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Abstract
The Causal Bandit is a variant of the classic Bandit problem where an agent must identify the best
action in a sequential decision-making process, where the reward distribution of the actions displays
a non-trivial dependence structure that is governed by a causal model. Methods proposed for this
problem thus far in the literature rely on exact prior knowledge of the full causal graph. We formulate
new causal bandit algorithms that no longer necessarily rely on prior causal knowledge. Instead,
they utilize an estimator based on separating sets, which we can find using simple conditional
independence tests or causal discovery methods. We show that, given a true separating set, for
discrete i.i.d. data, this estimator is unbiased, and has variance which is upper bounded by that of
the sample mean. We develop algorithms based on Thompson Sampling and UCB for discrete and
Gaussian models respectively and show increased performance on simulation data as well as on a
bandit drawing from real-world protein signaling data.

1. Introduction

In recent years, there have been several works on the Causal Bandit problem (Lattimore et al., 2016;
Sen et al., 2017; Yabe et al., 2018; Lee and Bareinboim, 2018). This is a variant of the classical
multi-armed bandits problem, where we assume there is an underlying structural causal model (Pearl,
2009) between observed variables.

In the classical bandit problem, we iteratively select one arm from a set of arms, and then observe
a reward variable conditional on the chosen arm, where the rewards for the arms are assumed to be
independent. In the Causal Bandit problem, after we select an arm, we not only observe a reward
variable but also some additional variables. The reward and these additional variables are generated
according to a causal model, where each arm corresponds to a certain intervention on the causal
model. In this case, the rewards of the arms are no longer independent, and the previous works on
this topic have shown that one can use this additional structure to improve performance. (Lattimore
et al., 2016; Sen et al., 2017; Yabe et al., 2018; Lee and Bareinboim, 2018)

Recent approaches to the Causal Bandit problem have shown greatly improved bounds for regret
compared to naïve approaches. This is done either by using information leakage, where data from
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one arm is used to improve the estimates of other arms (Lattimore et al., 2016; Sen et al., 2017; Yabe
et al., 2018; Lu et al., 2020), or by pruning arms for which it can be concluded from the structure of
the causal graph that they can not be the optimal arm (Lee and Bareinboim, 2018). However, they all
rely on perfect prior knowledge of the causal structure. The works using information leakage also
assume that interventional distributions on variables beside the target variable are known beforehand.

Because in practice this information may often not be available, in this work, we develop a
framework for Causal Bandits where we try to learn everything from scratch. We build an estimator
using the separating set concept known from the causality literature (Spirtes et al., 2000; Magliacane
et al., 2018; Rojas-Carulla et al., 2018). This is a set S that has the property that it renders a target
variable Y independent of a context variable I when conditioned upon (which we denote I ⊥⊥Y |S),
where the context variable encodes which interventions are performed. Contrary to previously
used estimators, this property can be estimated from Causal Bandit data directly by conditional
independence tests, and does not require a full causal discovery method. However, causal discovery
methods may still provide a benefit compared to just conditional independence tests if they can
efficiently combine different conditional independence tests results to correct for errors.

Our contributions in this work are as follows:

• We propose a new algorithm for discrete Causal Bandits based on Thompson Sampling as well
as an algorithm for linear Gaussian Causal Bandits with discrete soft interventions based on
UCB-normal, where no prior knowledge is assumed of the Causal Bandit.

• These algorithms use an estimator based on the Separating Set property, which allows the
algorithm to work in presence of cycles or confounding, as the Separating Set is still a valid
notion in these graphs. We can directly test this property from data, and this property can
also be inferred from the output of causal discovery algorithms. This allows us to drop the
assumption of prior causal knowledge.

• We show that for discrete variables even without prior knowledge of interventional distributions,
if we assume that a true separating set is known a-priori, the used estimator has variance upper
bounded by the variance of a naïve sample mean estimator.

• For discrete variables we show greatly improved cumulative regret performance compared to
classical bandit algorithms in simulation studies on graphs where a separating set indeed exists
but is not known a-priori. We apply the linear Gaussian model variant of our algorithm to a
Causal Bandit where data is generated by pulling from the dataset presented in Sachs et al.
(2005), which is experimental data concerning protein-signaling networks. Here we again
show improved performance compared to the traditional UCB-normal algorithm.

While the experiments in this work are only for small graphs, these contributions show that significant
performance improvements are possible if the underlying Causal Bandit has separating sets, even in
the case where no prior causal knowledge is available.

2. Preliminaries

In this section we introduce the required preliminaries regarding causality and Causal Bandits.
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2.1. Causal modeling and graph definitions

We will very briefly introduce the elements of the theory of graphical causal modeling that are used
in this work. An in-depth introduction can for example be found in Pearl (2009).

We will denote tuples of variables with a bold capital letter, e.g. X = (Xi)n
i=1, and will use

lower case letter x for a value assigned to X . The domain of X is denoted by D(X). We assume that
we observe variables generated through an acyclic Structural Causal ModelM = 〈V,E,F,P[E]〉,
which contains a tuple of endogenous variables V and a tuple of independent exogenous variables
E, where the latter has associated probability distribution P[E]. The values of V are defined by the
tuple of functions F, where for each Vi ∈ V there is a fVi ∈ F such that Vi = fVi(pa(Vi),Ei). Here
pa(Vi) ⊆ V \ {Vi} are the direct causes (“parents”) of Vi and Ei ⊂ E is a subset of the exogenous
variables. We explicitly allow for confounders (since the Ei can overlap), but exclude cycles for
simplicity of exposition though it would be straightforward to include them (see e.g. Mooij et al.,
2020).

Each SCM has an associated graph G = 〈V, E〉, which is acyclic if and only if the SCM is
acyclic, where V is a set of nodes corresponding to the endogenous variables and E is a set of edges.
If Vi directly influences Vj according to fVj , then there is a directed edge Vi → Vj ∈ E . There is
a bidirected edge Vi ↔ Vj ∈ E if they share independent noise variables, i.e., if Ei ∩Ej 6= ∅. We
adopt the default family relationships: pa, ch, an, and de for parents, children and ancestors and
descendants respectively, where for an and de we include the variable itself.

We may now reason about performing interventions on the variables Vi. In the SCM causal
modeling framework, interventions are defined by altering the functional dependencies of the SCM.
For example, we may force the value of a variable to a specific value ξ. This is called a perfect
intervention, and the joint probability is then notated as P[V | do(Vi = ξ)]. One may also define
other types of interventions, for example soft interventions which alter the functional dependency
fVi but may keep a functional relationship on its parents, as opposed to just setting the variable to a
value.

