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ABSTRACT

Multi-modal large language models (MLLMs) have made significant strides in
various visual understanding tasks. However, the majority of these models are
constrained to process low-resolution images, which limits their effectiveness in
perception tasks that necessitate detailed visual information. In our study, we
present MG-LLaVA, an innovative MLLM that enhances the model’s visual pro-
cessing capabilities by incorporating a multi-granularity vision flow, which includes
low-resolution, high-resolution, and object-centric features. We propose the in-
tegration of an additional high-resolution visual encoder to capture fine-grained
details, which are then fused with base visual features through a Conv-Gate fusion
network. To further refine the model’s object recognition abilities, we incorporate
object-level features derived from bounding boxes identified by offline detectors.
Being trained solely on publicly available multimodal data through instruction
tuning, MG-LLaVA demonstrates exceptional perception skills. We instantiate
MG-LLaVA with a wide variety of language encoders, ranging from 3.8B to 34B,
to evaluate the model’s performance comprehensively. Extensive evaluations across
multiple benchmarks demonstrate that MG-LLaVA outperforms existing MLLMs
of comparable parameter sizes, showcasing its remarkable efficacy.

1 INTRODUCTION

Recent works on Multimodal Large Language Models (MLLMs) (Zhu et al., 2023; Ye et al., 2023; Liu
et al., 2024b; Zhang et al., 2023b; Wei et al., 2023; Xu et al., 2023) have achieved rapid development
in vision language understanding, visual reasoning, visual interaction, and localization. Most MLLMs
adopt pre-trained Large Language Models (LLMs) as the base architecture to process concatenated
visual and language embeddings. As one representative work, LLaVA (Liu et al., 2024b) adopts
low-resolution (2242, 3362, etc.) images as inputs and aligns visual embeddings with the text modality
via an MLP projector and then performs instruction tuning. The architecture of LLaVA has been
widely adopted by subsequent works (Xu et al., 2024; Li et al., 2024c; Maaz et al., 2023; Lin et al.,
2023a), and has been applied to various vision tasks, including detection, segmentation, and video
understanding.

Real-world images exhibit a wide range of resolutions, scales, and aspect ratios, posing significant
challenges for MLLMs with low-resolution inputs in robustly processing them. To tackle this problem,
recent works (Liu et al., 2024a; Lin et al., 2023b; Li et al., 2024c; Zong et al., 2024; Luo et al., 2024;
Xu et al., 2024; Dong et al., 2024) have proposed various strategies to augment the capabilities of
visual encoders in MLLMs, including training on diverse datasets, utilizing high-resolution image
inputs, and employing dynamic aspect ratios. Most of these approaches involve the integration of
additional visual tokens through various techniques. Despite these advancements, two critical issues
persist: (1) Although object-level features are crucial in nearly all visual understanding tasks, they
are currently absent in existing vision encoders; (2) None of the existing MLLMs have integrated
multi-granularity features, a classic concept in computer vision, into their frameworks. However,
as a human vision system, multi-granularity inputs are common in various cases since even on the
same object, the scale variance problems pose challenges (Ren et al., 2015; Ghiasi et al., 2019) in the
current perception system.

Motivated by the aforementioned analysis, we introduce MG-LLaVA, a novel MLLM designed
to effectively process multi-granularity visual inputs, including object-level, origin images, and
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Figure 1: MG-LLaVA demonstrates notable performance across various vision-language tasks,
particularly on tasks involving object recognition.

high-resolution inputs. Our framework builds upon LLaVA (Liu et al., 2024b) and is specifically
tailored to incorporate and manage multi-granularity inputs. For object-level inputs, we employ a
pre-trained open-vocabulary detector to identify object bounding boxes and execute region features
to acquire region visual tokens. In particular, we explore two methods for object feature integration:
explicit integration via box feature fusion and implicit integration via object proposal feature. We find
that the former works well and it can even scale up with more data. In contrast to close-set detectors,
open-vocabulary detectors offer enhanced generalizability and robustness across diverse scenes. To
handle fine-grained visual inputs, we utilize a convolution-based backbone Schuhmann et al. (2022) to
extract richer visual features. Subsequently, we propose a straightforward yet effective fusion strategy
to integrate these inputs into the original visual tokens in LLaVA. Specifically, we initially merge
the fine-grained visual tokens with the original visual tokens using a simple Conv-Gate convolution.
Then, we append the object-level tokens to the fused tokens. Fig. 2 illustrate the difference between
MG-LLaVA and existing MLLMs. Experimental results quantitatively validate the efficacy of the
design of MG-LLaVA.

We perform extensive experiments with MG-LLaVA integrated with various language encoders,
ranging from 3.8B to 34B, to substantiate the effectiveness of MG-LLaVA. Our evaluation encom-
passes 13 popular multimodal benchmarks for both image and video. Additionally, we present
a comprehensive set of ablation studies that illustrate the impact of different components in MG-
LLaVA. Benefiting from multi-granularity visual features, MG-LLaVA demonstrates a significantly
enhanced capability in perception and visual comprehension, outperforming established counterparts
and notably surpassing GPT-4V (OpenAI, 2023) and GeminiPro-V (Team et al., 2023) on various
multimodal benchmarks, including MMBench (Liu et al., 2023c) and SEEDBench (Li et al., 2023a).

