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ABSTRACT

We consider the combinatorial volatile Gaussian process (GP) semi-bandit problem.
Each round, an agent is provided a set of available base arms and must select
a subset of them to maxmize the long-term cumulative reward. We study the
Bayesian setting and provide novel Bayesian cumulative regret bounds for three
GP-based algorithms: GP-UCB, GP-BayesUCB and GP-TS. Our bounds extend
previous results for GP-UCB and GP-TS to the infinite, volatile and combinatorial
setting, and to the best of our knowledge, we provide the first regret bound for
GP-BayesUCB. Volatile arms encompass other widely considered bandit problems
such as contextual bandits. Furthermore, we employ our framework to address the
challenging real-world problem of online energy-efficient navigation, where we
demonstrate its effectiveness compared to the alternatives.

1 INTRODUCTION

The multi-armed bandit (MAB) problem is a classical problem in which an agent repeatedly has
to choose between a number of available actions to perform (commonly called arms) and receives
rewards depending on the selected action. The goal of the agent is to minimize its expected cumulative
regret over a certain time horizon, either finite or infinite, where regret is defined as the expected
difference in reward between the agent’s selected arm and the best arm (Robbins, 1985). The MAB
problem has applications in healthcare, advertising, telecommunications and more (Bouneffouf et al.,
2020).

The combinatorial MAB (Gai et al., 2012; Cesa-Bianchi & Lugosi, 2012; Chen et al., 2013) considers
a problem where the agent must select a subset of the available base arms, a super arm, in every
round. The large number of super arms necessitates efficient exploration and may require solving
difficult optimization problems.

The arms and environments in bandit applications often have some side-information (or context) that
is correlated with the reward, e.g., the titles or user specifications in a news recommendation problem.
In the contextual MAB (Li et al., 2010; Krause & Ong, 2011; Agarwal et al., 2014; Zhou, 2016),
before selecting an arm, the agent is provided a context vector (for the entire environment or each
individual arm) that may (randomly) vary over time. By utilizing the information in the context the
agent can learn the expected rewards more efficiently.

When the set of arms or contexts is continuous (infinite), it is necessary to impose smoothness
assumptions on the expected reward since the agent can only explore a finite number of arms. A
common assumption is that the expected reward is a sample from a Gaussian process (GP) over the
arm or context set. For a sufficiently smooth GP, this ensures that arms which lie close in the arm
space have similar expected rewards. Integrating GPs into bandits can yield higher sample efficiency
and improved learning.

In Table 1, we provide an overview and comparison of similar work in GP MABs. The seminal paper
of Srinivas et al. (2012) first introduced the GP-UCB algorithm, which combines upper confidence
bounds (UCB) with GPs for MABs with finite or infinite arm sets. Srinivas et al. provided frequentist
regret bounds for GP-UCB on a MAB problem with a compact (infinite) arm space. Later work by
Russo & Roy (2014) provided Bayesian regret bounds for GP-UCB and GP-TS, a similar algorithm
based on Thompson sampling (Thompson, 1933), in the finite-arm setting with volatile arms. Volatile
arms (often called time-varying or sleeping arms) means that not all arms are available to the agent
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Table 1: Comparison of similar work in GP MABs where T is the horizon, K is the maximum super
arm size, and γT (γTK ) is the maximum information gain from T (TK) base arms. Note that Takeno
et al. (2023; 2024) obtain a regret bound of O(√TγT ) for IRGP-UCB, GP-TS and PIMS in the finite
setting.

Ours (Nika, 2022) (Takeno, 2023; 2024) (Kandasamy, 2018) (Russo, 2014) (Srinivas, 2012)

Infinite/Finite Infinite Infinite Infinite Infinite Finite Infinite
Volatile/Static Volatile Volatile Static Static Volatile Static
Combinatorial ✓ ✓ ✗ ✗ ✗ ✗

Bayesian/Frequentist Bayesian Frequentist Bayesian Bayesian Bayesian Frequentist
GP-UCB ✓ ✓ ✓ ✗ ✓ ✓
GP-TS ✓ ✗ ✓ ✓ ✓ ✗

GP-BUCB ✓ ✗ ✗ ✗ ✗ ✗
Regret K

√
TγTK log T K

√
TγTK log T

√
TγT log T

√
TγT log T

√
TγT log T

√
TγT log T

in every round. This is a general formulation that encompasses other MAB extensions such as the
contextual MAB.

For the infinite arm setting, Russo & Roy only hinted that the proof follows by discretization
arguments. Using discretization, the recent work by Takeno et al. (2023; 2024) derives Bayesian
regret bounds for GP-UCB and GP-TS in the infinite arm setting - but without volatile arms.

The combinatorial and contextual MAB with changing arm sets (C3-MAB) incorporates both
extensions and has received much interest recently (Qin et al., 2014; Chen et al., 2018; Nika et al.,
2020; 2022; Elahi et al., 2023), with applications in online advertisement, epidemic control and base
station assignment (Nuara et al., 2018; Lin & Bouneffouf, 2022; Shi et al., 2023). Recent work
by Nika et al. (2022) considered the C3-MAB with base arm rewards sampled from a GP. Nika
et al. (2022) provided high probability regret bounds for a combinatorial variant of GP-UCB with an
approximation oracle.

In this work, we present novel Bayesian regret bounds for both GP-UCB and GP-TS in the combina-
torial volatile Gaussian process semi-bandit problem that extend previous regret bounds for GP-UCB
and GP-TS to the infinite, volatile and combinatorial setting. As discussed above, our results hold for
the contextual setting as it is a special case of the volatile setting. Additionally, we present a Bayesian
regret bound for a third bandit algorithm called GP-BayesUCB (GP-BUCB) which is based on the
BayesUCB algorithm of Kaufmann et al. (2012). Whilst GP-BUCB was introduced by Nuara et al.
(2018) for a combinatorial bandit problem, to the best of our knowledge there are no regret bounds
for GP-BUCB - even in the non-combinatorial setting. We demonstrate that the parametrization
of GP-BUCB is more flexible than GP-UCB and is less prone to over-exploration whilst retaining
theoretical guarantees.

Furthermore, we demonstrate the applicability of combinatorial and contextual GP bandits to large
scale problems with experiments on an online energy-efficient navigation problem for electric vehicles
on real-world road networks. With the increasing emergence of electric vehicles, addressing this
problem is crucial to mitigating the so-called range anxiety. Åkerblom et al. (2023) introduced a
combinatorial MAB framework using Bayesian inference to learn the energy consumption on each
road segment. In this paper, we extend the framework of Åkerblom et al. to a contextual setting and
apply it to real-world road networks. The experimental results demonstrate that the contextual GP
model achieves lower regret than the Bayesian inference model.

Our contributions can be summarized as follows.

• We extend previous Bayesian regret bounds for GP-UCB and GP-TS to the infinite, volatile
(previous results only held for finite volatile arms) and combinatorial setting.

• To the best of our knowledge, we establish the first regret bound for GP-BayesUCB.
• We develop a combinatorial and contextual bandit framework for the important real-world

application of online energy-efficient navigation.

2 SETUP AND ALGORITHMS

In this section, we formulate our bandit problem, introduce Gaussian process bandit algorithms, and
define the information gain, a quantity that is essential for GP bandits.
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Algorithm 1 Framework for combinatorial volatile semi-bandit problem

Require: Prior agent parameters θ0, base arm set A, super arm set S, horizon T .
1: for t← 1, . . . , T do
2: At,St ← ObserveAvailableArms(A,S)
3: Ut ← GetBaseArmIndices(t,θt−1)
4: at ← SelectOptimalSuperArm(St,Ut)
5: rt ← ObserveRewards(at)
6: θt ← UpdateParameters(at, rt,θt−1)

2.1 PROBLEM FORMULATION

We begin by formulating the combinatorial volatile Gaussian process semi-bandit problem. Let
A ⊂ Rd denote the set of base arms in a d-dimensional space and S = {a|a ⊂ A} ⊂ 2A denote
the set of feasible super arms. Note that |A| can either be finite or infinite, and 2A denotes the
power set of A. The expected reward for the base arms f(a) ∼ GP(µ(a), k(a, a′)) is assumed to
be a sample from a Gaussian process with mean function µ(a) : A −→ R and covariance function
k(a, a′) : A×A −→ [−1, 1].
At time t, a possibly random and finite1 subset of base arms At ⊆ A is available to the agent. In a
combinatorial setting, the agent must select a feasible subset of base arms, a super arm, at ∈ St where
St ⊂ 2At is the set of feasible and available super arms. To facilitate a feasible combinatorial problem,
the number of feasible super arms is finite in each round and the super arms have a maximum size K
(|a| ≤ K ∀a ∈ St). The agent observes the rewards of the selected base arms (semi-bandit feedback)
rt = {rt,a|a ∈ at} where the base arm reward rt,a = f(a) + ϵt,a is a sum of the expected reward
and i.i.d. Gaussian noise with zero mean and variance ς2. Motivated by the online energy-efficient
navigation problem in Section 4.1, the total reward is assumed to be additive, and the agent also
observes this reward at time t: Rt =

∑
a∈at

rt,a. The total number of time steps, the horizon, is
denoted by T . Let Ht denote the history (A1,S1,a1, r1, . . . ,At−1,St−1,at−1, rt−1,At,St) of past
observations and the currently available arms at time t.

In this work, we are interested in minimizing the Bayesian cumulative regret which, with a horizon
of T , is defined as

BR(T ) = E
[ ∑
t∈[T ]

f(a∗t )− f(at)
]
, (1)

where [T ] := {1, ..., T}, a∗t = argmaxa∈St
f(a) and f(a) =

∑
a∈a f(a). As discussed by Russo

& Roy (2014), allowing stochastic arm sets permits us to consider broader sets of bandit problems, an
example of particular interest to us will be contextual models. Even though At is finite, note that the
infinite case |A| =∞ is of great importance since it it is necessary for the context to be a continuous
random variable.