In this work we make use of context variables as an elegant way to model interventions, as found
in for example Spirtes et al. (2000); Pearl (2009); Mooij et al. (2020); Dawid (2021). We introduce I
to be the set of context variables. We will consider graphs G = (V ∪ I, E) with additional vertices I
corresponding to different interventions. If Ii ∈ I encodes an intervention on nodes Ti ⊆ V, we set
Ii to ∅ if we do not perform this intervention, and to a different value ξ for each possible version of
intervention Ii. Furthermore, we add an edge Ii → Vi to E for each Vi ∈ Ti. For example, we can
model a perfect intervention do(Vi = ζ) by intervention variable Ii if we modify fVi to:

f∗Vi
(pa∗(Vi),Ei) =

{
ζ if Ii = ζ

fVi(pa(Vi),Ei) if Ii = ∅

with pa∗(Vi) = Pa(Vi) ∪ {Ii}. Then, if we perform some combination of interventions, this
corresponds to choosing a vector of values ζ, of the same size as the number of intervention variables,
and where some values may be ∅, resulting in P[V | do(I = ζ)]. Note that with this formalism,
P[V | do(I = ζ)] = P[V | I = ζ], because the intervention variables are exogenous.

We define a path between nodes V0 and Vn as a tuple 〈V0, e1, V1, e2, . . . , en, Vn〉, with Vi ∈ V,
ei ∈ E , where each node occurs at most once and ei is an edge of type←,→, or↔ with endpoints
Vi−1 and Vi. Vk is called a collider on a path if there is a subpath 〈Vk−1, ek, Vk, ek+1, Vk+1〉 where
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the edges ek and ek+1 meet head to head on node Vk (i.e. both edges have an arrowhead into Vk).
Otherwise this node is called a non-collider. The endpoints are also refered to as non-colliders.

Using the definition of paths and colliders, one defines d-separation:

Definition 1 (d-separation) We say a path 〈V0, e1, . . . , en, Vn〉 in graph G = (V, E) is blocked by
C ⊆ V if:
(i): Its first or last node is in C, or
(ii): It contains a collider on a node not in an(C), or
(iii): It contains a non-collider in C
If for sets A,B ⊆ V all paths from nodes in A to nodes in B are blocked by C ⊆ V, we say that A
is d-separated from B by C, and write A ⊥G B |C.

Consider an acyclic SCMM with graph G. Let PM be the probability distribution induced by
this model. Then the Directed Global Markov Property holds for subsets A,B,C ⊆ V:

A ⊥G B |C =⇒ A⊥⊥ PM B |C.

These conditional independencies are the core information provided by causal reasoning that we
exploit in this work. While our algorithm itself does not explicitly assume the converse (called
faithfulness), this is assumed by many causal discovery algorithms thus we henceforth assume
faithfulness as well.

2.2. Causal Bandit problem

The multi-armed bandit problem is one of the classic problems studied in sequential decision making
literature (Lai and Robbins, 1985). In this setting, an agent decides on which arm to pull and
receives a reward corresponding to that arm. Classically, the rewards of the arms are considered
independent which gives rise to strategies like ε-greedy, UCB (Auer et al., 2002; Cappé et al., 2013)
and Thompson Sampling (Thompson, 1933).

Lattimore, Lattimore, and Reid (2016) introduced the Causal Bandit problem as follows. Consider
an agent in a sequential decision making process consisting of T trials. In each trial, the agent
chooses an assignment of values ζ to intervention variables I (also referred to as choosing an
arm). It then observes variables from P[V | I = ζ], according to an SCMM = 〈V,E, I,F,P[E]〉
with corresponding graph G = (V ∪ I, E). One of the endogenous variables Y ∈ V is the
target variable. Thus, when choosing an arm for trial N + 1, the agent has observed data DN =
{(ζn,vn)}Nn=1, which are pairs of intervention node values ζ and realizations of V. Let Y n

denote the target variable observed in trial n. The goal is then to minimize the cumulative regret
R =

∑T
n=1 [Y n −maxζ E[Y | I = ζ]].

For convenience, we will introduce notation to count the number of samples in our data for
which a certain predicate p holds. Let NDN (p) = |{(ζn,vn) ∈ DN | (ζn,vn) � p}|. For example,
NDN (Y = 1, I = ζ) is the number of samples in dataset DN for which we performed intervention ζ
and observed the value 1 for reward variable Y .

2.3. Related Work

The algorithms proposed for the Causal Bandit problem can be broadly subdivided into two categories:
(i) those relying on information leakage and (ii) those that prune the action space based on the structure
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of the causal graph. The initial paper by Lattimore et al. (2016) gave improved bounds for simple
regret for the Causal Bandit problem. This was done by utilizing information leakage: the reward
obtained under one intervention may provide information about other interventions. The authors
construct an importance sampling estimator based on this principle that assumes full prior knowledge
of the probability distribution of all variables besides the target variable. Using this, the authors
derive an improved simple regret bound. Sen et al. (2017) focused on applying more advanced
techniques from the Bandit literature. For example, they analyze gap dependent bounds and apply
dynamic clipping, where they divide the T trials into phases and apply a different clipping constant
for each phase. These advances lead to sometimes exponentially better regret than the algorithm by
Lattimore et al. (2016).

Yabe et al. (2018) extend Lattimore et al.’s work in a different direction. They consider only
binary variables and perfect interventions on subsets of nodes. They use the full knowledge of the
graph to estimate the probabilities p(V | pa(V ), I = ζ) for each node V ∈ V. Interestingly, they
only require prior knowledge of the graph and estimate all required probability distributions from
data acquired from the actual bandit. By modeling the relation of each individual node with regards
to its parents, if we have two data sources which only differ by the intervention value of a single node
Vi (i.e. all other nodes are intervened on the same way in both data sources), we can still update all
estimated probability distributions to be updated for Vj 6= Vi, thereby allowing information leakage
between different interventions.

More recently, Lee and Bareinboim (2018) introduced a new method for the Causal Bandit
problem. They consider perfect interventions on subsets of nodes of the causal graph. Because
they only consider perfect interventions, it is sometimes impossible for some interventions to
always perform at least as well as some other interventions more upstream, and thus these upstream
interventions may be pruned.

