

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LOW-PROBABILITY TOKENS SUSTAIN EXPLORATION IN REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

Anonymous authors

Paper under double-blind review

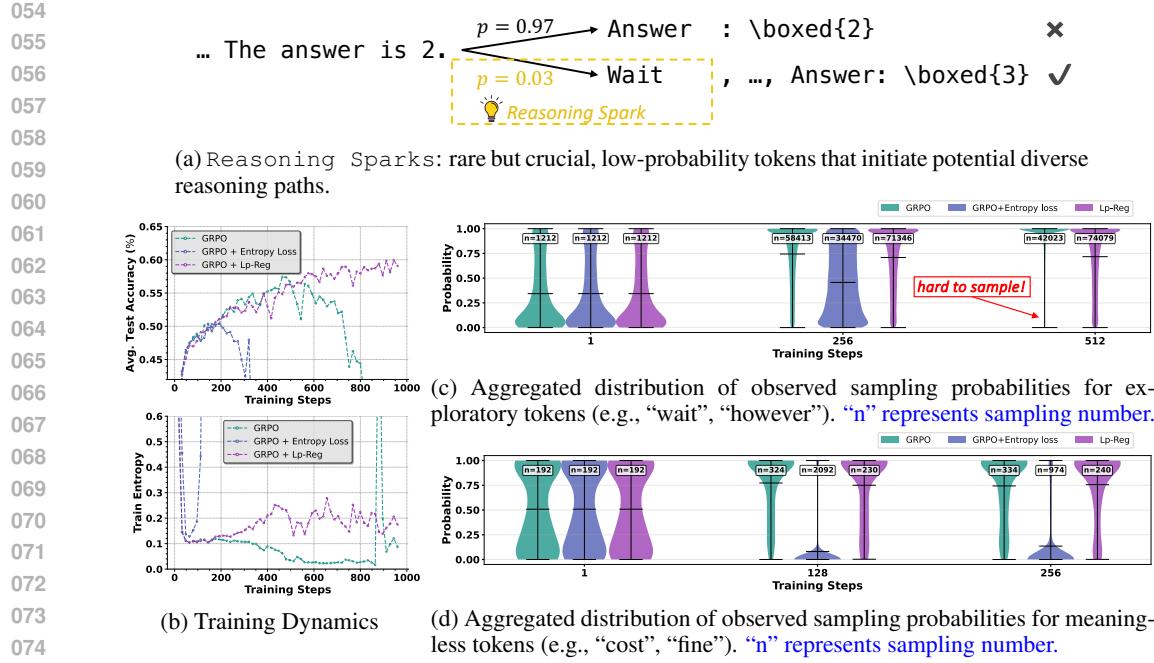
## ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key phenomenon: the gradual elimination of what we term *reasoning sparks*: a crucial subset of low-probability tokens such as “wait”, that initiate diverse reasoning paths. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by first applying a probability threshold to filter out noise tokens and then re-normalizing the distribution over the remaining candidates. This process effectively shields the exploratory tokens from destructive updates. Experiments show that Lp-Reg enables stable on-policy training for around 3,000 steps over 81,204 GPU-Hours, a regime where many baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a 60.17% average accuracy on five math benchmarks, an improvement of 2.66% over prior methods.

## 1 INTRODUCTION

The advent of large reasoning models has reshaped the trajectory of artificial intelligence, with paradigmatic examples including OpenAI O1 (OpenAI et al., 2024) and DeepSeek-R1 (DeepSeek-AI et al., 2025). A central technique underpinning these systems is reinforcement learning with verifiable reward (RLVR), which assigns reward to verifiable solutions through rule-based verification. These models generate extended chain-of-thought (CoT) reasoning (Wei et al., 2023) to solve challenging problems in domains like mathematical olympiads (He et al., 2024b). However, a notable bottleneck emerges during RL training that limits its scalability, frequently culminating in a performance plateau and subsequent collapse. This failure is consistently accompanied by a rapid decay in policy entropy, indicating a severe loss of exploration capacity (Yu et al., 2025; Cui et al., 2025; Wang et al., 2025b).

Previous approaches have recognized this declining exploration, attempting to address it through various entropy control mechanisms. Methods such as adaptive entropy regularization (He et al., 2025), high entropy change blocking (Cui et al., 2025), or selective token updates (Wang et al., 2025b) aim to maintain higher entropy as a proxy for exploration. However, relying on overall entropy can be an indirect and imprecise tool. An indiscriminate focus on maximizing randomness risks amplifying noise and destabilizing training (Ömer Veysel Çağatan & Akgün, 2025), suggesting a deeper issue beyond simply the quantity of randomness.



076 Our analysis suggests the performance bottleneck may stem from the systematic elimination of val-  
077 uable low-probability exploratory tokens. We term these tokens **reasoning sparks**; they include words  
078 like "wait", "however", or "perhaps", which often serve as logical connectives or expressions of un-  
079 certainty, naturally initiating diverse reasoning pathways (Figure 1a). As the aggregated violin plots  
080 in Figure 1c show, standard GRPO training systematically suppresses the low-probability sampling  
081 of these meaningful tokens. Furthermore, we find that indiscriminately boosting randomness am-  
082 plifies meaningless noise—tokens such as "cost" or "fine" which are irrelevant to the mathematical  
083 reasoning context (Figure 1d). This amplification leads to an even faster performance collapse than  
084 the baseline, as shown in Figure 1b.  
085

086 Our analysis suggests the performance bottleneck may stem from the systematic elimination of val-  
087 uable low-probability exploratory tokens. We term these tokens **reasoning sparks**; they include words  
088 like "wait", "however", or "perhaps", which often serve as logical connectives or expressions of un-  
089 certainty, naturally initiating diverse reasoning pathways (Figure 1a). As the aggregated violin plots  
090 in Figure 1c show, standard GRPO training systematically suppresses the low-probability sampling  
091 of these meaningful tokens. Furthermore, we find that indiscriminately boosting randomness am-  
092 plifies meaningless noise—tokens such as "cost" or "fine" which are irrelevant to the mathematical  
093 reasoning context (Figure 1d). This amplification leads to an even faster performance collapse than  
094 the baseline, as shown in Figure 1b.  
095

096 These findings present a central challenge: a successful exploration strategy should protect val-  
097 uable, low-probability reasoning sparks without simultaneously amplifying the destructive effects of  
098 meaningless noise. To address this challenge, we introduce Low-probability Regularization (Lp-  
099 Reg). The primary goal of Lp-Reg is to preserve valuable low-probability tokens via regularization.  
100 To avoid amplifying noise, the method leverages a key observation: While both are empirically low-  
101 probability tokens, a **meaningful exploratory token** like "wait" often has a higher relative probability  
102 than a noise token like "cost" in the immediate next-token prediction. **It is supported by the quan-**  
103 **titative evidence in Section 6.3.** Based on this insight, Lp-Reg first applies a probability threshold  
104 to filter out tokens treated as noise. It then re-normalizes the probability mass over the remaining  
105 candidates to construct a proxy distribution. In this proxy, the relative importance of valuable low-  
106 probability tokens is effectively increased. Finally, Lp-Reg penalizes the deviation of the original  
107 policy from this proxy using a forward KL divergence, which selectively protects the low-probability  
tokens that were preserved in the less-noisy proxy distribution.

108 Our experimental evaluation demonstrates the effectiveness of Lp-Reg. Our method enables stable  
 109 on-policy training for around 3,000 steps over 81,204 GPU-hours, where many entropy-control  
 110 methods have collapsed, resulting in better performance. On five widely used math benchmarks,  
 111 this results in a 60.17% average accuracy on Qwen3-14B-Base, improving upon prior methods by  
 112 at least 2.66%. Our contributions are summarized as follows:

- 114 • In contrast to prior work focusing on overall policy entropy, we identify the disappearance  
 115 of *reasoning sparks* as a key issue and provide evidence that their preservation is crucial  
 116 for sustained performance.
- 117 • We introduce Low-probability Regularization (Lp-Reg), a method that creates a more stable  
 118 exploratory environment by filtering out presumed meaningless noise to protect the  
 119 remaining low-probability tokens.
- 120 • We demonstrate through extensive experiments, [utilizing a cumulative total of 300,000](#)  
 121 [GPU-hours](#), that Lp-Reg achieves state-of-the-art performance, while also enabling stable  
 122 on-policy training over extended periods where baselines collapse.
- 123 • We provide a comprehensive analysis showing that our approach of filtering presumed  
 124 meaningless noise yields superior results compared to entropy-control methods.

## 2 RELATED WORK

129 **Reinforcement learning for LLMs** Recently, reinforcement learning has become the dominant  
 130 framework for enhancing the reasoning abilities of large language models (LLMs) (OpenAI et al.,  
 131 2024; DeepSeek-AI et al., 2025). By leveraging automatic checkers or symbolic verification, re-  
 132 inforcement learning with verifiable rewards (RLVR) achieved further breakthroughs in improving  
 133 the reasoning capability of LLMs (Shao et al., 2024a; Yang et al., 2025a; Team et al., 2025). Based  
 134 on RLVR and GRPO (Shao et al., 2024a), subsequent methods such as DAPO Yu et al. (2025),  
 135 VAPO (Yue et al., 2025), and other policy optimization variants (Zhao et al., 2025; Cui et al., 2025;  
 136 Zheng et al., 2025a) have been proposed to improve the stability, efficiency, and scalability of RL  
 137 for reasoning models.

138 **Entropy collapse in RL training** A recurring difficulty in training reasoning models with RL is  
 139 the rapid collapse of policy entropy during the early stages of training. This phenomenon, which  
 140 reflects excessive exploitation and insufficient exploration, has been widely recognized as a bottle-  
 141 neck for scaling RL in reasoning models. To mitigate collapse, researchers have explored several  
 142 directions, including selectively regularizing updates at high-entropy “forking” tokens (Wang et al.,  
 143 2025b), amplifying advantages at exploratory positions (Cheng et al., 2025), modifying clipping  
 144 strategies (Yu et al., 2025; Zhao et al., 2025; Cui et al., 2025; Zheng et al., 2025a), or doing weight  
 145 clipping (MiniMax et al., 2025; Su et al., 2025).

146 **Confidence-aware approaches** An emerging line of work investigates how models’ intrinsic con-  
 147 fidence signals can guide exploration. Token probabilities naturally encode uncertainty and can in-  
 148 dicate branching points in reasoning trajectories (Xu et al., 2025; Fu et al., 2025b; Hou et al., 2025;  
 149 Wang et al., 2025a; Zheng et al., 2025b). Some works show that entropy minimization, which ef-  
 150 fectively sharpens the confidence of the model, can improve reasoning performance by encouraging  
 151 the model to commit to consistent solution paths (Gao et al., 2025; Agarwal et al., 2025).

## 3 PRELIMINARIES

### 3.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

158 Reinforcement learning (RL) has played a critical role in LLMs (Murphy, 2024). Formally,

$$\mathcal{J}_{\text{RL}}(\theta) = \mathbb{E}_{(q,a) \sim D, o \sim \pi_{\theta}(\cdot|q)} [r(o, a)], \quad (1)$$

161 where  $r(o, a)$  denotes the reward assigned to an output  $o$  given a reference answer  $a$ . In rein-  
 162 force learning with verifiable rewards (RLVR), this reward is computed through rule-based

functions, such as Math-Verify<sup>1</sup>. Recent studies have demonstrated that large-scale RLVR encourages models to perform more deliberative reasoning by producing extended chains of thought prior to the final prediction, thereby substantially improving their capacity to solve complex problems (DeepSeek-AI et al., 2025). In practice, Eq. 1 is typically optimized using policy gradient methods, such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024b).

### 3.2 GROUP-RELATIVE POLICY OPTIMIZATION

GRPO is a representative actor-only policy gradient method for optimizing LLMs. It directly estimates the advantage of each token by leveraging multiple samples drawn from the same prompt. Formally, the advantage is defined as

$$A_{i,t} = \frac{R(o_i) - \text{mean}(\mathcal{G})}{\text{std}(\mathcal{G})}, \quad (2)$$

where  $\{o_1, \dots, o_G\}$  are independent outputs sampled from the same prompt, with group size  $G$ ,  $\mathcal{G} = \{R(o_1), \dots, R(o_G)\}$  denotes their associated rewards, and  $R(o_i)$  is the reward of output  $o_i$ . In this formulation,  $A_{i,t}$  represents the advantage of the  $t$ -th token in  $o_i$ . The policy is then optimized on the basis of these advantages using the PPO surrogate objective:

$$\begin{aligned} \mathcal{J}_{\text{GRPO}}(\theta) = & \mathbb{E}_{(q,a) \sim D, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\ & \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \left[ \min \left[ r_{i,t} A_{i,t}, \text{clip}(r_{i,t}, 1 - \epsilon, 1 + \epsilon) A_{i,t} \right] - \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right], \end{aligned} \quad (3)$$

where  $\beta$  controls the strength of KL regularization between the current policy  $\pi_{\theta}$  and the reference policy  $\pi_{\text{ref}}$ . The probability ratio

$$r_{i,t} = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})} \quad (4)$$

serves as the importance sampling weight for off-policy training, where  $\pi_{\theta_{\text{old}}}$  denotes the behavior policy. The hyperparameter  $\epsilon$  specifies the clipping ratio, which constrains the updated policy from deviating excessively from the behavior policy, thereby ensuring stability during optimization.

## 4 LOW-PROBABILITY REGULARIZATION

To address the premature elimination of valuable *reasoning sparks*, we propose a regularization method termed **Low-probability Regularization (Lp-Reg)**. This method is designed to be integrated into policy gradient algorithms to create a more stable exploratory environment. The central idea is to leverage the model’s own predictive distribution to construct a less-noisy reference for regularization, preserving low-probability tokens.

### 4.1 PROXY DISTRIBUTION $\pi_{\text{PROXY}}$

The foundation of Lp-Reg is the construction of a proxy distribution, which represents a filtered variant of the current policy  $\pi_{\theta}$ . It is constructed in two steps:

1. **Filtering Noise Tokens:** We first define a set of noise tokens as those whose probability  $\pi_{\theta}(o \mid \cdot)$  under a threshold  $\tau$ . This threshold controls the filtering strategy, for which we explore two primary choices:

- **Fixed threshold:** A simple approach where  $\tau$  is a constant hyperparameter, e.g., 0.02.
- **Min-p threshold:** Following (Nguyen et al., 2025),  $\tau$  is defined relative to the peak probability:  $\tau = \kappa \cdot \max_{o' \in V} \pi_{\theta}(o' \mid \cdot)$ , where  $\kappa \in (0, 1)$  is a hyperparameter. This makes the filtering adaptive to the distribution’s sharpness.

<sup>1</sup><https://github.com/huggingface/Math-Verify>

216 Our primary experiments employ the min-p strategy for its adaptiveness, though fixed thresh-  
 217 olds are also shown to be effective in our ablation studies.

218 2. **Probability Renormalization:** The proxy distribution  $\pi_{\text{proxy}}$  assigns zero probability to tokens  
 219 filtered out in the previous step and renormalizes the probability mass across the remaining  
 220 tokens:

$$\pi_{\text{proxy}}(o|\cdot) = \begin{cases} \frac{\pi_{\boldsymbol{\theta}}(o|\cdot)}{\sum_{o' \text{ s.t. } \pi_{\boldsymbol{\theta}}(o'|\cdot) > \tau} \pi_{\boldsymbol{\theta}}(o'|\cdot)} & \text{if } \pi_{\boldsymbol{\theta}}(o|\cdot) > \tau \\ 0 & \text{otherwise} \end{cases}. \quad (5)$$

224 This process treats tokens with low relative probabilities as noise, while preserving all others.

## 226 4.2 LOW-PROBABILITY REGULARIZATION OBJECTIVE

228 The Low-probability Regularization (Lp-Reg) penalty is integrated into the GRPO framework as a  
 229 selective regularization term. The final objective function is:

$$\begin{aligned} 230 J(\boldsymbol{\theta}) = & \mathbb{E}_{\mathcal{B} \sim \mathcal{D}, (q, a) \sim \mathcal{B}, \{o_i\}_{i=1}^G \sim \pi_{\boldsymbol{\theta}_{\text{old}}}(\cdot|q)} \left[ \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \left[ \text{clip}(r_{i,t}(\boldsymbol{\theta}), 0, U) \cdot A_{i,t} \right. \right. \\ 231 & - \beta \cdot \mathbb{I}[\pi_{\boldsymbol{\theta}}(o_{i,t}|q, o_{i,<t}) < \delta_{\rho}^{\mathcal{B}} \wedge \pi_{\text{proxy}}(o_{i,t}|q, o_{i,<t}) > 0 \wedge A_{i,t} < 0] \\ 232 & \left. \left. \cdot \mathcal{D}_{\text{KL}}(\pi_{\text{proxy}}(\cdot|q, o_{i,<t}) \parallel \pi_{\boldsymbol{\theta}}(\cdot|q, o_{i,<t})) \right] \right] \\ 233 & \cdot \mathcal{D}_{\text{KL}}(\pi_{\text{proxy}}(\cdot|q, o_{i,<t}) \parallel \pi_{\boldsymbol{\theta}}(\cdot|q, o_{i,<t})) \quad (6) \end{aligned}$$

238 The first term is the policy gradient objective from GRPO. We modify its clipping by removing the  
 239 lower bound to avoid suppressing high-variance exploratory actions and adding a large upper bound  
 240  $U$  for numerical stability.