Algorithm 1 provides a framework for the introduced bandit problem. In the framework, the agent
parameters θt are defined for a general agent and are not specified here. Similarly, Ut denotes the set
of base arm indices which could be upper confidence bounds or a posterior sample, depending on the
algorithm used.

2.2 BAYESIAN FRAMEWORK FOR COMBINATORIAL GAUSSIAN PROCESS BANDITS

A Gaussian process f(a) ∼ GP(µ(a), k(a, a′)) is a collection of random variables such that for any
subset {a1, . . . , aN} ⊂ A the vector f = [f(a1), . . . , f(aN )] has a multivariate Gaussian distribution.
We take a Bayesian view of the combinatorial problem and consider GP(µ, k) as a prior over the base
arm rewards. GPs are very useful for defining and solving bandit problems, due to their probabilistic
nature and the flexibility they provide through the design of suitable kernels.

Let Nt−1 =
∑

τ=[t−1] |aτ | denote the total number of base arms selected up to time t − 1 and
let a1, . . . , aNt−1

denote the arms selected before time t. Additionally, let y ∈ RNt−1 denote the

1The restriction |At| < ∞ prevents issues with limit points since the agent can only select the same base
arm once. This limitation is not necessary in a non-combinatorial setting.
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corresponding observed base arm rewards and µ = [µ(a1), . . . , µ(aNt−1
)]⊤ denote the corresponding

prior expected base arm mean rewards. Then, for any a ∈ A, the posterior GP distribution is given
by:

µt−1(a) = µ(a) + k(a)⊤
(
K+ ς2I

)−1
(y − µ)⊤

kt−1(a, a
′) = k(a, a′)− k(a)⊤

(
K+ ς2I

)−1
k(a′),

(2)

(3)

where K =
(
k(ai, aj)

)Nt−1

i,j=1
is the covariance matrix of the previously selected arms and k(a) =[

k(a, a1), . . . , k(a, aNt−1
)
]⊤

is the covariance between a and the previously selected arms. Let
σt−1(a) and σ2

t−1(a) denote the posterior standard deviation and variance respectively.

In 2012, Srinivas et al. introduced the GP-UCB algorithm, which selects the next arm based
on an upper confidence bound. In our combinatorial setting, the GP-UCB algorithm selects
the super arm at = argmaxa∈St

Ut(a) where Ut(a) = µt−1(a) +
√
βtσt−1(a), µt−1(a) =∑

a∈a µt−1(a), σt−1(a) =
∑

a∈a σt−1(a) and βt is a confidence parameter, typically of or-
der O(log t). Kaufmann et al. (2012) introduced Bayes-UCB, which selects the arm with the
largest (1 − ηt)-quantile, where the quantile parameter ηt was of order O (1/t). Adapted to the
combinatorial Gaussian process setting, we suggest the following selection rule for Bayes-UCB:
at = argmaxa∈St

∑
a∈a Q

(
1− ηt,N

(
µt−1(a), σ

2
t−1(a)

))
, where Q(p, λ) denotes the p-quantile

of the distribution λ. We refer to this adapted version as GP-BUCB. Note that for λ = N (µ, σ2), the p-
quantile is given by Q(p,N (µ, σ2)) = µ+σ

√
2 erf−1 (2p− 1) where erf−1(·) is the inverse of the er-

ror function. Thus, GP-BUCB can be seen as a variant of GP-UCB where βt = 2
(
erf−1 (1− 2ηt)

)2
.

GP-TS (Russo & Roy, 2014; Chowdhury & Gopalan, 2017) selects the next arm randomly by
using posterior sampling. If f̂t(a) ∼ GP(µt−1, kt−1) is a sample from the posterior distribution,
then, in the combinatorial setting, GP-TS selects the super arm at = argmaxa∈St

f̂t(a), where
f̂t(a) =

∑
a∈a f̂t(a).

2.3 INFORMATION GAIN

The regret bounds of most GP bandit algorithms depend on a parameter called the maximal infor-
mation gain γT (Srinivas et al., 2012; Vakili et al., 2021). The maximal information gain (MIG)
describes how the uncertainty of f diminishes as the best set of sampling points a ⊂ A, |a| ≤ T
grows in size T . The MIG is defined using the mutual information between the observations ya at
locations a and expected reward function f :

γT := sup
a⊂A,|a|≤T

I(ya; f), (4)

where I(ya; f) = H(ya)−H(ya|f) and H(·) denotes the entropy. Both the true value of γT and
most upper bounds depend on the kernel function k defining the GP from which f is sampled from.
Srinivas et al. (2012) initially introduced bounds on γT for common kernels, such as the Matérn and
RBF kernels. For the RBF kernel, Srinivas et al. showed that γT = O

(
logd+1(T )

)
. Later, Vakili

et al. (2021) presented a general method of bounding γT that utilizes the eigendecay of the kernel k.
Using this method, Vakili et al. obtained improved bounds on the Matérn kernel with smoothness
parameter ν: γT = O

(
T

d
2ν+d log

2ν
2ν+d (T )

)
. To apply these bounds, we require that A is compact.

3 REGRET ANALYSIS

Whilst the work of Chen et al. (2013) can be seen as a standard combinatorial framework, we adopt
the framework of (Russo & Roy, 2014) since it is better suited for Bayesian bandits with volatile and
infinite arms. Russo & Roy (2014) first provided a Bayesian regret bound for GP-UCB in a volatile
(but non-combinatorial) setting with a finite arm set. Recently, Takeno et al. (2023) presented explicit
proof for the Bayesian regret of GP-UCB with a compact and static arm set. In this section, we
present novel Bayesian regret bounds for both GP-UCB and GP-TS in a combinatorial and volatile
setting (including the contextual setting). Additionally, to the best of our knowledge, we present the
first Bayesian regret bound for GP-BayesUCB. Similar to previous work, we first consider the finite
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arm case, |A| <∞, and then consider the infinite case, |A| =∞, by extending the finite arm results
via a discretization.

3.1 FINITE CASE

We start by highlighting our technical contributions for GP-BUCB. Following the proof framework
of Russo & Roy (2014), we seek to bound two terms: E[f(a∗t ) − Ut(a

∗
t )] and E[Ut(at) − f(at)].

For GP-BUCB, establishing an upper bound for the second term requires us to work around the
non-elementary function erf−1(u). Using Thm. 2 of Chang et al. (2011), we find that erf−1(u) ≥√
−ω−1 log((1− u)/ϑ) for ω > 1 and 0 < ϑ ≤

√
2e/π

√
ω − 1/ω, see Lemma A.13. The bound

is tighter for larger values of the parameter ϑ (Chang et al., 2011), thus we set ϑ to its maximum value
whilst ω is kept as a tunable parameter. Recall that the quantile parameter ηt determines how quickly
the confidence bound grows and the order ξ > 0 (s.t. ηt = O(t−ξ)) is another tunable parameter. As
shown in the lemma below, these parameters influence the bound we get.

Lemma 3.1. Let Cω =
(√

πω/
√
2e(ω − 1)

)1/ω
, then for GP-BUCB with confidence parameter

βt = 2
(
erf−1(1− 2ηt)

)2
and ηt =

√
2π

ω

2|A|ωtξ
, ξ > 0, ω > 1,

∑
t∈[T ]

E[f(a∗t )− Ut(a
∗
t )] ≤ Cω ·


ω

ω−ξT
1− ξ

ω if ξ/ω < 1,

1 + log T if ξ/ω = 1,
ξ

ξ−ω if ξ/ω > 1.

Kaufmann et al. (2012) studied (non-GP and non-combinatorial) Bayes-UCB for a Bernoulli bandit
with ξ = 1 whilst our analysis permit any ξ > 0. Lemma 3.1 shows that the ratio ξ/ω determines if
the bound for the right term is sublinear, logarithmic or constant w.r.t T for GP-BUCB. The equivalent
bounds for GP-UCB and GP-TS are both constant if βt = 2 log

(
|A|t2/

√
2π
)
, see Lemma A.2, thus

we assume ξ/ω > 1 to simplify the regret bounds.

Srinivas et al. (2012) showed, in a non-combinatorial setting, that the sum of posterior variances can
be bounded by the information gain between the sampled points and the expected reward function
f . Lemma 3 in Nika et al. (2022) (adopted to our setting in Lemma A.12) generalizes this result
to a combinatorial setting. The result depends on the maximum eigenvalue of all possible posterior
covariance matrices of size at most K, which we denote as λ∗

K .

Then, we present the main theorems for GP-UCB, GP-BUCB and GP-TS in the finite case, see
Appendix A.1 for the proofs.
Theorem 3.2 (Finite regret bounds). Let CK := 2(λ∗

K + ς2). WhenA is finite, the Bayesian regret of

(i) GP-UCB with βt = 2 log(|A|t2/
√
2π) is bounded as BR(T ) ≤ π2

6 +
√
CKTKβT γTK .

(ii) GP-BUCB with βt = 2
(
erf−1(1− 2ηt)

)2
for ηt =

√
2π

ω

2|A|ωtξ
, ξ > ω > 1 is bounded as

BR(T ) ≤ √CKTKβT γTK + Cω · ξ
ξ−ω where Cω =

(√
πω/

√
2e(ω − 1)

)1/ω
.

(iii) GP-TS is bounded as BR(T ) ≤ π2

3 + 2
√
CKTKβT γTK where βt = 2 log

(
|A|t2/

√
2π
)
.