One thing that all previously discussed approaches have in common is that they assume the causal
relationships to be known beforehand, an assumption that is often not met in practice. Very recently,
Lu, Meisami, and Tewari (2021) base a causal bandit algorithm on this where the graph is not known
beforehand, though this approach is limited to perfect interventions on all subsets.

A

B

I S2 S3 Y

Figure 1: Example causal graph G. I is an intervention variable that encodes interventions onA andB,
Y is the reward variable. Possible choices for separating set S for sharing data between interventions
on A and B are {A,B}, {S2}, {S3}, and any superset of these sets, since then I ⊥G Y | S.

3. Separating sets lead to improved estimators

In this section, we generalize all previous works on Causal Bandits using information leakage
that rely on a-priori knowledge of the full causal structure, and propose a more general estimator
based on separating sets. This estimator does not rely on a-priori known distributions, and has
favorable properties compared to direct sample mean estimation. In this section we assume that a
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true separating set is given. In our algorithm and experiment sections we search for separating sets
using causal discovery or conditional independence tests.

3.1. The information sharing estimator

A core strategy we have seen in Causal Bandits in previous works is to exploit very specific knowledge
about the causal structure in order to construct estimators that share information between arms. In
order to make Causal Bandits more easily suitable for causal discovery, we introduce a novel
information sharing estimator that relies on much less specific knowledge about the causal graph, but
may still exploit information leakage to share data between interventions.

We say that a set of variables S is a separating set for intervention variables I and target variable
Y if I ⊥G Y |S. By the Markov property and faithfulness, this is equivalent to the conditional
independence I⊥⊥ PM Y |S.

If S is a separating set, we have for all possible interventions do(I = ζ) the following identity by
the law of total expectation, where the second equality uses the independence:

E[Y | I = ζ] = E[E[Y | S, I = ζ] | I = ζ] (1)

= E[E[Y | S] | I = ζ].

This relationship underlies previous works on information leakage, where P[S|I = ζ] is assumed
known beforehand for some fixed choice of S which is always a valid separating set under the
assumptions made in the relevant work. For example, in case unobserved confounding is ruled out as
is done in Lattimore et al. (2016), the parents of Y are always a valid separating set. Under these
strict assumptions, the only unknown we have to estimate is E[Y | S], whereby we see that in the
cumulative regret upper bound the

√
|D(I)| term (where D(I) corresponds to the number of arms)

is reduced to
√
|D(S)| (Lu et al., 2020), i.e. the dimensionality of the arms is essentially reduced

from D(I) to D(S). Formulating the estimator in terms of separating sets as we do in this work
is much less restrictive than specifically focussing on e.g. the parents of Y , as in case of cycles or
confounding the parents of Y are not a separating set in general, in which case there may still be
other groups of variables that satisfy the separating set property.

Instead we focus on the case where there are no priorly known distributions. We introduce
separate estimators µ̂(y | s;DN ) for E[Y |S = s] and p̂(s | ζ,DN ) for P[S = s | I = ζ]. Inspired by
the above identity, we then propose the following information sharing estimator for E[Y | I = ζ]:

µ̂IS(y | ζ;DN ,S) :=
∑

s∈D(S)
µ̂(y | s;DN )p̂(s | ζ,DN ). (2)

If S is discrete and Y is binary, an obvious choice is to use the empirical conditional distribution
for p̂(s | ζ,DN ) and the sample mean for µ̂(y | s;DN ), i.e. the maximum likelihood estimators. If
we are dealing with linear Gaussian models where the interventions are still discrete, we again use
the empirical conditional distribution for p̂(s | ζ,DN ) and a linear regression model for µ̂(y | s;DN ).
For now we focus on discrete variables with binary target variable Y , and thus we define:

p̂(s|ζ,DN ) := NDN (S = s, I = ζ)
NDN (I = ζ) , (3)

µ̂(y | s;DN ) := NDN (Y = 1,S = s)
NDN (S = s) . (4)
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This estimator has some nice properties. To estimate p̂(s|ζ,DN ), we use only data gathered under a
specific intervention. However, to estimate µ̂(s;DN ) we may share data across interventions, which
leads to reduced variance. Suppose data pooling is not possible, for example because we only have
data gathered under a specific intervention available, then NDN (S = s) = NDN (S = s, I = ζ)
and NDN (Y = 1,S = s) = NDN (Y = 1,S = s, I = ζ). The information sharing estimator then
reduces nicely to just the naïve direct sample mean µ̂SM (ζ;DN ) (note this result also holds in the
Gaussian additive noise model case):

µ̂IS(y | ζ;DN ,S) =
∑

s∈D(S)

NDN (Y = 1,S = s, I = ζ)
NDN (I = ζ) ,

= NDN (Y = 1, I = ζ)
NDN (I = ζ) = µ̂SM (ζ;DN ).

However, if pooling is possible, we expect our estimator to outperform naïve estimation, because it
uses more data in an efficient manner. Indeed, in the appendix we show that the following theorem
holds:

Theorem 2 If we calculate µ̂IS(y | ζ;DN ,S) from a dataset DN where we have a fixed number
of i.i.d. data points from each possible intervention generated by a discrete Causal Bandit, and
I⊥⊥ PM Y |S, and there is at least one sample from intervention I = ζ, then the information sharing
estimator (2) is unbiased. Furthermore, its variance is upper bounded by that of the sample mean:

V[µ̂IS(y | ζ;DN ,S)] ≤ V[µ̂SM (y | ζ;DN )] (5)

Proof See appendix.

In the proof we can see that the variance of the information sharing estimator can be seen as a
decomposition of the sample mean variance into two terms. The first term arises from misestimation
of P[S | I = ζ], which can only be reduced by adding more data where I = ζ. The second term
arises from misestimation of E[Y | S], which can be reduced by data where I 6= ζ, as long as
P[S | I = ζ] and P[S | I 6= ζ] do not have disjoint support. In the appendix we provide a more
thorough analysis of the variance.

