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ABSTRACT

We introduce the Thermodynamic Equilibrium Layer (TEL), a neural building
block that replaces fixed activations with a short, K -step energy-guided refine-
ment. TEL performs K discrete gradient steps on a Gibbs-inspired free energy
with a learnable step size and an entropy-driven, adaptable temperature estimated
from intermediate activations. This yields nonlinearities that are dynamic yet sta-
ble, expose useful per-layer diagnostics (temperature and energy trajectories), and
run with a fixed, predictable compute budget. Across a broad suite of tasks, TEL
matches or exceeds strong baselines, including MLPs, modern implicit/energy-
based layers under compute-matched dimensionality, FLOPs, and parameters.
Swapping TEL in place of MLP feed forwards in standard different architectural
blocks incurs minimal overhead while consistently improving performance. To-
gether, these results position TEL as a scalable, drop-in alternative for constructing
adaptable nonlinearities in deep networks.

1 INTRODUCTION

Multi-layer perceptrons (MLPs) remain a core workhorse of deep learning thanks to their simplicity,
universality, and ease of deployment. Classic results show that fully connected feedforward net-
works can approximate broad classes of nonlinear functions to arbitrary accuracy (Haykin, [1994;
Cybenkol |[1989; Hornik et al., [1989). In practice, however, the standard composition of linear maps
with fixed activation functions (e.g., ReLU, Sigmoid, Tanh) can limit input-dependent adaptivity
(Glorot et al., |2011)), expressive efficiency (Montufar et al., 2014} |Agostinelli et al.| 2014), and ro-
bustness under distributional noise and corruption (Hendrycks & Gimpel, |2016). These constraints
motivate architectures that provide adaptive, inherently nonlinear transformations while preserving
predictable, stable training dynamics.

Recent efforts move toward learnable, input-adaptive nonlinearities. Kolmogorov—Arnold Networks
(KANs) (Liu et al., 2024) replace fixed activations with spline functions along edges, improving
flexibility and, at times, interpretability, but often at substantial cost: KANs commonly increase
parameters and FLOPs by an order of magnitude and can be sensitive to initialization, making them
challenging to scale or deploy under tight latency constraints.

We propose the Thermodynamic Equilibrium Layer (TEL), a principled alternative to the linear-
plus-activation paradigm. TEL models a layer’s output as the result of a K -step minimization of a
Gibbs free-energy functional (Callen & Scott,|1998)), akin to a physical system relaxing toward equi-
librium. At each refinement step, the update trades off enthalpy minimization against entropy-driven
adaptation; the temperature 71" evolves online from entropy estimates of the activations, providing
input-dependent control. This construction yields expressive, adaptive nonlinear transformations
while maintaining a fixed, predictable compute budget and exposing useful per-layer diagnostics.

TEL also occupies a distinct point in the design space relative to implicit/equilibrium layers and
energy-based approaches. Deep Equilibrium Models (DEQ) solve for a fixed point z* = fy(2*, x)
via root-finding with implicit differentiation, so the computation depends on solver tolerance and
can vary across inputs (Bai et al., [2019). Energy-based models (EBM) define an energy landscape
and rely on stochastic sampling (e.g., Langevin dynamics) to explore it (LeCun et al., [2006; |Grath-
wohl et al.l |2019). In contrast, TEL performs a bounded, deterministic K -step descent on a Gibbs
free-energy objective with an adaptive temperature, yielding predictable computation without back-
solves or Markov-chain sampling. Empirically, under compute-matched latency and memory bud-
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Figure 1: TEL operates in five steps: (1) Linear projection: compute the anchor Wz. (2) Fixed
nonlinear projection: compute enthalpy and entropy terms. (3) Linear pull: apply the quadratic-
energy update toward the anchor. (4) Adaptive temperature update: estimate entropy and update the
temperature 7. (5) Learnable nonlinear projection: apply temperature-scaled nonlinear refinement
by iterating for K steps to produce the final output.

gets, TEL competes favorably with DEQ- and EBM-style baselines while using markedly fewer
parameters. We evaluate TEL on a broad suite of benchmarks spanning classification, regression,
and reconstruction. Across these settings, TEL delivers consistent accuracy gains and favorable
accuracy—efficiency trade-offs. Ablations isolate the roles of (i) iterative refinement via K -step up-
dates and (ii) entropy-driven temperature adaptation. Our analysis provides conditions ensuring
non-expansiveness and bounded gradients under step-size and temperature clipping, and complexity
bounds clarifying TEL’s parameter and memory profile. We also demonstrate seamless integration
of TEL into different standard architectures, supporting its use as a scalable, drop-in building block.