For all three algorithms (if ξ/ω > 1 for GP-BUCB), we find that BR(T ) = O(
√
λ∗
KTKβT γTK)

where γTK is the MIG from TK base arms. Using the bounds of γT from Section 2.3, we get that the
regret is sublinear in T for both the RBF and Matérn kernels. The closest work, by Nika et al. (2022),
obtains a frequentist regret bound of the same order. Nika et al. (2022) noted that λ∗

K = O(K) which
gives a linear dependence on K in the worst case (Zhan, 2005). For a linear kernel, the setting of
Wen et al. (2015) is similar to our setting and they obtain O(K√logK) and O(K) dependencies
on K whereas our dependency is O(K√logK). For combinatorial semi-bandits with linear reward
functions (but independent arms), Merlis & Mannor (2020) obtain a Ω(

√
K/ logK) lower bound

which would suggest a gap of
√
K logK for the linear kernel. When K = 1, our results match the

non-combinatorial results for GP-UCB. However, the improved random GP-UCB (IRGP-UCB) and
GP-TS of Takeno et al. (2023; 2024) has a Bayesian regret ofO(√TγT ) in the finite case, suggesting
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that a
√
βT = O(√log T ) improvement is possible. To our knowledge, there are no known lower

bounds for the Bayesian regret of GP-bandit algorithms in general. However, for the SE-kernel the
non-Bayesian regret satisfies Ω(

√
T (log T )d/2) (Scarlett (2018); Cai & Scarlett (2021)). Taken at

face value, this would imply that our bounds are tight up to logarithmic factors of T .

3.2 INFINITE CASE

The infinite case, |A| = ∞, is an important generalization since many decision problems have a
continuum of actions to select from. Based on our framing of contextual MABs as a subset of volatile
MAB, an infinite arm set permits contexts with support on infinite domains such as continuous time.
This setting is often analytically more difficult and requires the following additional assumptions:

Assumption 3.3 (Regularity assumptions). Assume A ⊂ [0, C1]
d is a compact and convex set for

some C1 > 0. Furthermore, assume that µ and k are both L-Lipschitz on A and A×A, respectively,
for some L > 0. In addition, for f ∼ GP(µ, k) assume that there exists constants C2, C3 > 0 such
that:

P
(
sup
a∈A

∣∣∣∣ ∂f

∂a(j)

∣∣∣∣ > l

)
≤ C2 exp

(
− l2

C2
3

)
, (5)

for j ∈ {1, . . . , d} and l > 0 where a(j) denotes the j-th element of a.

Whilst the high probability bound on the derivatives of the sample paths is a common assumption
in the literature (Srinivas et al., 2012; Kandasamy et al., 2018; Takeno et al., 2023), we additionally
require that both µ and k are Lipschitz but this is not particularly restrictive, see Remark A.6.

Following Srinivas et al. (2012), proofs for the compact case tend to use a discretization Dt ⊂ A
where each dimension is divided into τt points such that |Dt| = τdt . Let [a]Dt

denote the nearest
point in Dt for a ∈ A and similarly let [a]Dt

= {[a]Dt
|a ∈ a} for a ⊂ A. Due to the assumption of

volatile arms, we require the following finer discretization (as compared to Takeno et al., 2023):

Assumption 3.4 (Discretization size). Let τt denote the number of discretization points per dimension
and assume that 

τt ≥ 2t2KLdC1(1 + tKς−1),

τt/βt ≥ 8t4K2LdC1,

τ2t /βt ≥ 8t5K3L2d2C2
1 ς

−2,

τt ≥ t2KdC1C3(
√
log(C2d) +

√
π/2)

(6a)

(6b)

(6c)

(6d)

where the constants C1, C2, C3 and L are given by Assumption 3.3 whilst the constants d,K and ς
are defined by the bandit problem (Section 2.1).

We note that Eq. (6d) is equivalent to the discretization size used by Takeno et al. (2023) with an
extra factor of K to account for the combinatorial setting whilst we introduce Eqs. (6a) to (6c) to
bound Ut([a]Dt) − Ut(a). A key step to establish the regret bound of GP-UCB by Takeno et al.
(2023) is to use the fact (for that setting) that at maximizes the upper confidence bound Ut(a)
and thus Ut([a

∗
t ]Dt) − Ut(at) ≤ 0. Since we consider a setting with volatile arms, [a∗t ]Dt is not

necessarily a feasible super arm and our technical contribution in the infinite setting is an analysis of
the discretization error of Ut([a]Dt

)− Ut(a).

Lemma 3.5. If Ut(a) = µt−1(a)+
√
βtσt−1(a), Assumption 3.3 holds and τt and βt satisfy Eqs. (6a)

to (6c) in Assumption 3.4, then for any sequence of super arms at ∈ St t ≥ 1:∑
t∈[T ]

E [Ut([at]Dt
)− Ut(at)] ≤

π2

6
. (7)

To bound the difference in posterior mean, µt−1([a]Dt)− µt−1(a), we Cholesky decompose K+
ς2I = LL⊤ and note that ||L−1(y−µ)||2 has a chi distribution with at most TK degrees of freedom.
The difference in posterior standard deviation, σt−1([a]Dt

)− σt−1(a), is bounded by using that k is
Lipschitz, Assumption 3.4 and other smaller steps.

Next, we present our regret bounds for GP-UCB, GP-BUCB and GP-TS in the infinite setting:

6
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Theorem 3.6 (Infinite regret bounds). If Assumption 3.3 holds and τt satisfies Assumption 3.4, then
the Bayesian regret of

(i) GP-UCB with βt = 2 log(τdt t
2/
√
2π) is bounded as BR(T ) ≤ π2

2 +
√
CKTKβT γTK .

(ii) GP-BUCB with βt = 2
(
erf−1(1− 2ηt)

)2
for ηt = (2π)ω/2/

(
2τdωt tξ

)
, ξ > ω >

1 is bounded as BR(T ) ≤ π2

3 +
√
CKTKβT γTK + Cω · ξ

ξ−ω where Cω =(√
πω/

√
2e(ω − 1)

)1/ω
.

(iii) GP-TS is bounded as BR(T ) ≤ 2π2

3 + 2
√
CKTKβT γTK .

The proofs are presented in Appendix A.2. Similar to Takeno et al. (2023), the regret is decomposed
into multiple terms which are either bounded by the finite case or by using results such as Lemma 3.5.
Because of the stochastic arm selection, the regret for GP-TS must be decomposed into more terms
compared to GP-UCB, which increases the constants in the bound. As in the finite case, we get that
BR(T ) = O(

√
λ∗
KTKβT γTK) for all three algorithms which matches the non-combinatorial result

of Takeno et al. (2023) for K = 1.

4 EXPERIMENTS

In this section, we consider the important real-world application of online energy-efficient navigation
for electric vehicles and formulate it as a combinatorial and contextual bandit problem. Previous
work by Åkerblom et al. (2023) introduced a framework based on Bayesian inference to address
the online navigation problem when no contextual information is available. Bayesian combinatorial
bandits allow us to combine imperfect initial estimates with exploration to find efficient routes. In
this work, we extend the framework to incorporate contextual information, enabling us to make use
of correlations for even faster learning.

4.1 BANDIT FORMULATION OF ONLINE ENERGY EFFICIENT NAVIGATION PROBLEM

The online energy-efficient navigation problem Consider a directed graph G(V, E) where the
vertices V denote intersections of road segments and the edges e = (u1, u2) ∈ E denote the road
segment from intersection u1 to intersection u2. Additionally, letL(G) = G(E , Ct) denote the directed
line graph of G where the set of connections Ct ⊆ {(e1, e2)|e1 = (u, v) ∈ E , e2 = (v, w) ∈ E}
determine which turns are legal in the road network at time t. Assume that we are given a start vertex
u1 ∈ V and a goal vertex un ∈ V . Let Pt denote the set of simple feasible paths from u1 to un at
time t. A path p = ⟨u1, u2, . . . , un⟩ is legal if all the connections are legal, and p is simple if every
vertex is visited at most once. At each time step t, we observe the set of available paths Pt and a
context vector xt,e ∈ Rd for each edge e ∈ E . The context xt,e can include static features, such as
the length of the road segment, and time-varying features, such as the congestion level. Based on
the available connections and the context vector, we select a path pt ∈ Pt and observe the energy
consumption associated with each edge in the path (negated reward): Rt =

∑
e∈pt

rt,e. The goal of
online energy-efficient navigation is to minimize the total energy consumed over a horizon T . Note
that the base arm set At corresponds to all edge-context tuples (e, xt,e) and that the base arm space
is defined as A = E × X where X ⊆ [0, C1]

d is a compact and convex set for some C1 > 0. The
super arm set St corresponds to sequences of edge-context tuples that form paths in Pt.

Shortest paths with rectified Gaussians Using regenerative braking, the energy consumption of
an electric vehicle can be negative along individual road segments which presents challenges when
we wish to find the most energy-efficient path. The most common shortest path algorithm, Dijkstra’s
algorithm (Dijkstra, 1959), does not permit negative edge weights. Whilst alternative shortest path
algorithms, such as Bellman-Ford (Shimbel, 1954; Bellman, 1958; Ford, 1956), allow negative
edge weights, they are significantly slower and do not return a path if the graph has a reachable
negative cycle. To avoid the complexity associated with negative weights, we use the rectified normal
distribution to get non-negative energy consumption estimates Ut,e as input for Dijkstra’s algorithm.
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Algorithm 2 Compute Rectified Indices

procedure GETBASEARMINDICES(t,At,θt−1 =
(µt−1,σt−1, ςt−1))

1: for each edge e ∈ At do
2: µ̃e ← µt−1,e −

√
βtσt−1,e ▷ UCB

2: µ̃e ← Q( 1t ,N (µt−1,e, σ
2
t−1,e)) ▷ BUCB

2: µ̃e ← Sample from N (µt−1,e, σ
2
t−1,e) ▷ TS

3: Ut,e ← E[ze] where ze ∼ NR(µ̃e, ς
2
t−1,e)

4: return Ut

Upper confidence bound methods output op-
timistic estimates µ̃e ∈ R whereas Thomp-
son sampling outputs posterior estimates
µ̃e ∈ R by sampling from the posterior
N (µt−1,e, σ

2
t−1,e). To ensure non-negative

weights, the edge weight Ut,e is set to E[ze]
where ze is distributed as the rectified Gaus-
sian NR(µ̃e, σ

2
t−1,e). A random variable

Y = max(0, X) is said to have a rectified
Gaussian distribution NR(µ, σ2) if X ∼
N (µ, σ2). In Algorithm 2, we show how to
integrate UCB, BUCB and Thompson sam-
pling with rectification within the framework
of Algorithm 1. The notation µt−1,e and σ2

t−1,e refer respectively to the posterior mean and variance
of the expected energy consumption for edge e whilst ς2t−1,e refers to the variance of the noise. Since
the number of edges |E| may be large, each edge is sampled independently in TS, as by Nuara et al.
(2018). Note that Algorithm 2 decouples the probabilistic regression model and Thompson sampling.
In the next sections, we describe two probabilistic regression models for energy-efficient navigation.