3.2. Selecting the best separating set

It is important to note that it is not clear from just the structure of the causal graph which separating
set leads to the best estimator in case there are multiple such sets available. Therefore, even in the
case of a known causal graph, fixing the chosen separating set is not ideal. Consider the graph
from figure (1). In previous works with improved regret bounds using information leakage, either
{A,B} (Sen et al., 2017) or S3 (Lattimore et al., 2016; Lu et al., 2020) would be the fixed choice for
separating set. However, for each of the three choices of a minimal separating set there exist SCM’s
for which this choice leads to an estimator that has strictly smaller variance than when we choose
one of the other two separating sets. For example, consider the case where the associated SCM is
defined by: 

A = I, S3 = S2 XOR U2,

B = 1− I, Y = S3,

S2 = IA XOR IB XOR U1,
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and data gathered is from both intervention do(I = 0) and intervention do(I = 1). In this case, if we
select {S3} as separating set, then since S3 is a copy of Y , our estimator for E[Y |S3] will be perfect
after just one sample of each possible value of S3 and thus its error cannot be reduced by information
sharing. In this case, the variance of the information sharing estimator is exactly the same as that of
the sample mean. If we select S1 = {A,B} the support of the two interventional distributions on S1
will be disjoint, and thus information sharing does not lead to an improved estimate and again reduces
to the sample mean. If we select {S2} however, information sharing is possible since there is overlap
on P[S2 | I = 1] and P[S2 | I = 0] and more samples actually reduce our error in the estimation of
E[Y |S2] since the relationship between Y and S2 is not deterministic, and our estimator will have
reduced variance. Similarly, we may construct cases where both of the other sets are strictly optimal.

Thus, given multiple candidate separating sets it is not immediately obvious which one we should
pick. The strategy we use in this paper is to estimate the variance for each candidate separating set
and pick the one with the lowest estimated variance.

3.3. Partial separating sets

So far, for ease of exposition, we have implicitely assumed that we always find separating sets that
are separating for all intervention variables. In practice this may not be the case. Let us consider the
case where we have a subset I′ ⊂ I and a partial separating set S such that I′ ⊥G Y | S, i.e. it may
not be separating for all intervention variables. Let INS = I \ I′ and ζINS be ζ restricted to INS .
We may then use a similar decomposition as before:

E[Y | I = ζ] = E[E[Y | S, I = ζ] | I = ζ]
= E[E[Y | S, INS = ζINS ] | I = ζ],

where we use that I′ ⊥G Y | S =⇒ I′ ⊥G Y | S∪ INS , since the context variables have no parents
and thus they can not be a collider and conditioning on them can not open a path. Motivated by this,
we define the slightly more refined information sharing estimator:

µ̂IS(y | ζ;DN ,S, INS) :=
∑

s∈D(S)
µ̂(y | s;DN , INS)p̂(s | ζ,DN ), (6)

where to estimate µ̂(y | s;DN , INS) we only pool data where INS = ζINS (i.e. I′ may take any
value). For discrete models we then define:

µ̂(y | s;DN , INS) := NDN (Y = 1,S = s, INS = ζINS )
NDN (S = s, INS = ζINS ) ,

where for intervention ζ we pool data over all possible values for I ′. For linear Gaussian models, we
fit µ̂(s;DN , INS) using data that is pooled in the exact same manner.

4. Separating Set Causal Bandit Algorithms

Given the a separating set, for discrete variables with binary target variable, it is natural to define a
Separating Set Causal Bandit algorithm based on Thompson sampling. We model the parameters
P[S = s|I = ζ] using a Dirichlet prior and the parameters P[Y = 1|S = s] using a Beta prior. We
can then apply Thompson sampling, by sampling the parameters from their posterior distributions,
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Algorithm 1 Causal TS
1: Input: Data: DN = {(ζn,vn)}Nn=1, set of possible interventions D(I), target variable Y ,

number of MC samples nMC , Separating set algorithm: disc_sep_set
2: Output: Next action to pick at iteration N + 1
3: Initialize array index[ζ] for ζ ∈ D(I)
4: S_set← disc_sep_set(DN , Y, ζ)
5: for all ζ ∈ D(I) do
6: Sample µ̃ ∼ Beta(NDN (Y = 1, I = ζ) + 1,NDN (Y = 0, I = ζ) + 1)
7: index[ζ] = µ̃
8: best_var ← V[µ̃]
9: for all (S, I′) ∈ S_set do

10: INS = I \ I′
11: Initialize array samples[i] for i ∈ {1, . . . , nMC}
12: for i in {1, . . . , nMC} do
13: Sample p̃ ∼ Dirichlet({NDN (S = s, I = ζ) + 1}s∈D(S))
14: Sample µ̃ ∼ (Beta(NDN (Y = 1,S = s, INS = ζNS) + 1,

NDN (Y = 0,S = s, INS = ζNS) + 1))s∈D(S)
15: samples[i]← p̃T µ̃
16: end for
17: if V̂[samples] < best_var then
18: index[ζ] = samples[1]
19: best_var = V̂[samples]
20: end if
21: end for
22: end for
23: return arg maxζ index[ζ]

and calculating the resulting expected value of Y as if these were the true parameters (using equation
1). Given a sample (ζ, s, Y ), we can update each of the posteriors separately and naturally.

We assume that we have a causal discovery algorithm that has a function disc_sep_set, which
given a dataset and target variable, returns a set of pairs that maps subsets S of the endogenous
variables V \ {Y }, to the set of interventions that are separated by this set. If this set is not empty,
S is at least a partial separating set which may then be used to construct an information sharing
estimated. If we have multiple choices of separating sets, we choose the set where the posterior
model has the lowest variance with regard to the sample mean according to equation 1. The variance
of the sample mean may easily be estimated using a Monte Carlo estimation since all parameters are
known. We compare this variance to that of the naïve Thompson Sampling model, and revert to it if
no improvement is found.

The full algorithm is provided in Algorithm 1. On line 4 we run causal discovery. In our
experiments to save computation we only run this every time the number of iterations increases by
25%. For each possible assignment of ζ, on line 6-8 we first initialize variables that correspond
to the index and estimated variance of the best model found so far, and initialize these to those
corresponding to a traditional Thompson Sampling model without information sharing. On lines
11-17, for each partial separating set we estimate the variance of the model resulting from choosing
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this separating set, and pick as index the lowest variance model on line 18, where we thus fall back on
the traditional Thompson Sampling baseline if no information sharing model is found that improves
on its variance.

For Gaussian additive noise models, we adapt the traditional UCB-normal algorithm for unknown
variance (Auer et al., 2002). The only changes we make to this algorithm is the use of the information
sharing estimator (with linear regression models for µ̂) instead of the normal sample mean, and
bootstrapping to obtain an estimate of the variance. Full details of this algorithm as well as the
baseline are in the appendix in algorithm 2.