241 The second term is the Lp-Reg penalty. It is activated by the indicator function  $\mathbb{I}[\cdot]$  only for tokens  
 242 that satisfy three conditions simultaneously: first, their sampling probability  $\pi_{\boldsymbol{\theta}}$  is below a dynamic  
 243 low-percentile threshold  $\delta_{\rho}^{\mathcal{B}}$ , which is calculated as the lowest  $\rho$ -th percentile of the sampling prob-  
 244 abilities of all tokens within the current training batch  $\mathcal{B}$ ; second, their probability in the proxy  
 245 distribution  $\pi_{\text{proxy}}$  is greater than zero; and third, the token receives a negative advantage signal  
 246 ( $A_{i,t} < 0$ ). This final condition ensures the regularization applies exclusively to tokens receiving  
 247 a negative learning signal, preventing their potential over-penalization while leaving updates from  
 248 positive experiences unaffected. [Regarding two core hyperparameters  \$\kappa\$  in  \$\tau = \kappa \cdot \max\_{o' \in \mathcal{V}} \pi\_{\boldsymbol{\theta}}\(o'|\cdot\)\$  and  \$\rho\$  in  \$\delta\_{\rho}^{\mathcal{B}}\$ , a data-driven guideline of value selection is provided in Section B.3 and a sensitivity analysis is presented in Appendix B.4 to assess its robustness.](#)

251 We use the forward KL divergence,  $\mathcal{D}_{\text{KL}}(\pi_{\text{proxy}} \parallel \pi_{\boldsymbol{\theta}})$  as the regularization function. It imposes a  
 252 significant penalty when  $\pi_{\boldsymbol{\theta}}(o|\cdot)$  approaches zero for a token  $o$  with non-zero probability in  $\pi_{\text{proxy}}$ ,  
 253 providing a targeted penalty against token elimination without forcing the policy to strictly match  
 254 the heuristic proxy distribution.

## 255 5 EXPERIMENTS

### 258 5.1 EXPERIMENTAL SETUP

259 **Baselines** We compare Lp-Reg against a suite of strong baselines, including a foundational algo-  
 260 rithm and several state-of-the-art methods designed to enhance exploration through entropy control.  
 261 Our primary baseline is **GRPO** (Shao et al., 2024a), a value-free policy optimization algorithm that  
 262 employs group-relative advantage estimation, making it a common choice for RLVR. To represent  
 263 classical entropy regularization methods, we implement **GRPO + Entropy Loss**, which directly  
 264 incorporates the principles of Maximum Entropy RL by adding a policy entropy bonus to the GRPO  
 265 objective function. We also compare against several advanced methods: **Clip-Higher** (Yu et al.,  
 266 2025), a core component of DAPO that encourages higher entropy by using an asymmetric clip-  
 267 ping range in the PPO objective; **Selective High-Entropy Training (80/20)** (Wang et al., 2025b), a  
 268 method that restricts policy gradient updates to only the top 20% of tokens with the highest gener-  
 269 ation entropy; **KL-Cov** (Cui et al., 2025), which prevents entropy collapse by applying a selective  
 270 KL-divergence penalty to tokens with the highest covariance between their log probabilities and

advantages; and **GSPO** (Zheng et al., 2025a), which modifies the clipping mechanism to operate at the sequence level to promote higher training entropy.

**Training Settings** All experiments are conducted within the `veRL` (Sheng et al., 2024) framework to ensure a standardized and fair comparison. Our main comparisons are based on approximately 1,000 training steps for the Qwen3-14B-Base model and 800 for the Qwen2.5-32B model. Each training requires about 8,000 GPU hours on 32 NVIDIA H20 GPUs for the 14B model and 16,000 GPU hours on 64 NVIDIA H20 GPUs for the 32B model. To assess whether low-probability tokens sustain exploration in RLVR, we further trained the Qwen2.5-32B model for 3,000 steps over 81,204 GPU-hours with our Lp-Reg and evaluated its training stability.

For the reinforcement learning from verifier rewards (RLVR) phase, models are trained with a maximum response length of 8,192 tokens. We use a global batch size of 256. For off-policy methods, we use a mini-batch size of 32, resulting in 8 gradient updates per rollout. It should be noted that in our experimental results, "step" refers to the rollout step for both on-policy and off-policy methods. To ensure a fair comparison, a "step" in our experimental results consistently refers to a single rollout for all methods. A constant learning rate of  $1 \times 10^{-6}$  is applied without a warmup schedule. We set the group number as 8 for all GRPO-based methods. To ensure numerical stability, we set the policy gradient's clipping by setting the upper bound of the importance sampling ratio to  $U = 10$ . For our proposed Lp-Reg, which uses the min-p threshold, we set the probability percentile threshold  $\rho$  to 0.5% for Qwen2.5-32B, Qwen3-8B-Base, Llama3-OctoThinker-8B and 1% for Qwen3-14B-Base, the KL regularization coefficient  $\beta$  to 1.0, and the min-p ratio  $\kappa$  to 0.02. The proxy distribution,  $\pi_{\text{proxy}}$ , is constructed from the data-generating policy ( $\pi_{\theta_{\text{old}}}$  in the off-policy setting and the current policy  $\pi_{\theta}$  in the on-policy setting). For all baseline methods, we adopt the hyperparameters specified in their original public implementations to ensure a faithful reproduction. Specifically for the GRPO + Entropy Loss baseline, we set the entropy coefficient to 0.002 within the `veRL` framework.

| Domains | Training datasets                        | Evaluation Benchmarks                                                                                                                  |
|---------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Math    | Dapo-Math-17K (Yu et al., 2025)          | AIME24 (MAA), AIME25 (MAA), MATH-500 (Hendrycks et al., 2021), OlympiadBench (He et al., 2024a), Minerva Math (Lewkowycz et al., 2022) |
| Code    | AReAL-boba-2-RL-Code (Fu et al. (2025a)) | LCB-v5, LCB-v6 (Jain et al. (2024))                                                                                                    |
| Science | SCP-116k (Lu et al. (2025))              | GPQA-diamond (Rein et al. (2024))                                                                                                      |

Table 1: Training datasets and evaluation benchmarks across various domains.

**Evaluation** For evaluation, we assess model performance across **eight** reasoning benchmarks in Table 1, spanning various domains including math, **code**, and **science**. For small benchmarks, we use sampled decoding with a temperature of 0.6 to obtain a robust performance estimate, generating 16 independent responses per problem for AIME24 and AIME25, and **8 for GPQA-diamond, LCB-v5, and LCB-v6**. For larger benchmarks like MATH-500, OlympiadBench, and Minerva, we utilize greedy decoding.

## 5.2 MAIN RESULTS

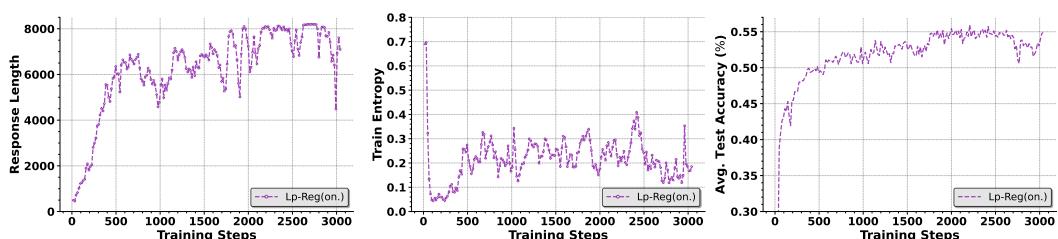


Figure 2: **Stable training over 3,000 training steps, totaling 81,204 GPU-hours**, for Lp-Reg (on-policy) on the Qwen2.5-32B-Base model.

As shown in Figure 2, Lp-Reg enables a stable reinforcement learning training for 3,000 training steps, totaling 81,204 GPU-hours for this single long-horizon run on the Qwen2.5-32B-Base model.

Furthermore, Figure 3 and Table 2 exhibit that Lp-Reg achieves state-of-the-art performance across five challenging mathematical reasoning benchmarks on both 14B and 32B model scales. On the Qwen3-14B model, on-policy Lp-Reg sets a new benchmark with an average accuracy of 60.17%, surpassing the next best method, 80/20, by 2.66%. Notably, Lp-Reg’s advantage is more pronounced on the newer Qwen3-14B base model compared to the older Qwen2.5-32B. We hypothesize that as base models improve, their capacity for nuanced, low-probability reasoning increases, creating richer *reasoning sparks* for Lp-Reg to leverage, thereby amplifying its effectiveness. **Note that the scores reported here correspond to the single checkpoint achieving the highest average accuracy.** As aggregated metrics can sometimes obscure the model’s peak potential on individual tasks, we provide a detailed analysis of per-benchmark peak scores in Appendix B.5.

Our experiments consistently show the superiority of on-policy training over off-policy methods across 14B and 32B scales. This is due to the inherent stability of on-policy updates, which avoid distribution shifts caused by mismatched data-sampling and training policies. Off-policy methods, such as Clip-Higher, often rely on importance sampling clipping, leading to instability. While competitive on Qwen2.5-32B, Clip-Higher’s performance drops on Qwen3-14B, highlighting its fragility. In contrast, Lp-Reg’s self-contained, policy-intrinsic regularization ensures its effectiveness in both on-policy and off-policy settings, unlike competing methods that are heavily reliant on off-policy importance sampling.

Beyond raw performance, Lp-Reg demonstrates a distinct entropy signature indicative of a healthy exploration-exploitation balance. As shown in Figure 3, methods like Clip-Higher induce a continuous, often artificial increase in policy entropy. Lp-Reg, however, facilitates a dynamic, multi-phase entropy trajectory: entropy initially decreases as the model learns core reasoning patterns, then gradually increases to foster exploration as performance improves, and finally stabilizes within a healthy range as accuracy converges. This adaptive behavior stems from confidence-aware regularization, which selectively protects valuable *reasoning sparks* without amplifying indiscriminate, high-entropy noise.

To further validate the generalizability of Lp-Reg, we extend the experimental comparison to additional domains (e.g. science, code), as well as various model sizes (e.g., 8B) and architectures (e.g., Llama). Details can be found in Appendix B.6.

| Method                                       | AIME24       | AIME25       | Math-500     | Minerva      | Olympiad Bench | Avg.         |
|----------------------------------------------|--------------|--------------|--------------|--------------|----------------|--------------|
| <b>Qwen2.5-32B-Base (800 training steps)</b> |              |              |              |              |                |              |
| GRPO (Shao et al., 2024a) (off.)             | 30.63        | 22.29        | 88.00        | 41.18        | 54.37          | 47.29        |
| GSPO (Zheng et al., 2025a) (off.)            | 33.33        | 22.29        | 87.60        | <b>48.53</b> | 55.56          | 49.46        |
| Clip-Higher (Yu et al., 2025) (off.)         | <b>38.33</b> | <b>29.79</b> | 87.60        | 45.22        | 56.44          | 51.48        |
| KL-Cov (Cui et al., 2025) (off.)             | 35.62        | 27.50        | 87.40        | 44.49        | 55.11          | 50.02        |
| 80/20 (Wang et al., 2025b) (off.)            | 38.12        | <u>28.75</u> | 87.00        | 45.22        | 58.37          | 51.49        |
| Lp-Reg (off.)                                | 37.71        | 24.58        | <b>90.20</b> | 40.81        | 59.70          | 50.60        |
| GRPO (Shao et al., 2024a) (on.)              | 28.54        | 22.50        | 86.60        | 44.85        | <u>60.30</u>   | 48.56        |
| GRPO + Entropy Loss (on.)                    | 3.75         | 1.88         | 60.80        | 27.94        | 22.22          | 23.32        |
| 80/20 (Wang et al., 2025b) (on.)             | 32.50        | 28.54        | 89.40        | 45.59        | 57.63          | 50.73        |
| Lp-Reg (on.)                                 | 38.12        | 27.08        | 90.00        | <u>46.32</u> | <b>61.19</b>   | <b>52.54</b> |
| <b>Qwen3-14B-Base (1,000 training steps)</b> |              |              |              |              |                |              |
| GRPO (Shao et al., 2024a) (off.)             | 34.38        | 27.08        | 89.20        | 49.26        | 55.70          | 51.13        |
| GSPO (Zheng et al., 2025a) (off.)            | 41.46        | 34.58        | 88.60        | <b>50.74</b> | 59.85          | 55.05        |
| Clip-Higher (Yu et al., 2025) (off.)         | 41.67        | 32.71        | <b>95.00</b> | 47.43        | 64.00          | 56.16        |
| KL-Cov (Cui et al., 2025) (off.)             | <u>49.17</u> | <u>34.79</u> | 93.00        | 47.43        | 62.07          | 57.29        |
| 80/20 (Wang et al., 2025b) (off.)            | 43.96        | 34.58        | 91.80        | 48.16        | 60.89          | 55.88        |
| Lp-Reg (off.)                                | 46.25        | 34.17        | 92.40        | 48.16        | 64.44          | 57.08        |
| GRPO (Shao et al., 2024a) (on.)              | 46.04        | 34.38        | 93.00        | 48.53        | 65.19          | 57.43        |
| GRPO + Entropy Loss (on.)                    | 37.29        | 25.21        | 88.20        | 46.32        | 54.96          | 50.40        |
| 80/20 (Wang et al., 2025b) (on.)             | 47.29        | 32.50        | 91.60        | <u>50.37</u> | <u>65.78</u>   | <u>57.51</u> |
| Lp-Reg (on.)                                 | <b>50.83</b> | <b>37.92</b> | <u>94.40</u> | 49.26        | <b>68.44</b>   | <b>60.17</b> |

Table 2: Main results on five mathematical reasoning benchmarks. On-policy (on.) and off-policy (off.) training methods are highlighted with distinct colors. **For each method, all reported scores are derived from the single checkpoint that achieved the highest average accuracy across the five benchmarks.** Best scores are **bolded** while second-best scores are underlined.

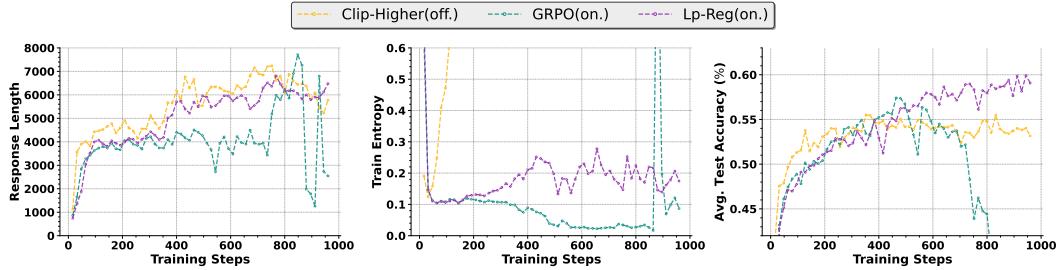


Figure 3: Training dynamics on the Qwen3-14B-Base model. To best illustrate the performance differences, we compare the top-performing methods. Lp-Reg demonstrates superior and stable performance. Full training dynamics for the Qwen2.5-32B model are available in Appendix B.1.

### 5.3 ABLATION STUDY

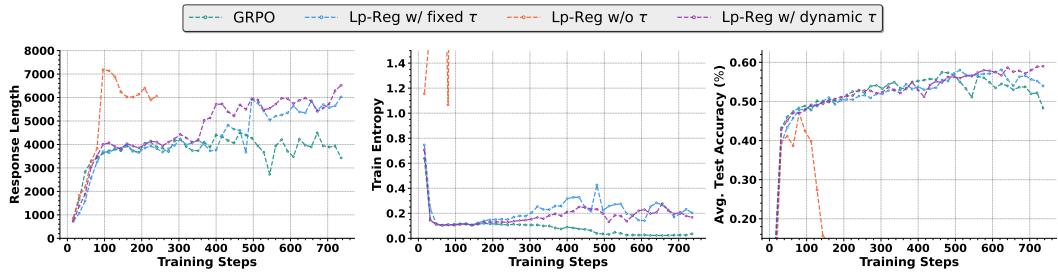


Figure 4: Ablation studies for core components of Lp-Reg on the Qwen3-14B-Base model. The results confirm that targeting our noise filtering threshold  $\tau$  is critical for stable performance. The adaptiveness of the min-p threshold is also shown to be beneficial over a fixed one.

We conduct a series of ablation studies to dissect the core components of Lp-Reg and validate our key design choices.

**Importance of Noise Filtering.** Lp-Reg only protects tokens deemed meaningful by the proxy distribution ( $\pi_{\text{proxy}} > 0$ ). To test this, we remove the filter and fork all tokens below the noise threshold  $\tau$  from contributing to gradient updating (Lp-Reg w/o  $\tau$ ). Figure 4 shows that this leads to a catastrophic performance collapse and entropy explosion. This confirms that filtering is critical to ignore the extreme tail of the distribution, which consists of incoherent noise that destabilizes training if regularized.

**Dynamic vs. Fixed Threshold.** We conduct a comparison between the dynamic min-p noise threshold (Lp-Reg w/ dynamic  $\tau$ ) and the fixed noise threshold (Lp-Reg w/ fixed  $\tau$ ) in Section 4.1. As shown in Figure 4, the fixed threshold underperforms compared to the dynamic threshold, which we adopt as the default. However, it still significantly surpasses the standard GRPO. This indicates that while the core filtering principle is effective, the dynamic nature of min-p provides a more robust estimate of the model’s confidence across different contexts, better preserving genuine *reasoning sparks*.

We conduct further ablation studies on the high-entropy token regularization. For detailed results and analysis, please refer to Appendix B.2.

## 6 ANALYSIS

To understand the mechanisms behind Lp-Reg’s performance, we conduct a series of analyses focusing on how it overcomes the exploration bottleneck by targeting and preserving valuable reasoning tokens.