Algorithm 3 SVGP Optimization Procedure

procedure UPDATEPARAMETERS(at, rt,θt−1)
1: Add at, rt to history.
2: Set inducing points Zt to top M most visited

edges.
3: for i ∈ {1, . . . , G} do
4: ã, r̃ ← Subsample batch of size B from

history.
5: Compute batch ELBO.
6: Optimize variational parameters with NGD.
7: Compute µt,σt, ςt using the optimized GP.
8: return µt,σt, ςt and the optimized variational

parameters.

GP regression for energy-efficient navigation
To our knowledge, this study is the first com-
binatorial Gaussian process bandit solution for
online energy-efficient navigation. The energy
consumption depends on both the structure of
the graph and the provided context. We use the
graph Matérn kernel kG : E × E → R from
Borovitskiy et al. (2021) to encode the structure
of the line graph L(G) into the GP and an ordi-
nary 5/2-Matérn kernel kf : X × X → R to
encode the dependence on the context. The two
kernels are combined kG·f+f = kG · kf + k′f
where the two feature kernels kf and k′f use
separate sets of lengthscale and outputscale pa-
rameters. The cubic cost of exact GPs prohibits
their application to large datasets. The sparse
variational Gaussian processes (SVGP) (Titsias,
2009; Hensman et al., 2013) approximate the
posterior distribution using a set of inducing points Zt = {z1, . . . , zM} where zi ∈ A and M is sig-
nificantly smaller than the number of datapoints. By defining a prior distribution q(ut) = N (mt,St)
for the inducing variables ut, an approximate GP posterior can be obtained such that the complexity
to perform N predictions is O(M2N), i.e. linear w.r.t. N . The variational paramaters (mt,St) are
optimized by minimizing the evidence lower bound (ELBO) by performing G stochastic (natural)
gradient descent steps using batch size B. Since the inducing points zi lie in a mixed discrete and
continuous space (A = E × X for X ⊂ [0, C1]

d), we heuristically set zi equal to the edge-context
tuple of the i-th most visited edge at the start of the SVGP optimization. Then, the continuous dimen-
sions of zi are optimized together with (mt,St) using natural gradient descent (NGD) (Salimbeni
et al., 2018). The procedure is described in Algorithm 3. Further details of the kernels and parameter
values are provided in Appendices B.1 and B.3.

Bayesian inference for energy-efficient navigation Åkerblom et al. (2023) introduced a framework
for energy-efficient navigation using Bayesian inference to learn the distribution of the energy
consumption in each road segment. The key assumption is that the energy consumption of an electric
vehicle driving along a road segment is stochastic and follows a Gaussian distribution with unknown
mean and known variance. Additionally, it is assumed that the energy consumption along different
edges is independent. Using a Gaussian prior, the posterior distribution for edge e is computed using
standard conjugate update rules.
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Figure 1: Road networks of Luxembourg (left) and
Monaco (right) with evaluation routes A and B
highlighted in blue and red

Real-world road networks In our experi-
ments we use the road networks of Luxembourg
and Monaco (Codeca et al., 2017; Codeca &
Härri, 2018, based on data by OpenStreetMap
contributors, 2017). Elevation data (Administra-
tion de la navigation aérienne, 2018) is added to
the network using QGIS and the netconvert tool
from SUMO. In Fig. 1, the two road networks
are visualized along with two evaluation routes
(A and B) per network. The evaluation routes
span multiple regions of the network, allowing
for many alternative paths. The context for each
road segment consists of three fixed scalar prop-
erties: the length, the speed limit and the incline. Each property is standardized to have unit-variance.
The prior expected energy consumption is computed by a deterministic model that assumes that the
vehicle drives along an edge e ∈ E , with length ℓe and inclination αe, at constant speed ve. The
expended energy is then

Edet
e :=

mgℓe sin(αe) +mgCrℓe cos(αe) + 0.5CdAρℓev
2
e

3600η
. (8)

The deterministic energy consumption Edet
e in Eq. (8) is given in Watt-hours and depends on the

following vehicle-specific parameters: mass m, rolling resistance Cr, front surface area A, air drag
coefficient Cd and powertrain efficiency η. The gravitational acceleration g and air density ρ also deter-
mine Edet

e . The parameter values are specified in Table 2 in Appendix B.3. Let Edet = 1
|E|
∑

e∈E E
det
e

and σdet =
√

1
|E|
∑

e∈E(E
det
e − Edet)2 denote the mean and standard deviation of the deterministic

energy consumption. The expected energy consumption is sampled from GP(Edet, kG·f+f ) where
the outputscale of kG·f+f (i.e. the variance σ2

0) is set to 0.252σdet. The noise variance ς2 is set to
0.12σdet for all edges and the kernel lengthscales are set to 1. See Appendix B for further details.

4.2 RESULTS

Here, we demonstrate our experimental studies in different settings. We begin by comparing GP
algorithms to Bayesian inference methods, then we compare the parametrizations of GP-UCB and
GP-BUCB. Finally, we study the impact of the kernel lengthscale. Visualizations of the exploration
are provided in Appendix C.2.

Investigation of different bandit algorithms In our first experiment, we compare the three
algorithms GP-UCB, GP-BUCB and GP-TS. We use the Bayesian inference (BI) method of Åkerblom
et al. (2023) with UCB, BUCB and TS as baselines. For UCB and BUCB (GP and BI), we use the βt

parametrization given by Theorem 3.2 with ω = 1, ξ = 1. The six methods are evaluated 5 times
each on the four routes in the Luxembourg and Monaco networks with a horizon of T = 500. The
cumulative regret is shown in Fig. 2. The results show that the TS-based methods have significantly
lower regret than both UCB and BUCB. Similarly, the GP-based methods generally have lower regret
than their BI-based counterparts. Thereby, GP-TS yields the best results in terms of minimizing
cumulative regret. Finally, we observe that GP-BUCB has lower regret than GP-UCB. In the next
experiment, we investigate how the parametrization of these two algoritms affects the results.

BUCB parametrization As discussed in Section 2.2, GP-UCB and GP-BUCB differ mainly in
their parametrization of the confidence parameter βt. The confidence parameter determines the
balance between exploration and exploitation. It is known that theoretical results tend to provide
βt values that overexplore (Russo & Roy, 2014). Using the parameters of βt for GP-BUCB (ω
and ξ), we can tune GP-BUCB towards more exploitation whilst retaining theoretical guarantees.
We compare two theoretically valid choices of parametrizations for GP-BUCB (ω = 1, ξ = 1 and
ω = 1, ξ = 0.5) against two parametrizations of GP-UCB where the first is theoretically valid and the
second has scaled βt by 0.5. The four parametrizations are evaluated 5 times each on the four routes
in the Luxembourg and Monaco networks with a horizon of T = 500. The cumulative regret and the
βt values are shown in Fig. 3. The theoretically valid βt values for GP-BUCB are smaller than for

9
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Figure 2: Cumulative regret for UCB, BUCB and TS using GP and Bayesian inference (BI) methods.
The lines and regions correspond to the mean and ±1 standard error.
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Figure 3: Cumulative regret of GP-UCB and GP-BUCB (left and middle column) for different
parametrizations of βt (right column).

GP-UCB. By lowering ξ from 1 to 0.5, the quantile parameter ηt goes from O(t−1) to O(t−0.5) and
using ω = 1 the theoretial cumulative regret remains O(

√
T ).2 The experimental results indicate that

the parametrization with lower βt generally has lower cumulative regret. Using GP-BUCB, we gain
more control of βt without sacrificing the theoretical guarantees.

Impact of lengthscale Finally, we investigate varying the kernel lengthscale to ensure our results
are consistent and stable. A large lengthscale increases the correlation between edges, which should
lower the regret of the GP-methods. Whilst a lower lengthscale decreases the correlation which
should increase the regret of the GP-methods. We evaluate GP-BUCB and GP-TS against BI-BUCB
and BI-TS with the kernel lengthscale varying between 0.1 and 2.0. Each combination of lengthscale
and bandit-method is evaluated 5 times on all four routes with a horizon of T = 500. The final
cumulative regret at t = 500 for the different lengthscales is shown in Fig. 4 for Luxembourg A. For
the full results, see Figs. 4 and 5 in Appendix C.1. For GP-based methods, increasing the lengthscale
increases the cumulative regret overall but for BI-based methods, there is no discernable pattern.

5 CONCLUSION

We presented novel Bayesian regret bounds for the combinatorial volatile Gaussian process semi-
bandit for three GP-based bandit algorithms: GP-UCB, GP-BayesUCB and GP-TS. Additionally,
we experimentally evaluated our contextual combinatorial GP method on the online energy-efficient
navigation problem on real-world networks.

2Technically, one must use ξ ≤ 0.5− δ and ω ≥ 1 + δ for some δ > 0. However, we could choose δ to be
small enough such that GP-BUCB would select the exact same routes in all experiments.
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A PROOFS

A.1 FINITE CASE

In this section, we state and prove the regret bounds in the finite case for the three bandit algorithms
GP-UCB, GP-BUCB and GP-TS. To begin, we establish lemmas that demonstrate the general
procedure for the proofs and later we combine the lemmas to get the desired regret bounds.

In the following lemma, the Bayesian regret is separated into two terms.

