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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large
Language Models in complex reasoning, yet its scalability is often hindered by
a training bottleneck where performance plateaus as policy entropy collapses, sig-
naling a loss of exploration. Previous methods typically address this by main-
taining high policy entropy, yet the precise mechanisms that govern meaningful
exploration have remained underexplored. Our analysis suggests that an unselec-
tive focus on entropy risks amplifying irrelevant tokens and destabilizing training.
This paper investigates the exploration dynamics within RLVR and identifies a
key phenomenon: the gradual elimination of what we term reasoning sparks: a
crucial subset of low-probability tokens such as “wait”, that initiate diverse rea-
soning paths. We find that while abundant in pre-trained models, these sparks are
systematically extinguished during RLVR due to over-penalization, leading to a
degeneracy in exploration. To address this, we introduce Low-probability Regu-
larization (Lp-Reg). Its core mechanism regularizes the policy towards a heuris-
tic proxy distribution. This proxy is constructed by first applying a probability
threshold to filter out noise tokens and then re-normalizing the distribution over
the remaining candidates. This process effectively shields the exploratory tokens
from destructive updates. Experiments show that Lp-Reg enables stable on-policy
training for around 3,000 steps over 81,204 GPU-Hours, a regime where many
baseline entropy-control methods collapse. This sustained exploration leads to
state-of-the-art performance, achieving a 60.17% average accuracy on five math
benchmarks, an improvement of 2.66% over prior methods.

1 INTRODUCTION

The advent of large reasoning models has reshaped the trajectory of artificial intelligence, with
paradigmatic examples including OpenAI O1 (OpenAI et al., 2024) and DeepSeek-R1 (DeepSeek-
AI et al., 2025). A central technique underpinning these systems is reinforcement learning with
verifiable reward (RLVR), which assigns reward to verifiable solutions through rule-based verifica-
tion. These models generate extended chain-of-thought (CoT) reasoning (Wei et al., 2023) to solve
challenging problems in domains like mathematical olympiads (He et al., 2024b). However, a no-
table bottleneck emerges during RL training that limits its scalability, frequently culminating in a
performance plateau and subsequent collapse. This failure is consistently accompanied by a rapid
decay in policy entropy, indicating a severe loss of exploration capacity (Yu et al., 2025; Cui et al.,
2025; Wang et al., 2025b).

Previous approaches have recognized this declining exploration, attempting to address it through
various entropy control mechanisms. Methods such as adaptive entropy regularization (He et al.,
2025), high entropy change blocking (Cui et al., 2025), or selective token updates (Wang et al.,
2025b) aim to maintain higher entropy as a proxy for exploration. However, relying on overall
entropy can be an indirect and imprecise tool. An indiscriminate focus on maximizing randomness
risks amplifying noise and destabilizing training (Ömer Veysel Çağatan & Akgün, 2025), suggesting
a deeper issue beyond simply the quantity of randomness.
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… The answer is 2.
Answer  : \boxed{2}

Wait    , …, Answer: \boxed{3}
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Reasoning Spark

✔

✖

(a) Reasoning Sparks: rare but crucial, low-probability tokens that initiate potential diverse
reasoning paths.
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(b) Training Dynamics
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1 128 256
Training Steps

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili

ty

n=192 n=192 n=192 n=324 n=2092 n=230 n=334 n=974 n=240

GRPO GRPO+Entropy loss Lp-Reg

(d) Aggregated distribution of observed sampling probabilities for meaning-
less tokens (e.g., “cost”, “fine”). “n” represents sampling number.

Figure 1: Selectively preserving low-probability tokens is key to overcoming performance plateaus
in reasoning RL. (a) An example of reasoning sparks. (b) Standard GRPO training reaches a perfor-
mance plateau and collapses, accompanied by decaying entropy. An indiscriminate entropy bonus
(GRPO + Entropy Loss) leads to an even faster collapse. (c) We reveal the cause: GRPO system-
atically suppresses the low-probability sampling of entire classes of important reasoning sparks,
causing their distributions to collapse towards high probabilities. Entropy loss fails to fix this. In
contrast, our method, Lp-Reg, successfully preserves a healthy, wide distribution, sustaining explo-
ration. (d) The failure of entropy bonuses is explained by their indiscriminate nature: they amplify
the sampling of meaningless, low-probability noise, degrading exploration quality. The aggregated
statistics in (c) and (d) demonstrate a systemic effect beyond single-token anecdotes. Detailed plots
for individual tokens are available in Appendix C.4.

Our analysis suggests the performance bottleneck may stem from the systematic elimination of valu-
able low-probability exploratory tokens. We term these tokens reasoning sparks; they include words
like “wait”, “however”, or “perhaps”, which often serve as logical connectives or expressions of un-
certainty, naturally initiating diverse reasoning pathways (Figure 1a). As the aggregated violin plots
in Figure 1c show, standard GRPO training systematically suppresses the low-probability sampling
of these meaningful tokens. Furthermore, we find that indiscriminately boosting randomness am-
plifies meaningless noise—tokens such as “cost” or “fine” which are irrelevant to the mathematical
reasoning context (Figure 1d). This amplification leads to an even faster performance collapse than
the baseline, as shown in Figure 1b.

These findings present a central challenge: a successful exploration strategy should protect valu-
able, low-probability reasoning sparks without simultaneously amplifying the destructive effects of
meaningless noise. To address this challenge, we introduce Low-probability Regularization (Lp-
Reg). The primary goal of Lp-Reg is to preserve valuable low-probability tokens via regularization.
To avoid amplifying noise, the method leverages a key observation: While both are empirically low-
probability tokens, a meaningful exploratory token like “wait” often has a higher relative probability
than a noise token like “cost” in the immediate next-token prediction. It is supported by the quan-
titative evidence in Section 6.3. Based on this insight, Lp-Reg first applies a probability threshold
to filter out tokens treated as noise. It then re-normalizes the probability mass over the remaining
candidates to construct a proxy distribution. In this proxy, the relative importance of valuable low-
probability tokens is effectively increased. Finally, Lp-Reg penalizes the deviation of the original
policy from this proxy using a forward KL divergence, which selectively protects the low-probability
tokens that were preserved in the less-noisy proxy distribution.
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Our experimental evaluation demonstrates the effectiveness of Lp-Reg. Our method enables sta-
ble on-policy training for around 3,000 steps over 81,204 GPU-hours, where many entropy-control
methods have collapsed, resulting in better performance. On five widely used math benchmarks,
this results in a 60.17% average accuracy on Qwen3-14B-Base, improving upon prior methods by
at least 2.66%. Our contributions are summarized as follows:

• In contrast to prior work focusing on overall policy entropy, we identify the disappearance
of reasoning sparks as a key issue and provide evidence that their preservation is crucial
for sustained performance.

• We introduce Low-probability Regularization (Lp-Reg), a method that creates a more sta-
ble exploratory environment by filtering out presumed meaningless noise to protect the
remaining low-probability tokens.

• We demonstrate through extensive experiments, utilizing a cumulative total of 300,000
GPU-hours, that Lp-Reg achieves state-of-the-art performance, while also enabling stable
on-policy training over extended periods where baselines collapse.

• We provide a comprehensive analysis showing that our approach of filtering presumed
meaningless noise yields superior results compared to entropy-control methods.

2 RELATED WORK

Reinforcement learning for LLMs Recently, reinforcement learning has become the dominant
framework for enhancing the reasoning abilities of large language models (LLMs) (OpenAI et al.,
2024; DeepSeek-AI et al., 2025). By leveraging automatic checkers or symbolic verification, re-
inforcement learning with verifiable rewards (RLVR) achieved further breakthroughs in improving
the reasoning capability of LLMs (Shao et al., 2024a; Yang et al., 2025a; Team et al., 2025). Based
on RLVR and GRPO (Shao et al., 2024a), subsequent methods such as DAPO Yu et al. (2025),
VAPO (Yue et al., 2025), and other policy optimization variants (Zhao et al., 2025; Cui et al., 2025;
Zheng et al., 2025a) have been proposed to improve the stability, efficiency, and scalability of RL
for reasoning models.

Entropy collapse in RL training A recurring difficulty in training reasoning models with RL is
the rapid collapse of policy entropy during the early stages of training. This phenomenon, which
reflects excessive exploitation and insufficient exploration, has been widely recognized as a bottle-
neck for scaling RL in reasoning models. To mitigate collapse, researchers have explored several
directions, including selectively regularizing updates at high-entropy “forking” tokens (Wang et al.,
2025b), amplifying advantages at exploratory positions (Cheng et al., 2025), modifying clipping
strategies (Yu et al., 2025; Zhao et al., 2025; Cui et al., 2025; Zheng et al., 2025a), or doing weight
clipping (MiniMax et al., 2025; Su et al., 2025).

Confidence-aware approaches An emerging line of work investigates how models’ intrinsic con-
fidence signals can guide exploration. Token probabilities naturally encode uncertainty and can in-
dicate branching points in reasoning trajectories (Xu et al., 2025; Fu et al., 2025b; Hou et al., 2025;
Wang et al., 2025a; Zheng et al., 2025b). Some works show that entropy minimization, which ef-
fectively sharpens the confidence of the model, can improve reasoning performance by encouraging
the model to commit to consistent solution paths (Gao et al., 2025; Agarwal et al., 2025).

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Reinforcement learning (RL) has played a critical role in LLMs (Murphy, 2024). Formally,

JRL(θ) = E(q,a)∼D,o∼πθ(·|q)
[
r(o, a)

]
, (1)

where r(o, a) denotes the reward assigned to an output o given a reference answer a. In rein-
forcement learning with verifiable rewards (RLVR), this reward is computed through rule-based
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functions, such as Math-Verify1. Recent studies have demonstrated that large-scale RLVR encour-
ages models to perform more deliberative reasoning by producing extended chains of thought prior
to the final prediction, thereby substantially improving their capacity to solve complex problems
(DeepSeek-AI et al., 2025). In practice, Eq. 1 is typically optimized using policy gradient methods,
such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative Policy
Optimization (GRPO) (Shao et al., 2024b).

3.2 GROUP-RELATIVE POLICY OPTIMIZATION

GRPO is a representative actor-only policy gradient method for optimizing LLMs. It directly es-
timates the advantage of each token by leveraging multiple samples drawn from the same prompt.
Formally, the advantage is defined as

Ai,t =
R(oi)−mean(G)

std(G)
, (2)

where {o1, . . . , oG} are independent outputs sampled from the same prompt, with group size G,
G = {R(o1), . . . , R(oG)} denotes their associated rewards, and R(oi) is the reward of output oi. In
this formulation, Ai,t represents the advantage of the t-th token in oi. The policy is then optimized
on the basis of these advantages using the PPO surrogate objective:

JGRPO(θ) =E (q,a)∼D, {oi}G
i=1∼πθold

(·|q)

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

[
min

[
ri,t Ai,t, clip

(
ri,t, 1− ϵ, 1 + ϵ

)
Ai,t

]
− β DKL (πθ ∥πref)

]
,

(3)
where β controls the strength of KL regularization between the current policy πθ and the reference
policy πref . The probability ratio

ri,t =
πθ

(
oi,t | q, oi,<t

)
πθold

(
oi,t | q, oi,<t

) (4)

serves as the importance sampling weight for off-policy training, where πθold denotes the behavior
policy. The hyperparameter ϵ specifies the clipping ratio, which constrains the updated policy from
deviating excessively from the behavior policy, thereby ensuring stability during optimization.