The contribution of this work can be summarized as follows:

• We introduce MG-LLaVA, an advanced multi-modal model adept at processing visual inputs of
multiple granularities, including object-level features, original-resolution images, and high-resolution
data. This advancement significantly enhances the capabilities of MLLMs in visual perception and
understanding.
• We propose the Multi-Granularity Vision Flow, a straightforward yet effective module designed to
integrate features across various granularities, thereby significantly improving the performance of our
model. The effectiveness of our approach is substantiated through empirical experiments.
• By employing a range of language models scaling from 3.8B to 34B, our model exhibits clear
scalability and a marked proficiency in visual comprehension, outperforming established counterparts
and notably surpassing GPT-4V and GeminiPro-V on MMBench and SEEDBench.

2 RELATED WORK

Large Language Models. In recent years, private large language models (LLMs) like GPT-4 (Ope-
nAI, 2023) and Llama (Touvron et al., 2023) have gained remarkable performance. Concurrently,
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Figure 2: Comparing Different MLLM Paradigms. MG-LLaVA effectively perceives multi-
granularity visual inputs that include object-level, low, and high-resolution inputs, thereby achieving
advanced multi-modal understanding.

a multitude of open-source research (Chiang et al., 2023; Yang et al., 2023; Bai et al., 2023; Team,
2023) has embarked on the exploration of LLMs. LLM shows strong performance in various NLP
tasks. However, pure LLMs cannot handle image and video inputs. Our work focuses on designing
new multimodal large language models, which jointly take visual and language tokens as inputs. In
this work, we engaged a range of LLMs (Chiang et al., 2023; Abdin et al., 2024; AI@Meta, 2024;
Young et al., 2024) scaling from 3.8B to 34B. The observed performance across these models has
proved the effectiveness of our design.

Multimodal Large Language Models. Multi-modal Large Language Models (MLLMs) (Zhu
et al., 2023; Ye et al., 2023; Chen et al., 2023c; Dai et al., 2024; Bai et al., 2023; Liu et al., 2023a;
Li et al., 2023c; Lin et al., 2023a; Zhang et al., 2024; Huang et al., 2024; Wu et al., 2024) have
recently showcased the potential to endow LLMs with visual conversational abilities. Among these
models, LLaVA (Liu et al., 2023a) typically built a simple architecture that utilizes a vision-language
cross-modal adapter to bridge the gap between vision and language tokens. Some research (Li
et al., 2023d; Zhang et al., 2023c; Liu et al., 2024a) tried to increase performance by utilizing
high-resolution inputs. LLaVA-UHD (Xu et al., 2024) cost-effectively increased input resolution by
dividing high-resolution images into smaller slices. Subsequently, LLaVA-HR (Luo et al., 2024) and
Mini-Gemini (Li et al., 2024c), endeavor to incorporate an additional visual encoder to enhance high-
resolution details without increasing the count of visual tokens. However, these works consistently
overlook the impact of fine-grained object-level features, which compromises their potential for
enhanced perception. In comparison, MG-LLaVA explores the potential of multi-granularity input by
simultaneously leveraging high-resolution inputs, low-resolution inputs, and object-level inputs. By
flexibly integrating visual tokens of multiple granularity, MG-LLaVA achieves superior performance
on several benchmarks with a marginal increase in cost.

Multi-Granularity Modeling in Vision. Inputs of multiple granularity have been incorporated into
various downstream vision tasks. In object detection and segmentation, the efficacy of multi-level
features has been well-established in detecting objects of different scales (Zhao et al., 2019a; Qian
et al., 2021; Liu et al., 2023b; Wan et al., 2019; Li et al., 2024b; Yuan et al., 2024; Zhou et al., 2023).
For panoptic segmentation, some methods (de Geus et al., 2019; Kirillov et al., 2019; Li et al., 2019;
Xu et al., 2022; Ramanathan et al., 2023; Qi et al., 2024) applied a multi-granularity network to
train instance, semantic, and part segmentation in parallel, and some studies (Michieli et al., 2020;
Zhao et al., 2019b; de Geus et al., 2021; Li et al., 2022; 2024a) have indicated that training on
various levels of abstraction can improve the performance of the segmentation network. For example,
SAM (Kirillov et al., 2023) presents a multi-granularity mask prediction method for handling various
level masks, such as things, background stuff, and parts. Motivated by the above works, we aim to
capture input from various levels of perception into MLLM. In particular, we construct our model
by developing multiple visual branches for different granularity, thereby augmenting its perceptual
capabilities.

3 METHOD

In this work, we propose MG-LLaVA, effectively harnesses both the high-resolution and object-level
features for improving MLLMs. The architecture of MG-LLaVA is illustrated in Fig. 3a. The model
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Figure 3: The illustration of MG-LLaVA. Top left: The overall framework of MG-LLaVA, which in-
cludes the Multi-Granularity Vision Flow module and a LLM. Right: Illustration of Multi-Granularity
Vision Flow, which aims to extract multiple visual features and integrate disparate features to ensure
seamless interaction. Botttom left: Structure of Conv-Gate Fusion module.

comprises two key components: (1) Multi-Granularity Vision Flow framework for extracting visual
features with different resolutions and granularities while effectively integrating disparate features
to ensure seamless interaction. (2) A large language model dedicated to generating coherent and
contextually relevant responses.

3.1 PRELIMINARY

As one of the most extensively adopted multi-modal LLM architectures, LLaVA consists of a vision
encoder fV, an MLP projector fp, and a language model fL. Given a visual input V and a textual
input T , LLaVA computes the vision and language embeddings as per Eq. (1), where fT represents
the input embedding layer of fL. The resulting embeddings, ET and EV, are then concatenated into
a single token sequence, serving as the input to the LLM. LLaVA utilizes Eq. (2) to calculate the
probability of the target answer XA, where θ represents the trainable parameters and L is the length
of XA. The model is trained on visual instruction tuning data to maximize p (XA | V, T ).

