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ABSTRACT

Despite the growing use of deep neural networks in safety-critical decision-
making, their inherent black-box nature hinders transparency and interpretability.
Explainable AI (XAI) methods have thus emerged to understand a model’s inter-
nal workings, and notably attribution methods also called saliency maps. Con-
ventional attribution methods typically identify the locations – the where – of
significant regions within an input. However, because they overlook the inherent
structure of the input data, these methods often fail to interpret what these re-
gions represent in terms of structural components (e.g., textures in images or tran-
sients in sounds). Furthermore, existing methods are usually tailored to a single
data modality, limiting their generalizability. In this paper, we propose leverag-
ing the wavelet domain as a robust mathematical foundation for attribution. Our
approach, the Wavelet Attribution Method (WAM), extends the existing gradient-
based feature attributions into the wavelet domain, providing a unified framework
for explaining classifiers across images, audio, and 3D shapes. Empirical evalua-
tions demonstrate that WAM matches or surpasses state-of-the-art methods across
faithfulness metrics and models in image, audio, and 3D explainability. Finally,
we show how our method explains not only the where – the important parts of the
input – but also the what – the relevant patterns in terms of structural components.

1 INTRODUCTION

Deep neural networks are increasingly being deployed in various applications, such as medicine,
transportation, robotics, or finance (Pooch et al., 2020; Sun et al., 2022; Redmon et al., 2016; Thi-
monier et al., 2024). These networks often make critical decisions, such as detecting tumors in
medical images or identifying obstacles in autonomous driving, yet the underlying decision-making
process is difficult to interpret due to the black-box nature of the models.

This opacity has motivated the rise of explainable AI (XAI) techniques to provide human-
understandable explanations for model decisions. While XAI has been predominantly applied in
image classification, it is also extending into other fields, such as audio and 3D shape classification
(Parekh, 2023; Paissan et al., 2024; Chen et al., 2021; Zheng et al., 2019).

Among these techniques, feature attribution methods – specifically gradient-based methods for gen-
erating saliency maps (heatmaps that highlight important input features, Zeiler & Fergus, 2014) are
prevalent. These gradient-based methods (Shrikumar et al., 2017; Sundararajan et al., 2017; Smilkov
et al., 2017) considered as efficient and reliable for interpreting model behavior (Crabbé & van der
Schaar, 2023; Wang & Wang, 2021; Xue et al., 2023).

Feature attribution involves decomposing a model’s decision within a specific “explanation” domain.
Traditionally, saliency mapping relied on the pixel domain as this domain. However, pixel-based ex-
planations flatten the hierarchical and spatial relationships inherent in images, effectively collapsing
their structural properties. In addition, the pixel domain is only relevant when the input modality
is an image. Instead, decomposing the model’s decision in the wavelet domain, which preserves
the inter-scale dependencies of an input modality, could enable saliency-based methods to account
for the image structure in the explanation. Besides, the wavelet domain is defined for any input di-
mension (images being an input of dimension 2), thus enabling a natural generalization of saliency
mapping to modalities such as audio or 3D volumes.
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This work introduces the Wavelet Attribution Method (WAM), a universal feature attribution
method. By unifying and extending existing methods, notably SmoothGrad (Smilkov et al., 2017)
and Integrated Gradients (Sundararajan et al., 2017) within the wavelet domain, we enable their ap-
plication to any modality defined over a continuous space, moving beyond the limitations of the pixel
domain. As illustrated in Figure 1, our approach involves computing the gradient of a classification
model’s prediction with respect to the wavelet decomposition of the input signal. We then produce
smooth explanations by either averaging over noisy inputs or integrating along the prediction path.

Operating in the wavelet domain, WAM isolates the contribution of the different scales within the in-
put signals to the model’s prediction, providing deeper insights into a model’s decision-making pro-
cess. We illustrate these insights by revisiting the meaningful perturbation framework withWAM, or
by carrying out noise and overlapping experiments on audio samples. Quantitative evaluations
demonstrate that WAM outperforms existing attribution methods across a range of topologies,
modalities, and metrics, underscoring its utility in addressing critical challenges in image, audio,
and 3D shape classification.

for images
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Figure 1: Explaining any modality by decomposing the model’s decision in the wavelet domain.
By computing the gradient of the model’s prediction in the wavelet domain, we provide a unified
approach to explain the decision of audio, image, and shape classifiers that preserves the structural
properties of the input modalities.