4 LOW-PROBABILITY REGULARIZATION

To address the premature elimination of valuable reasoning sparks, we propose a regularization
method termed Low-probability Regularization (Lp-Reg). This method is designed to be inte-
grated into policy gradient algorithms to create a more stable exploratory environment. The central
idea is to leverage the model’s own predictive distribution to construct a less-noisy reference for
regularization, preserving low-probability tokens.

4.1 PROXY DISTRIBUTION πPROXY

The foundation of Lp-Reg is the construction of a proxy distribution, which represents a filtered
variant of the current policy πθ. It is constructed in two steps:

1. Filtering Noise Tokens: We first define a set of noise tokens as those whose probability πθ(o|·)
under a threshold τ . This threshold controls the filtering strategy, for which we explore two
primary choices:

• Fixed threshold: A simple approach where τ is a constant hyperparameter, e.g., 0.02.
• Min-p threshold: Following (Nguyen et al., 2025), τ is defined relative to the peak prob-

ability: τ = κ ·maxo′∈V πθ(o
′|·), where κ ∈ (0, 1) is a hyperparameter. This makes the

filtering adaptive to the distribution’s sharpness.

1https://github.com/huggingface/Math-Verify
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Our primary experiments employ the min-p strategy for its adaptiveness, though fixed thresh-
olds are also shown to be effective in our ablation studies.

2. Probability Renormalization: The proxy distribution πproxy assigns zero probability to tokens
filtered out in the previous step and renormalizes the probability mass across the remaining
tokens:

πproxy(o|·) =

{
πθ(o|·)∑

o′ s.t. πθ(o′|·)>τ πθ(o′|·) if πθ(o|·) > τ

0 otherwise
. (5)

This process treats tokens with low relative probabilities as noise, while preserving all others.

4.2 LOW-PROBABILITY REGULARIZATION OBJECTIVE

The Low-probability Regularization (Lp-Reg) penalty is integrated into the GRPO framework as a
selective regularization term. The final objective function is:

J(θ) =EB∼D,(q,a)∼B,{oi}G
i=1∼πθold (·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

[
clip(ri,t(θ), 0, U) ·Ai,t

− β · I
[
πθ(oi,t|q, oi,<t) < δBρ ∧ πproxy(oi,t|q, oi,<t) > 0 ∧Ai,t < 0

]
· DKL (πproxy(·|q, oi,<t)∥πθ(·|q, oi,<t))

]] (6)

The first term is the policy gradient objective from GRPO. We modify its clipping by removing the
lower bound to avoid suppressing high-variance exploratory actions and adding a large upper bound
U for numerical stability.

The second term is the Lp-Reg penalty. It is activated by the indicator function I[·] only for tokens
that satisfy three conditions simultaneously: first, their sampling probability πθ is below a dynamic
low-percentile threshold δBρ , which is calculated as the lowest ρ-th percentile of the sampling prob-
abilities of all tokens within the current training batch B; second, their probability in the proxy
distribution πproxy is greater than zero; and third, the token receives a negative advantage signal
(Ai,t < 0). This final condition ensures the regularization applies exclusively to tokens receiving
a negative learning signal, preventing their potential over-penalization while leaving updates from
positive experiences unaffected. Regarding two core hyperparameters κ in τ = κ ·maxo′∈V πθ(o

′|·)
and ρ in δBρ , a data-driven guideline of value selection is provided in Section B.3 and a sensitivity
analysis is presented in Appendix B.4 to assess its robustness.

We use the forward KL divergence, DKL(πproxy∥πθ) as the regularization function. It imposes a
significant penalty when πθ(o|·) approaches zero for a token o with non-zero probability in πproxy,
providing a targeted penalty against token elimination without forcing the policy to strictly match
the heuristic proxy distribution.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines We compare Lp-Reg against a suite of strong baselines, including a foundational algo-
rithm and several state-of-the-art methods designed to enhance exploration through entropy control.
Our primary baseline is GRPO (Shao et al., 2024a), a value-free policy optimization algorithm that
employs group-relative advantage estimation, making it a common choice for RLVR. To represent
classical entropy regularization methods, we implement GRPO + Entropy Loss, which directly
incorporates the principles of Maximum Entropy RL by adding a policy entropy bonus to the GRPO
objective function. We also compare against several advanced methods: Clip-Higher (Yu et al.,
2025), a core component of DAPO that encourages higher entropy by using an asymmetric clip-
ping range in the PPO objective; Selective High-Entropy Training (80/20) (Wang et al., 2025b), a
method that restricts policy gradient updates to only the top 20% of tokens with the highest gener-
ation entropy; KL-Cov (Cui et al., 2025), which prevents entropy collapse by applying a selective
KL-divergence penalty to tokens with the highest covariance between their log probabilities and
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advantages; and GSPO (Zheng et al., 2025a), which modifies the clipping mechanism to operate at
the sequence level to promote higher training entropy.

Training Settings All experiments are conducted within the veRL (Sheng et al., 2024) framework
to ensure a standardized and fair comparison. Our main comparisons are based on approximately
1,000 training steps for the Qwen3-14B-Base model and 800 for the Qwen2.5-32B model. Each
training requires about 8, 000 GPU hours on 32 NVIDIA H20 GPUs for the 14B model and 16, 000
GPU hours on 64 NVIDIA H20 GPUs for the 32B model. To assess whether low-probability to-
kens sustain exploration in RLVR, we further trained the Qwen2.5-32B model for 3, 000 steps over
81, 204 GPU-hours with our Lp-Reg and evaluated its training stability.

For the reinforcement learning from verifier rewards (RLVR) phase, models are trained with a maxi-
mum response length of 8, 192 tokens.We use a global batch size of 256. For off-policy methods, we
use a mini-batch size of 32, resulting in 8 gradient updates per rollout. It should be noted that in our
experimental results, ”step” refers to the rollout step for both on-policy and off-policy methods. To
ensure a fair comparison, a “step” in our experimental results consistently refers to a single rollout
for all methods. A constant learning rate of 1× 10−6 is applied without a warmup schedule. We set
the group number as 8 for all GRPO-based methods. To ensure numerical stability, we set the policy
gradient’s clipping by setting the upper bound of the importance sampling ratio to U = 10. For our
proposed Lp-Reg, which uses the min-p threshold, we set the probability percentile threshold ρ to
0.5% for Qwen2.5-32B, Qwen3-8B-Base, Llama3-OctoThinker-8B and 1% for Qwen3-14B-Base,
the KL regularization coefficient β to 1.0, and the min-p ratio κ to 0.02. The proxy distribution,
πproxy, is constructed from the data-generating policy (πθold in the off-policy setting and the current
policy πθ in the on-policy setting). For all baseline methods, we adopt the hyperparameters specified
in their original public implementations to ensure a faithful reproduction. Specifically for the GRPO
+ Entropy Loss baseline, we set the entropy coefficient to 0.002 within the verl framework.

Domains Training datasets Evaluation Benchmarks

Math Dapo-Math-17K (Yu et al., 2025)

AIME24 (MAA), AIME25 (MAA),
MATH-500 (Hendrycks et al., 2021),
OlympiadBench (He et al., 2024a),

Minerva Math (Lewkowycz et al., 2022)

Code AReaL-boba-2-RL-Code Fu et al. (2025a) LCB-v5, LCB-v6 Jain et al. (2024)

Science SCP-116k Lu et al. (2025) GPQA-diamond Rein et al. (2024)

Table 1: Training datasets and evaluation benchmarks across various domains.

Evaluation For evaluation, we assess model performance across eight reasoning benchmarks in
Table 1, spanning various domains including math, code, and science. For small benchmarks, we
use sampled decoding with a temperature of 0.6 to obtain a robust performance estimate, generating
16 independent responses per problem for AIME24 and AIME25, and 8 for GPQA-diamond, LCB-
v5, and LCB-v6. For larger benchmarks like MATH-500, OlympiadBench, and Minerva, we utilize
greedy decoding.

5.2 MAIN RESULTS

0 500 1000 1500 2000 2500 3000
Training Steps

0

2000

4000

6000

8000

Re
sp

on
se

 L
en

gt
h

Lp-Reg(on.)

0 500 1000 1500 2000 2500 3000
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

n 
En

tr
op

y

Lp-Reg(on.)

0 500 1000 1500 2000 2500 3000
Training Steps

0.30

0.35

0.40

0.45

0.50

0.55

Av
g.

 T
es

t 
Ac

cu
ra

cy
 (

%
)

Lp-Reg(on.)

Figure 2: Stable training over 3,000 training steps, totaling 81,204 GPU-hours, for Lp-Reg (on-
policy) on the Qwen2.5-32B-Base model.

As shown in Figure 2, Lp-Reg enables a stable reinforcement learning training for 3, 000 training
steps, totaling 81, 204 GPU-hours for this single long-horizon run on the Qwen2.5-32B-Base model.
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Furthermore, Figure 3 and Table 2 exhibit that Lp-Reg achieves state-of-the-art performance across
five challenging mathematical reasoning benchmarks on both 14B and 32B model scales. On the
Qwen3-14B model, on-policy Lp-Reg sets a new benchmark with an average accuracy of 60.17%,
surpassing the next best method, 80/20, by 2.66%. Notably, Lp-Reg’s advantage is more pronounced
on the newer Qwen3-14B base model compared to the older Qwen2.5-32B. We hypothesize that
as base models improve, their capacity for nuanced, low-probability reasoning increases, creating
richer reasoning sparks for Lp-Reg to leverage, thereby amplifying its effectiveness. Note that the
scores reported here correspond to the single checkpoint achieving the highest average accuracy.
As aggregated metrics can sometimes obscure the model’s peak potential on individual tasks, we
provide a detailed analysis of per-benchmark peak scores in Appendix B.5.

Our experiments consistently show the superiority of on-policy training over off-policy methods
across 14B and 32B scales. This is due to the inherent stability of on-policy updates, which avoid
distribution shifts caused by mismatched data-sampling and training policies. Off-policy meth-
ods, such as Clip-Higher, often rely on importance sampling clipping, leading to instability. While
competitive on Qwen2.5-32B, Clip-Higher’s performance drops on Qwen3-14B, highlighting its
fragility. In contrast, Lp-Reg’s self-contained, policy-intrinsic regularization ensures its effective-
ness in both on-policy and off-policy settings, unlike competing methods that are heavily reliant on
off-policy importance sampling.