ET = fT (T ) ,EV = fp (fV (V )) (1)

p (XA | V, T ) =
L∏

i=1

pθ

(
X

[i]
A | Concat(EV,E

[1:i−1]
T ),X

[i−1]
A

)
(2)

Despite the promising results, LLaVA still restrains itself in processing images at a low resolution
(2242, 3362, etc.), This significantly hinders the model’s ability, particularly in recognizing small
objects. Scaling to high resolution without adapting the vision encoder directly would dramatically
increase the number of visual tokens, rendering the approach ineffective. Furthermore, the visual input
can also be complex and contain numerous objects within an image or video, which poses challenges
for MLLMs in identifying some critical objects. Empirically, incorporating object-level features
can significantly enhance the model’s perceptual abilities. Therefore, we introduce MG-LLaVA,
which effectively harnesses both the high-resolution and object-level features for the improvement of
MLLMs.
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Figure 4: Comparison of explicit and implicit integration of object-level features.

3.2 MULTI-GRANULARITY VISION FLOW

Hybrid Vision Encoders As depicted in Fig. 3b, MG-LLaVA initially processes images at two
different resolutions: low-resolution VL and high-resolution VH . In the low-resolution branch, we
follow the LLaVA-1.5 (Liu et al., 2023a) to utilize a CLIP-pretrained ViT (Radford et al., 2021)
denoted as fL

V to derive low-resolution features EL ∈ RN×C . The ViT feature EL benefits from
an expanded receptive field, capturing a more comprehensive view of global information. In the
high-resolution branch, we employ a CLIP-pretrained ConvNeXt (Schuhmann et al., 2022) denoted
by fH

V to obtain high-resolution features EH ∈ Rh×w×C . fH
V effectively extracts detailed features

from high-resolution images, offering detailed local insights. fL
V and fH

V downsample the input
resolution with strides of 14 and 32, respectively. We therefore adjust VL and VH to ensure that the
number of tokens in EL and EH remains the same (N = h× w).

Conv-Gate Fusion Combining both low and high-resolution features as inputs results in a doubling
of the visual tokens to be processed, which is computationally ineffective. Moreover, the distinct
architectures of ViT and ConvNeXt lead to a discrepancy between EL and EH, requiring a careful
fusion process. Inspired from (Luo et al., 2024), we implement a lightweight Conv-Gate fusion
network that facilitates feature aggregation while maintaining a single resolution’s token count, as
shown in Fig. 3c. We first employ 1D convolutions to align the channel widths of heterogeneous
features and subsequently use a gating layer to modulate the semantic information across low and
high resolutions, as described in Eq. (3). The fusion module is applied to the output of both vision
encoders, resulting in only a marginal increase in computational cost.

EF = EL +G(Conv(EL), Conv(EH))×EH (3)

Integration of Object-level Features We investigate the integration of object-level features through
both explicit and implicit methodologies.

(1) Explicit integration. We first employ an offline detector to delineate the bounding boxes of
objects within the image. Given the set of k object bounding boxes derived from the image, denoted
as B = {b1, b2, · · · , bk}, we employ the Region of Interest (RoI) Align to extract object-level
features from the vision features of the high-resolution encoder fH

V . Specifically, we upsample and
concatenate features from different convolutional stages to a scale of 1/4 the input size, resulting in a
multi-scale feature representation fH′

V , which provides a fine-grained perspective. The object-level
features are then aligned from fH′

V . To maintain computational efficiency, we apply average pooling
to each object feature and subsequently concatenate them into a sequence EEx

B ∈ Rk×C , as detailed
in Eq. (4). The progress is illustrated in Fig. 4a.

EEx
B = Concat(Avg(RoIAlign(fH′

V , B))) (4)

(2) Implicit integration. We propose the implicit integration of object-level features by incorporating
proposal information. Owl-ViT-v2 (Minderer et al., 2024) is a robust detector that utilizes its visual
encoder to generate proposals of the objects within the input image. Given an image I , the output of
Owl-encoder fO is represented as PO ∈ RL×D, where L denotes the number of proposals and D
denotes the dimension of the output. Each proposal can be interpreted as a potential object within the
image, encompassing information regarding its position and category. Given the substantial number
of proposals(in the thousands), we utilize a resampler module (Alayrac et al., 2022), denoted as S,
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to extract the information from the output proposals, represented as EIm
B ∈ RL

′
×D. The number

of output queries L
′

generated by the resampler is significantly fewer than the output proposals L
produced by the Owl-encoder. The entire progress is depicted in Fig. 4b, as described in Eq. (5).

EIm
B = S(fO(I)) (5)

In our experiments, we found that the performance of explicit integration significantly surpasses that
of the implicit method. Consequently, we have selected explicit integration as our final approach.
Detailed comparison results are presented in Sec. 4.3.

