability and model certainty for queries in Section 4.3.

Detailed implementation of each stage in data selection can be found in Appendix D.

Final Data Formulation To this end, we could further narrow the benchmark dataset to 3K high-
quality, differentiable examples, with 1K for each original dataset. The resulting subsets are named
as Critic-GSM8K, Critic-HumanEval, and Critic-TruthfulQA, and their mixture is referred to as
CRITICBENCH. We provide the data statistics and examples in Appendix E. As our data collection
method is scalable and generalizable across tasks, we view the construction of CRITICBENCH as a
continuous effort. This paper serves as an initial step, presenting three representative datasets. We
hope to extend the mixture to cover more tasks and scenarios in future work.

4 PROPERTIES OF CRITIQUE ABILITY

In this section, we conduct our analysis of the critique ability of large language models on CRIT-
ICBENCH. We focus primarily on the following three aspects: (1) how critique ability scales with
model size (Section 4.1); (2) models’ self-critique ability (Section 4.2); and (3) the correlation be-
tween critique ability and models’ certainty in response to a query (Section 4.3).

For each query-response pair in the dataset, we employ few-shot prompting to instruct models to first
conduct a chain-of-thought analysis to identify any flaws in the response and explain the reason; and
subsequently issue a judgment on the response’s correctness. In evaluation, we focus solely on
the accuracy of this final judgment, disregarding the correctness of the intermediate analysis. As
empirical evidence has shown a strong correlation between the accuracy of intermediate chain-of-
thought and the final answer (Wei et al., 2022b; Lewkowycz et al., 2022; Fu et al., 2023a), we can
use the final judgment accuracy as a proxy for the model’s critique analysis capability. Details about
the evaluation settings can be found in Appendix F.

4.1 SCALING LAW

Jang (2023) posits that critique ability may be an emergent ability (Wei et al., 2022a) that only
emerges at certain scales of model size. We emphasize that it is better to seek an answer to this
hypothesis before directing our efforts toward the applications of critiques. For a critic model to
successfully improve the performance of specific tasks, it must possess at least moderate effec-
tiveness. It is possible that the critique ability of smaller models is as futile as a random guess,
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Figure 3: Scaling law of critique ability: Following Google et al. (2023), we use T-shirt size nota-
tions to denote model sizes. All medium-sized or smaller models exhibit poor performance on all
tasks, akin to random guessing. Critic-HumanEval poses a great challenge for all models.

rendering them incapable for downstream applications. A study of the scaling law of critique ability
could provide us insights into the appropriate model size selection and whether fine-tuning should
be considered for smaller models.

We evaluate multiple widely-used LLM families available in various sizes on CRITICBENCH, in-
cluding PaLM-2 (Google et al., 2023), LLaMA (Touvron et al., 2023a), LLaMA-2 (Touvron et al.,
2023b), and ChatGPT (OpenAI, 2023). Figure 3 illustrates the scaling behavior of their critique abil-
ities. The results for ChatGPT are not directly comparable to those of other models because its size
is not disclosed and it undergoes instruction-tuning, whereas the others are all pretrained models.
We include it here solely for reference purpose. On Critic-GSM8K and Critic-TruthfulQA, all mod-
els of medium size or smaller exhibit poor performance, akin to random guessing. Only PaLM-2-L
demonstrates non-trivial better results. On Critic-HumanEval, all models perform poorly; even the
strongest pretrained model, PaLM-2-L, only achieves an accuracy score of merely 54.14%, which
is just marginally better than a random guess. This is somewhat anticipated, as evaluating the cor-
rectness of a code snippet without execution is often challenging even for expert software engineers.
It is likely to gain a notable improvement when augmented by a code interpreter tool. Thus, the
benchmark also serves as an ideal testbed to assess LLMs’ tool-use capability.

The observed scaling law supports the emergent ability hypothesis by Jang (2023). It suggests that
the ability of critique is yet another key indicator of a strong large language model.

4.2 SELF-CRITIQUE ABILITY

Figure 4: The accuracy of differently-sized critic models in critiquing answers produced by
differently-sized policy models. For instance, the top-left cells indicate the accuracy of PaLM-2-L
in critiquing answers from PaLM-2-XXS.

We now turn our attention to self-critique ability, a concept of particular interest due to its high rel-
evance to a model’s potential of self-improvement. Figure 4 demonstrates the critique performance
of various sizes of critic models in evaluating answers produced by different-sized policy models.
The diagonal lines spanning from the lower left to the upper right represent the models’ self-critique
accuracy, and correspond to the curves in Figure 5.
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Figure 5: Self-critique accuracy of PaLM-2 models: On Critic-GSM8K, larger models demonstrate
better self-critique ability. On the other two tasks, all models perform poorly.