2 RELATED WORKS

Images explainability. Computer vision has supported the development of numerous post-hoc
explainability methods (Baehrens et al., 2010), with attribution methods being the most popular.
Post-hoc methods are applied on trained model and aim to rank, i.e., estimate an importance for each
pixel or region of an image, reflecting its contribution to the score predicted by the model. Many
methods have been proposed, which can be classified into two categories: White-box methods,
which require access to gradients, and Black-box methods, which use perturbations on the input
space.
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White-box approaches leverage internal model information, such as gradients, to explain predictions.
saliency maps were first introduced by Baehrens et al. (2010) and later refined in Simonyan et al.
(2014); Zeiler & Fergus (2014); Springenberg et al. (2014); Sundararajan et al. (2017); Smilkov
et al. (2017); or Muzellec et al. (2023). These methods calculate the gradient of the classification
score with respect to the input pixels using backpropagation. However, gradients can be noisy in
large vision models (Smilkov et al., 2017) and may yield misleading importance estimates due to
their focus on infinitesimal input variations (Ghalebikesabi et al., 2021).On the other hand, Black-
box methods rely on input perturbations without requiring access to internal model parameters.
Techniques like Occlusion (Zeiler & Fergus, 2014), LIME (Ribeiro et al., 2016), RISE (Petsiuk
et al., 2018), Sobol (Fel et al., 2021), and HSIC (Novello et al., 2022) generate importance maps
by observing changes in the classification score when the input image is altered. For example,
Occlusion uses binary masks to systematically occlude regions of the image, while RISE and HSIC
apply random masks to perturb multiple regions simultaneously.

However, traditional attribution methods focus on where important regions in the image are. How-
ever, they fail to address what these regions represent in terms of meaningful, higher-level concepts
– a gap that more recent research is attempting to fill (Kim et al., 2018; Ghorbani et al., 2019; Fel
et al., 2023b; Zhang et al., 2021; Graziani et al., 2023; Fel et al., 2023b;a). Moreover, these methods
often under-utilize the inherent structure of images, (recent work are beginning to explore attribution
in the frequency domain, e.g. Muzellec et al., 2023).

Audio explainability. Previous work on post-hoc audio explainability methods has mainly ex-
panded in three directions. The first explored the use of saliency methods to highlight key features
for audio classifiers processing spectrograms (Becker et al., 2024; Won et al., 2019) or 1D wave-
forms (Muckenhirn et al., 2019). Moreover, while the use of time-frequency representations for
classification and explanations is frequent in this regard, wavelet representations have not been ex-
plored previously for explanations. The second direction involves variants of LIME (Ribeiro et al.,
2016) algorithm, proposed for different types of audio classification tasks (Mishra et al., 2017; 2020;
Haunschmid et al., 2020; Chowdhury et al., 2021; Wullenweber et al., 2022). The third has pursued
the development of methods to generate listenable interpretations for audio classifiers by leveraging
the hidden representations (Parekh et al., 2022; Paissan et al., 2024). LIME-based methods suffer
from the issue of high computational costs of explanations due to a large number of forward passes
per sample. Recent methods for listenable interpretations require access to hidden layers and train
separate modules and are thus unsuitable as post-hoc explainers.

3D explainability. 3D data generally comes in two main formats: point clouds and voxels. Point
clouds offer an exact representation of the data but are unstructured. Voxels, conversely, are a
discretized but structured representation of the data, making them suitable for processing with tech-
niques such as 3D convolutions. Most explainability techniques for 3D data focused on explaining
point clouds. Chen et al. (2021); Schinagl et al. (2022); Gupta et al. (2020), and Zheng et al. (2019)
introduced techniques to generate visual explanations for interpretability of 3D object detection and
classification networks. They highlight critical features in point cloud data by adapting 2D image-
based saliency techniques (Gupta et al., 2020; Zheng et al., 2019), by using a perturbation-based
approach (Schinagl et al., 2022) or by proposing a 3D variant of LIME (Tan & Kotthaus, 2022).
Explainability on 3D volumes remains limited. A few works (Yang et al., 2018; Mamalakis et al.,
2023; Gotkowski et al., 2021) have proposed attention maps on 2D slices of 3D medical scans using
3D-GradCAM.