Beyond raw performance, Lp-Reg demonstrates a distinct entropy signature indicative of a healthy
exploration-exploitation balance. As shown in Figure 3, methods like Clip-Higher induce a contin-
uous, often artificial increase in policy entropy. Lp-Reg, however, facilitates a dynamic, multi-phase
entropy trajectory: entropy initially decreases as the model learns core reasoning patterns, then
gradually increases to foster exploration as performance improves, and finally stabilizes within a
healthy range as accuracy converges. This adaptive behavior stems from confidence-aware regu-
larization, which selectively protects valuable reasoning sparks without amplifying indiscriminate,
high-entropy noise.

To further validate the generalizability of Lp-Reg, we extend the experimental comparison to addi-
tional domains (e.g. science, code), as well as various model sizes (e.g., 8B) and architectures (e.g.,
Llama). Details can be found in Appendix B.6.

Method AIME24 AIME25 Math-500 Minerva Olympiad Bench Avg.

Qwen2.5-32B-Base (800 training steps)

GRPO (Shao et al., 2024a) (off.) 30.63 22.29 88.00 41.18 54.37 47.29
GSPO (Zheng et al., 2025a) (off.) 33.33 22.29 87.60 48.53 55.56 49.46
Clip-Higher (Yu et al., 2025) (off.) 38.33 29.79 87.60 45.22 56.44 51.48
KL-Cov (Cui et al., 2025) (off.) 35.62 27.50 87.40 44.49 55.11 50.02
80/20 (Wang et al., 2025b) (off.) 38.12 28.75 87.00 45.22 58.37 51.49
Lp-Reg (off.) 37.71 24.58 90.20 40.81 59.70 50.60
GRPO (Shao et al., 2024a) (on.) 28.54 22.50 86.60 44.85 60.30 48.56
GRPO + Entropy Loss (on.) 3.75 1.88 60.80 27.94 22.22 23.32
80/20 (Wang et al., 2025b)(on.) 32.50 28.54 89.40 45.59 57.63 50.73
Lp-Reg (on.) 38.12 27.08 90.00 46.32 61.19 52.54

Qwen3-14B-Base (1, 000 training steps)

GRPO (Shao et al., 2024a) (off.) 34.38 27.08 89.20 49.26 55.70 51.13
GSPO (Zheng et al., 2025a) (off.) 41.46 34.58 88.60 50.74 59.85 55.05
Clip-Higher (Yu et al., 2025) (off.) 41.67 32.71 95.00 47.43 64.00 56.16
KL-Cov (Cui et al., 2025) (off.) 49.17 34.79 93.00 47.43 62.07 57.29
80/20 (Wang et al., 2025b) (off.) 43.96 34.58 91.80 48.16 60.89 55.88
Lp-Reg (off.) 46.25 34.17 92.40 48.16 64.44 57.08
GRPO (Shao et al., 2024a) (on.) 46.04 34.38 93.00 48.53 65.19 57.43
GRPO + Entropy Loss (on.) 37.29 25.21 88.20 46.32 54.96 50.40
80/20 (Wang et al., 2025b) (on.) 47.29 32.50 91.60 50.37 65.78 57.51
Lp-Reg (on.) 50.83 37.92 94.40 49.26 68.44 60.17

Table 2: Main results on five mathematical reasoning benchmarks. On-policy (on.) and off-policy
(off.) training methods are highlighted with distinct colors. For each method, all reported scores
are derived from the single checkpoint that achieved the highest average accuracy across the five
benchmarks. Best scores are bolded while second-best scores are underlined.
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Figure 3: Training dynamics on the Qwen3-14B-Base model. To best illustrate the performance
differences, we compare the top-performing methods. Lp-Reg demonstrates superior and stable
performance. Full training dynamics for the Qwen2.5-32B model are available in Appendix B.1.

5.3 ABLATION STUDY
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Figure 4: Ablation studies for core components of Lp-Reg on the Qwen3-14B-Base model. The
results confirm that targeting our noise filtering threshold τ is critical for stable performance. The
adaptiveness of the min-p threshold is also shown to be beneficial over a fixed one.

We conduct a series of ablation studies to dissect the core components of Lp-Reg and validate our
key design choices.

Importance of Noise Filtering. Lp-Reg only protects tokens deemed meaningful by the proxy
distribution (πproxy > 0). To test this, we remove the filter and fork all tokens below the noise
threshold τ from contributing to gradient updating (Lp-Reg w/o τ ). Figure 4 shows that this leads
to a catastrophic performance collapse and entropy explosion. This confirms that filtering is critical
to ignore the extreme tail of the distribution, which consists of incoherent noise that destabilizes
training if regularized.

Dynamic vs. Fixed Threshold. We conduct a comparison between the dynamic min-p noise
threshold (Lp-Reg w/ dynamic τ ) and the fixed noise threshold (Lp-Reg w/ fixed τ ) in Section 4.1.
As shown in Figure 4, the fixed threshold underperforms compared to the dynamic threshold, which
we adopt as the default. However, it still significantly surpasses the standard GRPO. This indicates
that while the core filtering principle is effective, the dynamic nature of min-p provides a more robust
estimate of the model’s confidence across different contexts, better preserving genuine reasoning
sparks.

We conduct further ablation studies on the high-entropy token regularization. For detailed results
and analysis, please refer to Appendix B.2.

6 ANALYSIS

To understand the mechanisms behind Lp-Reg’s performance, we conduct a series of analyses focus-
ing on how it overcomes the exploration bottleneck by targeting and preserving valuable reasoning
tokens.

6.1 PROBABILITY-ENTROPY DISTRIBUTION OF REASONING SPARKS
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High Entropy Tokens

Low Probability Tokens

Figure 5: The word cloud statistics.

We begin by exploring the distinction between low-probability
tokens and high-entropy tokens. Figure 5 highlights this con-
trast by comparing tokens from the top 1% lowest probability
with those from the top 1% highest entropy. The difference
is striking: low-probability tokens frequently include semanti-
cally meaningful exploratory markers such as “But,” “Wait,”
and “Perhaps,” which often signal a shift in the reasoning tra-
jectory. In contrast, high-entropy tokens are dominated by
ubiquitous function words (e.g., “the,” “of”) or formatting
symbols (e.g., frac), which carry little exploratory intent.
This explains why entropy-based regularization often fails to
enhance exploration: it confuses noise with exploration.

However, the set of low-probability tokens is also not uni-
formly useful. It also includes noisy artifacts such as spurious
newline characters (\n) or formatting debris, whose regular-
ization can destabilize training rather than enhance reasoning.
To mitigate this, Lp-Reg applies a threshold τ that filters out
such noise. Ablation studies in Section 5.3 confirm the ne-
cessity of this step: removing the threshold results in unstable
training dynamics and degraded reasoning performance. Thus,
Lp-Reg’s effectiveness stems not only from targeting low-probability tokens but also from selec-
tively excluding meaningless tokens.

6.2 TOKEN PROBABILITY DYNAMICS
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Figure 6: Probability–Entropy scatter plots of explorative tokens.

Figure 6 shows the probability–entropy distributions of key explorative tokens (“but”, “wait”, “per-
haps”, “alternatively”, and “however”) under three methods: GRPO, GRPO + Entropy Loss, and
our Lp-Reg.

With the baseline GRPO, these tokens are concentrated in low-entropy, high-probability regions. In
this case, tokens like “wait” tend to appear only when the model is already confident, turning them
into deterministic patterns rather than initiating a new exploration path with uncertainty.

Adding an entropy loss changes this behavior, but in an uncontrolled way. Some sampled “wait”
tokens appear at extremely high entropy levels (sometimes exceeding 10), which superficially boosts
diversity but produces little useful exploratory signal. These scattered occurrences do not integrate
meaningfully into the reasoning process.

Our Lp-Reg method yields a more balanced dynamic. Explorative tokens are sampled across a broad
range of entropy values, from high probability to low probability states. This balance prevents their
probabilities from collapsing under negative feedback while keeping them informative for reasoning.
As a result, tokens like “wait” remain viable options throughout training, allowing the model to
explore alternative reasoning paths rather than overfitting to fixed usage patterns.

Figure 7 further compares the frequency of explorative tokens (“but”, “wait”, “perhaps”, “alterna-
tively”, and “however”) under GRPO and Lp-Reg. Our method consistently maintains a higher
fraction of these tokens, demonstrating that Lp-Reg not only broadens their probability–entropy
distribution but also sustains their practical use throughout training.
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Figure 7: Frequency of explorative tokens during training.

6.3 PROBABILISTIC DISTINCTION BETWEEN REASONING SPARKS AND NOISE
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Figure 8: Probabilistic distinction be-
tween exploratory and irrelevant tokens
across training steps in standard GRPO
training.

Our introduction established a challenge for a success-
ful exploration strategy: it must protect valuable, low-
probability reasoning sparks without simultaneously am-
plifying the destructive effects of irrelevant noise. This
raises a critical question: is there a systemic, observable
difference between these two classes of tokens within the
low-probability range that our method can exploit?

To investigate this, we analyze the next-token predic-
tion distribution throughout the training process. Due
to storage limitations, we focus our analysis on the top-
64 most probable tokens, but specifically examine those
within a low-probability range (0 to 0.1) to isolate the
phenomenon from high-probability tokens. Figure 8 plots
the average probability of two distinct classes of tokens
over time: a group of meaningful exploratory tokens (e.g.,
“wait”, “perhaps”) and a group of irrelevant tokens (e.g.,
“cost”, “fine”).

The results reveal a clear and consistent statistical distinction: across all training stages, the average
next-token probability of meaningful exploratory tokens is persistently higher than that of irrelevant
tokens. It can be attributed to the intrinsic confidence of LLMs (Nguyen et al., 2025; Xu et al., 2025;
Fu et al., 2025b). This persistent probabilistic gap provides the foundational justification for our Lp-
Reg design. It suggests that while a perfect separation is not possible, a probability threshold τ , as
defined for our proxy distribution in Section 4.1, can serve as a principled filtering mechanism. By
setting such a threshold, we can effectively filter out a substantial portion of the lowest-probability
irrelevant tokens, which constitute destabilizing noise, while simultaneously retaining a majority
of the valuable exploratory tokens that give rise to reasoning sparks. This allows Lp-Reg to focus
its regularization on tokens that are more likely to be meaningful, providing a targeted and robust
approach to preserving high-quality exploration.

7 CONCLUSION

In this work, we investigated the exploration collapse in Reinforcement Learning with Verifiable
Rewards, identifying a key mechanism driving this failure: the systematic elimination of valuable,
low-probability reasoning sparks. To address this, we introduced Low-probability Regularization
(Lp-Reg), a method designed to selectively preserve these crucial exploratory pathways. Lp-Reg
leverages the insight that reasoning sparks often exhibit higher relative probabilities than meaning-
less noise in their immediate predictive context. By filtering out the noise tokens and regularizing
the policy towards the remainder, our method effectively protects valuable sparks from being extin-
guished. This focus on exploration quality over quantity enables stable on-policy training for around
3,000 steps, resulting in at least 2.66% test accuracy improvement over baselines and underscoring
the importance of preserving the policy’s useful low-probability tail.
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A LARGE LANGUAGE MODELS USAGE STATEMENT

In adherence to the ICLR 2026 policy, we disclose the use of a large language model (LLM) as a
general-purpose writing assistant during the preparation of this manuscript. The LLM’s role was
strictly limited to improving the clarity, grammar, and readability of our author-written text, such as
spell-checking and rephrasing sentences for better flow. Crucially, the LLM did not contribute to
any of the core scientific aspects of this work, including research ideation, experimental design, data
analysis, or the generation of novel insights. The authors have carefully reviewed all LLM-modified
text and take full responsibility for the intellectual substance and final content of this paper.