After the aggregation and extraction of object-level features, EF and E∗
B are processed individually

by two separate projectors (pF and pB) to align with the text embeddings ET. The aligned features
are then concatenated as input for LLM. We try multiple strategies to merge object-level features
into visual embeddings and find the concatenation operation yields the most beneficial results. The
experiments are discussed in Sec. 4.3. During training, we optimize Eq. (6) on the visual instruction
tuning data to enhance the multi-modal comprehension capabilities of MG-LLaVA. We execute the
aforementioned operations for video training to each frame and then concatenate the results into an
extended sequence.

p (XA | VL, VH , B, T ) =

L∏
i=1

pθ

(
X

[i]
A | Concat(pF (EF), pB(E

∗
B),E

[1:i−1]
T ),X

[i−1]
A

)
(6)

3.3 MODEL TRAINING AND INFERENCE

Recently, a variety of powerful tagging models and open-vocabulary detectors have emerged, demon-
strating remarkable efficacy. By using one specific tagging model to output labels, which are then
used by the detector to generate bounding boxes, we can effectively avoid the generation of numerous
irrelevant boxes, contrasting with the direct use of class-agnostic detectors. The details of the infer-
ence pipeline are illustrated in Appx. D. For the acquisition of object bounding boxes, we employ the
well-pretrained RAM (Zhang et al., 2023e) as the tagging model and OWL-ViT v2 (Minderer et al.,
2024) as the detector. The generated bounding boxes are filtered by NMS and then fed to models
for training and inference. It is important to note that while the RAM model aids in generating tags,
these tags serve solely as inputs for the open-vocabulary detector to determine the bounding boxes
and are not integrated into the training phase. For video inference, we detect bounding boxes for each
frame and concatenate the object queries with the corresponding frame’s visual sequence.

Following LLaVA-1.5 (Liu et al., 2023a), we conduct a two-stage training process. During the
pretraining stage, we freeze all visual encoders and the LLM and only train the fusion module,
visual projector, and box projector. This aims to refine the fusion module’s capability to aggregate
features of low and high resolutions and to enhance the projector’s alignment of visual features
with the text embeddings. During instruction tuning, we freeze the visual encoders to maintain the
integrity of high-quality image feature extraction and fine-tune the remaining components to enhance
multi-modality comprehension.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

DetailedModel Settings. In this work, all experiments are conducted based on Xtuner (Contributors,
2023). Specially, we choose CLIP pre-trained ViT-Large-14-336 (Radford et al., 2021) as a low-
resolution visual encoder and the LAION pre-trained ConvNext-Large-320 (Schuhmann et al., 2022)
for high-resolution vision encoder. For the generation of bounding boxes, we have selected RAM-
Plus (Zhang et al., 2023e) as the tagging model and OWL-ViTv2-large-patch14-ensemble (Minderer
et al., 2024) as the open-vocabulary detector.

Datasets. During the image-based training stage, our dataset comprises 558K image-caption pairs
from LAION-CCSBU (Sharma et al., 2018) and 708k image-caption pairs from ALLaVA-4V-Caption

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison with leading methods on several popular visual benchmarks that concentrate on
perception. Params. denotes the total number of parameters within the model. Res. refers to the
resolution of the input image, which is assumed to be square by default unless otherwise indicated.
The notation ‘()’ signifies the presence of both low-resolution and high-resolution inputs, with the
number inside the parentheses specifying the higher resolution.

Method LLM Param. Data Res. MMBD MMBT SEEDI MMStar
Private Models

GPT-4V (OpenAI, 2023) - - - - 75.1 77.0 72.3 49.7
GeminiProVision (Team et al., 2023) - - - - 75.2 73.6 70.7 38.6
Qwen-VL-Plus (Bai et al., 2023) - - - - 66.2 67.0 65.7 39.7

Open-source Models

BLIP-2 (Li et al., 2023b) Vicuna-13B 14.2B 129M 224 - - 46.4 -
InstructBLIP (Dai et al., 2024) Vicuna-7B 8.2B 130M 224 - 36 53.4 -
Shikra (Chen et al., 2023a) Vicuna-13B 7.3B 6M 224 58.8 60.2 - -
IDEFICS-80B (Laurençon et al., 2024) LLaMA-65B - - 224 - 54.6 - -
Qwen-VL (Bai et al., 2023) Qwen-7B 9.6B 1.4B 448 38.2 32.2 56.3 -
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 9.6B - 448 60.6 61.8 58.2 37.5
LLaVA-1.5 (Liu et al., 2023a) Vicuna-7B 7.2B 1.2M 336 65.2 66.5 66.1 30.3
LLaVA-1.5 (Liu et al., 2023a) Vicuna-13B 13.4B 1.2M 336 69.2 69.2 68.2 32.8
LLaVA-HR (Luo et al., 2024) Vicuna-7B 7.4B 1.2M 448 (1024) - - 64.5 -
SPHINX (Lin et al., 2023b) Vicuna-7B 10B 1.0B 224 66.9 - 69.1 -
SPHINX-1k (Lin et al., 2023b) Vicuna-7B 10B 1.0B 448 67.1 - 71.6 -
MiniCPM-V2 (Hu et al., 2024) MiniCPM-2.4B 2.8B - 448 69.6 69.1 67.1 39.1
MOVA (Zong et al., 2024) Vicuna-7B 10B 16.6M 576 70.4 - - -
LLaVA-UHD Xu et al. (2024) Vicuna-13B 13.4B 1.2M 672×1008 68.0 - - -
LLaVA-HR (Luo et al., 2024) Vicuna-7B 7.4B 1.2M 1024 - - 64.2 -
Mini-Gemini (Li et al., 2024c) Vicuna-7B 7.4B 2.7M 336 (768) 69.3 68.2 68.9 37.6