We may combine our novel algorithm with any causal discovery algorithm which outputs
separating sets. The methods we used in our experiments are described in the following subsections.

4.1. Direct Independence Testing

Since we have full interventional data, we may simply directly test for all sets S whether they have
the separating set property, i.e., whether I⊥⊥ PMY |S. Our baseline causal discovery method is then
to directly test for separating sets from data in this way. For discrete variables, we make use of the
G2-test for conditional independence of discrete variables (Neapolitan, 2004) with p-value threshold
α = 0.05. For linear Gaussian models, we make use of an independence test from step 1 in section
3.1.2 in Peters et al. (2016) with a p-value treshold of α = 0.05.

4.2. ASD-JCI123kt

A state-of-the-art causal discovery algorithm for small numbers of variables is ASD-JCI123kt (Mooij
et al., 2020). It is a particular implementation of the Joint Causal Inference framework (Mooij et al.,
2020), which pools data over contexts. This allows it to simultaneously handle data from different
sources, e.g. different interventional distributions. ASD-JCI123kt is a hybrid causal discovery
algorithm that scores how well each hypothetical causal graph matches the (strengths of the) observed
dependences in the pooled data, giving more weight to stronger dependences. As an independence
test, we again make use of the G2-test for conditional independence of discrete variables with p-value
threshold α = 0.025 (we do not use ASD-JCI123kt with the linear Gaussian experiment). Contrary
to the direct testing baseline, ASD-JCI123kt combines all conditional independence test results in
order to score the underlying causal graph(s). Since the algorithm makes use of an Answer Set
Program (ASP) building on work by Hyttinen et al. (2014), it is straightforward to query the ASP
optimizer for separating sets (e.g., how much evidence is there that variable Vi is independent of Vj

given S), by applying the feature scoring approach proposed by Magliacane et al. (2016). We accept a
set S as a valid separating set if for all I ∈ I, the confidence score for the independence I ⊥⊥ PMY |S
output by ASD-JCI123kt is positive. This causal discovery algorithm is of particular interest because
it tries to find a graph that matches all independencies simultaneously. Therefore, while its running
time is particularly slow, it might show behaviour where it corrects direct independence test results if
these contradict other observed independencies, which may lead to improved performance compared
to direct testing. On the contrary, faster causal discovery algorithms which achieve this speed by
pruning the large space of graphs generally do not override the results of any of the conditional
independence tests they perform.

10
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(a) (b) (c)

Figure 2: (a): Simulation results on all 234 DAGs of 4 nodes where Y has at least one parent. (b):
Simulation results of direct testing variant on graphs of 4, 5 and 6 nodes. (c): Simulation result on
baseline tests where no separating set exists.

5. Experimentation

We now proceed to simulate several Causal Bandit problems. We leave hyperparameter tuning as a
further optimization challenge for the future, setting the hyperparameters as discussed in the causal
discovery methods sections. For Monte Carlo estimation in the Causal Thompson Sampling and
bootstrapping in Causal UCB-Normal we use 200 and 50 samples respectively. We compare our
causal Thompson Sampling variant to a naïve Thompson Sampling baseline, and our causal UCB
normal variant to a naïve UCB normal baseline. Further details on the simulation studies are provided
in the appendix.

5.1. Simulation studies for Causal Thompson Sampling

Unfortunately, in terms of scale we are limited to small graphs, due to the running time of causal
discovery (this is especially the case for ASD-JCI123kt, though direct testing is also slow due to
testing every possible subset of variables). As a first experiment, we generated all acyclic causal
graphs G = (V, E) over 4 binary variables with no confounders and compare the cumulative regret.
We allow perfect interventions on all subsets of variables excluding the target variable, thus there
are 33 = 27 possible actions. We only generate graphs where Y has at least 1 parent (otherwise the
regret is always 0). Permutations of the variables excluding Y are disregarded. Results are plotted in
Figure 2(a), where we also show the performance of a variant of Causal Thompson Sampling that has
access to a perfect separating set as prior knowledge, where as separating set we choose the parents
of Y . We see that our causal TS algorithm significantly outperforms classical Thompson Sampling.
Interestingly, direct testing outperforms full causal discovery in this experiment. With our choice of
hyperparameters, ASD-JCI123kt seems more conservative than direct testing, i.e. it is less sensitive
but also has less false positives (see Figure 3(b)). This seems to be to its detriment in this experiment,
where most graphs that are generated have many separating sets. Obviously, having prior knowledge
of a perfect separating set yields even better performance.

Secondly, to investigate how our method scales with more nodes, we randomly generate graphs
of 4, 5 and 6 variables, and again allow interventions on any subset of nodes excluding Y . The
random graph generation scheme is such that Y is always the last node in the topological order and
such that there is always at least 1 separating set. To keep running time reasonable, we only use direct

11
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testing in this experiment. Results are shown in Figure 2(b). It is clear that the advantage of Causal
TS over classical TS improves substantially with more variables. This is expected, as the number of
arms exponentially increases with the number of variables, thus allowing more data sharing and a
richer signal for independence tests.

(a) (b) (c)

Figure 3: (a): Simulation results on all 234 DAGs of 4 nodes where the algorithms are given nobs

additional observational samples before the start of the bandit game. (b): False positive rate and
sensitivity by number of iterations in the simulation study with all DAGs of 4 nodes. (c): Results of
Causal Bandit experiment based on Sachs data.

We also run a baseline test where we try to confuse our independence tests and causal discovery.
Data for the variables are generated by exactly the same process as for our all 4 node graphs test.
However, after we generate our data, we throw away the value generated for Y , and replace it with
a Bernoulli random variable where the mean is randomly chosen and is different for each possible
setting of the intervention variables (i.e. it is a classical bandit and there is no viable separating set
for any of the possible interventions). The results are in Figure 2(c). In this case where there are no
separating sets, the penalty for still trying to find and exploit them is comparatively low. We also
see that the conservativeness of ASD-JCI123kt is to its benefit compared to direct testing in this
experiment.