B DETAILS OF EXPERIMENTS

B.1 TRAINING DYNAMICS ON QWEN2.5-32B

The training dynamics of Lp-Reg and other state-of-the-art RLVR methods on the Qwen2.5-32B
base model are presented in Figure 9. The results show that Lp-Reg maintains a comparable per-
formance in test accuracy throughout the training process, underscoring the benefits of our low-
probability token regularization strategy for preventing exploration collapse.

B.2 FURTHER ABLATION STUDY

To verify that targeting low-probability tokens is superior to the conventional wisdom of targeting
high entropy, we conduct a comparison between the high-entropy token regularization (highest H)
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Figure 9: Training dynamics on the Qwen2.5-32B-Base model. To best illustrate the performance
differences, we compare the top-performing methods. Lp-Reg demonstrates superior and more sta-
ble performance throughout training.

and the low-probability regularization (lowest πθ, vanilla Lp-Reg). Instead of applying Lp-Reg to
the lowest 1% probability tokens, we apply an identical regularization mechanism to the tokens with
the highest 1% entropy. As shown in Figure 10, this approach not only fails to improve performance
but also fails to sustain high entropy, which collapses after an initial spike. This result reinforces
our claim from the Introduction: high entropy is a poor proxy for valuable exploration. As our
analysis in Section 6.1 further corroborates, high-entropy tokens are often common function words
or formatting characters, not true Reasoning Sparks. Regularizing them pollutes the learning signal
without protecting the structured, low-probability reasoning paths necessary for progress.
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Figure 10: Ablation study comparing low-probability token regularization versus high-entropy token
regularization for Lp-Reg (on-policy) on the Qwen3-14B-Base model.

B.3 GUIDELINES FOR HYPERPARAMETER SELECTION

In this section, we provide a data-driven guideline for selecting the initial values of the two
core hyperparameters in Lp-Reg: the low-probability percentile ρ and the min-p ratio κ. Here,
ρ determines the regularization threshold δBρ , while κ defines the noise filtering threshold τ =
κ · maxo′∈V πθ(o

′|·). Instead of heuristic guessing, we derive the rational ranges for these pa-
rameters by analyzing the training dynamics of the standard GRPO baseline.
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Figure 11: Evolution of probability thresholds for different percentiles (ρ) during standard GRPO
training. The bottom 1% (ρ = 0.01) consistently captures the low-probability tail (< 0.1), whereas
higher percentiles include high-confidence tokens.

Selection of ρ. Figure 11 visualizes the upper probability bound of tokens falling within the low-
est ρ percentile during standard GRPO training. As illustrated, RLVR training causes the policy
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distribution to collapse, concentrating mass on high-probability tokens. From step 128 to 384, the
probability of tokens in the bottom 1% consistently remains in the strictly low-probability regime
(< 0.1). In contrast, tokens in the bottom 5% span a much wider range, reaching probabilities as
high as 0.5, which are no longer low-probability candidates requiring protection. Consequently, set-
ting ρ ≈ 1% (0.01) is a logical and robust choice to target the true tail of the distribution without
inadvertently regularizing high-probability tokens. The sensitivity analysis in Figure 13 confirms
that performance is stable around this empirically derived value.
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Figure 12: Comparison of relative probability ratios between exploratory tokens and meaningless
noise tokens during training. A clear gap exists, supporting the selection of κ ≈ 0.01.

Selection of κ. Figure 12 compares the average relative probability ratio
( πθ(o|·)
maxo′∈V πθ(o′|·) ) between a set of meaningful exploratory tokens (Sexplore =

{“but”, “wait”, “perhaps”, “alternatively”, “however”}) and a set of meaningless noise tokens
(Snoise = {“cost”, “fine”, “balanced”, “ere”, “trans”}) that are irrelevant with the reasoning task.
The statistics, derived from standard GRPO training, reveal a distinct and persistent separability
gap: the relative probability of meaningful exploratory tokens consistently exceeds that of noise
tokens throughout the training process. This empirical gap justifies setting the min-p ratio κ
(which determines the noise threshold τ = κ · maxo′∈V πθ(o

′|·)) within this separation region.
As shown in the figure, most noise tokens typically fall below a ratio of 0.01, while exploratory
tokens remain above it. Therefore, values of κ around 0.01 (or slightly higher) serve as effective
initial settings to filter noise while preserving reasoning sparks. The robustness of Lp-Reg with
κ ∈ {0.01, 0.02, 0.03}, as verified in Section B.4, further validates this selection strategy.

B.4 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we analyze the sensitivity of two core hyperparameters in Lp-Reg to demonstrate the
robustness of our method: the low-probability percentile ρ and the min-p ratio κ. The results are
presented in Figure 13.

The parameter ρ, as defined in our objective function (Equation 6), determines the percentile thresh-
old for identifying low-probability tokens that are candidates for regularization. A higher ρ means
a wider range of tokens are protected. As shown in the top panel of Figure 13, we evaluated ρ with
values of 0.005, 0.010, and 0.015. The training trajectories for average test accuracy are nearly iden-
tical, and the final performance across all three settings is highly comparable. This indicates that
Lp-Reg is not overly sensitive to the precise scope of tokens being protected within this reasonable
range.

The hyperparameter κ controls the adaptiveness of the min-p filtering threshold, which defines the
boundary for what is treated as noise. A smaller κ results in a more conservative filtering strategy,
removing fewer tokens. Our sensitivity analysis for κ, presented in the bottom panel of Figure 13,
shows a similar trend of stability. Across the tested values of 0.01, 0.02, and 0.03, the training curves
and final performance remain consistently high and tightly clustered. Taken together, these results
demonstrate the robustness of Lp-Reg. The method’s effectiveness is not contingent on extensive,
fine-grained hyperparameter tuning, highlighting its practical applicability.
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(a) Sensitivity analysis on ρ which defined the low-probability percentile threshold δBρ .
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(b) Sensitivity analysis on κ which defined the noise threshold τ = κ ·maxo′∈V πθ(o
′|·)

Figure 13: Training dynamics of Lp-Reg method with different hyperparameters.

Methods AIME24 AIME25 Math-500 Minerva Olympiad Bench

Qwen2.5-32B-Base
GRPO (Shao et al., 2024a) (off.) 30.63 23.75 88.00 46.69 56.00
GSPO (Zheng et al., 2025a) (off.) 36.88 26.46 89.00 49.63 56.30
Clip-Higher (Yu et al., 2025) (off.) 39.58 32.71 88.80 48.90 58.22
KL-Cov (Cui et al., 2025) (off.) 36.88 29.38 89.00 48.16 56.89
80/20 (Wang et al., 2025b) (off.) 40.62 30.21 90.80 48.16 58.81
Lp-Reg (off.) 37.71 26.88 90.20 43.38 60.15
GRPO (Shao et al., 2024a) (on.) 32.50 23.54 88.80 47.79 60.30
GRPO + Entropy Loss (on.) 3.75 2.50 60.80 32.72 22.22
80/20 (Wang et al., 2025b) (on.) 35.00 28.54 90.00 47.79 58.81
Lp-Reg (on.) 45.00+10.78% 32.71+0.00% 93.00+2.42% 48.16−2.96% 64.15+6.38%

Qwen3-14B-Base
GRPO (Shao et al., 2024a) (off.) 35.83 27.71 91.00 48.16 59.56
GSPO (Zheng et al., 2025a) (off.) 43.75 36.67 91.60 50.74 61.04
Clip-Higher (Yu et al., 2025) (off.) 44.79 33.75 95.00 49.63 65.19
KL-Cov (Cui et al., 2025) (off.) 49.38 35.83 94.20 51.84 64.44
80/20 (Wang et al., 2025b) (off.) 44.17 34.58 92.80 50.37 62.81
Lp-Reg (off.) 48.75 34.79 94.40 49.63 65.78
GRPO (Shao et al., 2024a) (on.) 46.04 35.42 93.80 50.37 65.63
GRPO + Entropy Loss (on.) 37.29 28.54 90.60 48.53 57.93
80/20 (Wang et al., 2025b) (on.) 47.29 35.00 94.00 50.37 65.78
Lp-Reg (on.) 51.88+5.06% 40.62+10.77% 95.00+0.00% 51.47−0.71% 70.37+6.98%

Table 3: Per-benchmark peak performance on five mathematical reasoning benchmarks. Note that
the scores reported represent the maximum value achieved for each specific benchmark indi-
vidually; thus, scores within a single row may originate from different training checkpoints.
Best scores are bolded while second-best scores are underlined. The relative accuracy improvement
of Lp-Reg over the next best method is indicated as a subscript.

B.5 PER-BENCHMARK PEAK PERFORMANCE ANALYSIS

In Section 5.2, we reported performance based on a single checkpoint selected for the best av-
erage test accuracy across five mathematical benchmarks. However, aggregating results can ob-
scure the model’s peak potential on individual tasks. To address this, we present the per-benchmark
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best scores in Table 3. As shown, our on-policy Lp-Reg achieves the highest peak scores on all
benchmarks with the exception of Minerva. Even on Minerva, where Lp-Reg(on.) is not the best
performer, the gap is marginal: on Qwen2.5-32B-Base, it trails the highest score by only 1.47
percentage points (a relative difference of −2.96%). Conversely, the gains on other benchmarks
are substantial, particularly on the most challenging reasoning tasks such as AIME24, AIME25,
and Olympiad Bench. Notably, on Qwen2.5-32B-Base, Lp-Reg(on.) outperforms the second-best
method, 80/20(off.), by a relative margin of 10.78% on AIME24. Similarly, on Qwen3-14B-Base, it
achieves a 10.77% relative improvement on AIME25. These significant improvements on the hard-
est benchmarks underscore the effectiveness of Lp-Reg in solving complex reasoning problems.

We further evaluate the exploration capability of our method by comparing the best pass@k rates. As
detailed in Table 4, Lp-Reg(on.) consistently achieves the highest pass@k scores on both AIME24
and AIME25 across both model scales, often by a wide margin. For the Qwen2.5-32B model, Lp-
Reg(on.) demonstrates a minimum relative improvement of 5.97% in pass@k metrics on AIME24.
Furthermore, on the Qwen3-14B model, it shows impressive gains on AIME25, achieving relative
improvements ranging from 7.81% to 9.33%. These robust pass@k results provide strong evidence
that Lp-Reg effectively sustains meaningful exploration throughout long-horizon RLVR training,
resulting in more diverse and successful reasoning rollouts.