Our Models

MG-LLaVA Phi3-3.8B 4.2B 2.5M 336 (768) 74.2 74.4 70.3 41.3
MG-LLaVA Vicuna-7B 7.4B 2.5M 336 (768) 72.1 71.9 69.4 35.1
MG-LLaVA LLaMA3-8B 8.4B 2.5M 336 (768) 76.5 76.6 71.5 36.9
MG-LLaVA Vicuna-13B 13.6B 2.5M 336 (768) 72.2 73.5 70.8 34.1
MG-LLaVA Yi1.5-34B 34.4B 2.5M 336 (768) 80.1 79.1 73.7 47.9

dataset (Chen et al., 2024a), culminating in a total of 1.2M image-caption pairs for pretraining. The
datasets employed for instruction-tuning encompass 665K mixture dataset from LLaVA-Instruct (Liu
et al., 2023a), 692k instructions from ALLaVA-4V-Instruction dataset (Chen et al., 2024a), and
an additional 25k instructions derived from a combination of ShareGPT4V (Chen et al., 2023b),
DocVQA (Tito et al., 2021), DVQA (Kafle et al., 2018) and AI2D (Kembhavi et al., 2016), with
a total number of more than 1.3M image-text conversations. The superior quality of this dataset
contributes to a swift enhancement in performance. For video training, following Video-LLaVA (Lin
et al., 2023a), we combine 558K image-text pairs and 703k video-text pairs for video pertaining.
For instruction-finetuning, we utilize a 665k image-text instruction dataset from LLaVA and a 100k
video-text instruction dataset from Video-ChatGPT (Maaz et al., 2023).

Training Details. We fix all seeds across the training procedures for fairness, where we adopt the
XTuner codebase (Contributors, 2023). We established the low-resolution parameter at 336 and the
high-resolution parameter at 768. For video training, we uniformly extract 8 frames from each video.
During the pretraining stage, we employ a batch size of 32 per device and an aggregate batch size
of 256. In the instruction-tuning phase, we reduce the batch size to 16 per device and an overall
batch size of 128. The initial learning rate is set to 1e-3 for the pretraining stage and 2e-5 for the
instruction-tuning stage. The number of bounding boxes per image is limited to 100 during training.
The entire training process takes approximately 23 hours when using the Vicuna7B (Chiang et al.,
2023) model using 8×A100 GPUs. For our most extensive model, the Yi1.5-34B (Young et al., 2024),
we utilize 32×A100 GPUs and finalize the optimization process in roughly three days by employing
the DeepSpeed Zero3 strategy.

4.2 MAIN RESULTS

Perception Benchmarks. In Tab. 1, we compare our MG-LLaVA with previous leading approaches
across several settings on Multi-Modal benchmarks, which mainly concentrate on perception capabil-
ity, including MMBench-Dev and MMBench-Test (Liu et al., 2023c), SEEDBench-Image (Li et al.,
2023a), and MMStar (Chen et al., 2024b). MMBench is dedicated to advancing the understanding
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Table 2: Comparison with leading methods on popular VQA visual benchmarks.

Method LLM Param. Res. VQAT DocVQA SQAI AI2D VQAv2 MMVet LLaVA-w MMVP
Private Models

GPT-4V - - - 78.0 42.3 82.1 - - 67.7 - 38.7
GeminiProVision - - - 74.6 - 81.4 - - 64.3 - 40.7
Qwen-VL-Plus - - - 78.9 82.2 73.4 - - 61.1 - -

Open-source Models

BLIP-2 Vicuna-13B 14.2B 224 42.5 - 61.0 - 41.0 22.4 38.1 -
InstructBLIP Vicuna-7B 8.2B 224 50.1 10.9 60.5 40.6 - 26.2 60.9 -
Shikra Vicuna-13B 7.3B 224 - - - - - - - -
IDEFICS-80B LLaMA-65B - 224 30.9 - - 54.8 60 - - -
Qwen-VL Qwen-7B 9.6B 448 63.8 62.1 67.1 57.7 78.8 - - -
Qwen-VL-Chat Qwen-7B 9.6B 448 61.5 57.1 68.2 63 78.2 - - -
LLaVA-1.5 Vicuna-7B 7.2B 336 58.2 21.5 66.8 55.5 78.5 31.1 65.4 27.4
LLaVA-1.5 Vicuna-13B 13.4B 336 61.3 24.1 71.6 61.1 80.0 36.1 72.5 -
SPHINX Vicuna-7B 10B 224 51.6 - 69.3 - 78.1 36.0 73.5 -
SPHINX-1k Vicuna-7B 10B 448 58.8 - 69.1 - 80.2 36.6 74.3 -
LLaVA-UHD Vicuna-13B 13.4B 672×1008 67.7 - 72.0 - 81.7 - - -
LLaVA-HR Vicuna-7B 7.4B 1024 67.1 - 65.1 - 81.9 31.2 - -
Mini-Gemini Vicuna-7B 7.4B 336(768) 65.2 - - - - 40.8 - 35.3

Our Models

MG-LLaVA Phi3-3.8B 4.2B 336(768) 66.4 49.1 74.5 74 80.1 47.3 75.4 50.0
MG-LLaVA Vicuna-7B 7.4B 336(768) 67.3 47.9 70.8 69.3 80.2 41.0 75.5 47.3
MG-LLaVA LLaMA3-8B 8.2B 336(768) 68.1 49.0 76.3 75.6 80.7 46.9 75.5 37.3
MG-LLaVA Vicuna-13B 13.6B 336(768) 69.6 52.1 74.7 73.4 81.2 46.7 82.0 40.7
MG-LLaVA Yi1.5-34B 34.4B 336(768) 70.0 56.1 77.0 81.1 82.0 48.4 80.5 50.0