Lemma A.1. For GP-TS or any GP-UCB method the following upper bound on the Bayesian regret
holds (with equality for GP-TS):

BR(T ) ≤
∑
t∈[T ]

E[f(a∗t )− Ut(a
∗
t )] + E[Ut(at)− f(at)]. (9)

Proof. The proof follows the procedure of Prop. 1 by Russo & Roy (2014) for GP-TS and Thm. B.1.
by Takeno et al. (2023) for GP-UCB. For GP-TS,

BR(T ) =
∑
t∈[T ]

E [f(a∗t )− f(at)]

=
∑
t∈[T ]

EHt
[Et [f(a

∗
t )− Ut(a

∗
t ) + Ut(at)− f(at)|Ht]]

(
a∗t |Ht

d
= at|Ht

)
=
∑
t∈[T ]

E[f(a∗t )− Ut(a
∗
t )] +

∑
t∈[T ]

E[Ut(at)− f(at)].

(10)

(11)

(12)

Similarly, for any GP-UCB method,

BR(T ) =
∑
t∈[T ]

E [f(a∗t )− f(at)]

=
∑
t∈[T ]

E [f(a∗t )− Ut(a
∗
t ) + Ut(a

∗
t )− Ut(at) + Ut(at)− f(at)]

≤
∑
t∈[T ]

E [f(a∗t )− Ut(a
∗
t ) + Ut(at)− f(at)]

(13)

(14)

(15)

where the final step uses that Ut(a
∗
t )− Ut(at) ≤ 0 since at = argmaxa∈St

Ut(a).

Whilst Lemma A.1 applies to all the considered bandit algorithms, the two terms in the decomposition
requires knowing the specific bandit algorithm. Bounding the left term requires knowledge of the
confidence parameter βt. Therefore we present a lemma that applies to GP-UCB and GP-TS, and
another lemma that applies to GP-BUCB.

Lemma A.2. If |A| <∞, then

∑
t∈[T ]

E[f(a∗t )− Ut(a
∗
t )] ≤

π2

6
(16)

holds for GP-UCB and GP-TS with βt = 2 log
(
|A|t2/

√
2π
)
.
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Proof. The proof closely follows the proof of Thm. B.1 by Takeno et al. (2023). Let R1 =∑
t∈[T ] E[f(a∗t )− Ut(a

∗
t )], then

R1 =
∑
t∈[T ]

EHt [Et [f(a
∗
t )− Ut(a

∗
t )|Ht]]

=
∑
t∈[T ]

EHt

Et

∑
a∈a∗

t

f(a)− Ut(a)

∣∣∣∣∣Ht


≤
∑
t∈[T ]

EHt

Et

∑
a∈a∗

t

(f(a)− Ut(a))+

∣∣∣∣∣Ht

 ((x)+ := max(0, x) ≥ x)

≤
∑
t∈[T ]

EHt

[∑
a∈A

Et

[
(f(a)− Ut(a))+

∣∣∣∣∣Ht

]]
. (a∗t ⊆ A)

(17)

(18)

(19)

(20)

Note that f(a)− Ut(a)|Ht ∼ N (−√βtσt−1(a), σ
2
t−1(a)). As Russo & Roy (2014), by using that if

X ∼ N (µ, σ2) for µ ≤ 0, then E[(X)+] ≤ σ√
2π

exp
(

−µ2

2σ2

)
, we get the following for R1:

R1 ≤
∑
t∈[T ]

EHt

[∑
a∈A

Et

[
σt−1(a)√

2π
exp

(−βt

2

) ∣∣∣∣∣Ht

]]

≤
∑
t∈[T ]

|A|√
2π

exp

(−βt

2

) (
σ2
t−1(a) ≤ k(a, a) ≤ 1

)
≤
∑
t∈[T ]

1

t2

(
βt = 2 log(|A|t2/

√
2π
)

≤ π2

6
.

( ∞∑
t=1

1

t2
=

π2

6

)

(21)

(22)

(23)

(24)

Lemma 3.1. Let Cω =
(√

πω/
√
2e(ω − 1)

)1/ω
, then for GP-BUCB with confidence parameter

βt = 2
(
erf−1(1− 2ηt)

)2
and ηt =

√
2π

ω

2|A|ωtξ
, ξ > 0, ω > 1,

∑
t∈[T ]

E[f(a∗t )− Ut(a
∗
t )] ≤ Cω ·


ω

ω−ξT
1− ξ

ω if ξ/ω < 1,

1 + log T if ξ/ω = 1,
ξ

ξ−ω if ξ/ω > 1.

Proof. Following the proof of Lemma A.2, we get that

∑
t∈[T ]

E [f(a∗t )− Ut(a
∗
t )] ≤

∑
t∈[T ]

|A|√
2π

exp

(
−βt

2

)
. (25)

Note that, according to Lemma A.13, erf−1(u) ≥
√
−ω−1 log((1− u)/ϑ) for ω > 1 and ϑ =√

2e/π
√
ω − 1/ω. We use the largest value of ϑ permitted by Lemma A.13 since it yields the
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tightest bound. Then,

∑
t∈[T ]

|A|√
2π

exp

(
−βt

2

)
=
∑
t∈[T ]

|A|√
2π

exp
(
−
(
erf−1(1− 2ηt)

)2)
≤
∑
t∈[T ]

|A|√
2π

exp

(
ω−1 log

(
1− (1− 2ηt)

ϑ

))
(Lemma A.13)

=
∑
t∈[T ]

|A|√
2π

(
2ηt
ϑ

) 1
ω

=
∑
t∈[T ]

ϑ− 1
ω t−

ξ
ω (Def. of ηt)

=

( √
πω√

2e(ω − 1)

) 1
ω ∑

t∈[T ]

t−
ξ
ω . (Def. of ϑ)

(26)

(27)

(28)

(29)

(30)

The behaviour of
∑

t∈[T ] t
− ξ

ω critically depends on the ratio ξ/ω. First, if ξ/ω < 1, then

∑
t∈[T ]

t−
ξ
ω ≤

∫ T

0

t−
ξ
ω dt = T 1− ξ

ω
1

1− ξ
ω

. (31)

Second, if ξ/ω = 1, then

∑
t∈[T ]

t−1 ≤ 1 +

∫ T

1

t−1dt = 1 + log T. (32)

Finally, if ξ/ω > 1, then

∑
t∈[T ]

t−
ξ
ω ≤ 1 +

∫ ∞

1

t−
ξ
ω dt = 1 +

[
1

1− ξ
ω

t1−
ξ
ω

]∞
1

= 1− 1

1− ξ
ω

=
ξ

ξ − ω
. (33)

Before we bound the right term in Lemma A.1, we introduce a lemma for the confidence radius that
applies to all the bandit algorithms considered.

Lemma A.3.

∑
t∈[T ]

E

[∑
a∈at

√
βtσt−1(a)

]
≤
√

2(λ∗
K + ς2)TKβT γTK (34)

for GP-TS or any GP-UCB method with increasing confidence parameter βt.
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Proof.

∑
t∈[T ]

E

[∑
a∈at

√
βtσt−1(a)

]

= E

∑
t∈[T ]

∑
a∈at

√
βtσt−1(a)


≤ E

√∑
t∈[T ]

∑
a∈at

βt

√∑
t∈[T ]

∑
a∈at

σ2
t−1(a)

 (Cauchy-Schwarz inequality)

≤ E

√TKβT

√∑
t∈[T ]

∑
a∈at

σ2
t−1(a)

 (
|at| ≤ K,max

t∈[T ]
βt = βT

)

=
√

TKβTE

√∑
t∈[T ]

∑
a∈at

σ2
t−1(a)


≤
√

TKβTE
[√

2(λ∗
K + ς2)γTK

]
(Lemma A.12)

≤
√
2(λ∗

K + ς2)TKβT γTK .

(35)

(36)

(37)

(38)

(39)

(40)

(41)

Next, we show how the right term in Lemma A.1 can be rewritten in terms of the confidence radius
for any GP-UCB method.

Lemma A.4. ∑
t∈[T ]

E [Ut(at)− f(at)] =
∑
t∈[T ]

E
[√

βtσt−1(at)
]

(42)

for any GP-UCB method with confidence parameter βt.

Proof. Note that given the history Ht, at := argmaxa∈St
Ut(a) is deterministic. Thus,∑

t∈[T ]

E [Ut(at)− f(at)] =
∑
t∈[T ]

EHt [Et [Ut(at)− f(at)|Ht]]

=
∑
t∈[T ]

EHt

[
Et

[
µt−1(at) +

√
βtσt−1(at)− f(at)

∣∣∣Ht

]]
=
∑
t∈[T ]

EHt

[
Et

[
µt−1(at) +

√
βtσt−1(at)− µt−1(at)

∣∣∣Ht

]]
=
∑
t∈[T ]

E
[√

βtσt−1(at)
]
.

(43)

(44)

(45)

(46)

For the final lemma in the finite case, we bound the right term in Lemma A.1 for Thompson sampling
using the previous results.

Lemma A.5. ∑
t∈[T ]

E [Ut(at)− f(at)] ≤ 2
√

CKTKβT γTK +
π2

6
(47)

holds for GP-TS with βt = 2 log
(
|A|t2/

√
2π
)
.
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Proof. By adding and subtracting the lower bound L(at), we obtain∑
t∈[T ]

E [Ut(at)− f(at)] =
∑
t∈[T ]

E [Ut(at)− f(at) + L(at)− L(at)]

=
∑
t∈[T ]

E [Ut(at)− L(at)] +
∑
t∈[T ]

E [L(at)− f(at)]

= 2
∑
t∈[T ]

E
[√

βtσt−1(at)
]

︸ ︷︷ ︸
(1)

+
∑
t∈[T ]

E [L(at)− f(at)]︸ ︷︷ ︸
(2)

.

(48)

(49)

(50)

By Lemma A.3, (1) ≤
√

2(λ∗
K + ς2)TKβT γTK . The bound (2) ≤ π2

6 is obtained using the same
steps as in Lemma A.2 due to the symmetry of L(at)− f(at) and f(at)− U(at).

Finally, we present and prove the regret bounds for GP-UCB, GP-BUCB and GP-TS using the
established lemmas.
Theorem 3.2 (Finite regret bounds). Let CK := 2(λ∗

K + ς2). WhenA is finite, the Bayesian regret of

(i) GP-UCB with βt = 2 log(|A|t2/
√
2π) is bounded as BR(T ) ≤ π2

6 +
√
CKTKβT γTK .