Methods AIME24 AIME25
Pass@2 Pass@4 Pass@8 Pass@2 Pass@4 Pass@8

Qwen2.5-32B-Base
GRPO (Shao et al., 2024a) (off.) 40.06 49.87 58.10 29.11 36.25 44.75
GSPO (Zheng et al., 2025a) (off.) 46.83 57.62 66.78 32.86 38.84 45.04
Clip-Higher (Yu et al., 2025) (off.) 48.11 57.80 68.32 35.92 43.27 51.29
KL-Cov (Cui et al., 2025) (off.) 46.89 55.94 64.61 35.44 41.60 49.39
80/20 (Wang et al., 2025b) (off.) 48.97 56.52 64.29 34.08 41.35 49.47
Lp-Reg (off.) 49.69 59.75 69.21 33.75 42.44 50.80
GRPO (Shao et al., 2024a) (on.) 42.08 51.74 61.95 29.19 35.83 43.20
GRPO + Entropy Loss (on.) 6.89 11.88 19.08 4.00 6.06 10.11
80/20 (Wang et al., 2025b) (on.) 45.06 55.33 63.40 35.28 41.64 48.54
Lp-Reg (on.) 53.33+7.33% 63.50+6.28% 73.34+5.97% 38.28+6.57% 45.52+5.20% 53.12+3.57%

Qwen3-14B-Base
GRPO (Shao et al., 2024a) (off.) 45.31 54.81 64.09 34.14 41.00 48.29
GSPO (Zheng et al., 2025a) (off.) 54.11 63.67 71.05 44.39 51.97 59.67
Clip-Higher (Yu et al., 2025) (off.) 56.00 66.85 74.91 40.19 48.31 57.35
KL-Cov (Cui et al., 2025) (off.) 59.47 66.84 74.52 42.22 49.98 58.65
80/20 (Wang et al., 2025b) (off.) 57.14 66.25 72.05 41.50 49.26 59.03
Lp-Reg (off.) 58.08 64.23 71.41 40.86 46.30 52.39
GRPO (Shao et al., 2024a) (on.) 55.19 63.93 70.48 42.86 49.90 57.85
GRPO + Entropy Loss (on.) 47.44 57.53 66.34 34.86 41.62 48.09
80/20 (Wang et al., 2025b) (on.) 56.97 63.66 71.66 42.28 49.76 57.39
Lp-Reg (on.) 62.67+5.38% 71.04+6.27% 79.85+6.59% 48.53+9.33% 56.03+7.81% 64.95+8.85%

Table 4: Per-benchmark peak pass@k results on the challenging AIME24 and AIME25 benchmarks.
Similar to Table 3, scores reported denote the peak pass@k rate for each metric separately,
implying they may be derived from different checkpoints. Best scores are bolded and second-
best scores are underlined. The relative improvement of Lp-Reg is indicated as a subscript.

B.6 GENERALIZATION ACROSS MODELS AND DOMAINS

To further validate the generalizability of Lp-Reg, we extend our evaluation across different model
architectures and domains.

Extension to Llama3 Architecture To assess effectiveness across various model architectures, we
conduct experiments on Llama3-OctoThinker-8B (Wang et al., 2025c), a mid-trained model derived
from Llama3-8B-Base (Grattafiori et al., 2024). The vanilla Llama3 series is known to present
significant challenges for RLVR (Gandhi et al., 2025; Liu et al., 2025). As presented in Table 5,
our proposed Lp-Reg outperforms all other methods by a substantial margin. Specifically, in on-
policy training, Lp-Reg(on.) achieves an absolute gain of 2.88% absolute accuracy over the second-
best on-policy method, GRPO. For off-policy training, Lp-Reg(off.) demonstrates an even larger
advantage, surpassing the nearest competing off-policy method by at least 3.62% absolute accuracy.
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These results strongly align with the findings observed on Qwen models, further highlighting the
robustness of Lp-Reg across different foundational architectures.

Domain Generalization: Science and Code We also conduct comparative experiments across
the science and code domains. For code generation, we train models on the AReaL-boba-2-RL-
Code (Fu et al., 2025a) dataset and evaluate performance on the LCB-v5 (Jain et al., 2024) and
LCB-v6 (Jain et al., 2024) benchmarks. For the science domain, the Qwen3-8B-Base model is
trained on the SCP-116k (Lu et al., 2025) dataset, which covers biology, chemistry, and physics
problems, and evaluated on the PhD-level GPQA-diamond (Rein et al., 2024) benchmark.

As shown in Table 6, Lp-Reg achieves the best overall performance in both the code and science do-
mains. For the code generation task, Lp-Reg achieves the highest average score within both the on-
policy and off-policy categories, respectively. On the challenging science task, Lp-Reg also demon-
strates superior performance on the GPQA-diamond dataset, with Lp-Reg(on.) and Lp-Reg(off.)
surpassing their respective baselines (GRPO(on.) and KL-Cov(off.)). The consistency of these
improvements across mathematics, science, and code domains demonstrates the effectiveness and
broad applicability of Lp-Reg.

Method AIME24 AIME25 Math-500 Minerva Olympiad Bench Avg.

Llama3-OctoThinker-8B
GRPO (Shao et al., 2024a) (off.) 4.38 4.58 60.00 26.47 25.93 24.27
GSPO (Zheng et al., 2025a) (off.) 4.58 2.50 58.80 29.41 25.33 24.13
Clip-Higher (Yu et al., 2025) (off.) 11.88 3.75 61.80 23.16 26.96 25.51
KL-Cov (Cui et al., 2025) (off.) 7.71 4.58 55.00 23.16 22.96 22.68
80/20 (Wang et al., 2025b) (off.) 10.00 7.50 59.00 18.75 27.56 24.56
Lp-Reg (off.) (ours) 9.58 8.33 68.80 27.21 31.70 29.13
GRPO (Shao et al., 2024a) (on.) 15.42 12.50 76.20 33.09 43.26 36.09
80/20 (Wang et al., 2025b) (on.) 11.67 4.17 73.60 27.21 37.48 30.82
Lp-Reg (on.) (ours) 18.33 16.88 79.00 35.29 45.33 38.97

Table 5: Main results on five mathematical reasoning benchmarks on Llama3-OctoThinker-8B.
On-policy (on.) and off-policy (off.) training methods are highlighted with distinct colors. Bench-
mark scores correspond to the same checkpoint that achieves the highest average test set accuracy
across the whole training. Best scores are bolded while second-best scores are underlined.

Methods Code Science
LCB-v5 LCB-v6 Avg. GPQA-diamond

Qwen3-8B-Base
GRPO (Shao et al., 2024a)(off.) 27.32 27.43 27.38 39.71
GSPO (Zheng et al., 2025a)(off.) 28.29 26.57 27.43 47.16
Clip-Higher (Yu et al., 2025)(off.) 27.10 27.57 27.34 48.61
KL-Cov (Cui et al., 2025)(off.) 28.74 27.43 28.09 49.18
80/20 (Wang et al., 2025b)(off.) 26.57 27.64 27.11 45.90
Lp-Reg(off.) 29.57 27.57 28.57 51.77
GRPO (Shao et al., 2024a)(on.) 27.47 27.86 27.67 50.63
80/20 (Wang et al., 2025b)(on.) 28.29 27.36 27.83 48.42
Lp-Reg(on.) 28.89 29.00 28.95 52.97

Table 6: Results on science and code domains on Qwen3-8B-Base. On-policy (on.) and off-policy
(off.) training methods are highlighted with distinct colors. Benchmark scores correspond to the
same checkpoint that achieves the highest average test set accuracy across the whole training. Best
scores are bolded while second-best scores are underlined.

B.7 COMPUTATIONAL OVERHEAD ANALYSIS

To analyze the computational overhead of Lp-Reg, particularly with large vocabularies, we analyze
the complexity of its two core components: proxy distribution construction in Equation 5 and loss
computation in Equation 6. We provide the PyTorch-style implementation for proxy distribution
renormalization in Listing 1 and the Lp-Reg loss calculation in Listing 2.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

def forward_micro_batch(logits, kappa):
# Standard Log-Softmax calculation
log_prob = log_softmax(logits)

+ # 1. Calculate dynamic threshold
+ prob = exp(log_prob)
+ threshold = kappa * max(prob, axis=-1)

+ # 2. Filter noise
+ mask = prob < threshold
+ proxy_logits = logits.clone()
+ proxy_logits[mask] = -infinity

+ # 3. Re-normalization
+ proxy_log_prob = log_softmax(proxy_logits)

return log_prob, proxy_log_prob

Listing 1: Pseudo-code of Proxy Distribution Construction

def compute_policy_loss_lp_reg(old_log_prob, log_prob,
proxy_log_prob, advantage, **args):↪→
# Standard PPO/GRPO Loss
ratio = exp(log_prob - old_log_prob)
pg_loss = maximum(-ratio * advantage, -clip(ratio) *

advantage)↪→

+ # 1. Identify tokens receiving negative feedback
+ neg_idx = indices(advantage < 0)

+ # 2. Select bottom rho% lowest probability tokens
+ k = int(len(neg_idx) * args["rho"])
+ low_prob_idx = topk(log_prob[neg_idx], k=k, largest=False)

+ # 3. Apply Regularization
+ mask = log_prob[low_prob_idx] < proxy_log_prob[low_prob_idx]
+ reg_idx = low_prob_idx[mask]

+ # 4. Calculate KL penalty term
+ pg_loss[reg_idx] += args["ppo_kl_coef"] * kl_penalty(
+ log_prob[reg_idx], proxy_log_prob[reg_idx])

return pg_loss.mean()

Listing 2: Pseudo-code of Lp-Reg Loss Calculation

Proxy Distribution Renormalization: As shown in Listing 1, the renormalization process involves
computing the maximum probability and re-evaluating log-probabilities. While these operations
scale linearly with the vocabulary size O(|V |), they are structurally identical to the standard Soft-
max and Log-Softmax operations already required by the base model. These element-wise vec-
tor operations are highly parallelizable on GPUs and are memory-bandwidth bound rather than
compute-bound. Consequently, their cost is negligible compared to the O(d2model) complexity of
the Transformer’s matrix multiplications, regardless of the vocabulary size.
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Loss Computation: The regularization term requires identifying the lowest-probability tokens,
which involves a Top-K selection (Listing 2). The computational complexity is O(N logK) (us-
ing a heap) or O(N) (using QuickSelect), where N is the total number of tokens in a micro-batch
(typically ≈ 30, 000) and K = ρ · N (ρ ≈ 0.01) is the number of selected tokens. Given that N
is relatively small and the operation is performed only once per optimization step (not during every
inference step), this sorting overhead is computationally trivial.

Empirical Verification: We empirically validate this analysis by comparing the training runtime
of GRPO and Lp-Reg in Table 7. To ensure a strictly fair comparison, we loaded checkpoints at
256, 512, and 768 steps and executed exactly one training update for each method under identical
conditions of the same rollout data. The results show that Lp-Reg introduces a marginal overhead of
approximately 0.3% ∼ 0.5%. This confirms that Lp-Reg is computationally lightweight and does
not affect the scalability of training.