Contributions. (1) Entropy-gradient activations via TEL: we introduce TEL, which replaces fixed
pointwise activations with the gradient of a learned entropy functional, realized as a fixed-K dis-
crete descent on a Gibbs free energy Gy = Hy — T'Sy. The enthalpy term anchors the layer to
the linear projection Wz, while the entropy gradient V,Sg(y) serves as an adaptive activation
modulated by a data-dependent temperature, yielding predictable compute and per-layer diagnos-
tics (temperature and energy traces) as shown in Figure[I] (2) Theory & design rules: conditions
for non-expansiveness/contractivity, Lipschitz and gradient-norm bounds, and two-time-scale track-
ing for the adaptive temperature, leading to simple choices for step sizes, temperature ranges, and
clipping. (3) Empirics: a three-stage evaluation with shallow building-block analysis, mid-scale
backbones, and large-scale benchmarks showing compute-matched gains across different tasks and
consistent improvements over MLP/Linear, KANs, and modern implicit/energy-based layers at sim-
ilar Params/FLOPs.

2 THERMODYNAMIC EQUILIBRIUM LAYER (TEL)

TEL is guided by the principle that equilibrium arises from minimizing Gibbs free energy the bal-
ance between energy and entropy. We begin by adapting this principle to neural representations
( , then instantiate TEL as a fixed-K iterative refinement with an entropy-adaptive temperature
@, and analyze its expressivity, stability, and efficiency relative to conventional layers (§2.3).

2.1 GiBBS FREE ENERGY FOR LAYER COMPUTATION

In thermodynamics, the Gibbs free energy is

G=H - TS, (1)
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and at fixed temperature and pressure equilibrium corresponds to minimizers of GG (Callen & Scott,
1998). We reinterpret this for neural representations by treating the hidden state y as the system
state and defining a parameterized free energy

Go(y;2,T) = Ho(y;2) — T Se(y), 2
where z is the input and 7" > 0 is a (learned and data-dependent) temperature.

We instantiate the enthalpy with a quadratic anchor to the linear projection Wz,

Hy(y;z) = 3 lly — Wel3, 3)
and use an entropy surrogate Sy whose gradient defines an activation map ¢y, i.e.,
VySo(y) = ¢o(y). “)
This yields
VyGo(y;2,T) = (y—Wx) — T g(y). )

Thus, the temperature 7" mediates the balance between attraction to the anchor Wz and the nonlinear
contribution from ¢y. Intuitively, small T contracts y toward the anchor Wz (dominant enthalpy),
while larger T emphasizes the nonlinear contribution via ¢y (dominant entropy).

TEL realizes a bounded-compute search for equilibrium by performing K steps of gradient descent
on Gy with an online log-temperature update. To formalize this, we introduce temperature bounds
Tinin > 0, Tinax > Tinin and their corresponding log-parameters Ti,in = 10g Tinin, Tmax = 108 Tinax-
With 7; > 0 step sizes and a small dual step o > 0,

SO _ Wa, (6)

T(l) = eXp(Clip(T(i), Tmin > Tmax))’ @
YD) Z ) [(ym —Wa) — T ¢9(y<i>)} ;o i=0,..., K -1, (8)
) = clip( 4 @ ga(3(5D)), Tins Tmax ) (9)

where 5(y) is an entropy estimate computed from activations (analytic or learned) and gg(z) =
B1z + Po is a monotone scaling (optionally applied to an EMA (exponential moving average) of §
for additional smoothing ) and clip(u, a, b) denotes elementwise clipping of « to the interval [a, b].
Each refinement step first determines the temperature from the clipped log-parameter, then updates
the primal state y, and finally adjusts 7 through the entropy signal $(y(*)). The iteration budget K
fixes the compute per layer and exposes a practical accuracy—latency knob; full architectural choices
for ¢y, 5, and g appear in §2.2]

We choose {1;} and [Tiin, Tnax] to satisfy the non-expansiveness bound in equation[13} in practice,
this entails clipping 7; € (0,1] and selecting Tpax such that Tp,.xLs < 1 to guarantee stable
refinement steps.