### 6.1 PROBABILITY-ENTROPY DISTRIBUTION OF REASONING SPARKS

We begin by exploring the distinction between low-probability tokens and high-entropy tokens. Figure 5 highlights this contrast by comparing tokens from the top 1% lowest probability with those from the top 1% highest entropy. The difference is striking: low-probability tokens frequently include semantically meaningful exploratory markers such as *“But,”* *“Wait,”* and *“Perhaps,”* which often signal a shift in the reasoning trajectory. In contrast, high-entropy tokens are dominated by ubiquitous function words (e.g., *“the,”* *“of”*) or formatting symbols (e.g., `frac`), which carry little exploratory intent. This explains why entropy-based regularization often fails to enhance exploration: it confuses noise with exploration.

However, the set of low-probability tokens is also not uniformly useful. It also includes noisy artifacts such as spurious newline characters (`\n`) or formatting debris, whose regularization can destabilize training rather than enhance reasoning. To mitigate this, Lp-Reg applies a threshold  $\tau$  that filters out such noise. Ablation studies in Section 5.3 confirm the necessity of this step: removing the threshold results in unstable training dynamics and degraded reasoning performance. Thus, Lp-Reg’s effectiveness stems not only from targeting low-probability tokens but also from *meaningfully* excluding meaningless tokens.

## 6.2 TOKEN PROBABILITY DYNAMICS

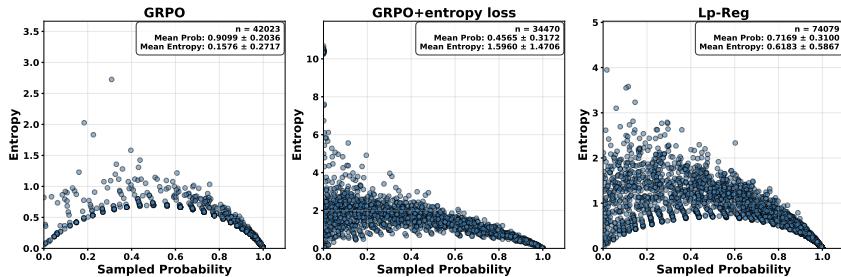


Figure 6: Probability–Entropy scatter plots of explorative tokens.

Figure 6 shows the probability–entropy distributions of key explorative tokens (“but”, “wait”, “perhaps”, “alternatively”, and “however”) under three methods: GRPO, GRPO + Entropy Loss, and our  $L_p$ -Reg.

With the baseline GRPO, these tokens are concentrated in low-entropy, high-probability regions. In this case, tokens like “wait” tend to appear only when the model is already confident, turning them into deterministic patterns rather than initiating a new exploration path with uncertainty.

Adding an entropy loss changes this behavior, but in an uncontrolled way. Some sampled “wait” tokens appear at extremely high entropy levels (sometimes exceeding 10), which superficially boosts diversity but produces little useful exploratory signal. These scattered occurrences do not integrate meaningfully into the reasoning process.

Our Lp-Reg method yields a more balanced dynamic. Explorative tokens are sampled across a broad range of entropy values, from high probability to low probability states. This balance prevents their probabilities from collapsing under negative feedback while keeping them informative for reasoning. As a result, tokens like “wait” remain viable options throughout training, allowing the model to explore alternative reasoning paths rather than overfitting to fixed usage patterns.

Figure 7 further compares the frequency of explorative tokens (“but”, “wait”, “perhaps”, “alternatively”, and “however”) under GRPO and Lp-Reg. Our method consistently maintains a higher fraction of these tokens, demonstrating that Lp-Reg not only broadens their probability–entropy distribution but also sustains their practical use throughout training.

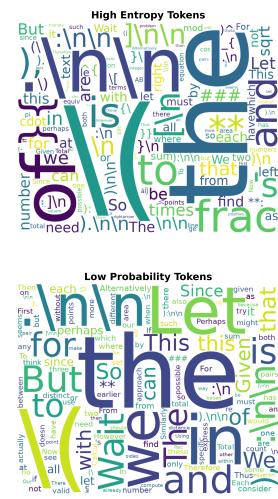


Figure 5: The word cloud statistics.

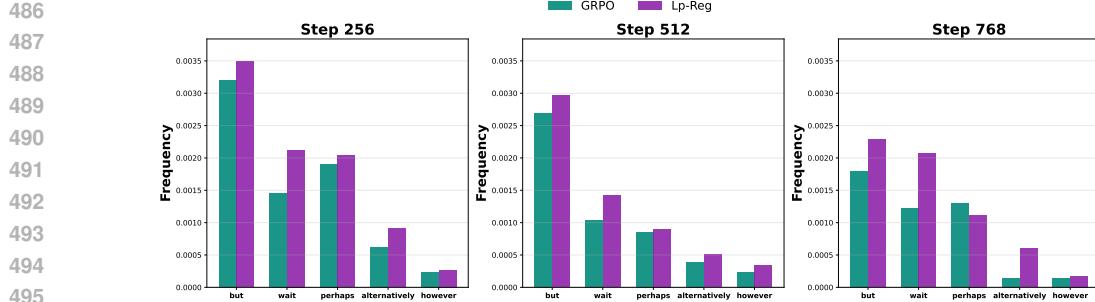


Figure 7: Frequency of explorative tokens during training.

### 6.3 PROBABILISTIC DISTINCTION BETWEEN REASONING SPARKS AND NOISE

Our introduction established a challenge for a successful exploration strategy: it must protect valuable, low-probability *reasoning sparks* without simultaneously amplifying the destructive effects of irrelevant noise. This raises a critical question: is there a systemic, observable difference between these two classes of tokens within the low-probability range that our method can exploit?

To investigate this, we analyze the next-token prediction distribution throughout the training process. Due to storage limitations, we focus our analysis on the top-64 most probable tokens, but specifically examine those within a low-probability range (0 to 0.1) to isolate the phenomenon from high-probability tokens. Figure 8 plots the average probability of two distinct classes of tokens over time: a group of meaningful exploratory tokens (e.g., “wait”, “perhaps”) and a group of irrelevant tokens (e.g., “cost”, “fine”).

The results reveal a clear and consistent statistical distinction: across all training stages, the average next-token probability of meaningful exploratory tokens is persistently higher than that of irrelevant tokens. It can be attributed to the intrinsic confidence of LLMs (Nguyen et al., 2025; Xu et al., 2025; Fu et al., 2025b). This persistent probabilistic gap provides the foundational justification for our Lp-Reg design. It suggests that while a perfect separation is not possible, a probability threshold  $\tau$ , as defined for our proxy distribution in Section 4.1, can serve as a principled filtering mechanism. By setting such a threshold, we can effectively filter out a substantial portion of the lowest-probability irrelevant tokens, which constitute destabilizing noise, while simultaneously retaining a majority of the valuable exploratory tokens that give rise to *reasoning sparks*. This allows Lp-Reg to focus its regularization on tokens that are more likely to be meaningful, providing a targeted and robust approach to preserving high-quality exploration.

## 7 CONCLUSION

In this work, we investigated the exploration collapse in Reinforcement Learning with Verifiable Rewards, identifying a key mechanism driving this failure: the systematic elimination of valuable, low-probability *reasoning sparks*. To address this, we introduced Low-probability Regularization (Lp-Reg), a method designed to selectively preserve these crucial exploratory pathways. Lp-Reg leverages the insight that *reasoning sparks* often exhibit higher relative probabilities than meaningless noise in their immediate predictive context. By filtering out the noise tokens and regularizing the policy towards the remainder, our method effectively protects valuable sparks from being extinguished. This focus on exploration quality over quantity enables stable on-policy training for around 3,000 steps, resulting in at least 2.66% test accuracy improvement over baselines and underscoring the importance of preserving the policy’s useful low-probability tail.



Figure 8: Probabilistic distinction between exploratory and irrelevant tokens across training steps in standard GRPO training.

## 540 REFERENCES

541

542 Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-  
543 tiveness of entropy minimization in llm reasoning, 2025. URL <https://arxiv.org/abs/2505.15134>.

544

545 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and  
546 Furu Wei. Reasoning with exploration: An entropy perspective on reinforcement learning for  
547 llms, 2025. URL <https://arxiv.org/abs/2506.14758>.

548

549 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen  
550 Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,  
551 Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning  
552 language models, 2025. URL <https://arxiv.org/abs/2505.22617>.

553

554 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,  
555 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,  
556 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao  
557 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,  
558 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,  
559 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,  
560 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang  
561 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai  
562 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,  
563 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,  
564 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,  
565 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,  
566 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng  
567 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing  
568 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen  
569 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong  
570 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,  
571 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-  
572 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia  
573 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng  
574 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong  
575 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,  
576 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,  
577 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying  
578 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda  
579 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,  
580 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu  
581 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-  
582 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

583

584 Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun  
585 Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous  
586 reinforcement learning system for language reasoning, 2025a. URL <https://arxiv.org/abs/2505.24298>.

587

588 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025b.  
589 URL <https://arxiv.org/abs/2508.15260>.

590

591 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cogni-  
592 tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025.  
593 URL <https://arxiv.org/abs/2503.01307>.

594

595 Zitian Gao, Lynx Chen, Haoming Luo, Joey Zhou, and Bryan Dai. One-shot entropy minimization,  
596 2025. URL <https://arxiv.org/abs/2505.20282>.

597

598 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
599 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, and et al Alex Vaughan. The llama 3  
600 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

594 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,  
 595 Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:  
 596 A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific  
 597 problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the*  
 598 *62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-*  
 599 *pers)*, pp. 3828–3850, Bangkok, Thailand, August 2024a. Association for Computational Lin-  
 600 *guistics*. doi: 10.18653/v1/2024.acl-long.211. URL <https://aclanthology.org/2024.acl-long.211/>.

602 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi  
 603 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.  
 604 Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual mul-  
 605 timodal scientific problems, 2024b.

606 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang  
 607 Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An,  
 608 Yang Liu, and Yahui Zhou. Skywork open reasoner 1 technical report, 2025. URL <https://arxiv.org/abs/2505.22312>.

611 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn  
 612 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.  
 613 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*  
 614 *Track (Round 2)*, 2021. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

615 Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforce-  
 616 ment learning with on-policy tree search, 2025. URL <https://arxiv.org/abs/2506.11902>.

618 Xiao Hu, Xingyu Lu, Liyuan Mao, YiFan Zhang, Tianke Zhang, Bin Wen, Fan Yang, Tingting Gao,  
 619 and Guorui Zhou. Why distillation can outperform zero-rl: The role of flexible reasoning, 2025.  
 620 URL <https://arxiv.org/abs/2505.21067>.

621 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando  
 622 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free  
 623 evaluation of large language models for code, 2024. URL <https://arxiv.org/abs/2403.07974>.

625 Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,  
 626 Vinay Venkatesh Ramasesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo,  
 627 Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-  
 628 soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,  
 629 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL  
 630 <https://openreview.net/forum?id=IFXTZERXdM7>.

632 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min  
 633 Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL <https://arxiv.org/abs/2503.20783>.

635 Dakuan Lu, Xiaoyu Tan, Rui Xu, Tianchu Yao, Chao Qu, Wei Chu, Yinghui Xu, and Yuan Qi.  
 636 Scp-116k: A high-quality problem-solution dataset and a generalized pipeline for automated ex-  
 637 traction in the higher education science domain, 2025. URL <https://arxiv.org/abs/2501.15587>.

639 MAA. American invitational mathematics examination (AIME). Mathematics Competition Series,  
 640 n.d. URL <https://maa.org/math-competitions/aime>.

642 MiniMax, :, Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan,  
 643 Changqing Yu, Chao Wang, Cheng Zhu, Chengjun Xiao, Chengyu Du, Chi Zhang, Chu Qiao,  
 644 Chunhao Zhang, Chunhui Du, Congchao Guo, Da Chen, Deming Ding, Dianjun Sun, Dong Li,  
 645 Enwei Jiao, Haigang Zhou, Haimo Zhang, Han Ding, Haohai Sun, Haoyu Feng, Huaguang Cai,  
 646 Haichao Zhu, Jian Sun, Jiaqi Zhuang, Jiaren Cai, Jiayuan Song, Jin Zhu, Jingyang Li, Jinhao  
 647 Tian, Jinli Liu, Junhao Xu, Junjie Yan, Junteng Liu, Junxian He, Kaiyi Feng, Ke Yang, Kecheng  
 Xiao, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Li, Lin Zheng, Linge Du, Lingyu

648 Yang, Lunbin Zeng, Minghui Yu, Mingliang Tao, Mingyuan Chi, Mozhi Zhang, Mujie Lin, Nan  
 649 Hu, Nongyu Di, Peng Gao, Pengfei Li, Pengyu Zhao, Qibing Ren, Qidi Xu, Qile Li, Qin Wang,  
 650 Rong Tian, Ruitao Leng, Shaoxiang Chen, Shaoyu Chen, Shengmin Shi, Shitong Weng, Shuchang  
 651 Guan, Shuqi Yu, Sichen Li, Songquan Zhu, Tengfei Li, Tianchi Cai, Tianrun Liang, Weiyu Cheng,  
 652 Weize Kong, Wenkai Li, Xiancai Chen, Xiangjun Song, Xiao Luo, Xiao Su, Xiaobo Li, Xiaodong  
 653 Han, Xinzhu Hou, Xuan Lu, Xun Zou, Xuyang Shen, Yan Gong, Yan Ma, Yang Wang, Yiqi  
 654 Shi, Yiran Zhong, Yonghong Duan, Yongxiang Fu, Yongyi Hu, Yu Gao, Yuanxiang Fan, Yufeng  
 655 Yang, Yuhao Li, Yulin Hu, Yunan Huang, Yunji Li, Yunzhi Xu, Yuxin Mao, Yuxuan Shi, Yuze  
 656 Wenren, Zehan Li, Zelin Li, Zhanxu Tian, Zhengmao Zhu, Zhenhua Fan, Zhenzhen Wu, Zhichao  
 657 Xu, Zhihang Yu, Zhiheng Lyu, Zhuo Jiang, Zibo Gao, Zijia Wu, Zijian Song, and Zijun Sun.  
 658 Minimax-m1: Scaling test-time compute efficiently with lightning attention, 2025. URL <https://arxiv.org/abs/2506.13585>.  
 659

660 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke  
 661 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time  
 662 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.  
 663

664 Kevin Murphy. Reinforcement learning: an overview. *arXiv preprint arXiv:2412.05265*, 2024.  
 665

666 Minh Nhat Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid  
 667 Schwartz-Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs, 2025.  
 668 URL <https://arxiv.org/abs/2407.01082>.  
 669

670 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden  
 671 Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,  
 672 Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally  
 673 Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,  
 674 Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-  
 675 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botaao Hao,  
 676 Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary  
 677 Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,  
 678 Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel  
 679 Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,  
 680 Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-  
 681 abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,  
 682 Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred  
 683 von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace  
 684 Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-  
 685 drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,  
 686 Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,  
 687 Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,  
 688 Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,  
 689 Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan  
 690 Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singh, Karina Nguyen, Karl  
 691 Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,  
 692 Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam  
 693 Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-  
 694 draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,  
 695 Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet  
 696 Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael  
 697 Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles  
 698 Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil  
 699 Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg  
 700 Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,  
 701 Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar  
 Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan  
 Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-  
 wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,  
 Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph

702 Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-  
 703 lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,  
 704 Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna  
 705 Elooundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi  
 706 Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,  
 707 Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.  
 708 Openai o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

709 Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reason-  
 710 ing dynamics with mutual information: Thinking tokens are information peaks in llm reasoning,  
 711 2025. URL <https://arxiv.org/abs/2506.02867>.

712 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien  
 713 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a  
 714 benchmark. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

715 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 716 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

717 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 718 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of  
 719 mathematical reasoning in open language models, 2024a. URL <https://arxiv.org/abs/2402.03300>.

720 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 721 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 722 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024b.

723 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,  
 724 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint  
 725 arXiv: 2409.19256*, 2024.

726 Zhenpeng Su, Leiyu Pan, Xue Bai, Dening Liu, Guanting Dong, Jiaming Huang, Wenping Hu,  
 727 Fuzheng Zhang, Kun Gai, and Guorui Zhou. Klear-reasoner: Advancing reasoning capability via  
 728 gradient-preserving clipping policy optimization, 2025. URL <https://arxiv.org/abs/2508.07629>.

729 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun  
 730 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming  
 731 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han  
 732 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze  
 733 Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin  
 734 Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi,  
 735 Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong,  
 736 Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao,  
 737 Weimin Xiong, Weiran He, Weixiao Huang, Weixin Xu, Wenhao Wu, Wenyang He, Xianghui  
 738 Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles  
 739 Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng  
 740 Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang,  
 741 Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang,  
 742 Ziyao Xu, Zonghan Yang, and Zongyu Lin. Kimi k1.5: Scaling reinforcement learning with llms,  
 743 2025. URL <https://arxiv.org/abs/2501.12599>.

744 Jiakang Wang, Runze Liu, Fuzheng Zhang, Xiu Li, and Guorui Zhou. Stabilizing knowledge, pro-  
 745 moting reasoning: Dual-token constraints for rlvr. *arXiv preprint arXiv:2507.15778*, 2025a.

746 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,  
 747 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen  
 748 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive  
 749 effective reinforcement learning for llm reasoning, 2025b. URL <https://arxiv.org/abs/2506.01939>.

756    Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes  
 757    reinforcement learning scaling, 2025c. URL <https://arxiv.org/abs/2506.20512>.  
 758

759    Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc  
 760    Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,  
 761    2023. URL <https://arxiv.org/abs/2201.11903>.