3D and 1D explainability techniques often reproject the model’s decision onto a 2D-pixel domain.
However, this projection filters out the intrinsic properties of the original signal, such as its temporal
or spatial depth, resulting in an incomplete representation. This process, therefore, constitutes an
improper way of generalizing attribution methods, as it disregards essential features of the original
signal’s structure. In addition, the pixel domain itself is limited for explainability. More broadly, we
note that the literature has only recently started discussing the expressiveness of the “explanation”
domain, e.g., through the lenses of concepts, and still overlooks the broader applicability across
modalities. This work contributes to the ongoing discussion by evaluating how the wavelet domain
can simultaneously address these concerns.
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3 METHODS

Notations & Background. Throughout, we let X = (⌦,F , µ) be a measure space with set ⌦,
�-algebra F , and measure µ. We denote by H = L2(X , µ) the Hilbert space of square-integrable
functions on X . Let f 2 H represent a predictor function (e.g., a classifier), which maps an input
x 2 X to an output f(x) 2 Y . We denote g 2 H a generic, square-integrable function.

A wavelet is an integrable function  2 H that is normalized, centered at 0, and has zero aver-
age (i.e.,

R
 (x) dx = 0). Unlike a sine wave, a wavelet is localized in both space and frequency

domains. This localization allows dilations of the wavelet to analyze different frequency intervals
(scales) while translations enable analysis at different spatial locations. To compute an image’s con-
tinuous wavelet transform (CWT), we first define a filter bank D derived from the original wavelet
 , using a scale factor � > 0 and 2D translation b. The filter bank D is given by

D =

⇢
 �,b(x) =

1
p
�
 

✓
x� b

�

◆�

b2R2,�>0

.

The continuous wavelet transform of a function g 2 H at scale � and location x is given by

W(g)(�,x) =

Z +1

�1
g(b)

1
p
�
 ⇤

✓
b� x

�

◆
db,

which can be rewritten as a convolution (Mallat, 2008). In the discrete dyadic case, the scale factor
� takes values in a set ⇤, chosen as ⇤ = {2j : 1  j  N ,N 2 N, N > 0}. Mallat (1989) showed
that one can compute the dyadic wavelet transform of a signal g by applying a high-pass filter H

to the signal g and subsampling by a factor of two to retrieve the detail coefficients, and applying
a low-pass filter G and subsampling by a factor of two to retrieve the approximation coefficients.
Iterating on the approximation coefficients generates a multilevel transform, where the j

th level
extracts information at resolutions between 2j and 2j�1 octaves in the frequency spectrum. When
the input signal x has dimensionality greater than one, its detail coefficients can be decomposed into
different orientations. The common orientations for 2D signals (i.e., images) are vertical, horizontal,
and diagonal.

Wavelets and multiscale decompositions. Multiscale analysis consists in decomposing an input
signal into different levels of detail. The resulting decomposition is particularly interesting as it
generates interesting features for signal understanding: edges in images at different orientations
and scales correspond to different textures. In sounds, the multiscale decomposition isolates slowly
changing patterns from transient ones. Overall, the wavelet decomposition enables the decompo-
sition of an input signal into interpretable components. As we further discuss in section 3.2, the
properties of multiscale decompositions translate into several insightful properties for XAI.

3.1 GRADIENT-BASED FEATURE ATTRIBUTION IN THE WAVELET DOMAIN

Problem formalization. Let f be a classifier and x an input (e.g., an image, an audio, or a 3D
shape). The classifier f maps the input to a class c as yc = arg maxc2C f(x) ⌘ fc(x) with a
slight abuse of notation. We recall that the original saliency map of the classifier f for class c is
then given by �Sa(x) = |rxfc(x)| where c denotes the class of interest. The saliency map is
defined provided that the fc’s are piecewise differentiable (Simonyan et al., 2014). The saliency
map highlights the most influential (in terms of the absolute value of the gradient) components in
the input x for determining the model’s f decision. The higher the value, the greater the importance
of the corresponding region.