Our framework is distinct from previous approaches in that it does not assume perfectly known
distributions a-priori, but may directly benefit from finite observational (or interventional) data that is
available before the experiment starts. To investigate this, we construct an experiment where we give
the causal algorithms a number of observational samples beforehand. This experiment is particularly
interesting for ASD-JCI123kt, since we see how purely observational samples may help to correct
conditional independence test errors that occur when directly testing for a separating set. Results
are shown in figure 3(a). It is clear that both direct testing and ASD-JCI123kt variants benefit from
additional observational data. However, ASD seems to benefit significantly more, as it seems to be
able to combine data of the different interventional regimes with the observational regime effectively
to improve its causal discovery performance. This result makes a case for causal discovery algorithms
that have an error-correcting property.

5.2. Sachs experiment for Causal UCB-Normal

Finally, we experiment with a Causal Bandit where data is generated by sampling from a popular
real-world dataset by Sachs et al. (2005). In this experiment, human immune cells are randomly

12
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assigned to batches. Interventions are then performed on each batch separately, by adding some
chemical compound to each batch. Then, properties of the each cell within a batch are measured. As
is commonly done, we ignore experiments with ICAM-2. The other experiments are encoded into
intervention variables (as is described in Mooij et al. (2020) in more elaborate detail). This results
in 8 possible actions, corresponding to 8 possible settings of the 6 context variables, including the
“observational” intervention). As endogenous variables, to limit computation time, we select Mek,
Erk, Akt and PKC. As target variable we choose Raf. These variables were selected after studying the
estimated causal graphs in Mooij et al. (2020), where we tried to select a set of variables which may
actually be likely to have separating sets. This is an important step: for a random choice of variables
the data from the Sachs experiment seems too confounded for there to be an efficient separating set,
thus resulting in a slight reduction in performance compared to the baseline (see appendix D). We
only run direct testing on this experiment in order to keep computation time reasonable. We turn
this into a Causal Bandit by randomly selecting an appropiate sample from the dataset each time
an action is selected. We let each algorithm sample 50 uniformly selected actions at the start of the
experiment to improve stability of independence tests.

Results of this experiment are shown in figure 3(c). We see that in this case Causal Normal UCB
outperforms traditional Normal UCB. This is especially interesting when considering that when we
test for conditional independence between context variables and the target variable on the full dataset,
we do not find any with the chosen treshold. Despite this, Causal Normal UCB seems to provide an
inductive bias with a favorable bias-variance tradeoff.

6. Conclusion

We have shown that exploiting separating sets in Causal Bandit problems may yield significantly
improved performance compared to traditional bandit algorithms, even when there is no prior
knowledge of the graph or of interventional distributions. We employed causal discovery algorithms
and direct testing to estimate separating sets from the data in an online fashion, which we then
leveraged using our information sharing estimator. In our experiments, we found that in cases where
there is structure that can be exploited, our algorithms show significantly improved performance
compared to naïve bandit algorithms.
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Appendix A. Proof of theorems

In this appendix section, we set out to prove the theorem stated in the main paper. Here it is convenient
to introduce vectorized notation for the relevant quantities. Let us consider our estimator given a
particular separating set S with domain D(S). We define the following vectors indexed by D(S),
such that the value at index s ∈ S is given by:(

p̂S(· | ζ;DN )
)

s
= p̂(s | ζ,DN ), (7)

(pS(· | ζ))s = P[S = s | I = ζ], (8)(
µ̂S(y | DN )

)
s

= µ̂(y | s;DN ), (9)

(µS)s = E[Y = 1 | S = s], (10)(
NS,DN(p)

)
s

= NDN (S = s ∧ p). (11)

With this in hand, we can write the definition of our information sharing estimator (2) as an inner
product:

µ̂IS(y | ζ;DN ,S) = p̂ᵀS(· | ζ;DN )µ̂S(y | DN ). (12)

One minor detail is that it is possible that for a certain value of s ∈ D(S) we have no samples, and
thus µ̂(y | s;DN ) is undefined. But then for that value p̂(s | ζ,DN ) must also be 0 (otherwise we
would have at least one sample), and we consider the product to be 0. Since it will be multiplied by
0 regardless, in the analysis that follows we may consider the expectation of µ̂(y | s;DN ) to be the
same as if we had at least one sample, i.e. the true mean E[Y = 1 | S = s].

A.1. Proof of Theorem 3.1

We set out to prove the theorem:

Theorem 3.1 If we calculate µ̂S(y | DN ) from a dataset DN where we have a fixed number of i.i.d.
data points from each possible intervention generated by a discrete Causal Bandit, and I⊥⊥ PM Y |S,
and there is at least one sample from intervention I = ζ, then the information sharing estimator (2)
is unbiased. Furthermore, its variance is upper bounded by that of the sample mean:

V[µ̂IS(y | ζ;DN ,S)] ≤ V[µ̂SM (y | ζ;DN )] (13)

We consider the information sharing estimator (12) calculated from data generated by a bandit
environment, where we have a certain fixed number of i.i.d. datapoints from each possible setting of
I. We assume we have at least one sample from the intervention of interest ζ. We first show that
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the vectors in (12) are uncorrelated, which has as immediate corollary that the information sharing
estimator is unbiased. This follows from the law of total expectation:

E
[
p̂ᵀS(· | ζ;DN )µ̂S(y | DN )

]
= E

[
E
[
p̂ᵀS(· | ζ;DN )µ̂S(y | DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
= E

[
p̂ᵀS(· | ζ;DN )E

[
µ̂S(y | DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
= E

[
p̂ᵀS(· | ζ;DN )

]
µS

= pᵀS(ζ|DN )µS = E[Y | I = ζ]

where in the second line we use that p̂S(· | ζ;DN ) is deterministic conditional on NS,DN (I = ζ) and
thus it factors out of the inner expectation. On the third line, we use that conditionally on the counts
NDN (S = s) (which is a deterministic function of the vectors we condition on), µ̂(s | DN ) is just the
mean ofNDN (S = s) Bernoulli variables and thus unbiased, and thus the inner expectation evaluates
to the vector of true means µS and factors out. The exact same conditioning argument using the law
of total expectation can be used to show that E

[
µ̂S(y | DN )

]
= µS, from which it follows that the

expectation factors and thus the vectors are uncorrelated. Finally in the fourth line, the elements of
p̂S(· | ζ;DN ) can be seen as the mean of at least one Bernoulli variable (by assumption) and thus are
unbiased, from which the unbiasedness of the information sharing estimator follows.