762    Zenan Xu, Zexuan Qiu, Guanhua Huang, Kun Li, Siheng Li, Chenchen Zhang, Kejiao Li, Qi Yi,  
 763    Yuhao Jiang, Bo Zhou, Fengzong Lian, and Zhanhui Kang. Adaptive termination for multi-  
 764    round parallel reasoning: An universal semantic entropy-guided framework, 2025. URL <https://arxiv.org/abs/2507.06829>.  
 765

766    An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang  
 767    Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,  
 768    Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin  
 769    Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,  
 770    Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui  
 771    Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang  
 772    Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger  
 773    Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan  
 774    Qiu. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.  
 775

776    Zhihe Yang, Xufang Luo, Zilong Wang, Dongqi Han, Zhiyuan He, Dongsheng Li, and Yunjian Xu.  
 777    Do not let low-probability tokens over-dominate in rl for llms, 2025b. URL <https://arxiv.org/abs/2505.12929>.  
 778

779    Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,  
 780    Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-  
 781    ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,  
 782    Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao  
 783    Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-  
 784    uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL  
 785    <https://arxiv.org/abs/2503.14476>.  
 786

787    Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi  
 788    Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,  
 789    Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang  
 790    Zhu, Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and  
 791    reliable reinforcement learning for advanced reasoning tasks, 2025. URL <https://arxiv.org/abs/2504.05118>.  
 792

793    Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan  
 794    Huang, Lei Cui, Qixiang Ye, Fang Wan, and Furu Wei. Geometric-mean policy optimization,  
 795    2025. URL <https://arxiv.org/abs/2507.20673>.  
 796

797    Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,  
 798    Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-  
 799    timization, 2025a. URL <https://arxiv.org/abs/2507.18071>.  
 800

801    Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li, Zhou-  
 802    futu Wen, Chenghua Lin, Wenhao Huang, et al. First return, entropy-eliciting explore. *arXiv*  
 803    preprint *arXiv:2507.07017*, 2025b.  
 804

805    Ömer Veysel Çağatan and Barış Akgün. Failure modes of maximum entropy rlhf, 2025. URL  
 806    <https://arxiv.org/abs/2509.20265>.  
 807

808

809

---

# Appendix

---

|                                                                                 |           |
|---------------------------------------------------------------------------------|-----------|
| <b>A Large Language Models Usage Statement</b>                                  | <b>16</b> |
| <b>B Details of Experiments</b>                                                 | <b>16</b> |
| B.1 Training Dynamics on Qwen2.5-32B . . . . .                                  | 16        |
| B.2 Further Ablation Study . . . . .                                            | 16        |
| B.3 Guidelines for Hyperparameter Selection . . . . .                           | 17        |
| B.4 Hyperparameter Sensitivity Analysis . . . . .                               | 18        |
| B.5 Per-Benchmark Peak Performance Analysis . . . . .                           | 19        |
| B.6 Generalization Across Models and Domains . . . . .                          | 20        |
| B.7 Computational Overhead Analysis . . . . .                                   | 21        |
| <b>C Further Analysis</b>                                                       | <b>23</b> |
| C.1 Theoretical Discussion on Low-Probability vs. High-Entropy Tokens . . . . . | 23        |
| C.2 Trajectory-Level Token Analysis . . . . .                                   | 25        |
| C.3 Discussion on Low-Probability Tokens . . . . .                              | 26        |
| C.4 Details of Sampling Probability Density . . . . .                           | 27        |
| C.5 Details of Probability-Entropy Distribution . . . . .                       | 28        |
| C.6 Training Dynamics of Regularized Token . . . . .                            | 28        |
| C.7 Case Study . . . . .                                                        | 28        |

## A LARGE LANGUAGE MODELS USAGE STATEMENT

In adherence to the ICLR 2026 policy, we disclose the use of a large language model (LLM) as a general-purpose writing assistant during the preparation of this manuscript. The LLM’s role was strictly limited to improving the clarity, grammar, and readability of our author-written text, such as spell-checking and rephrasing sentences for better flow. Crucially, the LLM did not contribute to any of the core scientific aspects of this work, including research ideation, experimental design, data analysis, or the generation of novel insights. The authors have carefully reviewed all LLM-modified text and take full responsibility for the intellectual substance and final content of this paper.

## B DETAILS OF EXPERIMENTS

### B.1 TRAINING DYNAMICS ON QWEN2.5-32B

The training dynamics of Lp-Reg and other state-of-the-art RLVR methods on the Qwen2.5-32B base model are presented in Figure 9. The results show that Lp-Reg maintains a comparable performance in test accuracy throughout the training process, underscoring the benefits of our low-probability token regularization strategy for preventing exploration collapse.

### B.2 FURTHER ABLATION STUDY

To verify that targeting low-probability tokens is superior to the conventional wisdom of targeting high entropy, we conduct a comparison between the high-entropy token regularization (highest  $\mathcal{H}$ )

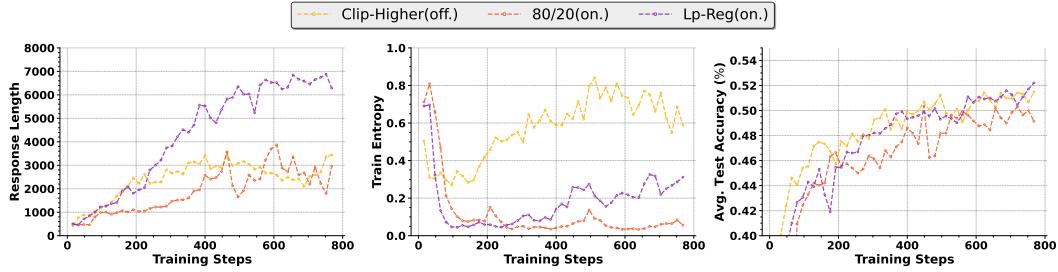


Figure 9: Training dynamics on the Qwen2.5-32B-Base model. To best illustrate the performance differences, we compare the top-performing methods. Lp-Reg demonstrates superior and more stable performance throughout training.

and the low-probability regularization (lowest  $\pi_\theta$ , vanilla Lp-Reg). Instead of applying Lp-Reg to the lowest 1% probability tokens, we apply an identical regularization mechanism to the tokens with the highest 1% entropy. As shown in Figure 10, this approach not only fails to improve performance but also fails to sustain high entropy, which collapses after an initial spike. This result reinforces our claim from the Introduction: high entropy is a poor proxy for valuable exploration. As our analysis in Section 6.1 further corroborates, high-entropy tokens are often common function words or formatting characters, not true *Reasoning Sparks*. Regularizing them pollutes the learning signal without protecting the structured, low-probability reasoning paths necessary for progress.

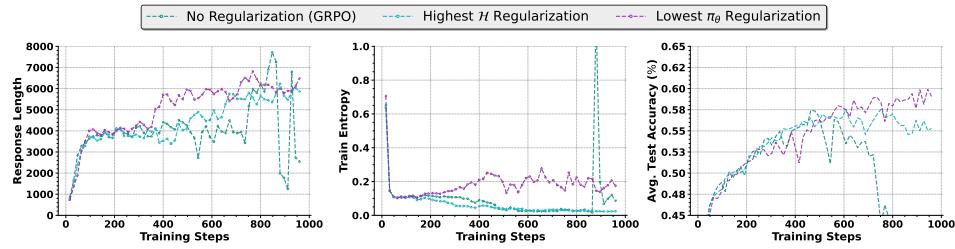


Figure 10: Ablation study comparing low-probability token regularization versus high-entropy token regularization for Lp-Reg (on-policy) on the Qwen3-14B-Base model.

### B.3 GUIDELINES FOR HYPERPARAMETER SELECTION

In this section, we provide a data-driven guideline for selecting the initial values of the two core hyperparameters in Lp-Reg: the low-probability percentile  $\rho$  and the min-p ratio  $\kappa$ . Here,  $\rho$  determines the regularization threshold  $\delta_\rho^B$ , while  $\kappa$  defines the noise filtering threshold  $\tau = \kappa \cdot \max_{o' \in V} \pi_\theta(o'| \cdot)$ . Instead of heuristic guessing, we derive the rational ranges for these parameters by analyzing the training dynamics of the standard GRPO baseline.

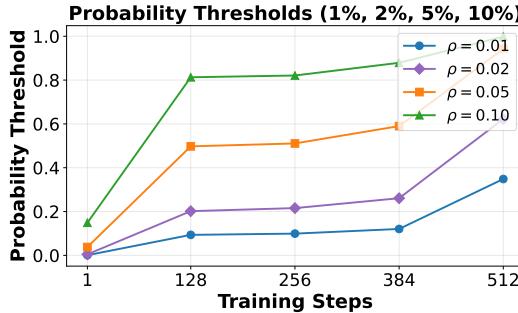
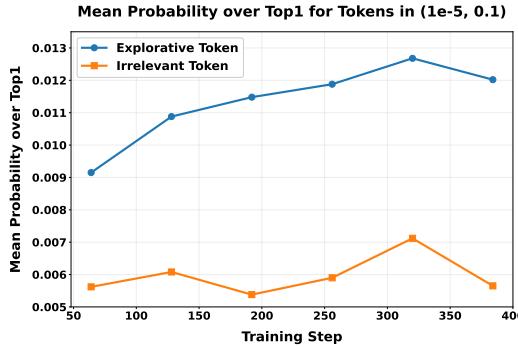


Figure 11: Evolution of probability thresholds for different percentiles ( $\rho$ ) during standard GRPO training. The bottom 1% ( $\rho = 0.01$ ) consistently captures the low-probability tail ( $< 0.1$ ), whereas higher percentiles include high-confidence tokens.

**Selection of  $\rho$ .** Figure 11 visualizes the upper probability bound of tokens falling within the lowest  $\rho$  percentile during standard GRPO training. As illustrated, RLVR training causes the policy

918 distribution to collapse, concentrating mass on high-probability tokens. From step 128 to 384, the  
 919 probability of tokens in the bottom 1% consistently remains in the strictly low-probability regime  
 920 ( $< 0.1$ ). In contrast, tokens in the bottom 5% span a much wider range, reaching probabilities as  
 921 high as 0.5, which are no longer low-probability candidates requiring protection. Consequently, set-  
 922 ting  $\rho \approx 1\%$  (0.01) is a logical and robust choice to target the true tail of the distribution without  
 923 inadvertently regularizing high-probability tokens. The sensitivity analysis in Figure 13 confirms  
 924 that performance is stable around this empirically derived value.



938 Figure 12: Comparison of relative probability ratios between exploratory tokens and meaningless  
 939 noise tokens during training. A clear gap exists, supporting the selection of  $\kappa \approx 0.01$ .

941 **Selection of  $\kappa$ .** Figure 12 compares the average relative probability ratio  
 942  $(\frac{\pi_{\theta}(o|\cdot)}{\max_{o' \in V} \pi_{\theta}(o'|\cdot)})$  between a set of meaningful exploratory tokens ( $S_{explore} =$   
 943  $\{\text{"but", "wait", "perhaps", "alternatively", "however"}\}$ ) and a set of meaningless noise tokens  
 944 ( $S_{noise} = \{\text{"cost", "fine", "balanced", "ere", "trans"}\}$ ) that are irrelevant with the reasoning task.  
 945 The statistics, derived from standard GRPO training, reveal a distinct and persistent separability  
 946 gap: the relative probability of meaningful exploratory tokens consistently exceeds that of noise  
 947 tokens throughout the training process. This empirical gap justifies setting the min-p ratio  $\kappa$   
 948 (which determines the noise threshold  $\tau = \kappa \cdot \max_{o' \in V} \pi_{\theta}(o'|\cdot)$ ) within this separation region.  
 949 As shown in the figure, most noise tokens typically fall below a ratio of 0.01, while exploratory  
 950 tokens remain above it. Therefore, values of  $\kappa$  around 0.01 (or slightly higher) serve as effective  
 951 initial settings to filter noise while preserving reasoning sparks. The robustness of Lp-Reg with  
 952  $\kappa \in \{0.01, 0.02, 0.03\}$ , as verified in Section B.4, further validates this selection strategy.

#### 954 B.4 HYPERPARAMETER SENSITIVITY ANALYSIS

956 In this section, we analyze the sensitivity of two core hyperparameters in Lp-Reg to demonstrate the  
 957 robustness of our method: the low-probability percentile  $\rho$  and the min-p ratio  $\kappa$ . The results are  
 958 presented in Figure 13.

959 The parameter  $\rho$ , as defined in our objective function (Equation 6), determines the percentile thresh-  
 960 old for identifying low-probability tokens that are candidates for regularization. A higher  $\rho$  means  
 961 a wider range of tokens are protected. As shown in the top panel of Figure 13, we evaluated  $\rho$  with  
 962 values of 0.005, 0.010, and 0.015. The training trajectories for average test accuracy are nearly iden-  
 963 tical, and the final performance across all three settings is highly comparable. This indicates that  
 964 Lp-Reg is not overly sensitive to the precise scope of tokens being protected within this reasonable  
 965 range.

966 The hyperparameter  $\kappa$  controls the adaptiveness of the min-p filtering threshold, which defines the  
 967 boundary for what is treated as noise. A smaller  $\kappa$  results in a more conservative filtering strategy,  
 968 removing fewer tokens. Our sensitivity analysis for  $\kappa$ , presented in the bottom panel of Figure 13,  
 969 shows a similar trend of stability. Across the tested values of 0.01, 0.02, and 0.03, the training curves  
 970 and final performance remain consistently high and tightly clustered. Taken together, these results  
 971 demonstrate the robustness of Lp-Reg. The method’s effectiveness is not contingent on extensive,  
 972 fine-grained hyperparameter tuning, highlighting its practical applicability.

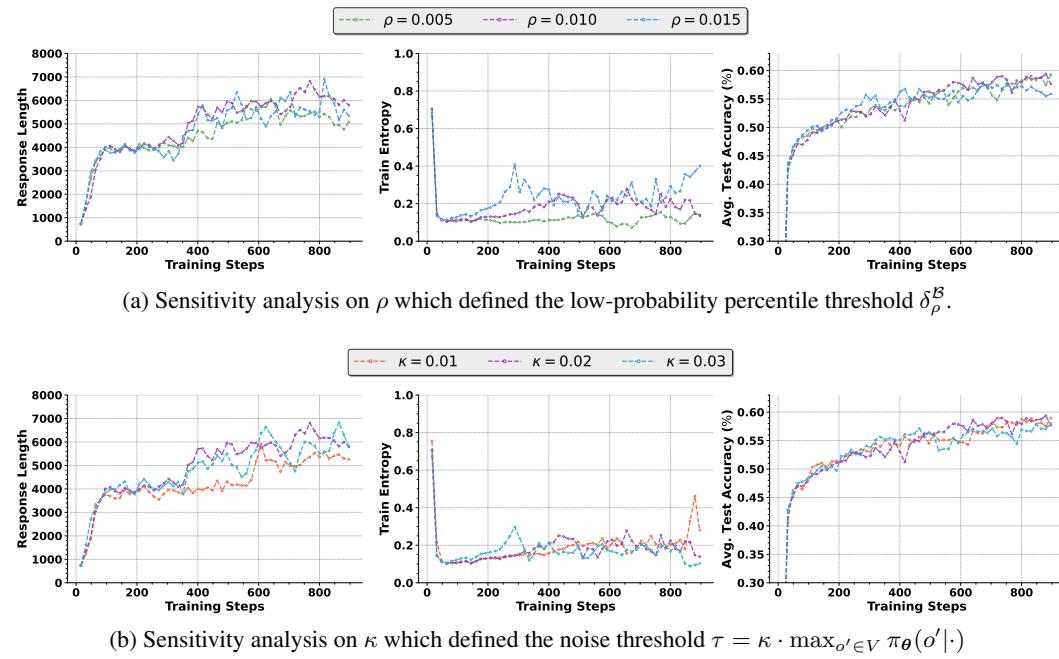


Figure 13: Training dynamics of Lp-Reg method with different hyperparameters.

| Methods                              | AIME24                          | AIME25                          | Math-500                       | Minerva                 | Olympiad Bench                 |
|--------------------------------------|---------------------------------|---------------------------------|--------------------------------|-------------------------|--------------------------------|
| <b>Qwen2.5-32B-Base</b>              |                                 |                                 |                                |                         |                                |
| GRPO (Shao et al., 2024a) (off.)     | 30.63                           | 23.75                           | 88.00                          | 46.69                   | 56.00                          |
| GSPO (Zheng et al., 2025a) (off.)    | 36.88                           | 26.46                           | 89.00                          | <b>49.63</b>            | 56.30                          |
| Clip-Higher (Yu et al., 2025) (off.) | 39.58                           | <b>32.71</b>                    | 88.80                          | 48.90                   | 58.22                          |
| KL-Cov (Cui et al., 2025) (off.)     | 36.88                           | 29.38                           | 89.00                          | 48.16                   | 56.89                          |
| 80/20 (Wang et al., 2025b) (off.)    | <u>40.62</u>                    | 30.21                           | <u>90.80</u>                   | 48.16                   | 58.81                          |
| Lp-Reg (off.)                        | 37.71                           | 26.88                           | 90.20                          | 43.38                   | 60.15                          |
| GRPO (Shao et al., 2024a) (on.)      | 32.50                           | 23.54                           | 88.80                          | 47.79                   | <u>60.30</u>                   |
| GRPO + Entropy Loss (on.)            | 3.75                            | 2.50                            | 60.80                          | 32.72                   | 22.22                          |
| 80/20 (Wang et al., 2025b) (on.)     | 35.00                           | 28.54                           | 90.00                          | 47.79                   | 58.81                          |
| Lp-Reg (on.)                         | <b>45.00</b> <sub>+10.78%</sub> | <b>32.71</b> <sub>+0.00%</sub>  | <b>93.00</b> <sub>+2.42%</sub> | 48.16 <sub>-2.96%</sub> | <b>64.15</b> <sub>+6.38%</sub> |
| <b>Qwen3-14B-Base</b>                |                                 |                                 |                                |                         |                                |
| GRPO (Shao et al., 2024a) (off.)     | 35.83                           | 27.71                           | 91.00                          | 48.16                   | 59.56                          |
| GSPO (Zheng et al., 2025a) (off.)    | 43.75                           | <u>36.67</u>                    | 91.60                          | 50.74                   | 61.04                          |
| Clip-Higher (Yu et al., 2025) (off.) | 44.79                           | 33.75                           | <b>95.00</b>                   | 49.63                   | 65.19                          |
| KL-Cov (Cui et al., 2025) (off.)     | <u>49.38</u>                    | 35.83                           | 94.20                          | <b>51.84</b>            | 64.44                          |
| 80/20 (Wang et al., 2025b) (off.)    | 44.17                           | 34.58                           | 92.80                          | 50.37                   | 62.81                          |
| Lp-Reg (off.)                        | 48.75                           | 34.79                           | 94.40                          | 49.63                   | <u>65.78</u>                   |
| GRPO (Shao et al., 2024a) (on.)      | 46.04                           | 35.42                           | 93.80                          | 50.37                   | 65.63                          |
| GRPO + Entropy Loss (on.)            | 37.29                           | 28.54                           | 90.60                          | 48.53                   | 57.93                          |
| 80/20 (Wang et al., 2025b) (on.)     | 47.29                           | 35.00                           | 94.00                          | 50.37                   | <u>65.78</u>                   |
| Lp-Reg (on.)                         | <b>51.88</b> <sub>+5.06%</sub>  | <b>40.62</b> <sub>+10.77%</sub> | <b>95.00</b> <sub>+0.00%</sub> | 51.47 <sub>-0.71%</sub> | <b>70.37</b> <sub>+6.98%</sub> |

Table 3: Per-benchmark peak performance on five mathematical reasoning benchmarks. Note that the scores reported represent the maximum value achieved for each specific benchmark individually; thus, scores within a single row may originate from different training checkpoints. Best scores are **bolded** while second-best scores are underlined. The relative accuracy improvement of Lp-Reg over the next best method is indicated as a subscript.