The scaling behavior varies across different subsets. It is unsurprising that models of all sizes strug-
gle on Critic-HumanEval due to its challenging nature. On Critic-GSM8K, larger models display
better self-critique ability. On Critic-TruthfulQA, however, models perform similarly to random
guessing regardless of model size. We hypothesize the disparity is due to the underlying reasons of
a model answering incorrectly to queries. For TruthfulQA, the wrong answers largely stem from
false beliefs or misconceptions in models, which would also lead to critique failures. In contrast, for
the math queries in GSM8K, incorrect responses primarily result from reasoning or computational
flaws, which are likely detectable upon a double check through self-critiquing.

Another finding is larger models are generally good at critiquing responses generated by smaller
models. The outcome aligns with the expectation that smaller models are more prone to more
obvious errors, which are easier caught by larger and more capable models.

4.3 CORRELATION TO CERTAINTY

Figure 6: Relation to correctness rate (CR).

Figure 7: Relation to certainty score.

In Section 3.2.2, we introduce the use of certainty metrics to select queries of appropriate difficulty.
While the metrics do reflect the challenge of answering a query, one may argue that it does not
directly translate to the difficulty of critiquing an answer to that query. To address this, we examine
the correlation between critique accuracy and model certainty for a query. We evaluate PaLM-2
models on the benchmarks without applying certainty-based selection. Figures 6 and 7 display
the correlation between critique ability, correctness rate, and certainty score. Note that for Critic-
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HumanEval, we cannot compute the certainty score because it is not applicable to majority voting for
code snippets. Additionally, the correctness rate is calculated differently as detailed in Section 3.2.2.

We observe a clear positive correlation between model certainty and critique accuracy. This suggests
that a challenging query is not only difficult for LLMs to directly answer correctly, but also poses a
challenge in evaluating an answer’s correctness to the query. Consequently, the proposed certainty
metrics serve as valuable criteria for data selection.

5 NEW CAPACITY WITH CRITIQUE: SELF-CONSISTENCY WITH SELF-CHECK

To explore the new capacity with critique ability, we would like to introduce a straightforward yet
effective baseline to demonstrate the potential of leveraging the critique ability to improve model
performance. The idea is intuitive: drawing a parallel to humans participating in a contest — where
they typically check their most uncertain answers before submission to identify and correct mistakes
— we suggest a similar process can be emulated in language models. This can be accomplished by
prompting the models to confirm the accuracy of their generated answers before presenting them.

To achieve this, we introduce a self-check filtering on top of the self-consistency method (Wang et al.,
2023), abbreviated as SC

2. Assume with appropriate prompting, the language model functions as an
answer-critiquing model V (a) 2 {0, 1}, which serves as a binary indicator for the correctness of an
answer a relative to its query q. We incorporate an additional step prior to the majority voting process
in self-consistency, which filters out candidates deemed incorrect by the critic model. Specifically,
for a set of k generated candidate answers A to a given query, the critic model selects those identified
as correct, denoted by Asc = {a | V (a) = 1, a 2 A}. Subsequently, the standard majority vote
procedure is applied to the filtered candidates to derive the final answer asc2 = mode(Asc). Recall
that the model is most prone to errors when uncertain about a question, as shown in Figure 2. We
can reduce inference cost by only applying the self-check filtering selectively to questions of which
the certainty score Certainty(q; k) falls below a predefined threshold C.

Table 1: Evaluation results on GSM8K using the chain-of-thought prompt from Wei et al. (2022b).
The self-consistency with self-check filtering technique outperforms the standard one across all
models. aTaken from Google et al. (2023).

Model CoT CoT+SC@64 CoT+SC2@64

ChatGPT 76.3 83.5 84.0 (+0.5)
PaLM-2 80.7a 91.3 92.7 (+1.4)
GPT-4 91.3 95.8 96.2 (+0.4)

We assess the performance of PaLM-2, ChatGPT and GPT-4 on the GSM8K dataset using the self-
consistency with self-check method, as presented in Table 1. We use a certainty threshold of C = 2
for GPT-4 and C = 1 for both PaLM-2 and ChatGPT. Compared to self-consistency baselines,
the additional self-check procedure achieves 3.03%, 16.09%, and 9.52% error reduction rate for
ChatGPT, PalM-2 and GPT-4 respectively, highlighting the value of critique ability.

It is noted that our primary objective of this paper is to explore the concept and attributes of critique
ability, rather than advancing the state of the art. Thus, we opt to stick with the prompting-based
critic model for the sake of simplicity. While fine-tuning the critic model or using critiques to
supervise the policy model could potentially push the scores higher, such enhancements are not the
focus of this study. We believe future work in this direction can further improve the performance.

6 CONCLUSION

In this work, we conduct a study exploring critique abilities of LLMs across various tasks. Evalua-
tion results of multiple widely-used LLMs on the proposed CRITICBENCH reveal that: most LLMs
find critique challenging, especially self-critique. We introduce the self-check method as an effective
baseline to improve model performance through self-critique. Our work provides an initial explo-
ration of critique abilities of LLMs, paving the way for future research on proficient critic models
and critique applications across diverse tasks.
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