of multi-modal perception and cognition, and SEEDBench provides a comprehensive and objective
evaluation of MLLM. MMStar further ensures each selected sample exhibits visual dependency. MG-
LLaVA exhibits a significantly enhanced perceptual capability compared to a wide range of MLLMs.
Our MG-LLaVA equipped with phi3-3.8B (Abdin et al., 2024) show superior performance than
MiniCPM V2 (Hu et al., 2024) of +4.6%/5.3% on MMBench Dev/Test, and +3.2% on SEEDBench.
Utilizing Vicuna-7B (Chiang et al., 2023), MG-LLaVA outperforms all models with vicuna-7B
and even 13B on MMBench and SEEDBench, surpassing LLaVA-1.5-7B by an average of 5.1%
across four benchmarks. Moreover, with Yi1.5-34B (Young et al., 2024), MG-LLaVA consistently
outperforms GPT-4V on MMBench and SEEDBench. Concurrently, it maintains equivalent efficacy
to GPT-4V on MMStar. Incorporating multi-granularity visual inputs, MG-LLaVA develops its
capability of capturing details within the image. More cases are exhibited in Appx. B.

Visual Question Answering Benchmarks. In this section, we analyze MLLM’s capability of visual
conversation. The benchmarks can be divided into two groups: (1)Benchmarks require understanding
the text within images to provide answers, including TextVQA(VQAT ) (Singh et al., 2019) and
DocVQA (Mathew et al., 2021). We report the accuracy of both validation sets. (2)General visual
question answering benchmarks such as VQA-V2 (Antol et al., 2015), ScienceQA-Image(SQAI ) (Lu
et al., 2022), AI2D (Kembhavi et al., 2016), MMVet (Yu et al., 2023), LLaVA-W (Liu et al., 2023a),
and MMVP(Tong et al., 2024). The evaluation results on VQA benchmarks are shown in Tab. 2.
MG-LLaVA also demonstrates considerable proficiency on VQA benchmarks. When equipped with
Vicuna-7B and 7.4B parameters, MG-LLaVA surpasses both SPHINX-1k (Lin et al., 2023b), which
has 10B parameters, and Mini-Gemini with 7.4B parameters on these benchmarks, despite utilizing
even less data. Operating under identical parameter conditions, MG-LLaVA-Vicuna13B, with low-
resolution input of 336 and high-resolution of 768, outperforms LLaVA-UHD (Xu et al., 2024), which
incorporates an input resolution of 672×1008 on VQAT , SQAI , and AI2D. Additionally, MG-LLaVA
demonstrates significant improvement on the MMVP benchmark, which is particularly challenging
for MLLMs. MG-LLaVA-Vicuna-7B achieves an accuracy of 47.3, surpassing Mini-Gemini’s score
of +12% and even exceeding that of GPT-4V. MG-LLaVA exhibits its potential for expansion when
integrated with larger LLM. With Yi1.5-34B (Young et al., 2024), MG-LLaVA surpasses the majority
of established baselines across a wide array of VQA benchmarks.

Video Question Answering Benchmarks. To demonstrate the effectiveness of our approach, we
have expanded our model to encompass video comprehension. We evaluate our models on MSVD and
MSRVTT, and results are shown in Tab. 3. MG-LLaVA outperforms Video-LLaVA (Lin et al., 2023a)
on both benchmarks, which further proves the efficiency of MG-LLaVA. In video understanding,
MG-LLaVA demonstrates proficiency in identifying the critical object in the video. More illustrative
instances are depicted in Appx. B.
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Table 3: Comparison with other methods on Video-QA benchmarks.

Method LLM MSVD-QA MSRVTT-QA

FrozenBiLM (Yang et al., 2022) - 32.2 16.8
VideoChat (Li et al., 2023c) Vicuna-7B 56.3 45.0
LLaMA-Adapter (Zhang et al., 2023d) - 54.9 43.8
Video-LLaMA (Zhang et al., 2023a) Vicuna-7B 51.6 29.6
Video-ChatGPT (Maaz et al., 2023) Vicuna-7B 64.9 49.3
Video-LLaVA (Lin et al., 2023a) Vicuna-7B 70.7 59.2

MG-LLaVA Vicuna-7B 71.5 59.8

Table 4: Ablation results on MMBench-DEV, TextVQA, and GQA. Params. denotes the number
of model parameters, while Inf. Speed represents the speed of inference. We execute our baseline
based on the LLaVA model on the Xtuner codebase with Vicuna-7B and Phi3-3.8B.

Object-level Conv-Gate Vicuna-7B Phi3-3.8B
Features Fusion #TFLOPS Params. Inf. Speed MMBD VQAT GQA #TFLOPS Params. Inf. Speed MMBD VQAT GQA

× × 5.76 7.2B 8.89 tokens/s 69.5 60.5 59.3 3.3 4.0B 35.00 tokens/s 70.7 58.1 58.3
✓ × 6.20 7.4B 8.71 tokens/s 70.6(+1.1) 61.0(+0.5) 60.3(+1.0) 3.72 4.2B 34.54 tokens/s 73.0(+2.3) 59.0(+0.9) 59.1(+0.8)
✓ ✓ 6.21 7.4B 8.46 tokens/s 72.1(+2.6) 67.3(+7.8) 61.3(+2.0) 3.73 4.2B 34.04 tokens/s 74.2(+3.5) 66.4(+8.3) 60.4(+2.1)

Table 5: Comparison with different
MLLM designs.

Method LLM MMBD MMStar VQAT GQA
LLaVA-HR Phi3-3.8B 72.2 38.4 65.9 59.7
Mini-Gemini Phi3-3.8B 73.2 39.5 66.4 59.7
MG-LLaVA Phi3-3.8B 74.2 41.3 66.4 60.4

Table 6: Results of explicit and implicit integration of
object-level features.