However, varying pixel values provide no information to what is changing on the image. Therefore,
we argue that the pixel domain is not well suited for explaining what the model is seeing on the
image. On the other hand, the wavelet decomposition of an image – and more broadly of any differ-
entiable modality – provides information on the structural components of the modality. Therefore,
computing the gradient of f with respect to the wavelet transform of x will enable us to understand
the model’s reliance on features such as textures, edges, or shapes in the case of images, transients,
or harmonics in sounds or corners or small details in 3D shapes.
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Denoting z = W(x) the wavelet transform of x, since W is invertible, we can define the saliency
map of in the wavelet domain as

�Sa(z) =

����
@fc(x)

@z

���� =

����
@fc(x)

@x
·
@W

�1(z)

@z

���� , (1)

using the fact that x = W
�1(z) and where

@fc(x)

@x
denotes the gradient of the classifier output

with respect to the input image and
W

�1(z)

@z
is the Jacobian matrix of the inverse wavelet trans-

form. In practice, to retrieve Equation 1, we require the gradients on W(x) and directly evaluate
@fc(W

�1(z))/@z. A remarkable property of this framework is that it accommodates any input
dimension, and thus it is modality-agnostic. Therefore, we can apply it – and leverage its properties
– to numerical signals such as audio (1D signals), images (2D signals), or 3D shapes (3D signals).
In this paper, we demonstrate the superiority of this method in the 1D and 2D settings compared to
other domain-specific methods and illustrate examples for 3D classification.

Smoothing. Smilkov et al. (2017) highlighted the fact that the saliency maps computed follow-
ing Equation 1 can fluctuate sharply at small scales as fc is not continuously differentiable. To
yield smoother explanations, Smilkov et al. (2017) perturb the input image with Gaussian noise.
Analogously, we propose to calculate

�Sg(z) =
1

n

nX

i=1

rz̃f(W�1(z̃)) with z̃ = W(x + �) and � ⇠ N (0, I�
2). (2)

The number of samples n needed to compute the approximation of the smoothed gradient and the
standard deviation �

2 are hyperparameters for their method. To transpose this method to the wavelet
domain, we add noise to the input before computing its wavelet transform. We refer to this method
as WAMSG throughout the rest of the paper. In appendix A.1, we illustrate the enhancement of the
quality of the explanation after applying the smoothing to the gradients as described in equation 2.

Path integration. Another approach to derive smooth explanations from the model’s gradients
consists in averaging the gradient values along the path from a baseline state to the current value.
The baseline state is often set to zero, representing the complete absence of features. This technique,
introduced by Sundararajan et al. (2017), satisfies two axioms, sensitivity and implementation invari-
ance. Sensitivity states that “for every input and baseline that differ in one feature but have different
predictions, then the differing feature should be given a non-zero attribution” and Implementation
Invariance that “the attributions are always identical for two functionally equivalent networks”. Fol-
lowing Sundararajan et al. (2017), we adapt the Integrated Gradient method from the image domain
to the wavelet domain. Denoting z = W(x), we evaluate

�Ig = (z � z0) ·

Z 1

0

@fc

�
W

�1 (z0 + ↵(z � z0))
�

@z
d↵, (3)

where z0 denotes the baseline state of the wavelet decomposition of x. We refer to this implemen-
tation of WAM as WAMIG. In appendix A.1, we illustrate the enhancement of the quality of the
explanation after applying the smoothing to the gradients as described in Equation 2 and after inte-
grating the gradients, as described in Equation 3. We also discuss the visualization properties that
emerge when using either method.

3.2 DECLINATIONS OF THE WAM FOR EACH MODALITIES AND THEIR PROPERTIES

Practical implementation. The Wavelet Attribution Method (WAM) is computed across various
modalities by leveraging wavelet transforms to analyze model sensitivity. For images, the WAM is
visualized on the dyadic wavelet transform, allowing decomposition of important coefficients at
each scale and reconstruction of regions critical to model predictions. See Figure 2 for a visu-
alization of the WAM in the 2D setting. For audio, the WAM computes sensitivity to wavelet
coefficients and mel-spectrogram gradients, bridging waveform and spectrogram-based explanation
methods. For 3D shapes, the WAM is applied to voxel grids using 3D wavelet transforms, extend-
ing wavelet analysis to structured data. This unified approach provides insights into model behavior
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across modalities, enabling meaningful perturbations, minimal image analysis, and connections to
frequency-centric robustness frameworks. In section 3.2 and in appendix C, we highlight the con-
nections enabled by our method.