Steps Avg. Response Length GRPO (s) Lp-Reg (s) Overhead
256 4058.53 698.49 700.60 +0.30%
512 5794.25 973.74 978.62 +0.50%
768 6640.69 1137.24 1141.49 +0.37%

Table 7: Runtime comparison between GRPO and Lp-Reg under different training steps. Lp-Reg
introduces only marginal overhead compared with GRPO.

C FURTHER ANALYSIS

Ignored by 
high-entropy 

regulariza4on!

Figure 14: Probability–Entropy scatter plots of explorative tokens: “but”, “wait”, “perhaps”, “alter-
natively”, and “however”. It displays a random sample of 5% of all data points

C.1 THEORETICAL DISCUSSION ON LOW-PROBABILITY VS. HIGH-ENTROPY TOKENS

While previous works have primarily utilized policy entropy as a proxy for exploration (Wang et al.,
2025b), our approach distinguishes between high-entropy tokens and low-probability tokens. Empir-
ical results presented in Table 2 and Figure 10 demonstrate that regularizing low-probability tokens
yields significantly better stability and performance than targeting high-entropy tokens.

In this section, we provide a theoretical foundation for these results. We formally demonstrate that
the set of tokens targeted by high-entropy methods is a subset of those captured by low-probability
methods. Crucially, high-entropy strategies inherently overlook the region of low-probability tokens
within low-entropy distributions, which is important for exploration, proven by empirical experi-
ments.
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Figure 15: Theoretical bound of entropy H vs. max probability pmax = maxo∈V πθ(o|·). The curve
represents the maximum possible entropy for a given peak probability pmax with |V| = 100000,
150000, 200000.

Proposition 1 Given the policy πθ(·|s) over a vocabulary V , and the policy entropy defined as
H(πθ) = −

∑
o∈V πθ(o|s) log(πθ(o|s)), the following holds:

∀ϵ ∈ (1/|V |, 1), ∃δ > 0, s.t. if H(πθ) > δ, then πθ(o|s) < ϵ, ∀o ∈ V. (7)

Proof Let pmax = maxo∈V πθ(o|s) be the max token probability in the policy, and let o∗ =
argmaxo∈V πθ(o|s). Accordingly, πθ(o

∗|s) = pmax.

Firstly, we decompose the entropy term by separating the maximal probability token o∗ from the
rest of the vocabulary V \ {o∗}:

H(πθ) = −pmax log pmax −
∑
o̸=o∗

πθ(o|s) log πθ(o|s). (8)

Let K = |V | − 1. The remaining probability mass is 1 − pmax. Since f(x) = x log x is a convex
function, according to Jensen’s Inequality, the entropy of the remaining tokens is maximized when
the distribution is uniform, i.e., πθ(o|s) = 1−pmax

K for all o ̸= o∗. Substituting this into the equation,
we obtain the upper bound function g(pmax):

H(πθ) ≤ −pmax log pmax −
∑
o̸=o∗

1− pmax

K
log

(
1− pmax

K

)

= −pmax log pmax − (1− pmax) log

(
1− pmax

K

)
≜ g(pmax). (9)

Then, we analyze the monotonicity of the function g(x) = −x log x − (1 − x) log 1−x
K for x ∈

(1/|V |, 1). Taking the derivative with respect to x:

g′(x) = −(log x+ 1)−
[
(−1) · log

(
1− x

K

)
+ (1− x) · K

1− x
·
(
− 1

K

)]
= − log x− 1 + log

(
1− x

K

)
+ 1

= log

(
1− x

Kx

)
. (10)

Since K = |V | − 1, we have 1−x
Kx < 1 for any x > 1

|V | . Thus, g′(x) < 0 when x ∈ ( 1
|V | , 1), which

means g(x) is strictly monotonically decreasing on the interval ( 1
|V | , 1).

Finally, Let δ = g(ϵ). Since ϵ ∈ (1/|V |, 1), δ is a well-defined positive value. Assume the condition
H(πθ) > δ holds. By the upper bound established above, we have:

g(pmax) ≥ H(πθ) > δ = g(ϵ). (11)
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Thus, g(pmax) > g(ϵ). Since we have proved that g(x) is strictly monotonically decreasing for
x > 1/|V |, the inequality of function values implies the reverse inequality of arguments:

pmax < ϵ. (12)

By definition, πθ(o|s) ≤ pmax for all o ∈ V . Therefore, πθ(o|s) < ϵ for all o ∈ V .

Proposition 1 theoretically establishes that high entropy strictly implies low probability for all to-
kens. In other words, the set of tokens targeted by high-entropy methods is almost a subset of those
targeted by low-probability regularization.

However, the converse does not hold. Low-probability tokens can be sampled not only from high-
entropy positions but also from low-entropy positions. The latter scenario constitutes a blind spot
for entropy-based methods: when the model is in a low entropy position, entropy methods ignore the
step. Yet, as shown in Figure 14, valuable explorative tokens (e.g., “but”, “wait”) frequently appear
in this low-probability, low-entropy regime. The theoretical upper bound visualized in Figure 15
further confirms that entropy maximization is restricted to the left-most region, whereas our Lp-
Reg remains effective across the entire region. This explains why Lp-Reg outperforms high-entropy
regularization, as validated by our experiments.

C.2 TRAJECTORY-LEVEL TOKEN ANALYSIS

Exploratory	Tokens:	“but”,	“wait”,	
“perhaps”,	“alternatively”,	“however”

Irrelevant	Tokens:	“cost”,	“7ine”,	
“balanced”,	“ere”,	“trans”

Total

Advantage>0
(Positive	Trajectories)

Advantage<0
(Negative	Trajectories)

Advantage=0
(Invalid	Trajectories)

Figure 16: Trajectory-level probability analysis distinguishing exploratory tokens (left) from irrele-
vant tokens (right). The distributions are decomposed into positive (A > 0), negative (A < 0), and
invalid (A = 0) trajectories, where n represents the sampling token number.

In this section, we conduct a fine-grained trajectory-level analysis to characterize the sampling prob-
ability distributions of specific tokens. We decompose the token sampling distributions based on the
advantage values of their corresponding trajectories: positive (Ai > 0), negative (Ai < 0), and
neutral/invalid (Ai = 0). The comparative results between exploratory tokens (e.g., “but”, “wait”)
and irrelevant tokens (e.g., “cost”) are visualized in Figure 16.
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As shown in Figure 16, we observe that the probability distributions of exploratory tokens are re-
markably similar across Positive and Negative trajectories, under both standard GRPO and Lp-Reg.
This indicates that these tokens function as reasoning patterns: they represent the mechanism of
the reasoning attempt, rather than the determinant of the final outcome. Just as scratchpad paper
is utilized for both correct and incorrect solutions, a negative trajectory containing “wait” repre-
sents a failed reasoning attempt, which is fundamentally different from a failure due to a lack of
reasoning. This is further corroborated by the contrast in sampling density between active learning
groups (A ̸= 0) and static groups (A = 0). The former exhibits a significantly higher density of
low-probability tokens, while the latter shows much less. This is consistent with the intuition that ac-
tive exploration yields diverse outcomes (both successes and failures), whereas a lack of exploration
leads to concentrated, often stagnant results. Because these tokens appear abundantly in negative tra-
jectories simply due to the high volume of failed attempts during exploration, standard GRPO tends
to systematically suppress them. Lp-Reg successfully preserves these essential patterns, ensuring
the model retains the capacity to reason even when individual attempts fail.

Importantly, a distinct divergence emerges when comparing standard GRPO and Lp-Reg. As illus-
trated in Figure 16 (Step 512), standard GRPO exhibits a significant reduction in low-probability
token sampling in later training stages, signaling a diminishing of exploration attempts when uncer-
tain (low probability). This collapse directly corresponds to the performance bottleneck observed in
Figure 17. In contrast, Lp-Reg maintains robust low-probability token sampling throughout long-
horizon training, coinciding with a continuously increasing accuracy score. This demonstrates the
effectiveness of Lp-Reg in sustaining exploration.
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Figure 17: Comparison between standard GRPO and Lp-Reg on Qwen3-14B-Base.

C.3 DISCUSSION ON LOW-PROBABILITY TOKENS

In this section, we discuss the difference between our Lp-Reg and Lopti (Yang et al., 2025b), a recent
work that also investigates low-probability tokens. It is important to note that Lp-Reg and Lopti are
not in conflict; rather, they identify and address two distinct orthogonal challenges in RLVR training.
Lopti focuses on improving gradient dynamics for better data efficiency, while Lp-Reg focuses on
ensuring long-horizon training stability. The distinction is from three perspectives: the core research
problem, the methodological approach, and new, direct experimental comparisons.
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Figure 18: Comparison on standard GRPO, Lopti, and Lp-Reg.
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(1) Different Core Research Problems: Lopti focuses on the training efficiency, whereas Lp-
Reg focuses on the training stability. These represent two orthogonal axes of improve-
ment for RLVR. In detail, Lopti identifies that low-probability tokens generate gradients
with disproportionately large norms. Its core focus is on how this “over-domination” sup-
presses gradient signals from high-probability tokens, thereby reducing the data efficiency
of the training process. In contrast, our Lp-Reg identifies the systematic elimination of
low-probability tokens with exploratory semantics (e.g., “wait”), which we term “reason-
ing sparks”. Our core focus is on how the over-penalization of these tokens leads to a loss
of exploration capacity with the entropy collapse phenomenon, hindering the model from
achieving higher performance in long-horizon stable training.

(2) Different Methodological Approaches: Lopti’s method of separate gradient updates and
Lp-Reg’s regularization are distinct and non-conflicting algorithms. Specifically, to pre-
vent large-norm gradients from low-probability tokens suppressing signals from high-
probability tokens, Lopti separates the loss computation for these two groups and updates
the model parameters twice per micro-batch. For another goal to protect low-probability
tokens from over-penalization in RLVR, Lp-Reg introduces a regularization on them via a
KL divergence between the current policy and a filtered proxy policy.

(3) Empirical evidence from long-horizon experiments: To empirically validate our claims,
we have conducted a long-horizon training experiment comparing Lopti, Lp-Reg, and the
GRPO baseline for 1,000 steps. As shown in Figure 18, Lopti shows a faster initial rise in
test accuracy, confirming its effectiveness at accelerating learning, consistent with the find-
ings in their paper. However, after approximately 600 steps, Lopti’s performance plateaus,
and its training entropy collapses in the same manner as the GRPO baseline. This shows
that improving data efficiency does not inherently solve the long-term exploration prob-
lem. In contrast, our Lp-Reg demonstrates stable performance improvement throughout
the 1,000 steps, correlated with its ability to maintain policy entropy. This sustained explo-
ration allows it to achieve a significantly higher final accuracy.