Method LLM MMBD MMStar VQAT GQA
Implicit Integration Vicuna-7B 70.8 34.7 66.8 61.3
Explicit Integration Vicuna-7B 72.1 35.1 67.3 61.3

4.3 ABLATION EXPERIMENTS

In this section, we conduct comprehensive ablation studies of our model. The ablation experiments
are based on Xtuner codebase (Contributors, 2023), with a fixed seed protocol to ensure the stability
and comparability of the experimental conditions.

Effect of Each Component. We first conduct ablation studies on object-level features and the Conv-
Gate fusion module across multiple datasets of different purpose, including MMBench-DEV (Liu
et al., 2023c), TextVQA (Singh et al., 2019), and GQA (Hudson & Manning, 2019). To validate
the effectiveness of our method on different scales of LLM, the baseline is built on Vicuna-7B and
Phi3-3.8B using the Xtuner codebase. The training data and seed are consistently set to ensure
fairness. The results are shown in Tab. 4.

It is clear that the model achieves significant gains with the integration of object-level features and the
Conv-Gate Fusion module. When adding object-level features, the performance of MMBench-Dev,
GQA increases 1.1%, 1.0% separately with Vicuna-7B and 2.3%, 0.8% with Phi3. After utilizing
the fusion network, the performance on these two benchmarks further increases by 2.6%, 2.0% with
Vicuna-7B and 3.5%, 2.1% with Phi3. For the TextVQA benchmark, the incorporation of object-level
features does not markedly enhance performance due to the suboptimal detection of textual content
within images by the detector. Nevertheless, the integration of high-resolution features mitigates
this limitation, culminating in an accuracy increment of 7.8% on Vicuna-7B and 8.3% on Phi3-3.8B.
The integration of both modules incurs a marginal increase in computational expense and parameter
count, yet it enhances the efficacy of models across various scales. We further enumerate additional
comparative outcomes across various subsets of MMBench-Dev, the comparative results are shown
in Appx. A.

Comparison with Other MLLM Design. To demonstrate the efficiency of our framework, we
reconstruct two fusion-based MLLM, Mini-Gemini (Li et al., 2024c) and LLaVA-HR (Luo et al.,
2024) on Xtuner codebase and conduct a comparative analysis of these two multi-input methods
against MG-LLaVA. We conduct the experiments on Phi3-3.8B. Specifically, we integrate the fusion
module of LLaVA-HR into the 12th layer of the visual encoder. To ensure a fair comparison, the
input resolutions are standardized. The results, detailed in Tab. 5, indicate that our multi-granularity
vision flow outperforms complex fusion-based models across multiple downstream tasks.
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Table 7: Comparison of different fusion modules, methods of merging object-level features, and
tagging models.

(a) Fusion modules.

Method MMBD MMStar

Baseline 69.2 34.1
w/ Resampler 55.6 30.5
w/ Channel Concat 68.9 32.6
w/ Patch Info Mining 68.3 32.9
w/ Conv-Gate Fusion 69.8 34.5

(b) Methods of merging object-level features.

Method MMBD MMStar

Baseline 68.2 32.5
w/ F-to-B Cross Attention 65.7 33.3
w/ B-to-F Cross Attention 67.7 34.4
w/ Concat 69.8 34.5

(c) Tagging models.

Method MMBD MMStar

Baseline 68.2 32.5
w/ COCO80 68.3 32.9
w/ RAM tags 69.2 34.5

Fusion Network Design. We also explore a diverse design of fusion modules and perform ablation
studies on various components: (1)Channel Concat. We simply concat the low and high-resolution
features in the channel dimension. (2) Patch Info Mining. We replace the gated-fusion model with
Patch Info Mining in (Li et al., 2024c). (3) Resampler. We substitute the gated-fusion model with a
resampler in (Alayrac et al., 2022). The results are shown in Tab. 7a. We find our Conv-Gated fusion
module performs better through these methods, which confirms its efficiency.

Method of Merging Object-level Features.

(1) We first compare the performance of explicit integration and implicit integration. The results are
presented in Tab. 6. It can be observed from the table that the explicit method demonstrates superior
performance compared to the implicit method across various benchmarks.

(2) Based on the explicit integration method, we further explore various methods for incorporating
object-level features: (1)F-to-B Cross-Attention. We add a cross-attention block to enhance the fusion
features by integrating object-level features after the fusion module, the enhanced fusion features are
then fed into LLM. (2)B-to-F Cross-Attention. Following the fusion module, another cross-attention
block is employed to enhance the object-level features by integrating fusion features. The fusion
features and enhanced object-level features are then concatenated as input for LLM. The frameworks
of both are depicted in Appx. C, and the results are reported in Tab. 7b. Our observations indicate that
cross-attention does not enhance the integration of object-level features into visual representations.
Conversely, concatenating object-level features with visual tokens and deferring the decision-making
to the LLM yields more favorable outcomes.

Tagging Model. We investigate the impact of the tagging model within the bounding box generation
pipeline. We compare our method with assigning fixed tags based on the 80 categories from the
COCO (Lin et al., 2014) dataset to open-vocabulary detectors for producing bounding boxes. The
comparative results are presented in Tab. 7c. Given that the COCO dataset’s 80 categories do not
comprehensively cover real-world objects, the generated bounding boxes fail to encompass all objects
within an image. This limitation consequently diminishes the impact of object-level features.