## B.5 PER-BENCHMARK PEAK PERFORMANCE ANALYSIS

In Section 5.2, we reported performance based on a single checkpoint selected for the best average test accuracy across five mathematical benchmarks. However, aggregating results can obscure the model’s peak potential on individual tasks. To address this, we present the per-benchmark

best scores in Table 3. As shown, our on-policy Lp-Reg achieves the highest peak scores on all benchmarks with the exception of Minerva. Even on Minerva, where Lp-Reg(on.) is not the best performer, the gap is marginal: on Qwen2.5-32B-Base, it trails the highest score by only 1.47 percentage points (a relative difference of  $-2.96\%$ ). Conversely, the gains on other benchmarks are substantial, particularly on the most challenging reasoning tasks such as AIME24, AIME25, and Olympiad Bench. Notably, on Qwen2.5-32B-Base, Lp-Reg(on.) outperforms the second-best method, 80/20(off.), by a relative margin of 10.78% on AIME24. Similarly, on Qwen3-14B-Base, it achieves a 10.77% relative improvement on AIME25. These significant improvements on the hardest benchmarks underscore the effectiveness of Lp-Reg in solving complex reasoning problems.

We further evaluate the exploration capability of our method by comparing the best pass@k rates. As detailed in Table 4, Lp-Reg(on.) consistently achieves the highest pass@k scores on both AIME24 and AIME25 across both model scales, often by a wide margin. For the Qwen2.5-32B model, Lp-Reg(on.) demonstrates a minimum relative improvement of 5.97% in pass@k metrics on AIME24. Furthermore, on the Qwen3-14B model, it shows impressive gains on AIME25, achieving relative improvements ranging from 7.81% to 9.33%. These robust pass@k results provide strong evidence that Lp-Reg effectively sustains meaningful exploration throughout long-horizon RLVR training, resulting in more diverse and successful reasoning rollouts.

| Methods                              | AIME24                         |                                |                                | AIME25                         |                                |                                |
|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                                      | Pass@2                         | Pass@4                         | Pass@8                         | Pass@2                         | Pass@4                         | Pass@8                         |
| <b>Qwen2.5-32B-Base</b>              |                                |                                |                                |                                |                                |                                |
| GRPO (Shao et al., 2024a) (off.)     | 40.06                          | 49.87                          | 58.10                          | 29.11                          | 36.25                          | 44.75                          |
| GSPO (Zheng et al., 2025a) (off.)    | 46.83                          | 57.62                          | 66.78                          | 32.86                          | 38.84                          | 45.04                          |
| Clip-Higher (Yu et al., 2025) (off.) | 48.11                          | 57.80                          | 68.32                          | <u>35.92</u>                   | <u>43.27</u>                   | <u>51.29</u>                   |
| KL-Cov (Cui et al., 2025) (off.)     | 46.89                          | 55.94                          | 64.61                          | 35.44                          | 41.60                          | 49.39                          |
| 80/20 (Wang et al., 2025b) (off.)    | 48.97                          | 56.52                          | 64.29                          | 34.08                          | 41.35                          | 49.47                          |
| Lp-Reg (off.)                        | <b>49.69</b>                   | <b>59.75</b>                   | <b>69.21</b>                   | 33.75                          | 42.44                          | 50.80                          |
| GRPO (Shao et al., 2024a) (on.)      | 42.08                          | 51.74                          | 61.95                          | 29.19                          | 35.83                          | 43.20                          |
| GRPO + Entropy Loss (on.)            | 6.89                           | 11.88                          | 19.08                          | 4.00                           | 6.06                           | 10.11                          |
| 80/20 (Wang et al., 2025b) (on.)     | 45.06                          | 55.33                          | 63.40                          | 35.28                          | 41.64                          | 48.54                          |
| Lp-Reg (on.)                         | <b>53.33</b> <sub>+7.33%</sub> | <b>63.50</b> <sub>+6.28%</sub> | <b>73.34</b> <sub>+5.97%</sub> | <b>38.28</b> <sub>+6.57%</sub> | <b>45.52</b> <sub>+5.20%</sub> | <b>53.12</b> <sub>+3.57%</sub> |
| <b>Qwen3-14B-Base</b>                |                                |                                |                                |                                |                                |                                |
| GRPO (Shao et al., 2024a) (off.)     | 45.31                          | 54.81                          | 64.09                          | 34.14                          | 41.00                          | 48.29                          |
| GSPO (Zheng et al., 2025a) (off.)    | 54.11                          | 63.67                          | 71.05                          | <u>44.39</u>                   | <u>51.97</u>                   | <u>59.67</u>                   |
| Clip-Higher (Yu et al., 2025) (off.) | 56.00                          | <u>66.85</u>                   | <u>74.91</u>                   | 40.19                          | 48.31                          | 57.35                          |
| KL-Cov (Cui et al., 2025) (off.)     | <u>59.47</u>                   | 66.84                          | 74.52                          | 42.22                          | 49.98                          | 58.65                          |
| 80/20 (Wang et al., 2025b) (off.)    | 57.14                          | 66.25                          | 72.05                          | 41.50                          | 49.26                          | 59.03                          |
| Lp-Reg (off.)                        | 58.08                          | 64.23                          | 71.41                          | 40.86                          | 46.30                          | 52.39                          |
| GRPO (Shao et al., 2024a) (on.)      | 55.19                          | 63.93                          | 70.48                          | 42.86                          | 49.90                          | 57.85                          |
| GRPO + Entropy Loss (on.)            | 47.44                          | 57.53                          | 66.34                          | 34.86                          | 41.62                          | 48.09                          |
| 80/20 (Wang et al., 2025b) (on.)     | 56.97                          | 63.66                          | 71.66                          | 42.28                          | 49.76                          | 57.39                          |
| Lp-Reg (on.)                         | <b>62.67</b> <sub>+5.38%</sub> | <b>71.04</b> <sub>+6.27%</sub> | <b>79.85</b> <sub>+6.59%</sub> | <b>48.53</b> <sub>+9.33%</sub> | <b>56.03</b> <sub>+7.81%</sub> | <b>64.95</b> <sub>+8.85%</sub> |

Table 4: Per-benchmark peak pass@k results on the challenging AIME24 and AIME25 benchmarks. Similar to Table 3, **scores reported denote the peak pass@k rate for each metric separately, implying they may be derived from different checkpoints**. Best scores are **bolded** and second-best scores are underlined. The relative improvement of Lp-Reg is indicated as a subscript.

## B.6 GENERALIZATION ACROSS MODELS AND DOMAINS

To further validate the generalizability of Lp-Reg, we extend our evaluation across different model architectures and domains.

**Extension to Llama3 Architecture** To assess effectiveness across various model architectures, we conduct experiments on Llama3-OctoThinker-8B (Wang et al., 2025c), a mid-trained model derived from Llama3-8B-Base (Grattafiori et al., 2024). The vanilla Llama3 series is known to present significant challenges for RLVR (Gandhi et al., 2025; Liu et al., 2025). As presented in Table 5, our proposed Lp-Reg outperforms all other methods by a substantial margin. Specifically, in on-policy training, Lp-Reg(on.) achieves an absolute gain of 2.88% absolute accuracy over the second-best on-policy method, GRPO. For off-policy training, Lp-Reg(off.) demonstrates an even larger advantage, surpassing the nearest competing off-policy method by at least 3.62% absolute accuracy.

1080 These results strongly align with the findings observed on Qwen models, further highlighting the  
 1081 robustness of Lp-Reg across different foundational architectures.  
 1082

1083 **Domain Generalization: Science and Code** We also conduct comparative experiments across  
 1084 the science and code domains. For code generation, we train models on the AReaL-boba-2-RL-  
 1085 Code (Fu et al., 2025a) dataset and evaluate performance on the LCB-v5 (Jain et al., 2024) and  
 1086 LCB-v6 (Jain et al., 2024) benchmarks. For the science domain, the Qwen3-8B-Base model is  
 1087 trained on the SCP-116k (Lu et al., 2025) dataset, which covers biology, chemistry, and physics  
 1088 problems, and evaluated on the PhD-level GPQA-diamond (Rein et al., 2024) benchmark.  
 1089

1090 As shown in Table 6, Lp-Reg achieves the best overall performance in both the code and science  
 1091 domains. For the code generation task, Lp-Reg achieves the highest average score within both the on-  
 1092 policy and off-policy categories, respectively. On the challenging science task, Lp-Reg also demon-  
 1093 strates superior performance on the GPQA-diamond dataset, with Lp-Reg(on.) and Lp-Reg(off.)  
 1094 surpassing their respective baselines (GRPO(on.) and KL-Cov(off.)). The consistency of these  
 1095 improvements across mathematics, science, and code domains demonstrates the effectiveness and  
 1096 broad applicability of Lp-Reg.  
 1097

| Method                               | AIME24       | AIME25       | Math-500     | Minerva      | Olympiad Bench | Avg.         |
|--------------------------------------|--------------|--------------|--------------|--------------|----------------|--------------|
| <b>Llama3-OctoThinker-8B</b>         |              |              |              |              |                |              |
| GRPO (Shao et al., 2024a) (off.)     | 4.38         | 4.58         | 60.00        | 26.47        | 25.93          | 24.27        |
| GSPO (Zheng et al., 2025a) (off.)    | 4.58         | 2.50         | 58.80        | 29.41        | 25.33          | 24.13        |
| Clip-Higher (Yu et al., 2025) (off.) | 11.88        | 3.75         | 61.80        | 23.16        | 26.96          | 25.51        |
| KL-Cov (Cui et al., 2025) (off.)     | 7.71         | 4.58         | 55.00        | 23.16        | 22.96          | 22.68        |
| 80/20 (Wang et al., 2025b) (off.)    | 10.00        | 7.50         | 59.00        | 18.75        | 27.56          | 24.56        |
| Lp-Reg (off.) (ours)                 | 9.58         | 8.33         | 68.80        | 27.21        | 31.70          | 29.13        |
| GRPO (Shao et al., 2024a) (on.)      | <u>15.42</u> | <u>12.50</u> | <u>76.20</u> | <u>33.09</u> | <u>43.26</u>   | <u>36.09</u> |
| 80/20 (Wang et al., 2025b) (on.)     | 11.67        | 4.17         | 73.60        | 27.21        | 37.48          | 30.82        |
| Lp-Reg (on.) (ours)                  | <b>18.33</b> | <b>16.88</b> | <b>79.00</b> | <b>35.29</b> | <b>45.33</b>   | <b>38.97</b> |

1106  
 1107 Table 5: Main results on five mathematical reasoning benchmarks on **Llama3-OctoThinker-8B**.  
 1108 On-policy (on.) and off-policy (off.) training methods are highlighted with distinct colors. Bench-  
 1109 mark scores correspond to the same checkpoint that achieves the highest average test set accuracy  
 1110 across the whole training. Best scores are **bolded** while second-best scores are underlined.  
 1111

| Methods                             | LCB-v5       | Code LCB-v6  | Avg.         | Science      |
|-------------------------------------|--------------|--------------|--------------|--------------|
|                                     |              |              |              | GPQA-diamond |
| <b>Qwen3-8B-Base</b>                |              |              |              |              |
| GRPO (Shao et al., 2024a)(off.)     | 27.32        | 27.43        | 27.38        | 39.71        |
| GSPO (Zheng et al., 2025a)(off.)    | 28.29        | 26.57        | 27.43        | 47.16        |
| Clip-Higher (Yu et al., 2025)(off.) | 27.10        | 27.57        | 27.34        | 48.61        |
| KL-Cov (Cui et al., 2025)(off.)     | 28.74        | 27.43        | 28.09        | 49.18        |
| 80/20 (Wang et al., 2025b)(off.)    | 26.57        | 27.64        | 27.11        | 45.90        |
| Lp-Reg(off.)                        | <b>29.57</b> | 27.57        | <u>28.57</u> | <u>51.77</u> |
| GRPO (Shao et al., 2024a)(on.)      | 27.47        | <u>27.86</u> | 27.67        | 50.63        |
| 80/20 (Wang et al., 2025b)(on.)     | 28.29        | 27.36        | 27.83        | 48.42        |
| Lp-Reg(on.)                         | 28.89        | <b>29.00</b> | <b>28.95</b> | <b>52.97</b> |

1123 Table 6: Results on science and code domains on Qwen3-8B-Base. On-policy (on.) and off-policy  
 1124 (off.) training methods are highlighted with distinct colors. Benchmark scores correspond to the  
 1125 same checkpoint that achieves the highest average test set accuracy across the whole training. Best  
 1126 scores are **bolded** while second-best scores are underlined.  
 1127

## 1129 B.7 COMPUTATIONAL OVERHEAD ANALYSIS

1130 To analyze the computational overhead of Lp-Reg, particularly with large vocabularies, we analyze  
 1131 the complexity of its two core components: proxy distribution construction in Equation 5 and loss  
 1132 computation in Equation 6. We provide the PyTorch-style implementation for proxy distribution  
 1133 renormalization in Listing 1 and the Lp-Reg loss calculation in Listing 2.

```
1134
1135
1136 def forward_micro_batch(logits, kappa):
1137     # Standard Log-Softmax calculation
1138     log_prob = log_softmax(logits)
1139
1140     # 1. Calculate dynamic threshold
1141     prob = exp(log_prob)
1142     threshold = kappa * max(prob, axis=-1)
1143
1144     # 2. Filter noise
1145     mask = prob < threshold
1146     proxy_logits = logits.clone()
1147     proxy_logits[mask] = -infinity
1148
1149     # 3. Re-normalization
1150     proxy_log_prob = log_softmax(proxy_logits)
1151
1152     return log_prob, proxy_log_prob
```

Listing 1: Pseudo-code of Proxy Distribution Construction

```

1157
1158     def compute_policy_loss_lp_reg(self, log_prob, proxy_log_prob, advantage, **args):
1159         # Standard PPO/GRPO Loss
1160         ratio = exp(log_prob - old_log_prob)
1161         pg_loss = maximum(-ratio * advantage, -clip(ratio) *
1162                           advantage)
1163
1164         # 1. Identify tokens receiving negative feedback
1165         neg_idx = indices(advantage < 0)
1166
1167         # 2. Select bottom rho% lowest probability tokens
1168         k = int(len(neg_idx) * args["rho"])
1169         low_prob_idx = topk(log_prob[neg_idx], k=k, largest=False)
1170
1171         # 3. Apply Regularization
1172         mask = log_prob[low_prob_idx] < proxy_log_prob[low_prob_idx]
1173         reg_idx = low_prob_idx[mask]
1174
1175         # 4. Calculate KL penalty term
1176         pg_loss[reg_idx] += args["ppo_kl_coef"] * kl_penalty(
1177             log_prob[reg_idx], proxy_log_prob[reg_idx])
1178
1179     return pg_loss.mean()

```

Listing 2: Pseudo-code of Lp-Reg Loss Calculation

1182 **Proxy Distribution Renormalization:** As shown in Listing 1, the renormalization process involves  
 1183 computing the maximum probability and re-evaluating log-probabilities. While these operations  
 1184 scale linearly with the vocabulary size  $\mathcal{O}(|V|)$ , they are structurally identical to the standard Soft-  
 1185 max and Log-Softmax operations already required by the base model. These element-wise vector  
 1186 operations are highly parallelizable on GPUs and are memory-bandwidth bound rather than  
 1187 compute-bound. Consequently, their cost is negligible compared to the  $\mathcal{O}(d_{model}^2)$  complexity of  
 the Transformer’s matrix multiplications, regardless of the vocabulary size.