We analyze the variance using a similar strategy, using the law of total variance, adding the same
conditioning we did to show unbiasedness:

V
[
µ̂IS(y | ζ;DN ,S)

]
= E

[
V
[
p̂ᵀS(· | ζ;DN )µ̂S(y | DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
+ V

[
E
[
p̂ᵀS(· | ζ;DN )µ̂S(y | DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
.

Now note, in both terms, p̂S(· | ζ;DN ) is non-random. In the second term this vector factors out
because of linearity of expectation. In the case of the first term, the individual elements of µ̂S are
uncorrelated with each-other since they are calculated from disjoint sets of data, thus this vector
factors out of the variance element wise squared. This yields:

V
[
µ̂IS(y | ζ;DN ,S)

]
= E

[(
p̂ᵀS(· | ζ;DN )

)2
V
[
µ̂S(y | DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
(14)

+ V
[
p̂ᵀS(· | ζ;DN )E

[
µ̂S(y | DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
where the square of the vector in the first term is elementwise, and the variance of a vector
in the first term is just the vector of diagonal elements of the covariance matrix, i.e. there
are no covariance terms. In the second term, we may now again use that the inner expecta-
tion is unbiased following the same argument as before. For the first term, the variance vector
V
[
µ̂S(y | DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]
= µS ⊗ (1 − µS) �NS,DN (>) is also well de-

fined as the variance of a sample mean of a set of Bernoulli random variables, where⊗ is elementwise
product,� is elementwise division and NS,DN (>) = NS,DN (I = ζ)+NS,DN (I 6= ζ). Substituting
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this into (14) yields:

V
[
µ̂IS(y | ζ;DN ,S)

]
= E

[(
p̂S(· | ζ;DN )

)2
�NS,DN (>)

]ᵀ
µS ⊗ (1− µS) (15)

+ V
[
p̂S(· | ζ;DN )µS

]
Interestingly, the second term corresponds to our information leakage estimator if we were given
perfect oracle estimates µS. Since the advantage gained by the information sharing estimator is
through better estimation of µS, this term can be seen as a base error that cannot be reduced through
information leakage.

We evaluate the second term. Let s1, . . . , sNDN (I=ζ) be the one-hot vector encoded values of
S observed in the subset of our data where I = ζ. These are i.i.d. categorical variables, and since
p̂S(· | ζ;DN ) = 1

NDN (I=ζ)
∑NDN (I=ζ)

k=1 sk, the second term becomes by independence:

V
[
p̂S(· | ζ;DN )µS

]
= V

 1
NDN (I = ζ)

NDN (I=ζ)∑
k=1

sᵀkµS


= 1
NDN (I = ζ)V [sᵀ1µS]

= 1
NDN (I = ζ)Vs∼P[S=s|I=ζ] [E[Y |S = s]] . (16)

Let us now turn our attention to the first term of equation (15). This is an inner product between
vectors, where the left factor is an expectation of a vector. Let us consider an element of this
expectation vector at index s ∈ D(S):

(
E
[(

p̂S(· | ζ;DN )
)2
�NS,DN (>)

])
s

= E
[
p̂2(s | ζ,DN )
NDN (S = s)

]

= E
[
p̂(s | ζ,DN )
NDN (I = ζ)

NDN (S = s, I = ζ)
NDN (S = s)

]

= E
[
p̂(s | ζ,DN )
NDN (I = ζ)

(
1− NDN (S = s, I 6= ζ)

NDN (S = s)

)]

= 1
NDN (I = ζ)E

[
p̂(s | ζ,DN )(1− α(s, ζ,DN ))

]
(17)

where:

α(s, ζ,DN ) := NDN (S = s, I 6= ζ)
NDN (S = s) . (18)

Note that α(s, ζ,DN ) equals 0 if NDN (S = s, I 6= ζ) = 0 (i.e. there is no additional data to use
where I 6= ζ for information sharing for this value of s), and approaches 1 if NDN (S = s, I 6= ζ)
goes to ∞ and we keep NDN (S = s, I = ζ) fixed, since in the denominator NDN (S = s) =
NDN (S = s, I = ζ) +NDN (S = s, I 6= ζ).
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Substituting (16) and (17) into (15), the variance of the information sharing estimator then
becomes

V
[
µ̂IS(y | ζ;DN ,S)

]
= 1
NDN (I = ζ)

(
E
[
p̂S(· | ζ;DN )⊗ (1−α(ζ,DN )))

]ᵀ
µS ⊗ (1− µS)

+ Vs∼P[S=s|I=ζ] [E [Y |S = s]]
)

(19)

where we define α(ζ,DN ) as the vectorized version of α(s, ζ,DN ) indexed by s ∈ D(S) such that(
α(ζ,DN )

)
s

= α(s, ζ,DN ). Let us now consider the term which has α(ζ,DN ) as a factor when
we expand the parenthesis inside the expectation of the first term. From its definition, we see that
α(ζ,DN ) is elementwise upper bounded by 1 (at infinitely many samples where I 6= ζ and a finite
number of samples I = ζ) for all values of s), and elementwise lower bounded by 0 if we have no
samples where I = ζ. Therefore, since all values are positive, if we define:

α∗(ζ,DN ) = E[p̂S(· | ζ;DN )⊗α(ζ,DN )]ᵀµS ⊗ (1− µS)
E[p̂S(· | ζ;DN )⊗ 1]ᵀµS ⊗ (1− µS) (20)

then α∗(ζ,DN ) is upper bounded by 1 since from its definition we see that α(ζ,DN ) is elementwise
upper bounded by 1 in which case the numerator and denominator are equal. Furthermore, α∗(ζ,DN )
is lower bounded by 0 since all values are nonnegative. Then α∗(ζ,DN ) ∈ [0, 1) and substitution of
α∗(ζ,DN ) into (19) yields:

V
[
µ̂IS(y | ζ;DN ,S)

]
= 1
NDN (I = ζ)

(
(1− α∗(ζ,DN ))E[p̂S(· | ζ;DN )]ᵀµS ⊗ (1− µS)

+ Vs∼P[S=s|I=ζ][E[Y |S = s]]
)

= 1
NDN (I = ζ)

(
(1− α∗(ζ,DN ))pᵀS(ζ)µS ⊗ (1− µS)

+ Vs∼P[S=s|I=ζ][E[Y |S = s]]
)

= 1
NDN (I = ζ)

(
Vs∼P[S=s|I=ζ]

[
E[Y |S = s]

]
+ (1− α∗(ζ,DN ))Es∼P[S=s|I=ζ]

[
E[Y |S = s](1− E[Y |S = s])

])
.