5 DISCUSSIONS

Conclusions. In this work, we propose MG-LLaVA, an expansive multi-modal model adept at
processing visual inputs of multiple granularities, encompassing object-level features, original images,
and high-resolution data. To effectively amalgamate features of varying granularities, we propose
the Multi-Granularity Vision Flow module, thereby equipping the LLM with the ability to discern
multi-modal interactions from a consolidated visual framework. Utilizing a range of LLMs extending
from 3.8B to 34B parameters, our model exhibits pronounced scalability and remarkable performance
in visual understanding, outperforming established models and significantly outperforming GPT-
4V and GeminiPro Vision on benchmarks such as MMBench and SEEDBench. The validity of
our methodology is substantiated through rigorous empirical studies. MG-LLaVA establishes a
foundational baseline for future explorations into more sophisticated techniques of integrating inputs
of multiple granularities.

Broader Impacts. As a robust multi-modal language model, MG-LLaVA exhibits considerable
prowess in visual perception and comprehension, offering an innovative methodology to refine
MLLMs further. However, MG-LLaVA’s potential societal implications merit attention, as it may
facilitate the creation of multimodal applications, including those with possible adverse effects.
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Reproducibility Statement

We have included all of our code in the supplementary materials, encompassing training, evaluation,
and inference. Additionally, we provide our training script and seed to ensure the reproducibility of
our method.
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Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,
Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee,
Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid
Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael
Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. In NeurIPS, 2022.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence
Zitnick, and Devi Parikh. Vqa: Visual question answering. In ICCV, 2015.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, Junying Chen, Xiangbo Wu, Zhiyi Zhang,
Zhihong Chen, Jianquan Li, Xiang Wan, and Benyou Wang. Allava: Harnessing gpt4v-synthesized
data for a lite vision-language model. arXiv preprint arXiv:2402.11684, 2024a.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023a.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint
arXiv:2311.12793, 2023b.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024b.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint arXiv:2312.14238, 2023c.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.

XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. https://github.com/
InternLM/xtuner, 2023.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/InternLM/xtuner
https://github.com/InternLM/xtuner


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning. In NeurIPS, 2024.

Daan de Geus, Panagiotis Meletis, and Gijs Dubbelman. Single network panoptic segmentation for
street scene understanding. In IV, 2019.

Daan de Geus, Panagiotis Meletis, Chenyang Lu, Xiaoxiao Wen, and Gijs Dubbelman. Part-aware
panoptic segmentation. In CVPR, 2021.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Songyang Zhang,
Haodong Duan, Wenwei Zhang, Yining Li, et al. Internlm-xcomposer2-4khd: A pioneering
large vision-language model handling resolutions from 336 pixels to 4k hd. arXiv preprint
arXiv:2404.06512, 2024.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid architec-
ture for object detection. In CVPR, 2019.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Kuan-Chih Huang, Xiangtai Li, Lu Qi, Shuicheng Yan, and Ming-Hsuan Yang. Reason3d: Searching
and reasoning 3d segmentation via large language model. arXiv, 2024.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In CVPR, 2019.

Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvqa: Understanding data visualiza-
tions via question answering. In CVPR, 2018.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
A diagram is worth a dozen images. In ECCV. Springer, 2016.

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks.
In CVPR, 2019.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In ICCV,
2023.
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A APPENDIX / DETAILED RESULTS ON SUBSETS

In this section, we compare the influence of object-level features on several subsets of MMBench-Dev
and Seed-bench, as shown in Fig. 5. It can be observed that the integration of object-level features
significantly enhances the model’s capability in multiple aspects of perception including Attribute
Reasoning, Fine-grained Perception, Physical Relation Perception, Visual Reasoning, etc.

Figure 5: Ablation study on several subsets of MMBench-DEV-EN and Seed-bench. Fine-grained
Perception(I) denotes Fine-grained Perception(instance-level), Property Reasoning(P) means Prop-
erty Reasoning Perception and SIT Understanding denotes Structuralized Image-Text Understanding.

B APPENDIX / ADDITIONAL SHOWCASES

In this section, we present additional instances to substantiate the capability of MG-LLaVA. As
presented in Fig. 6 and Fig. 7, MG-LLaVA is proficient in addressing queries that necessitate
meticulous attention to specifics and in capturing fine-grained details within image or video. These
further instances reinforce the superior performance of our MG-LLaVA in visual comprehension.

C APPENDIX / METHOD OF MERGING OBJECT-LEVEL FEATURES

The illustration of F-to-B Cross-Attention and B-to-F Cross-Attention is depicted in Fig. 8.

D APPENDIX / INFERENCE PIPELINE

The inference pipeline of MG-LLaVA is displayed in Fig. 9. The tagging model first processes the
input image to provide tags within the image, which are subsequently utilized as the text input of the
detector to derive bounding boxes corresponding to the tagged obejcts within the image.

E APPENDIX / COMPARISON OF TAGGING MODELS

Table 8: Ablation results on MMBench-DEV Liu et al. (2023c), SEEDBench Li et al. (2023a)
and TextVQA Singh et al. (2019). We execute our experiments based on the LLaVA model with
Vicuna-7B and Phi3-3.8B.

Method Images Number of Boxes
0 1-10 12-20 21-30 30-50 ¿50

COCO 80 + OWL-ViT v2 389722 71118 245952 44059 28593 0 0
RAM + OWL-ViT v2 389722 43654 184706 91245 34648 22827 12645

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: More cases of video understanding.
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Figure 7: More cases of image understanding.

Figure 8: Illustration of F-to-B Cross-Attention and B-to-F Cross-Attention.
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Figure 9: Inference pipeline of MG-LLaVA.
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