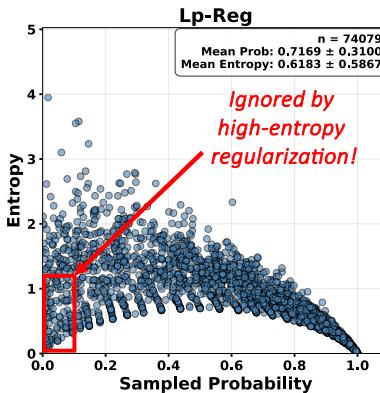
1188  
 1189 **Loss Computation:** The regularization term requires identifying the lowest-probability tokens,  
 1190 which involves a Top-K selection (Listing 2). The computational complexity is  $\mathcal{O}(N \log K)$  (us-  
 1191 ing a heap) or  $\mathcal{O}(N)$  (using QuickSelect), where  $N$  is the total number of tokens in a micro-batch  
 1192 (typically  $\approx 30,000$ ) and  $K = \rho \cdot N$  ( $\rho \approx 0.01$ ) is the number of selected tokens. Given that  $N$   
 1193 is relatively small and the operation is performed only once per optimization step (not during every  
 1194 inference step), this sorting overhead is computationally trivial.

1194 **Empirical Verification:** We empirically validate this analysis by comparing the training runtime  
 1195 of GRPO and Lp-Reg in Table 7. To ensure a strictly fair comparison, we loaded checkpoints at  
 1196 256, 512, and 768 steps and executed exactly one training update for each method under identical  
 1197 conditions of the same rollout data. The results show that Lp-Reg introduces a marginal overhead of  
 1198 approximately  $0.3\% \sim 0.5\%$ . This confirms that Lp-Reg is computationally lightweight and does  
 1199 not affect the scalability of training.

1200  
 1201  
 1202  
 1203  
 1204  
 1205  
 1206 Table 7: Runtime comparison between GRPO and Lp-Reg under different training steps. Lp-Reg  
 1207 introduces only marginal overhead compared with GRPO.

| Steps | Avg. Response Length | GRPO (s) | Lp-Reg (s) | Overhead |
|-------|----------------------|----------|------------|----------|
| 256   | 4058.53              | 698.49   | 700.60     | +0.30%   |
| 512   | 5794.25              | 973.74   | 978.62     | +0.50%   |
| 768   | 6640.69              | 1137.24  | 1141.49    | +0.37%   |

1208  
 1209  
 1210 C FURTHER ANALYSIS  
 1211  
 1212  
 1213  
 1214  
 1215  
 1216  
 1217  
 1218  
 1219  
 1220  
 1221  
 1222  
 1223  
 1224  
 1225



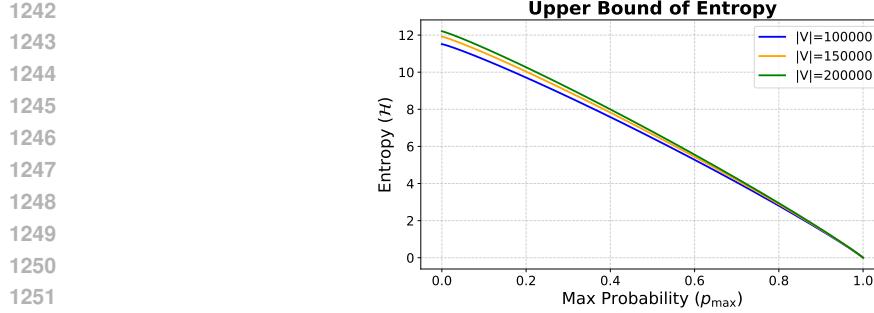
1226  
 1227 Figure 14: Probability–Entropy scatter plots of explorative tokens: “but”, “wait”, “perhaps”, “alter-  
 1228 natively”, and “however”. It displays a random sample of 5% of all data points

1229  
 1230 C.1 THEORETICAL DISCUSSION ON LOW-PROBABILITY VS. HIGH-ENTROPY TOKENS  
 1231

1232 While previous works have primarily utilized policy entropy as a proxy for exploration (Wang et al.,  
 1233 2025b), our approach distinguishes between high-entropy tokens and low-probability tokens. Empir-  
 1234 ical results presented in Table 2 and Figure 10 demonstrate that regularizing low-probability tokens  
 1235 yields significantly better stability and performance than targeting high-entropy tokens.

1236 In this section, we provide a theoretical foundation for these results. We formally demonstrate that  
 1237 the set of tokens targeted by high-entropy methods is a *subset* of those captured by low-probability  
 1238 methods. Crucially, high-entropy strategies inherently overlook the region of low-probability tokens  
 1239 within low-entropy distributions, which is important for exploration, proven by empirical experi-  
 1240 ments.

1241



1253 Figure 15: Theoretical bound of entropy  $\mathcal{H}$  vs. max probability  $p_{max} = \max_{o \in V} \pi_\theta(o|\cdot)$ . The curve  
1254 represents the maximum possible entropy for a given peak probability  $p_{max}$  with  $|V| = 100000$ ,  
1255 150000, 200000.

1257 **Proposition 1** *Given the policy  $\pi_\theta(\cdot|s)$  over a vocabulary  $V$ , and the policy entropy defined as  
1258  $\mathcal{H}(\pi_\theta) = -\sum_{o \in V} \pi_\theta(o|s) \log(\pi_\theta(o|s))$ , the following holds:*

$$\forall \epsilon \in (1/|V|, 1), \exists \delta > 0, \text{ s.t. if } \mathcal{H}(\pi_\theta) > \delta, \text{ then } \pi_\theta(o|s) < \epsilon, \forall o \in V. \quad (7)$$

1259 **Proof** Let  $p_{max} = \max_{o \in V} \pi_\theta(o|s)$  be the max token probability in the policy, and let  $o^* =$   
1260  $\arg \max_{o \in V} \pi_\theta(o|s)$ . Accordingly,  $\pi_\theta(o^*|s) = p_{max}$ .

1261 Firstly, we decompose the entropy term by separating the maximal probability token  $o^*$  from the  
1262 rest of the vocabulary  $V \setminus \{o^*\}$ :

$$\mathcal{H}(\pi_\theta) = -p_{max} \log p_{max} - \sum_{o \neq o^*} \pi_\theta(o|s) \log \pi_\theta(o|s). \quad (8)$$

1263 Let  $K = |V| - 1$ . The remaining probability mass is  $1 - p_{max}$ . Since  $f(x) = x \log x$  is a convex  
1264 function, according to Jensen's Inequality, the entropy of the remaining tokens is maximized when  
1265 the distribution is uniform, i.e.,  $\pi_\theta(o|s) = \frac{1-p_{max}}{K}$  for all  $o \neq o^*$ . Substituting this into the equation,  
1266 we obtain the upper bound function  $g(p_{max})$ :

$$\begin{aligned} \mathcal{H}(\pi_\theta) &\leq -p_{max} \log p_{max} - \sum_{o \neq o^*} \frac{1-p_{max}}{K} \log \left( \frac{1-p_{max}}{K} \right) \\ &= -p_{max} \log p_{max} - (1-p_{max}) \log \left( \frac{1-p_{max}}{K} \right) \triangleq g(p_{max}). \end{aligned} \quad (9)$$

1267 Then, we analyze the monotonicity of the function  $g(x) = -x \log x - (1-x) \log \frac{1-x}{K}$  for  $x \in$   
1268  $(1/|V|, 1)$ . Taking the derivative with respect to  $x$ :

$$\begin{aligned} g'(x) &= -(\log x + 1) - \left[ (-1) \cdot \log \left( \frac{1-x}{K} \right) + (1-x) \cdot \frac{K}{1-x} \cdot \left( -\frac{1}{K} \right) \right] \\ &= -\log x - 1 + \log \left( \frac{1-x}{K} \right) + 1 \\ &= \log \left( \frac{1-x}{Kx} \right). \end{aligned} \quad (10)$$

1269 Since  $K = |V| - 1$ , we have  $\frac{1-x}{Kx} < 1$  for any  $x > \frac{1}{|V|}$ . Thus,  $g'(x) < 0$  when  $x \in (\frac{1}{|V|}, 1)$ , which  
1270 means  $g(x)$  is strictly monotonically decreasing on the interval  $(\frac{1}{|V|}, 1)$ .

1271 Finally, Let  $\delta = g(\epsilon)$ . Since  $\epsilon \in (1/|V|, 1)$ ,  $\delta$  is a well-defined positive value. Assume the condition  
1272  $\mathcal{H}(\pi_\theta) > \delta$  holds. By the upper bound established above, we have:

$$g(p_{max}) \geq \mathcal{H}(\pi_\theta) > \delta = g(\epsilon). \quad (11)$$

1296 Thus,  $g(p_{\max}) > g(\epsilon)$ . Since we have proved that  $g(x)$  is strictly monotonically decreasing for  
 1297  $x > 1/|V|$ , the inequality of function values implies the reverse inequality of arguments:  
 1298

$$p_{\max} < \epsilon. \quad (12)$$

1300 By definition,  $\pi_{\theta}(o|s) \leq p_{\max}$  for all  $o \in V$ . Therefore,  $\pi_{\theta}(o|s) < \epsilon$  for all  $o \in V$ .  
 1301

1302 Proposition 1 theoretically establishes that high entropy strictly implies low probability for all to-  
 1303 kens. In other words, the set of tokens targeted by high-entropy methods is almost a subset of those  
 1304 targeted by low-probability regularization.

1305 However, the converse does not hold. Low-probability tokens can be sampled not only from high-  
 1306 entropy positions but also from low-entropy positions. The latter scenario constitutes a blind spot  
 1307 for entropy-based methods: when the model is in a low entropy position, entropy methods ignore the  
 1308 step. Yet, as shown in Figure 14, valuable explorative tokens (e.g., “but”, “wait”) frequently appear  
 1309 in this low-probability, low-entropy regime. The theoretical upper bound visualized in Figure 15  
 1310 further confirms that entropy maximization is restricted to the left-most region, whereas our Lp-  
 1311 Reg remains effective across the entire region. This explains why Lp-Reg outperforms high-entropy  
 1312 regularization, as validated by our experiments.  
 1313

## C.2 TRAJECTORY-LEVEL TOKEN ANALYSIS

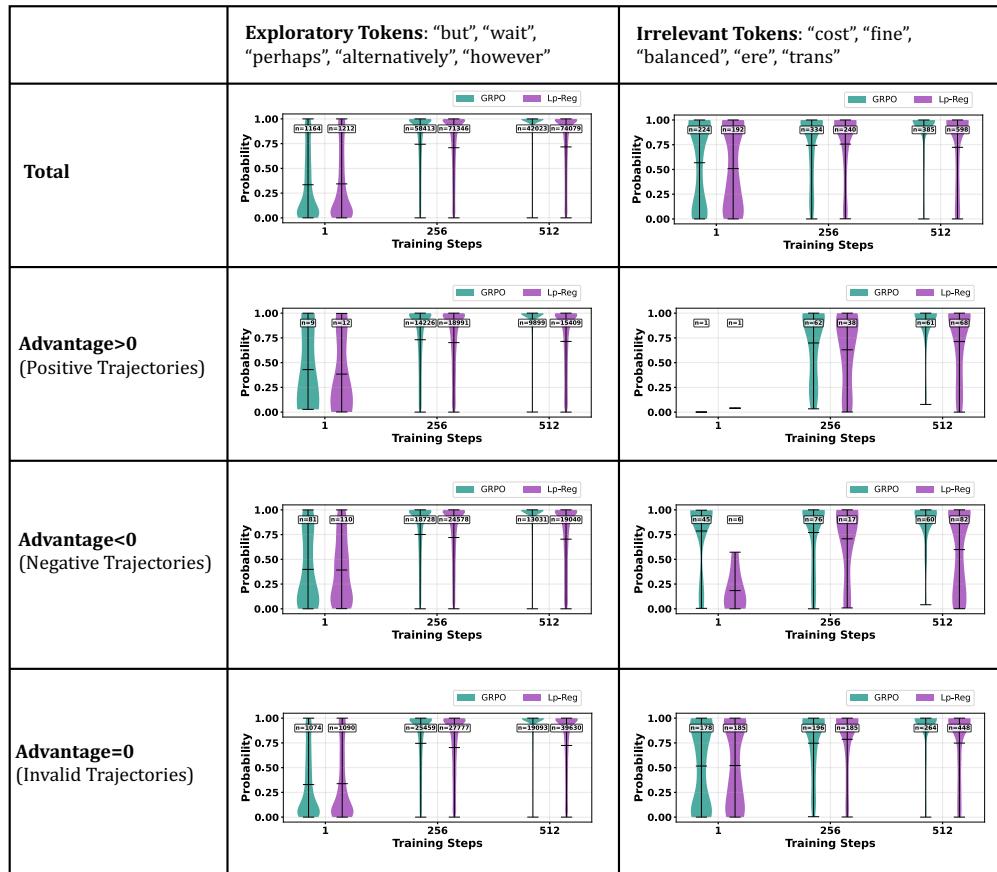


Figure 16: Trajectory-level probability analysis distinguishing exploratory tokens (left) from irrelevant tokens (right). The distributions are decomposed into positive ( $A > 0$ ), negative ( $A < 0$ ), and invalid ( $A = 0$ ) trajectories, where  $n$  represents the sampling token number.

In this section, we conduct a fine-grained trajectory-level analysis to characterize the sampling probability distributions of specific tokens. We decompose the token sampling distributions based on the advantage values of their corresponding trajectories: positive ( $A_i > 0$ ), negative ( $A_i < 0$ ), and neutral/invalid ( $A_i = 0$ ). The comparative results between exploratory tokens (e.g., “but”, “wait”) and irrelevant tokens (e.g., “cost”) are visualized in Figure 16.

As shown in Figure 16, we observe that the probability distributions of exploratory tokens are remarkably similar across Positive and Negative trajectories, under both standard GRPO and Lp-Reg. This indicates that these tokens function as reasoning patterns: they represent the mechanism of the reasoning attempt, rather than the determinant of the final outcome. Just as scratchpad paper is utilized for both correct and incorrect solutions, a negative trajectory containing “wait” represents a failed reasoning attempt, which is fundamentally different from a failure due to a lack of reasoning. This is further corroborated by the contrast in sampling density between active learning groups ( $A \neq 0$ ) and static groups ( $A = 0$ ). The former exhibits a significantly higher density of low-probability tokens, while the latter shows much less. This is consistent with the intuition that active exploration yields diverse outcomes (both successes and failures), whereas a lack of exploration leads to concentrated, often stagnant results. Because these tokens appear abundantly in negative trajectories simply due to the high volume of failed attempts during exploration, standard GRPO tends to systematically suppress them. Lp-Reg successfully preserves these essential patterns, ensuring the model retains the capacity to reason even when individual attempts fail.

Importantly, a distinct divergence emerges when comparing standard GRPO and Lp-Reg. As illustrated in Figure 16 (Step 512), standard GRPO exhibits a significant reduction in low-probability token sampling in later training stages, signaling a diminishing of exploration attempts when uncertain (low probability). This collapse directly corresponds to the performance bottleneck observed in Figure 17. In contrast, Lp-Reg maintains robust low-probability token sampling throughout long-horizon training, coinciding with a continuously increasing accuracy score. This demonstrates the effectiveness of Lp-Reg in sustaining exploration.

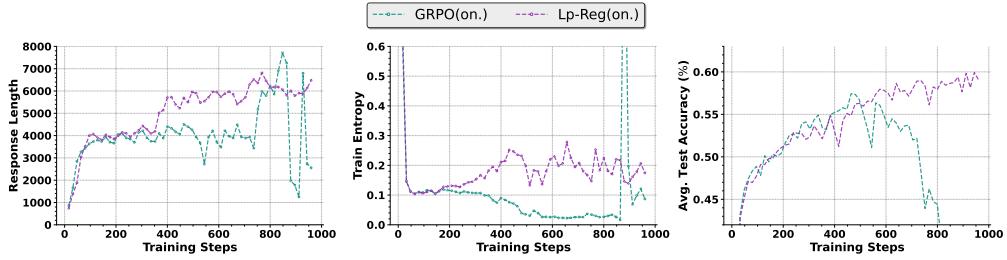


Figure 17: Comparison between standard GRPO and Lp-Reg on Qwen3-14B-Base.

### C.3 DISCUSSION ON LOW-PROBABILITY TOKENS

In this section, we discuss the difference between our Lp-Reg and Lopti (Yang et al., 2025b), a recent work that also investigates low-probability tokens. It is important to note that Lp-Reg and Lopti are not in conflict; rather, they identify and address two distinct orthogonal challenges in RLVR training. Lopti focuses on improving gradient dynamics for better data efficiency, while Lp-Reg focuses on ensuring long-horizon training stability. The distinction is from three perspectives: the core research problem, the methodological approach, and new, direct experimental comparisons.

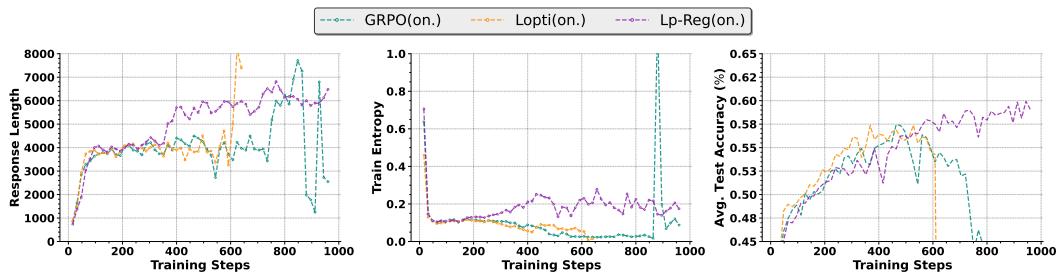


Figure 18: Comparison on standard GRPO, Lopti, and Lp-Reg.