Figure 2: WAM for images. Our method decomposes the important components at different scales
(i.e., different levels of details) and enables us to see what is seen on the image by the model.

By leveraging the wavelet domain, our approach addresses the challenges associated with pixel-
space optimization and provides a more comprehensive understanding of the model’s behavior. This
method generalizes across different data modalities and can be a valuable tool for interpreting com-
plex neural networks in various applications.

Images: frequency-centric perspectives on model robustness. Scales in the wavelet domain
correspond to dyadic frequency ranges in the Fourier domain. Several works documented a corre-
lation between the reliance on low frequency to make predictions and the robustness of the model
(Zhang et al., 2022; Chen et al., 2022; Wang et al., 2020). We can leverage WAM to characterize a
model’s robustness, thus connecting feature attribution and robustness. On Figure 3, we evaluate the
reliance on the different scales by summing the importance of each component within each scale.
We average this importance over 1,000 images and thus obtain the average importance of each scale
for a model’s prediction. We compare a vanilla ResNet-50 (He et al., 2016) with three adversarially
robust models : ADV (Madry et al., 2018), ADV-Fast (Wong et al., 2020) and ADV-Free (Shafahi
et al., 2019). We can see that adversarially robust models rely more on the coarsest scale (leftmost
bars on Figure 3) than the vanilla ResNet-50. On the other hand, they rely less on the finest scales
(i.e., the highest frequencies, corresponding to the rightmost bars on Figure 3), thus backing the
existing results established in the Fourier domain. Therefore, WAM can be used to characterize the
robustness of a model.

Audio: post-hoc identification of relevant parts of the input audio. Figure 4 qualitatively il-
lustrates an application of WAM for audio signals. Herein, we perform a noise experiment to add
0 dB white noise to a target audio to form the input audio. The models prediction does not alter
after introducing the noise and thus the model is expected to still rely on parts of input audio coming
from target audio for its decision. The interpretation audio in Figure 14 generated using top wavelet
coefficients provides insights into the decision process and supports this hypothesis. In particular,
it almost entirely filters out corruption audio and without requiring any training it also clearly em-
phasizes key parts of target audio. Similarly, we discuss in appendix C how WAM also retrieves the
key parts of an audio signal that has been corrupted with another source (overlap experiment).
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Figure 3: Assessment of model’s robustness with the WAM.

Figure 4: Qualitative illustration of WAM for audio via a Noise experiment. We add 0 dB white
noise on he audio of the target class (’Crow’) to form the input to the classifier. Interpretation
audio reconstructed with important wavelet coefficients virtually eliminate noise, and also clearly
emphasize parts of the target class audio (indicated with green box).

Explanations on voxels. We retrieve on voxels the same decomposition as for images or audios.
Figure 5 highlights the significance of the edges at larger scales, whereas at smaller scales, the im-
portance becomes increasingly concentrated at the center of the digit. To the best of our knowledge,
WAM is the first method to show such decomposition on shapes.

Figure 5: Decomposition of the different important scales on a voxel with the WAM.

4 RESULTS

4.1 EVALUATION SETTING

We evaluate WAM in two distinct settings: images and audio. Evaluation is carried out on usual
benchmarks for both modalities. We do not consider the 3D setting for quantitative evaluation due
to the lack of comparable baselines.
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Common evaluation metrics. We quantitatively assess the accuracy of our method by leveraging
the Faithfulness (Muzellec et al., 2023), defined as the difference between the Insertion and the
Deletion scores, introduced by Petsiuk et al. (2018). Insertion and Deletion have been widely used
in XAI to evaluate the quality of feature attribution methods (Fong & Vedaldi, 2017). The Deletion
measures the evolution of the prediction probability when one incrementally removes features by
replacing them with a baseline value according to their attribution score. Insertion consists in grad-
ually inserting features into a baseline input. Samek et al. (2016) and Li et al. (2022) have shown
that Faithfulness is effective in evaluating attribution methods. Given a model f and an explanation
functional �, the Faithfulness F is given by

F (f ,�) = Ins(f ,�) � Del(f ,�). (4)

We provide a detailed derivation of the Insertion and the Deletion scores in appendix B.1. Insertion
and Deletion were initially defined in the context of images, but we propose a definition that expands
them to audio.