In conclusion, Lp-Reg and the Lopti study address distinct, orthogonal challenges in RLVR. The
choice between these methods may depend on the specific training objectives. While investigating
a potential combination could be an interesting avenue for future research, our primary contribution
here is to formally identify the exploration stability and provide an effective solution for it. We
have added this detailed comparison to our revised manuscript to contextualize our work better and
highlight its unique conceptual contribution.

C.4 DETAILS OF SAMPLING PROBABILITY DENSITY

This section provides a detailed, token-by-token breakdown of the aggregated distributions presented
in Figure 1c and Figure 1d of the main paper, reinforcing the conclusions drawn from our analysis.

Figure 20 exhibits the individual distribution of observed sampling probabilities for meaningful ex-
ploratory tokens, also known as reasoning sparks: “but”, “wait”, “perhaps”, “alternatively”, and
“however”. These tokens are also frequently analyzed as representative cases in previous stud-
ies (DeepSeek-AI et al., 2025; Muennighoff et al., 2025; Hu et al., 2025; Qian et al., 2025; Wang
et al., 2025b). A consistent trend is observable across all five tokens, validating our claims in the
introduction. With standard GRPO training, the ability to sample these tokens at low probabilities is
systematically eliminated, causing their distributions to collapse and shift towards higher probabili-
ties. The indiscriminate entropy bonus (GRPO + Entropy Loss) is largely ineffective at restoring this
crucial low-probability tail. In stark contrast, our proposed method, Lp-Reg, consistently maintains
a healthy, wide distribution for each of these tokens, demonstrating its effectiveness in preserving
the model’s capacity for nuanced exploration.

Conversely, Figure 21 details the behavior of a class of meaningless noise tokens: “cost”, “fine”,
“balanced”, “ere”, and “trans”. These individual plots clearly illustrate the detrimental side effect
of a simple entropy bonus. For nearly every token, the GRPO + Entropy Loss baseline significantly
amplifies the sampling of this irrelevant noise, which, as shown in our main analysis, contributes
to a faster performance collapse. Lp-Reg, by design, avoids this amplification and maintains a
suppressed probability distribution for these tokens, comparable to or even more constrained than
the standard GRPO baseline.
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These detailed visualizations confirm that the phenomena of reasoning spark elimination and noise
amplification are not artifacts of aggregation but are consistent patterns at the individual token level.
This provides strong, granular evidence for the central challenge our paper addresses and highlights
the necessity of a selective preservation mechanism like Lp-Reg.

C.5 DETAILS OF PROBABILITY-ENTROPY DISTRIBUTION

To supplement the aggregated analysis presented in Figure 6 of the main text, this section provides
a detailed breakdown of the probability-entropy distributions for individual reasoning sparks. Fig-
ure 22 shows a consistent pattern across all representative tokens, ranging from “but” (Figure 22a)
to “however” (Figure 22e). For frequently occurring tokens such as “but”, “wait”, and “perhaps”,
we randomly subsample one out of every 20 instances for visualization. Under the baseline GRPO,
these sparks are consistently confined to a low-entropy, high-probability region, indicating a col-
lapse into deterministic usage. In contrast, the addition of an entropy loss pushes these tokens into
highly scattered, often excessively high-entropy states, suggesting an uncontrolled and potentially
noisy form of exploration. Our method, Lp-Reg, strikes a crucial balance, maintaining a structured
and broad distribution across a healthy range of entropy values. This consistent behavior demon-
strates that the trends identified in the aggregated data are not artifacts of averaging. The individual
plots offer strong, disaggregated evidence for our central claim: Lp-Reg effectively preserves the
exploratory potential of reasoning sparks by preventing both the deterministic collapse seen in the
baseline and the chaotic scattering induced by the indiscriminate entropy bonus.

C.6 TRAINING DYNAMICS OF REGULARIZED TOKEN

To better understand how Lp-Reg operates during training, we analyze the dynamics of the probabil-
ity threshold δBρ and the proportion of low-probability tokens subjected to regularization. As shown
in Figure 19, the threshold δBρ gradually decreases with training steps. In parallel, the regularization
ratio also declines steadily. This trend suggests that as training progresses, an increasing share of ex-
tremely low-probability tokens correspond to meaningless noise, while the semantically meaningful
tokens are lifted into higher-probability regions and thus require less regularization.
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Figure 19: Training dynamics of the probability threshold and regularization ratio.

C.7 CASE STUDY

To further illustrate the effect of the filter applied on low-probability tokens, Figure 23 to Figure 25
presents a case study of a model-generated response, where low-probability tokens are highlighted
according to whether they were preserved or filtered. Tokens with probability greater than τ are those
retained by the filter, while tokens with probability smaller than τ are suppressed. The preserved
tokens include meaningful exploratory markers such as ”Then”, ”Wait”, which guide the reasoning
trajectory, whereas the discarded set largely consists of noisy tokens such as ”We”, ”also”, ”that”.
This qualitative evidence complements our quantitative analysis, demonstrating that Lp-Reg effec-
tively leverages min-p distribution re-normalization to reliably distinguish between semantically
meaningful exploratory reasoning sparks and destabilizing noise.
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(a) Density of observed sampling probabilities for token “but”.
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(b) Density of observed sampling probabilities for token “wait”.
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(c) Density of observed sampling probabilities for token “perhaps”.
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(d) Density of observed sampling probabilities for token “alternatively”.
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(e) Density of observed sampling probabilities for token “however”.

Figure 20: Individual Density of observed sampling probabilities for meaningful exploratory tokens:
“but”, “wait”, “perhaps”, “alternatively”, and “however”.
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(a) Density of observed sampling probabilities for token “cost”.
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(b) Density of observed sampling probabilities for token “fine”.
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(c) Density of observed sampling probabilities for token “balanced”.
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(d) Density of observed sampling probabilities for token “ere”.
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(e) Density of observed sampling probabilities for token “trans”.

Figure 21: Individual Density of observed sampling probabilities for meaningless tokens: “cost”,
“fine”, “balanced”, “ere”, and “trans”.
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(a) Scattered probability–entropy plot of observed sampling instances for the
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(b) Scattered probability–entropy plot of observed sampling instances for
the token “wait”.
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(c) Scattered probability–entropy plot of observed sampling instances for the
token “perhaps”.
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(d) Scattered probability–entropy plot of observed sampling instances for
the token “alternatively”.
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(e) Scattered probability–entropy plot of observed sampling instances for the
token “however”.