(ii) GP-BUCB with βt = 2
(
erf−1(1− 2ηt)

)2
for ηt =

√
2π

ω

2|A|ωtξ
, ξ > ω > 1 is bounded as

BR(T ) ≤ √CKTKβT γTK + Cω · ξ
ξ−ω where Cω =

(√
πω/

√
2e(ω − 1)

)1/ω
.

(iii) GP-TS is bounded as BR(T ) ≤ π2

3 + 2
√
CKTKβT γTK where βt = 2 log

(
|A|t2/

√
2π
)
.

Proof. (i) The regret bound for GP-UCB is obtained as follows:

BR(T ) ≤
∑
t∈[T ]

E [f(a∗t )− Ut(a
∗
t )] +

∑
t∈[T ]

E [Ut(at)− f(at)] (Lemma A.1)

≤ π2

6
+
∑
t∈[T ]

E
[√

βtσt−1(at)
]

(Lemmas A.2 and A.4)

≤ π2

6
+
√
2(λ∗

K + ς2)TKβT γTK . (Lemma A.3)

(51)

(52)

(53)

(ii) The regret of GP-BUCB can be decomposed as follows:

BR(T ) ≤
∑
t∈[T ]

E [Ut(at)− f(at)] +
∑
t∈[T ]

E [f(a∗t )− Ut(a
∗
t )] (Lemma A.1)

≤
∑
t∈[T ]

E
[√

βtσt−1(at)
]

(Lemma A.4)

+

( √
πω√

2e(ω − 1)

)1/ω

·
{

ω
ω−ξT

1− ξ
ω if ξ/ω < 1,

ξ
ξ−ω if ξ/ω > 1.

(Lemma 3.1)

(54)

(55)

(56)

From Lemma A.3,
∑

t∈[T ] E
[√

βtσt−1(at)
]
≤
√
2(λ∗

K + ς2)TKβT γTK and we obtain the desired
result.

(iii) The regret of GP-TS is obtained as follows:

BR(T ) =
∑
t∈[T ]

E [f(a∗t )− Ut(a
∗
t )] +

∑
t∈[T ]

E [Ut(at)− f(at)] (Lemma A.1)

≤ π2

6
+

π2

6
+ 2
√
CKTKβT γTK . (Lemmas A.2 and A.5)

(57)

(58)
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A.2 INFINITE CASE

Similar to the finite case, we establish lemmas that hold for all bandit algorithms and finally state and
prove the regret bounds.

Before stating the first lemma, we restate the assumptions for convenience:

Assumption 3.3 (Regularity assumptions). Assume A ⊂ [0, C1]
d is a compact and convex set for

some C1 > 0. Furthermore, assume that µ and k are both L-Lipschitz on A and A×A, respectively,
for some L > 0. In addition, for f ∼ GP(µ, k) assume that there exists constants C2, C3 > 0 such
that:

P
(
sup
a∈A

∣∣∣∣ ∂f

∂a(j)

∣∣∣∣ > l

)
≤ C2 exp

(
− l2

C2
3

)
, (5)

for j ∈ {1, . . . , d} and l > 0 where a(j) denotes the j-th element of a.

Remark A.6. By Thm. 5 of Ghosal & Roy (2006), the high probability bound holds if µ is continuously
differentiable and k is 4 times differentiable, which would also imply the Lipschitzness of µ and k.
As discussed by Srinivas et al. (2012), this holds for the Matérn kernel if ν ≥ 2 by a result of Stein
(1999) and holds trivially for the squared exponential kernel. Thus, the Lipschitz assumption of µ
and k is not particularly restrictive.

Assumption 3.4 (Discretization size). Let τt denote the number of discretization points per dimension
and assume that 

τt ≥ 2t2KLdC1(1 + tKς−1),

τt/βt ≥ 8t4K2LdC1,

τ2t /βt ≥ 8t5K3L2d2C2
1 ς

−2,

τt ≥ t2KdC1C3(
√
log(C2d) +

√
π/2)

(6a)

(6b)

(6c)

(6d)

where the constants C1, C2, C3 and L are given by Assumption 3.3 whilst the constants d,K and ς
are defined by the bandit problem (Section 2.1).

Remark A.7. For the theorems to be relevant, the assumptions imposed on τt must be satisfiable for
some τt. If βt = 2 log

(
τd
t t2√
2π

)
, then Assumption 3.4 is satisfied by

τt = max



2KLdC1(1 + tKς−1)t2,((
16t4K2LdC1

) (
d+ log

(
t2√
2π

))) 1
1−1/e

,((
16t5K3L2d2C2

1 ς
−2
) (

d+ log
(

t2√
2π

))) 1
2−1/e

,

t2KdC1C3

(√
log(C2d) +

√
π
2

)
.

(59)

This can be shown by noting that log τt ≤ e
√
τt and 1 ≤ e

√
τt and then deriving that 1

βt
≥

1

τ
1/e
t (d+log(t2/

√
2π)

.

Similarly, if βt = 2
(
erf−1 (1− 2ηt)

)2
and ηt =

√
2π

ω

2τdω
t tξ

, ω > 1, then Assumption 3.4 is satisfied by

τt = max



2t2KLdC1(1 + tKς−1),((
16t4K2LdC1

) (
dω + log

(
tξ

2
√
2π

ω

))) 1
1−1/e

,((
16t5K3L2d2C2

1 ς
−2
) (

dω + log
(

tξ

2
√
2π

ω

))) 1
2−1/e

,

t2KdC1C3

(√
log(C2d) +

√
π
2

)
.

(60)

This is shown similarly as before but using Lemma A.14 to upper bound erf−1(1− 2ηt) in βt.

Next, we present a lemma that bounds the discretization error of the expected reward of optimal super
arm.
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Lemma A.8. Let Dt ⊂ A be a finite discretization with each dimension equally divided into
τt = t2KdC1C3

(√
log(C2d) +

√
π/2

)
such that |Dt| = τdt . Then,

∑
t∈[T ]

E [f(a∗t )− f([a∗t ]Dt
)] ≤ π2

6
. (61)

Proof.

∑
t∈[T ]

E[f(a∗t )− f([a∗t ]Dt)] =
∑
t∈[T ]

E

∑
a∈a∗

t

f(a)− f([a]Dt)


≤ K

∑
t∈[T ]

E
[
sup
a∈A

f(a)− f([a]Dt
)

]
(|a∗t | ≤ K)

≤ K
∑
t∈[T ]

1

Kt2

(
Lemma H.2 of
Takeno et al. (2023)
with ut = Kt2

)

≤ π2

6

( ∞∑
t=1

1

t2
=

π2

6

)

(62)

(63)

(64)

(65)

In the following lemma, we bound the discretization error of the posterior mean and standard deviation
in terms of the regularity parameters, the discretization size and number of arms selected.

Lemma A.9. Let µt−1 and σt−1 denote the posterior mean and standard deviation of GP(µ, k) after
sampling Nt−1 base arms. If a ∈ A, then

µt−1([a]Dt)− µt−1(a) ≤ L
dC1

τt
+ L

dC1

τt

√
Nt−1ς

−1
√
∥L−1(y − µ)∥22 (66)

and

σt−1([a]Dt
)− σt−1(a) ≤

√
L
dC1

τt
+Nt−1L2

(
dC1

τt

)2

ς−2 (67)

for L−Lipschitz µ and k where L is the Cholesky decomposition of K+ς2I and ∥L−1(y−µ)∥22 ∼ χ2

with Nt−1 degrees of freedom.

Proof. Consider first the difference in posterior mean:

µt−1([a]Dt
)− µt−1(a)

= µ([a]Dt
)− µ(a) + (k([a]Dt

)− k(a))
⊤ (

K+ ς2I
)−1

(y − µ)

≤ L sup
a∈A
∥a− [a]Dt

∥1 +
∥∥∥(k([a]Dt

)− k(a))
⊤
(K+ ς2I)−1(y − µ)

∥∥∥
2

(µ L-Lipschitz)

≤ L
dC1

τt
+
∥∥∥(k([a]Dt)− k(a))

⊤
(K+ ς2I)−1(y − µ)

∥∥∥
2

(68)

(69)

(70)

(71)

where the last step uses that supa∈A ∥a− [a]Dt
∥1 ≤ dC1

τt
.

Next, we will appropriately split the norm into a product of norms and bound the individual factors.
Let K+ ς2I = LL⊤ denote the Cholesky decomposition. Note that y−µ ∼ N (0,K+ ς2I). Then,
L−1(y − µ) ∼ N (0,L−1LL⊤(L−1)⊤) = N (0, I) and thus ∥L−1(y − µ)∥2 has a chi distribution
with Nt−1 degrees of freedom.
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Let eig(A) denote the set of eigenvalues of the square matrix A. The matrix norm of the inverted
Cholesky decomposition L−1 can be bounded as:

∥L−1∥2 =
√
max eig ((L−1)⊤L−1)

(
Eq. (538) of Petersen &
Pedersen (2012)

)
=
√
max eig ((K+ ς2I)−1)

=

√
max

1

eig (K+ ς2I)

=

√
max

1

eig (K) + ς2
≤
√

1

ς2
≤ 1

ς
. (K p.s.d., ς > 0)

(72)

(73)

(74)

(75)

Similarly, we also get that
∥(K+ ς2I)−1∥2 ≤ ς−2. (76)

The kernel difference can be bounded as follows:

∥k([a]Dt
)− k(a)∥2 =

√√√√Nt−1∑
i=1

(k([a]Dt
, xi)− k(a, xi))

2

≤

√√√√Nt−1∑
i=1

L2

(
dC1

τt

)2

≤ L
dC1

τt

√
Nt−1

(77)

(78)

where we use the fact that k is L-Lipschitz. Applying Cauchy-Schwarz and the obtained bounds, we
find that

µt−1([a]Dt
)− µt−1(a) ≤ L

dC1

τt
+ L

dC1

τt

√
Nt−1ς

−1∥L−1(y − µ)∥2. (79)