1404 (1) **Different Core Research Problems:** Opti focuses on the training efficiency, whereas Lp-  
 1405 Reg focuses on the training stability. These represent two orthogonal axes of improvement  
 1406 for RLVR. In detail, Opti identifies that low-probability tokens generate gradients  
 1407 with disproportionately large norms. Its core focus is on how this “over-domination” sup-  
 1408 presses gradient signals from high-probability tokens, thereby reducing the data efficiency  
 1409 of the training process. In contrast, our Lp-Reg identifies the systematic elimination of  
 1410 low-probability tokens with exploratory semantics (e.g., “wait”), which we term “*reason-  
 1411 ing sparks*”. Our core focus is on how the over-penalization of these tokens leads to a loss  
 1412 of exploration capacity with the entropy collapse phenomenon, hindering the model from  
 1413 achieving higher performance in long-horizon stable training.

1414 (2) **Different Methodological Approaches:** Opti’s method of separate gradient updates and  
 1415 Lp-Reg’s regularization are distinct and non-conflicting algorithms. Specifically, to pre-  
 1416 vent large-norm gradients from low-probability tokens suppressing signals from high-  
 1417 probability tokens, Opti separates the loss computation for these two groups and updates  
 1418 the model parameters twice per micro-batch. For another goal to protect low-probability  
 1419 tokens from over-penalization in RLVR, Lp-Reg introduces a regularization on them via a  
 1420 KL divergence between the current policy and a filtered proxy policy.

1421 (3) **Empirical evidence from long-horizon experiments:** To empirically validate our claims,  
 1422 we have conducted a long-horizon training experiment comparing Opti, Lp-Reg, and the  
 1423 GRPO baseline for 1,000 steps. As shown in Figure 18, Opti shows a faster initial rise in  
 1424 test accuracy, confirming its effectiveness at accelerating learning, consistent with the find-  
 1425 ings in their paper. However, after approximately 600 steps, Opti’s performance plateaus,  
 1426 and its training entropy collapses in the same manner as the GRPO baseline. This shows  
 1427 that improving data efficiency does not inherently solve the long-term exploration prob-  
 1428 lem. In contrast, our Lp-Reg demonstrates stable performance improvement throughout  
 1429 the 1,000 steps, correlated with its ability to maintain policy entropy. This sustained explo-  
 1430 ration allows it to achieve a significantly higher final accuracy.

1431 In conclusion, Lp-Reg and the Opti study address distinct, orthogonal challenges in RLVR. The  
 1432 choice between these methods may depend on the specific training objectives. While investigating  
 1433 a potential combination could be an interesting avenue for future research, our primary contribution  
 1434 here is to formally identify the exploration stability and provide an effective solution for it. We  
 1435 have added this detailed comparison to our revised manuscript to contextualize our work better and  
 1436 highlight its unique conceptual contribution.

#### 1437 C.4 DETAILS OF SAMPLING PROBABILITY DENSITY

1439 This section provides a detailed, token-by-token breakdown of the aggregated distributions presented  
 1440 in Figure 1c and Figure 1d of the main paper, reinforcing the conclusions drawn from our analysis.

1441 Figure 20 exhibits the individual distribution of observed sampling probabilities for meaningful ex-  
 1442 ploratory tokens, also known as *reasoning sparks*: “but”, “wait”, “perhaps”, “alternatively”, and  
 1443 “however”. These tokens are also frequently analyzed as representative cases in previous studies  
 1444 (DeepSeek-AI et al., 2025; Muennighoff et al., 2025; Hu et al., 2025; Qian et al., 2025; Wang  
 1445 et al., 2025b). A consistent trend is observable across all five tokens, validating our claims in the  
 1446 introduction. With standard GRPO training, the ability to sample these tokens at low probabilities is  
 1447 systematically eliminated, causing their distributions to collapse and shift towards higher probabili-  
 1448 ties. The indiscriminate entropy bonus (GRPO + Entropy Loss) is largely ineffective at restoring this  
 1449 crucial low-probability tail. In stark contrast, our proposed method, Lp-Reg, consistently maintains  
 1450 a healthy, wide distribution for each of these tokens, demonstrating its effectiveness in preserving  
 1451 the model’s capacity for nuanced exploration.

1452 Conversely, Figure 21 details the behavior of a class of meaningless noise tokens: “cost”, “fine”,  
 1453 “balanced”, “ere”, and “trans”. These individual plots clearly illustrate the detrimental side effect  
 1454 of a simple entropy bonus. For nearly every token, the GRPO + Entropy Loss baseline significantly  
 1455 amplifies the sampling of this irrelevant noise, which, as shown in our main analysis, contributes  
 1456 to a faster performance collapse. Lp-Reg, by design, avoids this amplification and maintains a  
 1457 suppressed probability distribution for these tokens, comparable to or even more constrained than  
 the standard GRPO baseline.

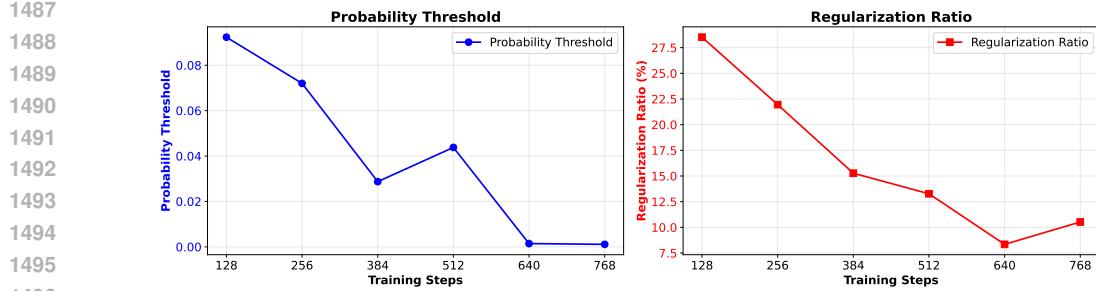
1458 These detailed visualizations confirm that the phenomena of reasoning spark elimination and noise  
 1459 amplification are not artifacts of aggregation but are consistent patterns at the individual token level.  
 1460 This provides strong, granular evidence for the central challenge our paper addresses and highlights  
 1461 the necessity of a selective preservation mechanism like Lp-Reg.  
 1462

### 1463 C.5 DETAILS OF PROBABILITY-ENTROPY DISTRIBUTION

1464  
 1465 To supplement the aggregated analysis presented in Figure 6 of the main text, this section provides  
 1466 a detailed breakdown of the probability-entropy distributions for individual *reasoning sparks*. Figure  
 1467 22 shows a consistent pattern across all representative tokens, ranging from “but” (Figure 22a)  
 1468 to “however” (Figure 22e). For frequently occurring tokens such as “but”, “wait”, and “perhaps”,  
 1469 we randomly subsample one out of every 20 instances for visualization. Under the baseline GRPO,  
 1470 these sparks are consistently confined to a low-entropy, high-probability region, indicating a col-  
 1471 lapsed into deterministic usage. In contrast, the addition of an entropy loss pushes these tokens into  
 1472 highly scattered, often excessively high-entropy states, suggesting an uncontrolled and potentially  
 1473 noisy form of exploration. Our method, Lp-Reg, strikes a crucial balance, maintaining a structured  
 1474 and broad distribution across a healthy range of entropy values. This consistent behavior demon-  
 1475 strates that the trends identified in the aggregated data are not artifacts of averaging. The individual  
 1476 plots offer strong, disaggregated evidence for our central claim: Lp-Reg effectively preserves the  
 1477 exploratory potential of reasoning sparks by preventing both the deterministic collapse seen in the  
 1478 baseline and the chaotic scattering induced by the indiscriminate entropy bonus.

### 1479 C.6 TRAINING DYNAMICS OF REGULARIZED TOKEN

1480 To better understand how Lp-Reg operates during training, we analyze the dynamics of the probabili-  
 1481 ty threshold  $\delta_p^B$  and the proportion of low-probability tokens subjected to regularization. As shown  
 1482 in Figure 19, the threshold  $\delta_p^B$  gradually decreases with training steps. In parallel, the regularization  
 1483 ratio also declines steadily. This trend suggests that as training progresses, an increasing share of ex-  
 1484 tremely low-probability tokens correspond to meaningless noise, while the semantically meaningful  
 1485 tokens are lifted into higher-probability regions and thus require less regularization.



1497 Figure 19: Training dynamics of the probability threshold and regularization ratio.  
 1498

### 1499 C.7 CASE STUDY

1500 To further illustrate the effect of the filter applied on low-probability tokens, Figure 23 to Figure 25  
 1501 presents a case study of a model-generated response, where low-probability tokens are highlighted  
 1502 according to whether they were preserved or filtered. Tokens with probability greater than  $\tau$  are those  
 1503 retained by the filter, while tokens with probability smaller than  $\tau$  are suppressed. The preserved  
 1504 tokens include meaningful exploratory markers such as “Then”, “Wait”, which guide the reasoning  
 1505 trajectory, whereas the discarded set largely consists of noisy tokens such as “We”, “also”, “that”.  
 1506 This qualitative evidence complements our quantitative analysis, demonstrating that Lp-Reg effec-  
 1507 tively leverages min-p distribution re-normalization to reliably distinguish between semantically  
 1508 meaningful exploratory reasoning sparks and destabilizing noise.  
 1509

1510  
 1511

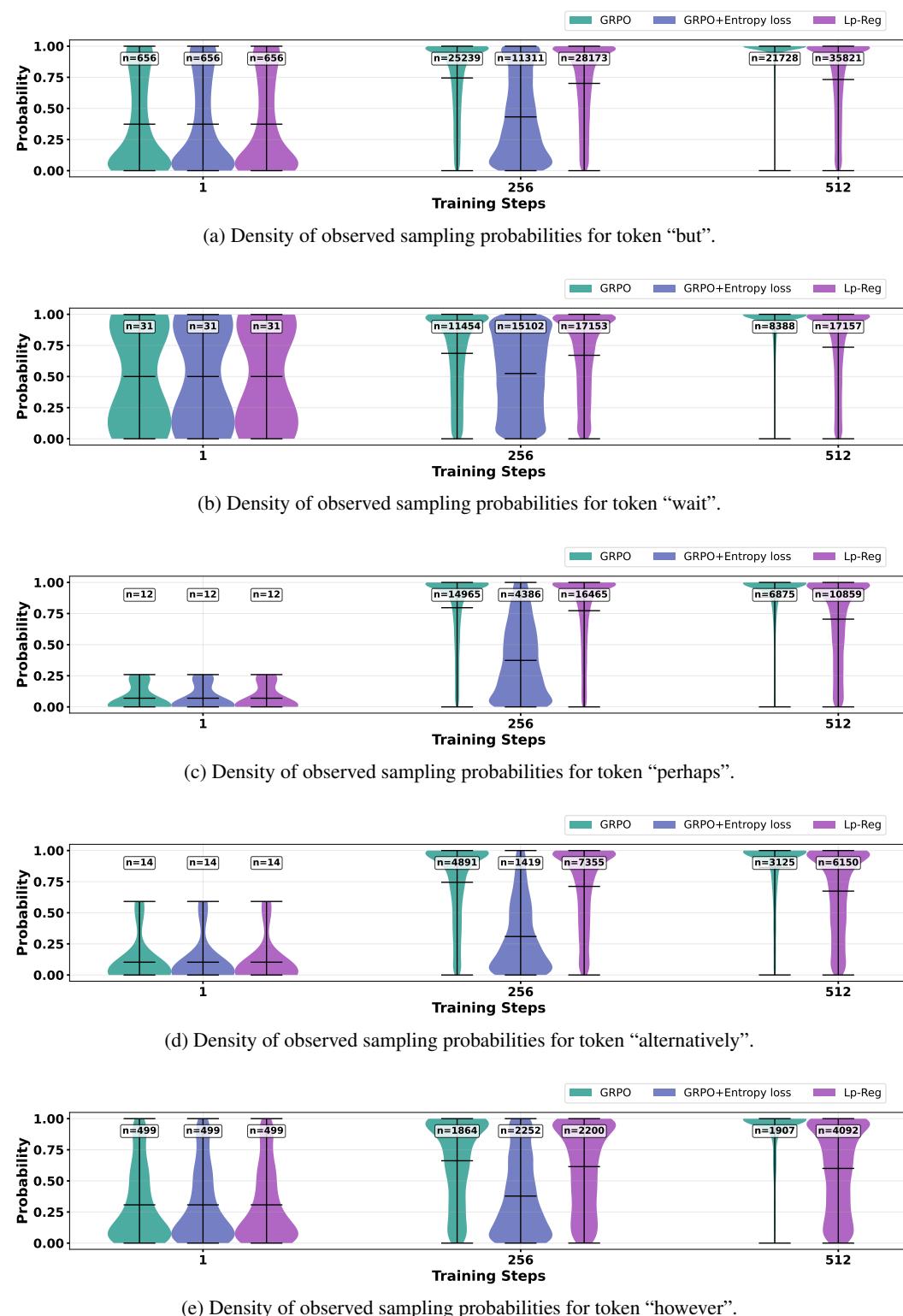


Figure 20: Individual Density of observed sampling probabilities for meaningful exploratory tokens: “but”, “wait”, “perhaps”, “alternatively”, and “however”.

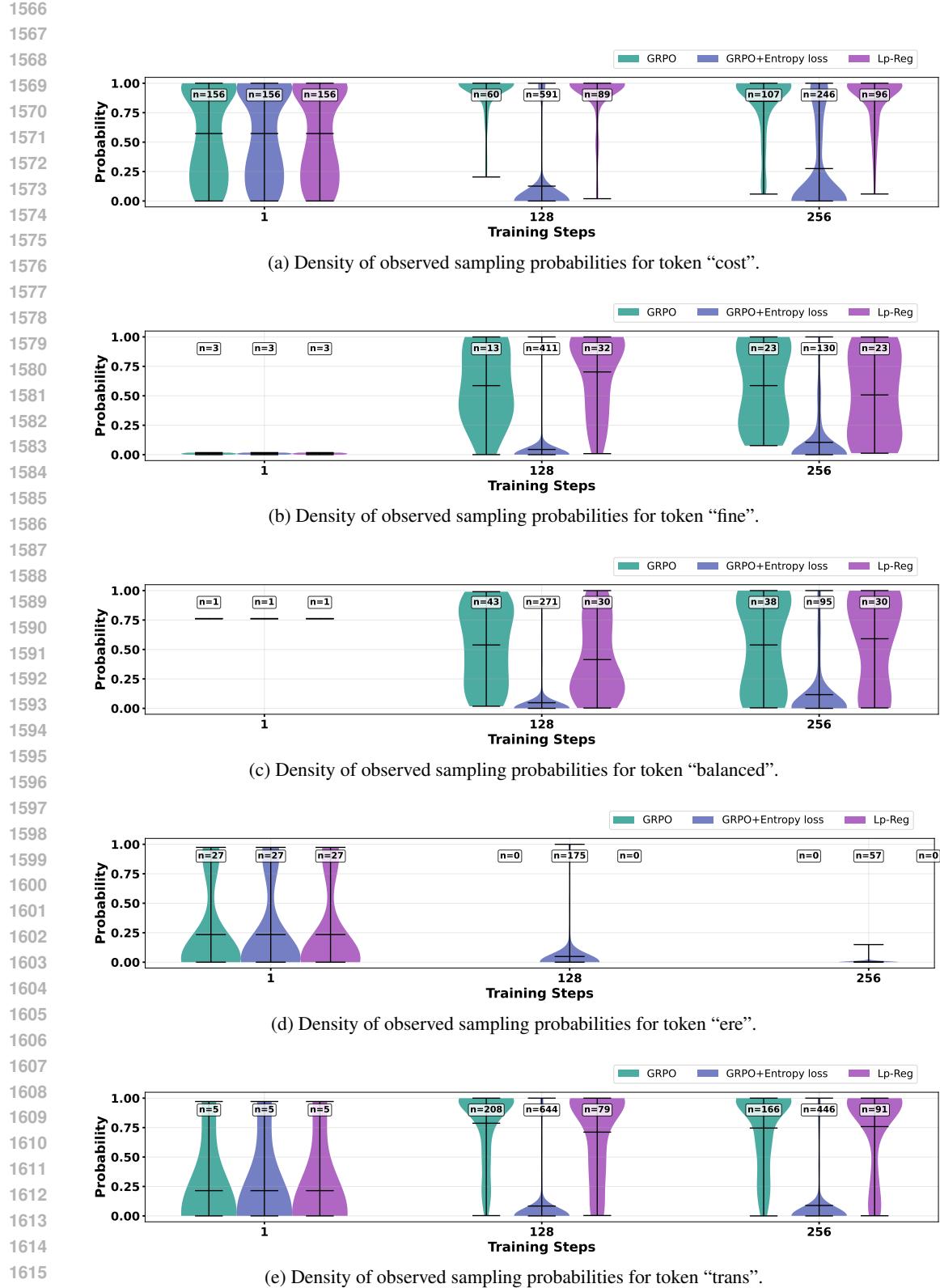
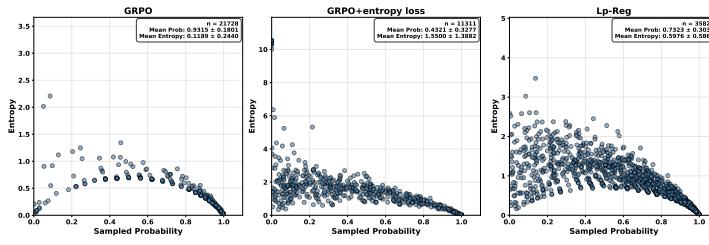


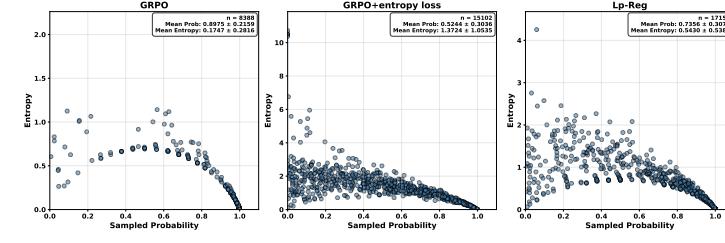
Figure 21: Individual Density of observed sampling probabilities for meaningless tokens: "cost", "fine", "balanced", "ere", and "trans".