Figure 22: Individual scattered probability–entropy plot of observed sampling instances for mean-
ingful tokens: “but”, “wait”, “perhaps”, “alternatively”, and “however”.
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Assistant :\n Alright , I have this problem about a square that 's divided into smaller squares ,
and the process keeps repeating indefinitely . Some parts are shaded , and I need to find out
what fraction of the whole figure is shaded . The final answer should be in the form of a
fraction \ (\ frac { m }{ n }\ ), and I need to provide the value of \( m + n \ ). Let 's break this
down step by step .\n\n ### Understanding the Problem \n\n First , let 's try to understand
what 's happening :\n\n 1 . ** Initial Square **: We start with one big square .\n 2 . ** First
Division **: This square is divided into nine smaller squares of equal area . So , it 's like a 3 x
3 grid .\n 3 . ** Center Division **: The center square of this 3 x 3 grid is then further divided
into nine even smaller squares ( 3 x 3 again ).\n 4 . ** Pattern Contin ues **: This process
repeats indefinitely â each new center square is divided into nine smaller squares .\n\n From
the As ym pt ote code , it seems that at each step , certain parts ( corn ers ) of the squares
are shaded . Specifically , the four corner squares of each smaller subdivision are shaded .\n\n
Wait , looking at the code :\n\n ``` asy
fill ((- n ,n )-- (- 1 / 3 *n ,n )-- (- 1 / 3 *n , 1 / 3 *n )-- (- n , 1 / 3 *n )-- cycle );\n fill ((- n ,- n
)-- (- 1 / 3 *n ,- n )-- (- 1 / 3 *n ,- 1 / 3 *n )-- (- n ,- 1 / 3 *n )-- cycle );\n fill (( n ,- n )-- ( 1 / 3
*n ,- n )-- ( 1 / 3 *n ,- 1 / 3 *n )-- ( n ,- 1 / 3 *n )-- cycle );\n fill (( n ,n )-- ( 1 / 3 *n ,n )-- ( 1 /
3 *n , 1 / 3 *n )-- ( n , 1 / 3 *n )-- cycle );\n `` `\n\n This code seems to shade the four corner
squares of each subdivision at each level . So , at each step , four of the nine smaller squares
are shaded .\n\n ### Visual Representation \n\n Let 's try to visualize this :\n\n 1 . ** Level 0
**: The original big square .\n 2 . ** Level 1 **: Div ided into 9 squares , and the four corners
are shaded .\n 3 . ** Level 2 **: The center square of Level 1 is divided into 9 even smaller
squares , and its four corners are shaded .\n 4 . ** Level 3 **: The center of that latest
division is divided again , and so on , infinitely .\n\n Wait , actually , looking back at the As ym
pt ote code , it seems that at every level , the four corner squares of each current smallest
subdivision are shaded . But in the description , it mentions the center square is divided , not
necessarily the corners . Maybe I mis interpreted .\n\n Wait , the code sh ad ings correspond to
the corners of each subdivision , but the description says the center square is divided . Hmm ,
perhaps the shaded parts are always the four corners of the current center square .\n\n But
perhaps it 's better to assign a value .\n\n ### Assign ing Areas \n\n Let 's assign an area to
the original square to make calculations easier . Let 's say the area of the original square is 1
.\n\n - ** Level 0 **: Total area = 1 . Fraction shaded = 0 ? Wait , no , according to the As
ym pt ote code , the parts shaded are the four corners of each subdivision , not clearly defined
yet .\n\n Wait , perhaps it 's better to think in terms of geometric series .\n\n At each level :\n\n
- The entire figure is divided into 9 equal smaller squares .\n - Out of these , 4 are shaded (
the corners ).\n\n Wait , perhaps it 's not exactly that . Looking at the code , for each square at
a certain level , its four corners in the next subdivision are shaded . But the center square
continues to be subdiv ided .\n\n Wait , perhaps it 's better to think recursively .\n\n ###
Recursive Thinking \n\n Let 's denote :\n\n - \( S _n \ ) as the total shaded area after \( n \ )
levels of subdivision .\n\n But since it 's infinite , we need to consider the limit as \( n \ )
approaches infinity .\n\n At each step :\n\n - The current smallest squares are divided into 9
even smaller squares .\n - Out of these 9 , 4 are shaded .\n\n Wait , perhaps it 's better to
think of the entire figure and how much is shaded at each stage .\n\n Let 's consider the first
level :\n\n - Original square is divided into 9 .\n - Sh aded area : the four corners , each has
area \( \ frac { 1 }{ 9 } \ ), so total shaded at level 1 : \( 4 \ times \ frac { 1 }{ 9 } = \ frac
{ 4 }{ 9 } \ ).\n\n Wait , but then the center square is further divided , and in its corners , etc
.\n\n Wait , perhaps it 's better to think of it as :\n\n At each subdivision , for each existing
square , we shade four of its nine smaller parts , and then the center is subdiv ided further
.\n\n This seems like it might lead to a geometric series where at each step , a fraction is
added to the shaded area .\n\n But I 'm not entirely clear on the pattern . Maybe I should try to
compute the shaded area at each step .\n\n ### Computing Sh aded Area \n\n Let 's try to
compute the shaded area after a few levels to see if a pattern emerges .\n\n ** Level 0 **: Sh
aded area = 0 .\n\n ** Level 1 **: The original square is divided into 9 , and 4 are shaded :
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\( S _ 1 = \ frac { 4 }{ 9 } \ ).\n\n Wait , but then the process continues . The center square (
of area \( \ frac { 1 }{ 9 } \ )) is further divided into 9 squares , each of area \( \ frac { 1 }{
8 1 } \ ), and 4 of these are shaded : \( \ frac { 4 }{ 8 1 } \ ).\n\n So , total shaded after
Level 2 : \( S _ 2 = \ frac { 4 }{ 9 } + \ frac { 4 }{ 8 1 } \ ).\n\n Similarly , the center of this
latest subdivision ( which was a square of area \( \ frac { 1 }{ 8 1 } \ )) has a center that
gets divided further , and so on .\n\n Wait , perhaps it 's better to think of it as an infinite
series .\n\n Each time we divide a square into 9 and shade 4 , and then the center is divided
again .\n\n This seems like a geometric series where each term is a fraction of the previous
shaded area .\n\n Wait , let 's see :\n\n At Level 1 : shaded area \( \ frac { 4 }{ 9 } \ ).\n\n At
Level 2 : shaded area \( \ frac { 4 }{ 8 1 } \ ) ( from the center square at Level 1 ).\n\n At
Level 3 : shaded area \( \ frac { 4 }{ 7 2 9 } \ ) ( from the center square at Level 2 ), and so
on .\n\n Wait , perhaps the total shaded area is the sum of those :\n\n \( S = \ frac { 4 }{ 9 }
+ \ frac { 4 }{ 8 1 } + \ frac { 4 }{ 7 2 9 } + \ cd ots \ )\n\n This is a geometric series with
first term \( a = \ frac { 4 }{ 9 } \ ) and common ratio \( r = \ frac { 1 }{ 9 } \ ).\n\n The
sum of an infinite geometric series is \( S = \ frac { a }{ 1 - r } \ ).\n\n So , \( S = \ frac {\
frac { 4 }{ 9 }} { 1 - \ frac { 1 }{ 9 }} = \ frac {\ frac { 4 }{ 9 }} {\ frac { 8 }{ 9 }} = \
frac { 4 }{ 8 } = \ frac { 1 }{ 2 } \ ).\n\n Wait , but I 'm not entirely confident this captures
the entire shaded area because the shaded parts are at each subdivision level , and the
pattern might be different .\n\n Wait , perhaps I should consider that at each subdivision , the
shaded parts are not just in the outer squares but are nested within the subdivisions .\n\n
Alternatively , perhaps the correct approach is to consider that at each step , the shaded area
added is \( \ frac { 4 }{ 9 } \ ) of the area being subdiv ided , and the un sh aded center
continues to be subdiv ided .\n\n Wait , perhaps a better approach is to consider the self -s im
ilarity of the problem .\n\n ### Self -S im ilarity Approach \n\n Let 's denote \( S \ ) as the
total shaded area of the original square .\n\n Looking at the first subdivision :\n\n - We have 9
smaller squares .\n - 4 of them are shaded immediately : each has area \( \ frac { 1 }{ 9 } \
), so total \( \ frac { 4 }{ 9 } \ ).\n - The center square ( also of area \( \ frac { 1 }{ 9 } \ )) is
a smaller version of the original figure , and its shaded area would be \( \ frac { S }{ 9 } \
).\n\n Wait , no . Actually , the center square is undergoing the same pattern without the
immediate shading of its corners initially ( in the context of the original shading ).\n\n Wait ,
perhaps it 's better to think that the entire figure maintains self -s im ilarity where :\n\n Total
shaded area \( S = \ ) shaded in first level \( + \ ) shaded in scaled -down version \( = \ frac {
4 }{ 9 } + \ frac { S }{ 9 } \ ).\n\n Wait , let 's think carefully :\n\n At the first level :\n\n - Sh
aded area : \( \ frac { 4 }{ 9 } \ ) ( the four corner squares ).\n - The center square ( of area \(
\ frac { 1 }{ 9 } \ )) also follows the same pattern , but in its divisions , its corners will be
shaded in the next level , and so on .\n\n Wait , perhaps the recursive relation is :\n\n \( S = \
frac { 4 }{ 9 } + \ frac { S }{ 9 } \ ).\n\n Wait , let 's see :\n\n The total shaded area is the
shaded area from the first subdivision plus the shaded area from the pattern that would have
been applied to the center square if it were the original , but scaled down by a factor of \( \
frac { 1 }{ 9 } \ ).\n\n Wait , but in the first subdivision , only the outer squares are
immediately shaded , and the center continues to be subdiv ided indefinitely .\n\n Wait ,
perhaps it 's better to think of it as :\n\n At each step , we shade four out of nine parts of each
square at the current level , and then the center square is treated as a new " original " square
at the next level .\n\n Thus , the total shaded area \( S \ ) satisfies :\n\n \( S = \ frac { 4 }{ 9
} + \ frac { S }{ 9 } \ ).\n\n Wait , let 's verify :\n\n The first term \( \ frac { 4 }{ 9 } \ )
accounts for the four shaded corner squares at the first level .\n\n Then , the center square (
of area \( \ frac { 1 }{ 9 } \ )) has its own version of the problem , so its shaded area is \( \
frac { S }{ 9 } \ ).\n\n Thus , the equation \( S = \ frac { 4 }{ 9 } + \ frac { S }{ 9 } \ )
seems correct .\n\n Now , solve for \( S \ ):\n\n \( S - \ frac { S }{ 9 } = \ frac { 4 }{ 9 } \
)\n\n \( \ frac { 8 S }{ 9 } = \ frac { 4 }{ 9 } \ )\n\n Multiply both sides by 9 :\n\n \( 8 S =
4 \ )\n\n Div ide both sides by 8 :\n\n \( S = \ frac { 4 }{ 8 } = \ frac { 1 }{ 2 } \ ).\n\n So ,
the total shaded fraction is \( \ frac { 1 }{ 2 } \ ).\n\n But the problem states that the answer
should be in the form \( \ frac { m }{ n } \ ) where \( \ gcd (m , n ) = 1 \ ), and we need to
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find \( m + n \ ).\n\n Here , \( \ frac { m }{ n } = \ frac { 1 }{ 2 } \ ), so \( m = 1 \ ), \( n =
2 \ ), and thus \( m + n = 3 \ ).\n\n Wait , but before final izing , let 's double -check the

recursive relation .\n\n ### Ver ifying the Recursive Relation \n\n Let 's consider a simpler case
to verify :\n\n Sup pose we only do the first level of subdivision . Then , the shaded area is \( \
frac { 4 }{ 9 } \ ).\n\n According to our recursive relation \( S = \ frac { 4 }{ 9 } + \ frac { S
}{ 9 } \ ), if we only do level 1 , then perhaps the \( \ frac { S }{ 9 } \ ) should be zero , but
our initial assumption that \( S = \ frac { 4 }{ 9 } + \ frac { S }{ 9 } \ ) holds for infinite
subdivisions .\n\n Alternatively , perhaps it 's better to think that at each level , the shaded
area added is correctly captured by \( \ frac { 4 }{ 9 } \ ) of the current area being considered
, and the process continues similarly .\n\n Given that , our calculation seems consistent .\n\n
### Final Answer \n\n The fractional part of the figure that is shaded is \( \ frac { 1 }{ 2 } \ ).
Therefore , \( m = 1 \ ), \( n = 2 \ ), and \( m + n = 3 \ ).\n\n Wait , but looking back at
the problem , it mentions that the answer is in the form \( \ frac { m }{ n } \ ) with \( \ gcd
(m , n ) = 1 \ ), and we need to find \( m + n \ ). Here , \( \ frac { 1 }{ 2 } \ ) satisfies this
with \( m = 1 \ ), \( n = 2 \ ), so \( m + n = 3 \ ).\n\n But before final izing , I recall that
sometimes such problems have the shaded area as \( \ frac { 5 }{ 1 2 } \ ), but based on our
reasoning , it 's \( \ frac { 1 }{ 2 } \ ). Double -check ing the recursive relation seems correct
.\n\n Alternatively , perhaps the shaded parts are not just the immediate corners but also within
the subdivisions in a different pattern . However , based on the As ym pt ote code and the
description focusing on the center 's subdivision , our approach seems valid .\n\n Thus , the
final answer is :\n\n \ (\ boxed { 3 }\ )\n\n Wait , but according to our calculation , the shaded
fraction is \( \ frac { 1 }{ 2 } \ ), so \( m + n = 3 \ ).\n\n But to ensure accuracy , let 's
consider another approach .\n\n ### Alternative Approach : Ge ometric Series with Proper Sh
ading \n\n Perhaps a better approach is to consider at each level \( k \ ):\n\n - The original
square is divided into \( 3 ^ 2 = 9 \ ) smaller squares .\n - At each subdivision , 4 of these
squares are shaded .\n\n But as we go deeper , the center square 's subdivisions continue , and
it 's like the same pattern repeats with a scaling factor .\n\n Let 's think differently : label the
initial square as level 0 . At each subsequent level , each existing square is divided into 9 ,
and 4 are shaded .\n\n But the center square continues to be subdiv ided , effectively
repeating the process .\n\n Thus , the total shaded area can be thought of as the shaded area
directly plus the shaded area from all subsequent levels of the center squares ' subdivisions
.\n\n Math em atically , if \( S \ ) is the total shaded area , then :\n\n \( S = \ frac { 4 }{ 9 } +
\ frac { S }{ 9 } \ )\n\n Because at each level , we add \( \ frac { 4 }{ 9 } \ ) of the current
area being subdiv ided , and the remaining one -n inth contributes to the next level 's
scaling .\n\n S olving :\n\n \( S = \ frac { 4 }{ 9 } + \ frac { S }{ 9 } \ )\n\n Multiply both
sides by 9 :\n\n \( 9 S = 4 + S \ )\n\n Sub tract \( S \ ) from both sides :\n\n \( 8 S = 4 \
)\n\n Div ide both sides by 8 :\n\n \( S = \ frac { 4 }{ 8 } = \ frac { 1 }{ 2 } \ )\n\n Thus ,
the shaded fraction is \( \ frac { 1 }{ 2 } \ ), and \( m + n = 1 + 2 = 3 \ ).\n\n Therefore ,
the final answer is :\n\n \ (\ boxed { 3 }\ )\n\n ** Answer :** \ (\ boxed { 3 }\ ) <|endoftext|>
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