The posterior standard deviation is bounded similarly:

σt−1([a]Dt
)− σt−1(a) ≤

√∣∣σ2
t−1([a]Dt

)− σ2
t−1(a)

∣∣. (80)

Continuing,∣∣σ2
t−1([a]Dt

)− σ2
t−1(a)

∣∣
=
∣∣∣k([a]Dt , [a]Dt)− k(a, a) + (k([a]Dt)− k(a))

⊤ (
K+ ς2I)

)−1
(k([a]Dt)− k(a))

∣∣∣
≤ |k([a]Dt , [a]Dt)− k(a, a)|+

∣∣∣(k([a]Dt)− k(a))
⊤ (

K+ ς2I)
)−1

(k([a]Dt)− k(a))
∣∣∣

≤ L
dC1

τt
+ ∥k([a]Dt)− k(a)∥22

∥∥(K+ ς2I)−1
∥∥
2

≤ L
dC1

τt
+

(
L
dC1

τt

√
Nt−1

)2

ς−2. (Eqs. (76) and (78))

(81)

(82)

(83)

(84)

(85)

Combining the above, the final bound is:

σt−1([a]Dt)− σt−1(a) ≤
√

L
dC1

τt
+Nt−1

(
L
dC2

τt

)2

ς−2. (86)

Using Lemma A.9, we are ready to construct a constant bound for the expected discretization error of
the posterior mean:
Lemma A.10. If Assumption 3.3 holds and τt satisfies Eq. (6a) in Assumption 3.4, then for any
sequence of super arms at ∈ St t ≥ 1, the posterior mean µt−1(a) satisfies∑

t∈[T ]

E [µt−1([at]Dt
)− µt−1(at)] ≤

π2

12
. (87)
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Proof. Note that the assumption on τt is equivalent to KLdC1

τt
(1 + tKς−1) ≤ 1

2t2 . Then, we can
bound the discretization error of the posterior mean as follows:

∑
t∈[T ]

E

[∑
a∈at

µt−1([a]Dt
)− µt−1(a)

]

≤
∑
t∈[T ]

E
[
K sup

a∈A
[µt−1([a]Dt

)− µt−1(a)]

]
(|at| ≤ K)

≤
∑
t∈[T ]

E
[
K sup

a∈A
L
dC1

τt

(
1 +
√
tKς−1

√
∥L−1(y − µ)∥22

)] (
Lemma A.9 and
Nt−1 < tK

)

=
∑
t∈[T ]

E
[
KL

dC1

τt

(
1 +
√
tKς−1

√
∥L−1(y − µ)∥22

)] (
L−1,y,µ indepen-
dent of a

)
=
∑
t∈[T ]

KL
dC1

τt

(
1 +
√
tKς−1E

[√
∥L−1(y − µ)∥22

)]

≤
∑
t∈[T ]

KL
dC1

τt

(
1 +
√
tKς−1

√
E [∥L−1(y − µ)∥22]

) (Concave Jensen’s
inequality

)

=
∑
t∈[T ]

KL
dC1

τt

(
1 + tKς−1

) (∥L−1(y − µ)∥22 ∼
χ2 with at most (t−
1)K d.o.f.

)

≤
∑
t∈[T ]

1

2t2
(Assumption on τt)

≤ π2

12
.

( ∞∑
t=1

1

t2
=

π2

6

)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

See the proof of Lemma A.9 for the motivation that ∥L−1(y − µ)∥22 ∼ χ2.

Similar to Lemma A.10, we establish a constant bound for the discretization error of the posterior
standard deviation:

Lemma A.11. If Assumption 3.3 holds; τt and βt satisfy Eqs. (6b) and (6c) in Assumption 3.4 then,
for any sequence of super arms at ∈ St t ≥ 1, the posterior standard deviation σt−1(a) satisfies

∑
t∈[T ]

E
[√

βt (σt−1([at]Dt)− σt−1(at))
]
≤ π2

12
. (97)

Proof. Note that Eqs. (6b) and (6c) are equivalent to

βtK
2L

dC1

τt
≤ 1

8t4
and βttK

3L2 d
2C2

1

τ2t
ς−2 ≤ 1

8t4
. (98)
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Then, ∑
t∈[T ]

E
[√

βt (σt−1([a]Dt
)− σt−1(a))

]

=
∑
t∈[T ]

E

[∑
a∈a

√
βt (σt−1([a]Dt

)− σt−1(a))

]

≤
∑
t∈[T ]

E

[∑
a∈a

√
βt

√
L
dC1

τt
+ tKL2

d2C2
1

τ2t
ς−2

]
(Lemma A.9)

≤
∑
t∈[T ]

K
√
βt

√
L
dC1

τt
+ tKL2

d2C2
1

τ2t
ς−2 (|a| ≤ K)

=
∑
t∈[T ]

√
βtK2L

dC1

τt
+ βttK3L2

d2C2
1

τ2t
ς−2

≤
∑
t∈[T ]

√
1

8t4
+

1

8t4
(Eq. (98))

≤
∑
t∈[T ]

1

2t2
≤ π2

12
.

( ∞∑
t=1

1

t2
=

π2

6

)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

Lemma 3.5. If Ut(a) = µt−1(a)+
√
βtσt−1(a), Assumption 3.3 holds and τt and βt satisfy Eqs. (6a)

to (6c) in Assumption 3.4, then for any sequence of super arms at ∈ St t ≥ 1:

∑
t∈[T ]

E [Ut([at]Dt
)− Ut(at)] ≤

π2

6
. (7)

Proof. Follows by combining Lemmas A.10 and A.11.

Finally, we are ready to prove the regret bounds for the infinite case:

Theorem 3.6 (Infinite regret bounds). If Assumption 3.3 holds and τt satisfies Assumption 3.4, then
the Bayesian regret of

(i) GP-UCB with βt = 2 log(τdt t
2/
√
2π) is bounded as BR(T ) ≤ π2

2 +
√
CKTKβT γTK .

(ii) GP-BUCB with βt = 2
(
erf−1(1− 2ηt)

)2
for ηt = (2π)ω/2/

(
2τdωt tξ

)
, ξ > ω >

1 is bounded as BR(T ) ≤ π2

3 +
√
CKTKβT γTK + Cω · ξ

ξ−ω where Cω =(√
πω/

√
2e(ω − 1)

)1/ω
.

(iii) GP-TS is bounded as BR(T ) ≤ 2π2

3 + 2
√
CKTKβT γTK .

Proof. (i) Similar to Takeno et al. (2023); Srinivas et al. (2012), we use a fixed discretizationDt ⊂ A
for t ≥ 1. Let Dt ⊂ A be a finite set with |Dt| = τdt and each dimension equally divided into τt
points with τt satisfying Assumption 3.3. Let [a]Dt

denote the nearest point in Dt for a ∈ A and
similarly let [a]Dt = {[a]Dt |a ∈ a} for a ⊂ A.
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As Takeno et al. (2023), we decompose the Bayesian regret into several parts:

BR(T ) =
∑
t∈[T ]

E
[
f(a∗t )− f([a∗t ]Dt

)︸ ︷︷ ︸
(1)

+ f([a∗t ]Dt
)− Ut([a

∗
t ]Dt

)︸ ︷︷ ︸
(2)

+ Ut([a
∗
t ]Dt)− Ut(a

∗
t )︸ ︷︷ ︸

(3)

+Ut(a
∗
t )− Ut(at)︸ ︷︷ ︸

(4)

+ Ut(at)− f(at)︸ ︷︷ ︸
(5)

]

(106)

(107)

(108)

Term (1) can be bounded using Lemma A.8:
∑

t∈[T ] E[f(a∗t )− f([a∗t ]Dt
)] ≤ π2

6 . Terms (2) and (5)

can be bounded using the finite case with βt = 2 log(|Dt|t2/
√
2π). Then, by Lemmas A.2 to A.4∑

t∈[T ]

E[f([a∗t ]Dt)− Ut([a
∗
t ]Dt) + Ut(at)− f(at)] ≤

π2

6
+
√
2(λ∗

K + ς2)TKβT γTK . (109)

Takeno et al. (2023) consider the term Ut([a
∗
t ]Dt)− Ut(a

∗
t ) and argue that it is non-positive since

at = argmaxa∈St
Ut(a). Unlike Takeno et al., we do not assume that all arms are available at time t

and thus [a∗t ]Dt ∈ St does not necessarily hold. By further decomposing this term into (3) and (4),
the same argument can be applied to term (4): Ut(a

∗
t )−Ut(at) ≤ 0. Then, term (3) can be bounded

using Lemma 3.5:
∑

t∈[T ] E[Ut([a
∗
t ]Dt

)− Ut(a
∗
t )] ≤ π2/6.

Finally, by combining the bounds for all terms we get that

BR(T ) ≤ π2

2
+
√

CKTKβT γTK . (110)

(ii) The proof for GP-BUCB is shown by following the steps of GP-UCB and using the finite case
for Bayes-GP-UCB (Theorem 3.2 (ii)).

(iii) As in the proof for GP-UCB, assume that we have a discretization Dt and decompose the
Bayesian regret into 4 terms:

BR(T ) =
∑
t∈[T ]

E
[
f(a∗t )− f([a∗t ]Dt

)︸ ︷︷ ︸
(1)

+ f([a∗t ]Dt
)− Ut([a

∗
t ]Dt

)︸ ︷︷ ︸
(2)

+ Ut([a
∗
t ]Dt)− Ut(at)︸ ︷︷ ︸

(3)

+Ut(at)− f(at)︸ ︷︷ ︸
(4)

]
.