Modality-specific metrics. In addition to the Faithfulness, we compare WAM using the µ-
Fidelity (Bhatt et al., 2021) for images and the Faithfulness on Spectra (FF, Parekh et al., 2022)
and Input Fidelity (Fid-In, Paissan et al., 2023) for audio. We refer the reader to the appendix B.2
for a thorough definition of these metrics and a discussion of the results.

Evaluation setting for images. For images, we evaluate our method on a subset of the validation
set of ImageNet (Russakovsky et al., 2015). Our subset contains 1,000 images randomly sampled
from the 50,000 images of the validation set of ImageNet. We consider four model architectures
representative of the popular topologies currently used. We consider the following models: the
ResNet (He et al., 2016), the ConvNext (Liu et al., 2022), the EfficientNet (Tan & Le, 2019) and the
Data efficient transformer (DeiT, Touvron et al., 2021). We refer the reader to the appendix A.2 for
more details on the model’s parametrizations that we used. This evaluation framework is based on
the frameworks of Fel et al. (2021).

We compare our method with alternative gradient-based methods, namely Saliency (Simonyan et al.,
2014), Integrated Gradients (Sundararajan et al., 2017), GradCAM, GradCAM++ and Guided Back-
propagation (Selvaraju et al., 2017), and SmoothGrad Smilkov et al. (2017). We focus only on
gradient-based methods, as they are more faithful and faster to generate than alternative approaches
(Crabbé & van der Schaar, 2023; Wang & Wang, 2021; Xue et al., 2023).

Evaluation setting for audio. We evaluate our method on the dataset for Environmental Sound
Classification (ESC-50, Piczak, 2015). We pick the 400 samples of the first fold of ESC-50, as our
backbone model has been trained on the remainder of the dataset, and evaluate the CNN classifica-
tion model of Kumar et al. (2018) as our black-box model to explain. We consider a single model as
alternative models (Huang & Leanos, 2018; Wilkinghoff, 2021; Lopez-Meyer et al., 2021) are only
variations around the same topology. We consider two variants of the ESC-50 dataset: the original
(unaltered samples) and noisy samples, for which we add 0 dB white noise to the input samples
whose prediction we seek to explain. We include three baseline methods, which return explanations
on the mel-spectrogram of the input samples: the GradCAM (Selvaraju et al., 2017), Integrated
Gradients (Sundararajan et al., 2017), SmoothGrad (Smilkov et al., 2017) and Saliency (Simonyan
et al., 2014).

4.2 QUANTITATIVE EVALUATION RESULTS

Images. As displayed on Table 1, we can see that WAM for 2D signals outperforms competing
baselines according to the Faithfulness metric. In appendix B.2, we present additional results using
the Insertion, Deletion, and the µ-Fidelity. The good results are mostly driven by the fact that
WAM performs well in terms of Insertion. WAM also passes the randomization test (Adebayo
et al., 2018). We refer the reader to appendix B.3 for more details on this test.

Audio. Table 2 presents the evaluation results for audio. For WAM, we generate the explanations
from the wavelet coefficients. We can see that for audios, WAM also achieves state-of-the-art results
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and outperforms the competing metrics in terms of Faithfulness of spectra, Input fidelity and Inser-
tion. The results of the other metrics are in line with those of competing approaches. In appendix
B.2, we provide additional results where explanations are computed from the mel-spectrogram of
the waveform. In this case, we report that WAM’s performance is more in line with competing
approaches, thus showing the added value brought by explaining the model’s decision through the
wavelet domain.

Table 1: Faithfulness (Muzellec et al., 2023) score obtained on 1,000 images from the validation
set of ImageNet and for different model architectures. Higher is better. Bolded results are the best
and underlined values are the second best.