(21)

From here it is easy to see that the theorem holds, since α∗(ζ,DN ) ∈ [0, 1) and the expectation in the
second term is always nonnegative. Thus we may obtain an upper bound by setting α∗(ζ,DN ) = 0.
Then we can combine the variance and expectation into 1 expectation, and we obtain:

V
[
µ̂IS(y | ζ;DN ,S)

]
≤ 1
NDN (I = ζ)

(
Vs∼P[S=s|I=ζ]

[
E[Y |S = s]

]
+ Es∼P[S=s|I=ζ]

[
E[Y |S = s](1− E[Y |S = s])

])
,

= 1
NDN (I = ζ)V[Y |I = ζ] = V[µSM (ζ;DN )], (22)
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by law of total variance, which is what was to be shown.
The value of α∗(ζ,DN ) is a complicated inner product depending on the model parameters, and

is a measure of the expected relative sizes of NDN (S = s|I = ζ) and NDN (S = s|I 6= ζ) for the
values of s where P[S = s|I = ζ] is large.

It is easy to see that α∗(ζ,DN ) ≥ mins α(s, ζ), since then α(ζ,DN ) ≥ mins α(s, ζ)1 elemen-
twise and we may then factor α∗(ζ,DN ) out of the expectation in the numerator of (20) after which
the fraction cancels. An interesting case is if we condition on knowing {NDN (S = s, I = ζ)}s∈D(S).
Let us define c to be the largest real number such that for all s ∈ D(S), it holds that NDN (S =
s, I 6= ζ) ≥ cNDN (S = s, I = ζ). From its definition (18), we see that then α(s, ζ,DN ) ≥ c

c+1 ,
and thus α∗(ζ,DN ) ≥ c

c+1 .
The relative sizes of Vs∼P[S=s|I=ζ]

[
E[Y |S = s]

]
and Es∼P[S=s|I=ζ]

[
V[Y |S = s]

]
signify how

well additional data from I 6= ζ helps in estimating E[Y |I = ζ]. Interestingly, not always beneficial
to share data through information leakage. Specifically, if V[Y |S = s] = 0 for all s in the support
of P[S = s|I = ζ], then there is no error due to misestimation of E[Y |S = s] (since they are then
deterministic thus if we have just 1 sample this is enough) and all error of the information sharing
estimator stems from misestimation of P[S = s|I = ζ]. Then no amount of additional data with
I 6= ζ may help. This was the case in our example for why S3 is not always optimal. On the other
hand, if the distributions P[S|I = ζ] are disjoint for all different ζ, then we see from equation 18 that
α is 0, and thus again information sharing provides no benefit. This was the case for the choice S1
in our example.

Appendix B. Additional details of experiments

In this section we provide some further details on how we set up the different simulation experiments.

B.1. All DAG experiment

From the description in the main text it is clear what DAGs are considered. Here we specify the
distribution of the discrete variables. If a variable X has no parents, we define P [X = 1] = 0.5. For
each variable with parents, for each of its parents we randomly select a “target value”, either 1 or 0.
When we generate the value of variable X , we count the number of parents that match their target
value, let us call this m. Then:

P[X = 1|Pa(X)] = 1 +m

2 + |Pa(X)|

B.2. Generating larger DAGs

For the experiment where we investigate scaling, the distribution of the endogenous variables is
defined exactly the same as for the All DAG experiment. The DAGs are generated in the following
way:

We first fix a topological order of the variables, and set Y to be the last in the topological ordering.
Starting from the last node in the topological order working to the first, for each variable X except
for Y , we then first uniformly randomly pick the maximum fan-out f of this variable between 1 and
the number of nodes after the variable in the ordering. Then, for f times we uniformly randomly
select a variable X ′ after X in the ordering, and if there is no edge yet from X to X ′, we add this
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Algorithm 2 Causal UCB normal
1: Input: Data: DN = {(ζn,vn)}Nn=1, set of possible interventions D(I), target variable Y ,

number of bootstrap samples nB , Separating set algorithm: disc_sep_set
2: Output: Next action to pick at iteration N + 1
3: Initialize array index[ζ] for ζ ∈ D(I)
4: S_set← disc_sep_set(DN , Y, ζ)
5: for all ζ ∈ D(I) do

6: Set index[ζ] = µSM (ζ;DN ) + 4
√
V̂[µSM (ζ;DN )] ln N

NDN (I=ζ)

7: best_var = V̂[µSM (ζ;DN )]
8: for all (S, I′) ∈ S_set do
9: INS = I \ I′

10: Initialize array samples[i] for i ∈ {1, . . . , nMC}
11: for i in {1, . . . , nB} do
12: Generate bootstrapped dataset D′N

13: samples[i] = µ̂IS(ζ;D′N ,S, INS)
14: end for
15: if V̂[samples] < best_var then

16: index[ζ] = µ̂IS(ζ;DN ,S, INS) + 4
√
V̂[samples] ln N

NDN (I=ζ)

17: best_var = V̂[samples]
18: end if
19: end for
20: end for
21: return arg maxζ index[ζ]

edge to the graph. If Y is selected but Y already has 3 parents, we do not add an edge to it and
continue as prescribed.

Appendix C. Causal UCB-Normal algorithm

The full Causal UCB-Normal algorithm is given in algorithm 2, which is based on UCB-Normal from
Auer et al. (2002). Note that if we consider just line 1-5, this is the implementation of the traditional
UCB-Normal algorithm, and this is what we use as a baseline. In line 9-12, we estimate the variance
of the information sharing estimator using bootstrapping, where we bootstrap by sampling with
replacement in such a way that the number of samples per intervention stays the same. On line 15 we
then use exactly the same index as UCB normal, where we just use the information sharing estimator
(using partial separating sets as described in section 3.3) instead of the sample mean, and the sample
variance of the bootstraps instead of the estimated variance of the sample mean.

Appendix D. Sachs experiment with randomized selection of endogenous variables

When we look at the estimated causal graphs in Mooij et al. (2020), we see that the causal structure
is very complicated and confounded. Therefore if we randomly select a subset of the variables as
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endogenous, we can expect that no separating set exists. This is reflected in the experimental results
shown in figure 4.

Figure 4: Simulation results on the Sachs data where we randomly select a subset of the variables as
endogenous variables, 150 runs.
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