(111)

(112)

As in the proof for GP-UCB, term (1) is dealt with using Lemma A.8 and term (2) and (4) are
handled as in the finite case (Theorem 3.2 (iii)):∑

t∈[T ]

E[(1) + (2) + (3)] ≤ π2

6
+

π2

3
+ 2
√
CKTKβT γTK . (113)

To bound term (3), we start by utilizing that a∗t |Ht
d
= at|Ht and Ut([·]Dt

)|Ht is deterministic and
thus: ∑

t∈[T ]

E[(3)] =
∑
t∈[T ]

EHt [Et [Ut([a
∗
t ]Dt)− Ut(at)|Ht]]

=
∑
t∈[T ]

EHt [Et [Ut([at]Dt)− Ut(at)|Ht]]

≤ π2

6
(Lemma 3.5)

(114)

(115)

(116)

Put together, we have that

BR(T ) ≤ 2π2

3
+ 2
√
CKTKβT γTK . (117)
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A.3 ADDITIONAL LEMMAS

Lemma A.12. For any sequence of superarms a1, . . . ,aT ,

T∑
t=1

σ2
t−1(at) ≤ 2(λ∗

K + ς2)γTK . (118)

where λ∗
K is the largest eigenvalue of all possible posterior covariance matrices of size at most K.

Proof. This proof follows the proof of Lemma 3 of (Nika et al., 2022). Let Kt = |at| denote the
number of base arms selected at time t. Similarly, let NT =

∑
t∈[T ] Kt denote the number of base

arms selected up to time T . Note that the information gain can be decomposed into two entropy
terms: I(r[T ]; f) = H(r[T ])−H(r[T ]|f).
Since r[T ]|f[T ] ∼ N (f[T ], ς

2IKt , H(r[T ]|f[T ]) =
1
2 log |2πeς2INT

|. The first term can be analyzed
by using the chain rule of entropy on the superarms:

H(r[T ]) = H(rT |r[T−1]) +H(r[T−1])

=

T∑
t=1

H(rt|r[t−1]).

(119)

(120)

Then, rt|r[t−1] ∼ N (µt−1,Σt−1 + ς2IKt
) where µt−1 = [µt−1(a)]a∈at

is the posterior mean
vector and Σt−1 = (kt−1(a, a

′))a,a′∈at×at
is the posterior covariance matrix for superarm at after

observing (a1, r1), . . . , (at−1, rt−1). Let λt,k denote the smallest kth eigenvalue of Σt−1. Then,

H(rt|r[t−1]) =
1

2
log
∣∣2πe(Σt−1 + ς2IKt

)
∣∣

=
1

2
log
∣∣2πeς2(ς−2Σt−1 + IKt

)
∣∣

=
1

2
log
∣∣2πeς2IKt

∣∣+ 1

2
log
∣∣ς−2Σt−1 + IKt

∣∣ .

(121)

(122)

(123)

Let λt,k denote the smallest kth eigenvalue of Σt−1. LetM = {Σt−1|∀t ∈ [T ],∀a1, . . . ,at ∈ S}
be the set of all possible posterior covariance matrices and let λ∗

K = supΣ∈M max eig(Σ) be the
largest eigenvalue of all eigenvalues of the matrices inM. Recall that |A+ In| =

∏
k≤n(λk + 1)

for any real and symmetric matrix A ∈ Rn×n with eigenvalues λ1, ..., λn. Then,

1

2
log
∣∣ς−2Σt−1 + IKt

∣∣
=

1

2
log

(
Kt∏
k=1

(
ς−2λt,k + 1

))

=
1

2

Kt∑
k=1

log
(
ς−2λt,k + 1

)
≥ 1

2

Kt∑
k=1

ς−2λt,k

ς−2λt,k + 1
(log(x+ 1) ≥ x/(x+ 1),∀x > 1)

≥ ς−2

2(ς−2λ∗ + 1)

Kt∑
k=1

λt,k

=
ς−2

2(ς−2λ∗ + 1)

∑
a∈at

σ2
t−1(a).

Tr(A) =
∑

λ∈eig(A)

λ



(124)

(125)

(126)

(127)

(128)

(129)

Put together, we get that
∑T

t=1 σ
2
t−1(at) ≤ 2(λ∗ + ς2)I(r[T ]; f). Since the maximum information

γT is increasing w.r.t. T and |at| ≤ K, we get that
∑T

t=1 σ
2
t−1(at) ≤ 2(λ∗ + ς2)γTK .
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Lemma A.13. The inverse error function is lower bounded by

erf−1(u) ≥
√
−ω−1 log

(
1− u

ϑ

)
(130)

for u ∈ [0, 1), ω > 1 and 0 < ϑ ≤
√

2e
π

√
ω−1
ω .

Proof. According to Theorem 2 of Chang et al. (2011), erfc(u) ≥ ϑ exp(−ωu2) for ω > 1 and

0 < ϑ ≤
√

2e
π

√
ω−1
ω . Since erf(u) = 1−erfc(u), it follows that erf(u) ≤ 1−ϑ exp(−ωu2) =: h(u).

In general, if f(x) ≤ g(x) then f−1(x) ≥ g−1(x). Thus, erf−1(u) ≥ h−1(u) =√
−ω−1 log ((1− u)/ϑ).

Lemma A.14. The inverse error function is upper bounded by

erf−1(u) ≤
√
−ω−1 log

(
1− u

ϑ

)
(131)

for u ∈ [0, 1), ϑ ≥ 1 and 0 < ω ≤ 1.

Proof. The same arguments as in Lemma A.13 but using Theorem 1 of Chang et al. (2011).

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 KERNEL DETAILS

Here, we provide further details on the graph kernel used in the experiments. The original graph
Matérn GP of Borovitskiy et al. (2021) defines a GP on the vertices of a weighted and undirected
graph. We extend the graph Matérn GP from Borovitskiy et al. (2021) to the edges of a directed graph
by considering the incidence graph Laplacian of the line graph L(G).
Let WL ∈ R|E|×|C| denote the weight matrix of L(G) = (E , C) where E is the set of edges and C is
the set of all connections in the network. The weight WL,e1,e2 is set to ℓ̄/ℓe1 where ℓ̄ is the average
length of all edges and ℓe1 is the length of edge e1. We replace the ordinary graph Laplacian used by
Borovitskiy et al. (2021) with the incidence Laplacian:

∆I = BB⊤, (132)

where the incidence matrix B ∈ R|E|×|C| has entries

Be,c =


−WL,e1,e2 if e = e1,

WL,e1,e2 if e = e2,

0 otherwise
∀e ∈ E , c = (e1, e2) ∈ C. (133)

Let ∆I = UIΛIU
⊤
I denote the eigendecomposition of ∆I , then the graph Matérn GP of the edges

is given by

f ∼ N
(
0,UI

(
2νG
κ2
G

I+ΛI

)−ν

U⊤
I

)
. (134)

Recall that kf : Rd × Rd −→ R denotes a feature kernel which measures the similarity between the
contexts of the edges. The feature kernel is an ordinary Matérn kernel with fixed ν = 5/2 but tunable
outputscale σf and lengthscales ℓf ∈ Rd

+ for each dimension:

kf (xe, xe′) := σf
21−ν

Γ(ν)

(√
2νD

)ν
Kν

(√
2νD

)
, (135)
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Table 2: Vehicle and environmental parameters for the energy model.

Variable Value Unit

Mass m 1830 kg
Rolling resistance coefficient Cr 0.01

Front surface area A 2.6 m2

Air drag coefficient Cd 0.35
Power train efficiency η+ 0.98

Recuperation efficiency η− 0.96
Gravitational acceleration g 9.82 m/s2

Air density ρ 1.2 kg/m3

where xe denotes the feature vector of edge e and the feature distance D between edge e and e′ is
given by

D =
√
(xe − xe′)⊤ diag(ℓf )−2(xe − xe′). (136)

The kernels, the SVGP model and Algorithm 3 was implemented using GPyTorch (Gardner et al.,
2018).

B.2 ROAD NETWORK

The set of available paths was restricted to edges within the largest strongly connected component.
This mainly removed road segments in inaccessible areas and does not affect the navigational
challenge. The route Luxembourg A starts in edge -31118#2 and ends in edge --32646#1. The
route Luxembourg B starts in edge -30436#5 and ends in edge -30946#0. Similarly, the route
Monaco A starts in edge -30558 and ends in edge -32888#0 whilst Monaco B starts in edge
-32166#0 and ends in edges --32940#0. For simplicity, the start and end points are edges since
the shortest path was computed using the line graph L(G).

B.3 DETAILED PARAMETER VALUES

In this section, we further specify the vehicle, environmental and algorithmic parameters used. We
use the default parameters for electric vehicles provided by SUMO (Lopez et al., 2018), see Table 2.

The graph kernel is initialized with parameters νG = 2, κG = 1 and σG set according to the prior.
The natural gradient descent learning rate is set to 0.1 whilst the Adam learning rate is set to 0.01.
The GP model uses a batch size B of 2500 and 1 gradient step per optimization procedure. The
number of inducing points is set to 1000.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 IMPACT OF LENGTHSCALE

In this section, we provide the full results for the lengthscale experiments in Section 4.2. The
cumulative regret over time is visualized in Fig. 4 and the final cumulative regret as a function on the
lengthscale ℓ is visualized in Fig. 5.

C.2 VISUALIZATION OF EXPLORATION

In this section, we provide visualization of the routes selected by the algorithms. See Figs. 6 to 9 for
visualization on Lux. A, Lux B, Mon. A and Mon. B, respectively. According to the results, the TS
variants are able to find sophisticated paths with significantly less exploration compared to BUCB
and UCB. This observation implies the sample efficiency of TS methods.
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Figure 4: Cumulative regret of GP-BUCB, BI-BUCB, GP-TS and BI-TS for varying prior lengthscale
values ℓ.
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Figure 5: Cumulative regret at t = 500 for varying prior lengthscale values. Errorbars correspond to
±1 standard error.
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Figure 6: Exploration of Luxembourg A.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

100

200

300

400

500

(a) BI-TS

100

200

300

400

500

(b) GP-TS

100

200

300

400

500

(c) BI-UCB

100

200

300

400

500

(d) GP-UCB

100

200

300

400

500

(e) BI-BUCB

100

200

300

400

500

(f) GP-BUCB

Figure 7: Exploration of Luxembourg B.
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Figure 8: Exploration of Monaco A.
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Figure 9: Exploration of Monaco B.
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