Method ResNet ConvNext EfficientNet DeiT Mean

Saliency 0.025 0.032 0.008 0.038 0.025
Integrated Gradients 0.000 0.001 0.000 0.003 0.001
GradCAM 0.134 0.072 0.061 0.162 0.107
GradCAM++ 0.184 0.055 0.050 0.044 0.083
SmoothGrad 0.023 0.000 0.010 0.004 0.009
Guided-Backpropagation 0.001 0.001 0.001 0.000 0.000

WAMSG (ours) 0.438 0.334 0.350 0.423 0.386
WAMIG (ours) 0.344 0.359 0.370 0.420 0.373

Table 2: Evaluation scores of WAM and comparison with baselines on 400 audio samples from
ESC-50 (fold 1). The column ”ESC” indicates that the samples are unaltered. The column ”+WN”
indicates that the samples have 0 dB Gaussian white noise. We report the results with explanations
generated from the wavelet coefficients of the waveform. Bolded results are the best and underlined
values are the second best.

Method Faithfulness (") Insertion (") Deletion(#) FF (") Fid-In (")
ESC50 +WN ESC50 +WN ESC50 +WN ESC50 +WN ESC50 +WN

IntegratedGradients 0.264 0.310 0.267 0.312 0.047 0.045 0.207 0.207 0.220 0.225
GradCAM 0.072 0.073 0.274 0.274 0.201 0.201 0.137 0.135 0.517 0.542
Saliency 0.066 0.065 0.220 0.221 0.154 0.156 0.166 0.168 0.253 0.245
SmoothGrad 0.184 0.184 0.251 0.251 0.067 0.067 0.193 0.194 0.177 0.175

WAMSG (ours) 0.197 0.205 0.449 0.452 0.252 0.246 0.132 0.130 0.718 0.690
WAMIG (ours) 0.176 0.182 0.436 0.442 0.260 0.261 0.118 0.124 0.652 0.657

5 DISCUSSION

Conclusion. We have introduced a novel approach for feature attribution by computing explana-
tions in the wavelet domain rather than the input domain, providing a framework applicable to audio,
images, and shapes. This method shifts away from traditional pixel-based decompositions used in
saliency mapping, offering more precise insights into model decisions by leveraging the wavelet do-
main’s ability to preserve inter-scale dependencies. This ensures that critical aspects like frequency
and spatial structures are maintained, resulting in richer explanations compared to traditional feature
attribution methods.

Our method, WAM, shows a strong ability to highlight essential audio components in noisy samples,
isolate necessary shape and texture features for accurate predictions, and offer richer explanations
for shape classification. Quantitatively, it achieves state-of-the-art results across both audio and
image benchmarks.

Limitations & future works. Despite its advantages, the current method does not extend to 3D
point cloud data, and for audio, the greedy extraction of important coefficients is unsuitable for gen-
erating listenable explanations. Future work could explore alternative wavelet decompositions, such
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as continuous or complex wavelets for audio explanations and graph wavelet transforms to handle
unstructured point clouds. Additionally, our method could be applied to videos mathematically sim-
ilar to the voxel data used in this work. We hope this approach will inspire further research into the
properties of explanation domains, the wavelet domain being one such domain.
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Sören Becker, Johanna Vielhaben, Marcel Ackermann, Klaus-Robert Müller, Sebastian Lapuschkin,
and Wojciech Samek. AudioMNIST: Exploring Explainable Artificial Intelligence for audio anal-
ysis on a simple benchmark. Journal of the Franklin Institute, 361(1):418–428, 2024.

Umang Bhatt, Adrian Weller, and José M. F. Moura. Evaluating and aggregating feature-based
model explanations. In Proceedings of the Twenty-Ninth International Joint Conference on Arti-
ficial Intelligence, IJCAI’20, 2021. ISBN 9780999241165.

Peijie Chen, Chirag Agarwal, and Anh Nguyen. The shape and simplicity biases of adversarially
robust ImageNet-trained CNNs. arXiv preprint arXiv:2006.09373, 2020.

Qiuxiao Chen, Pengfei Li, Meng Xu, and Xiaojun Qi. Sparse Activation Maps for Interpreting 3D
Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 76–84, 2021.

Yiting Chen, Qibing Ren, and Junchi Yan. Rethinking and improving robustness of convolutional
neural networks: a shapley value-based approach in frequency domain. Advances in neural infor-
mation processing systems, 35:324–337, 2022.

Shreyan Chowdhury, Verena Praher, and Gerhard Widmer. Tracing back music emotion predictions
to sound sources and intuitive perceptual qualities. In Proceedings of the 18th Sound and Music
Computing Conference, 2021.
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