1620

1628  
1629

(a) Scattered probability-entropy plot of observed sampling instances for the token “but”.

1630

1631  
1632  
1633  
1634  
1635  
1636  
1637

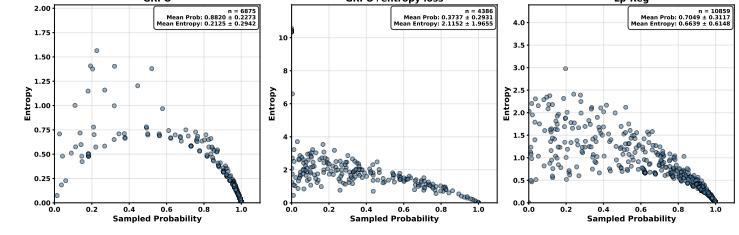
(b) Scattered probability-entropy plot of observed sampling instances for the token “wait”.

1638

1639

1640

1641

1642  
1643  
1644  
1645  
1646  
1647

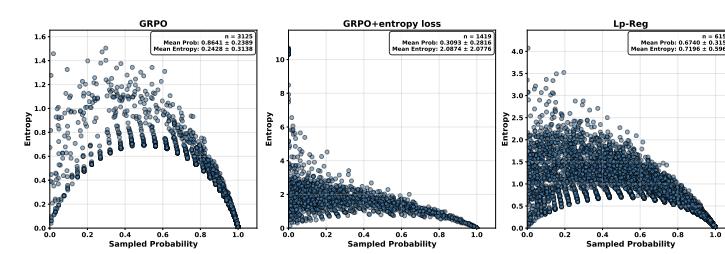
(c) Scattered probability-entropy plot of observed sampling instances for the token “perhaps”.

1648

1649

1650

1651



1652

1653

1654

1655

1656

1657

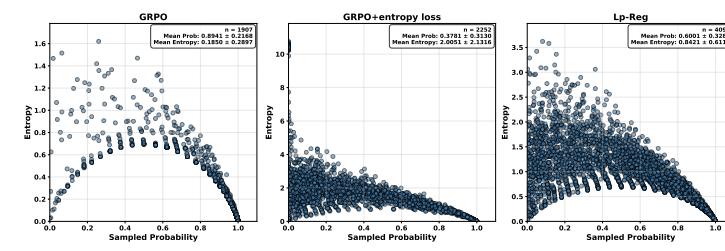
1658

(d) Scattered probability-entropy plot of observed sampling instances for the token “alternatively”.

1659

1660

1661



1662

1663

1664

1665

1666

1667

1668

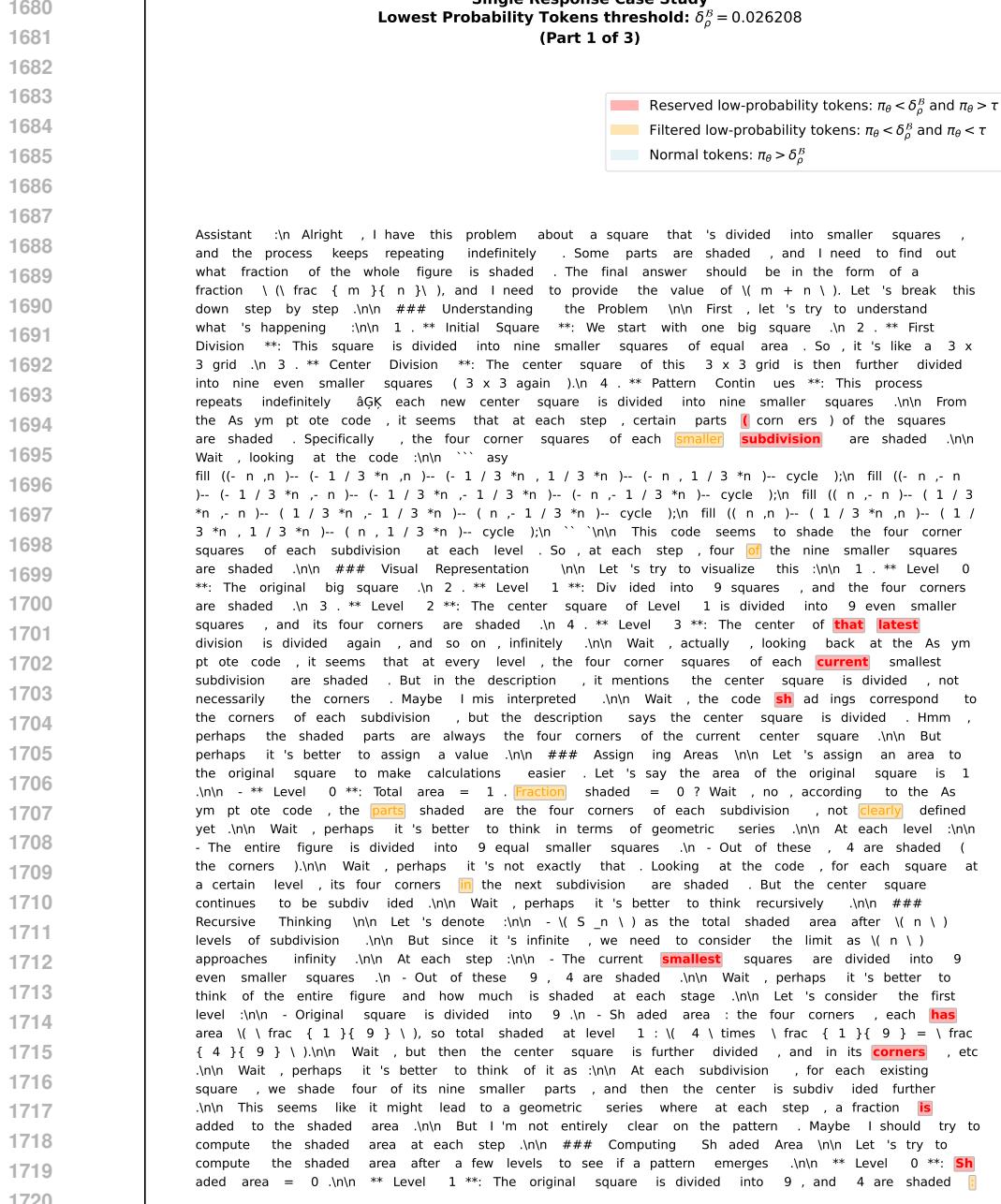
1669

1670

1671

Figure 22: Individual scattered probability-entropy plot of observed sampling instances for meaningful tokens: “but”, “wait”, “perhaps”, “alternatively”, and “however”.

1674  
1675  
1676  
1677  
1678  
1679



1721  
1722 Figure 23: An Example generated by Qwen3-14B-Base model trained by Lp-Reg from math reasoning. (Part 1)  
1723

1724  
1725  
1726  
1727

1728  
1729  
1730  
1731  
1732  
1733

1734  
1735  
1736  
1737  
1738  
1739  
1740

1741  $\backslash ( S\_1 = \frac{4}{9} )$ . Wait, but then the **process** continues. The center square  
1742 **of** area  $\frac{1}{9}$  is further divided into 9 squares, each of area  $\frac{1}{81}$ . So, total shaded after  
1743 Level 2:  $S\_2 = \frac{4}{9} + \frac{4}{81}$ . Similarly, the center of this latest subdivision (which was a square of area  $\frac{1}{81}$ ) has a center that  
1744 gets divided further, and so on. Wait, perhaps it's better to think of it as an infinite  
1745 series. Each time we divide a square into 9 and shade 4, and then the center is divided  
1746 again. This seems like a geometric series where each term is a fraction of the previous  
1747 shaded area. Wait, let's see. At Level 1: shaded area  $\frac{4}{9}$ . At Level 2: shaded area  $\frac{4}{9} + \frac{4}{81}$ . At Level 3: shaded area  $\frac{4}{9} + \frac{4}{81} + \frac{4}{729}$ . This is a geometric series with  
1748 first term  $a = \frac{4}{9}$  and common ratio  $r = \frac{1}{9}$ . The sum of an infinite geometric series is  $S = \frac{a}{1-r}$ . So,  $S = \frac{4}{9} + \frac{4}{81} + \frac{4}{729} + \dots$   
1749 Wait, but I'm not entirely confident this captures the entire shaded area because the shaded parts are at each subdivision level, and the  
1750 pattern might be different. Wait, perhaps I should consider that at each subdivision, the  
1751 shaded parts are not just in the outer squares but are nested within the subdivisions. Wait,  
1752 alternatively, perhaps the correct approach is to consider that at each step, the shaded area  
1753 added is  $\frac{4}{9}$  of the area being subdivided, and the unshaded center continues to be subdivided. Wait,  
1754 perhaps a better approach is to consider the self-similarity of the problem. **Self-Similarity Approach**. Let's denote  $S$  as the  
1755 total shaded area of the original square. Looking at the first subdivision, we have 9  
1756 smaller squares. 4 of them are shaded immediately: each has area  $\frac{1}{9}$ . So, total shaded area  $S = \frac{4}{9}$ .  
1757 The center square (also of area  $\frac{1}{9}$ ) is a smaller version of the original figure, and its shaded area would be  $\frac{4}{81}$ . Wait,  
1758 no. Actually, the center square is undergoing the same pattern without the immediate  
1759 shading of its corners. **Initially** (in the context of the original shading), Wait, perhaps it's better to think that the entire figure maintains self-similarity where Total shaded area  $S$  is shaded in first level  $\frac{4}{9}$  shaded in scaled-down version  $\frac{4}{81}$ . At the first level, Shaded area:  $\frac{4}{9}$ . The center square (of area  $\frac{1}{9}$ ) also follows the same pattern, but in its divisions, its corners will be shaded in the next level, and so on. Wait, perhaps the recursive relation is  $S = \frac{4}{9} + \frac{4}{81} + \dots$ . Wait, let's see. The total shaded area is the shaded area from the first subdivision plus the shaded area from the pattern that would have been applied to the center square if it were the original, but scaled down by a factor of  $\frac{1}{9}$ . Wait, but in the first subdivision, only the outer squares are immediately shaded, and the center continues to be subdivided indefinitely. Wait, perhaps it's better to think of it as. At each step, we shade four out of nine parts of each square at the current level, and then the center square is treated as a new "original" square at the next level. Thus, the total shaded area  $S$  satisfies  $S = \frac{4}{9} + \frac{4}{81} + \dots$ . Wait, let's verify. The first term  $\frac{4}{9}$  accounts for the four shaded corner squares at the first level. Then, the center square (of area  $\frac{1}{9}$ ) has its own version of the problem, so its shaded area is  $\frac{4}{81}$ . Thus, the equation  $S = \frac{4}{9} + \frac{4}{81}$  seems correct. Now, solve for  $S$ :  $S = \frac{4}{9} + \frac{4}{81} + \dots$ . Multiply both sides by 9:  $9S = 4 + \frac{4}{9} + \dots$ . Divide both sides by 8:  $S = \frac{4}{8} + \frac{4}{72} + \dots$ . So, the total shaded fraction is  $\frac{4}{8}$ . But the problem states that the answer should be in the form  $\frac{m}{n}$  where  $\gcd(m, n) = 1$ , and we need to

Figure 24: An Example generated by Qwen3-14B-Base model trained by Lp-Reg from math reasoning. (Part 2)

1775  
1776  
1777  
1778  
1779  
1780  
1781

1782  
1783  
1784  
1785  
1786  
1787

**Single Response Case Study**  
**Lowest Probability Tokens threshold:  $\delta_p^\beta = 0.026208$**   
**(Part 3 of 3)**

|                                                                                        |
|----------------------------------------------------------------------------------------|
| Reserved low-probability tokens: $\pi_\theta < \delta_p^\beta$ and $\pi_\theta > \tau$ |
| Filtered low-probability tokens: $\pi_\theta < \delta_p^\beta$ and $\pi_\theta < \tau$ |
| Normal tokens: $\pi_\theta > \delta_p^\beta$                                           |

1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829

find  $\lfloor m + n \rfloor$ . Here,  $\lfloor \frac{m}{n} \rfloor = \lfloor \frac{1}{2} \rfloor$ , so  $\lfloor m = 1 \rfloor$ ,  $\lfloor n = 2 \rfloor$ , and **thus**  $\lfloor m + n = 3 \rfloor$ . Wait, but before finalizing, let's double-check the recursive relation. Verifying the Recursive Relation. Let's consider a simpler case to verify. Suppose we only do the first level of subdivision. Then, the shaded area is  $\lfloor \frac{4}{9} \rfloor$ . According to our recursive relation  $\lfloor S = \frac{4}{9} \rfloor + \lfloor \frac{5}{9} \rfloor$ , if we only do **level 1**, then perhaps the  $\lfloor \frac{4}{9} \rfloor + \lfloor \frac{5}{9} \rfloor$  should be zero, but our initial assumption **that**  $\lfloor S = \frac{4}{9} \rfloor + \lfloor \frac{5}{9} \rfloor$  holds for infinite subdivisions. Alternatively, perhaps it's better to think that at each level, the shaded area added is **correctly** captured by  $\lfloor \frac{4}{9} \rfloor$  of the current area being considered, and the process continues similarly. Given that, our calculation seems consistent. **Final Answer** The fractional part of the figure that is shaded is  $\lfloor \frac{1}{2} \rfloor$ . Therefore,  $\lfloor m = 1 \rfloor$ ,  $\lfloor n = 2 \rfloor$ , and  $\lfloor m + n = 3 \rfloor$ . Wait, but looking back at the problem, it mentions that the answer is in the form  $\lfloor \frac{m}{n} \rfloor$  with  $\lfloor \gcd(m, n) = 1 \rfloor$ , and we need to find  $\lfloor m + n \rfloor$ . Here,  $\lfloor \frac{1}{2} \rfloor$  satisfies this with  $\lfloor m = 1 \rfloor$ ,  $\lfloor n = 2 \rfloor$ , so  $\lfloor m + n = 3 \rfloor$ . But before finalizing, I recall that sometimes such problems have the shaded area as  $\lfloor \frac{5}{9} \rfloor$ , but based on our reasoning, it's  $\lfloor \frac{1}{2} \rfloor$ . Double-checking the recursive relation seems correct. Alternatively, perhaps the shaded parts are not just the immediate corners but also within the subdivisions in a different pattern. However, based on the Asymptotic code and the description **focusing** on the center **subdivision**, our approach seems valid. Thus, the final answer is  $\lfloor \frac{1}{2} \rfloor$ . Wait, but according to our calculation, the shaded fraction is  $\lfloor \frac{1}{2} \rfloor$ , so  $\lfloor m + n = 3 \rfloor$ . But to ensure accuracy, let's consider another approach. **Alternative Approach**: Geometric Series **with** Proper Shading. Perhaps a better approach is to consider **at** each level  $\lfloor k \rfloor$ . The original square is divided into  $\lfloor 3^2 = 9 \rfloor$  smaller squares. At each subdivision, 4 of these squares are shaded. But as we go deeper, the center square's subdivisions continue, and it's like the same pattern repeats **with** a scaling factor. Let's think **differently**: **label** the **initial** square as level 0. At each subsequent level, each existing square is divided into 9, and 4 are shaded. But the center square continues to be subdivided, **effectively** repeating the process. Thus, the total shaded area can be thought of as the shaded area **directly** plus the shaded area from all subsequent levels **of** the center squares **subdivisions**. Mathematically, if  $\lfloor S \rfloor$  is the total shaded area, then  $\lfloor S = \frac{4}{9} \rfloor + \lfloor \frac{5}{9} \rfloor$ . Because at each level, we add  $\lfloor \frac{4}{9} \rfloor$  of the current area being subdivided, and the remaining **one**-in **contributes** to the next level's **scaling**. Solving:  $\lfloor S = \frac{4}{9} \rfloor + \lfloor \frac{5}{9} \rfloor$ . Multiply both sides by 9.  $\lfloor 9S = 4 + 5 \rfloor$ . Subtract  $\lfloor 9S \rfloor$  from both sides.  $\lfloor 8S = 4 \rfloor$ . Divide both sides by 8.  $\lfloor S = \frac{4}{8} \rfloor = \frac{1}{2}$ . Thus, the shaded fraction is  $\lfloor \frac{1}{2} \rfloor$ , and  $\lfloor m + n = 1 + 2 = 3 \rfloor$ . Therefore, the final answer is  $\lfloor \frac{1}{2} \rfloor$ . **Answer**:  $\lfloor \frac{1}{2} \rfloor$ .

Figure 25: An Example generated by Qwen3-14B-Base model trained by Lp-Reg from math reasoning. (Part 3)

1830  
1831  
1832  
1833  
1834  
1835