2.2 TEL ARCHITECTURE

A Thermodynamic Equilibrium Layer (TEL) computes its output via a fixed number K of refinement
steps that approximately minimize the free energy in §2.1] Given x € R™, a linear anchor Wz with
W € R™eut*™in and an activation map ¢g : R™ovt — R"u (with V,,Sp(y) £ ¢9(y)), TEL evolves a
hidden state y and returns

Orgr(z;0) = y(K). (10)

Iterative refinement (primal update). We initialize the hidden state using equation [f] and take K
gradient steps on G using the primal update equation[8] This unrolled refinement defines a depth- K
computation in which each step applies the same activation map and temperature rule. Here, 7; > 0
are learnable step sizes (parameterized in log-space and clipped to a safe range). Parameters of ¢y
are shared across steps, so TEL’s parameter count is essentially independent of K (aside from a few
step-size scalars). When T'(*) is specified per channel, the product 7 ¢y (y) is applied elementwise
with standard broadcasting semantics.
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Temperature adaptation (log-dual update). We maintain a log-temperature 7 so that 7' =
exp(7) > 0, and update it online from an entropy estimate $(y). We reuse the bounds Trnin, Tmax
and their log-parameters Tiin, Tmax defined in §|Zf|; the clipped log-temperature determines the ef-
fective temperature via equation[7} The i-th refinement step then updates the log-temperature using
equation EI, where o > 0 is a small dual step and gg(z) = (12 + (o is a monotone scaling (op-
tionally applied to an EMA of § for additional smoothing). TEL supports either a global scalar 7 or
a channel-wise vector T € R™= (default: global). At each refinement step we compute 7() from
the clipped log-temperature using equation [7, update 3**1) via equation [8] and then update 7(*+1)
via equation ﬁusing §(y(i)). This dual update allows TEL to adapt its effective nonlinearity on a
per-input basis while respecting prescribed temperature bounds.

Entropy estimator: We compute §(y) from simple activation statistics (e.g., mean/variance, kur-
tosis) aggregated over batch/spatial axes and (optionally) smoothed with an EMA. TEL supports
analytic surrogates (Gaussian/Laplacian/Student-t) or a tiny MLP on pooled features; the scale of
5 is absorbed by gg, and we detach gradients where noted to avoid degenerate feedback. These
choices allow the entropy signal to remain lightweight while still capturing the degree of activation
dispersiveness relevant for temperature adjustment.

Internal free energy vs. training loss: The free energy Gy(y;x,T) is used only to define the
layer’s internal refinement dynamics. The training objective for TEL networks remains the standard
task loss (e.g., cross-entropy for classification, mean-squared error for regression), just as for the
baselines; we do not add Gy or its entropy term as an explicit regularizer to the global loss. Ad-
ditionally, the internal step sizes 7); govern the K -step refinement inside each TEL layer and are
distinct from the learning rate of the outer optimizer, which is kept identical across TEL and all
baselines. Additional TEL design choices and implementation details are provided in Appendix

We initialize W with activation-matched schemes (He/Kaiming for ReLU/SiLU/Swish/GELU;
Xavier/Glorot for Tanh) (He et al, 2013}, [Glorot et all, 2011)), set ; = 7o initially (shared or per-
step), and choose Tiyin, Tmax from a short warm-up. Shapes. TEL preserves the tensor shape of
Wz and drops into CNN/LSTM/Transformer blocks without reshaping. Compute. FLOPs (floating
point operations)/latency scale linearly with K; training memory is O(K ) under standard backprop;
rematerialization/checkpointing can reduce this to O(1) at modest extra compute .
TEL also supports optional early exit by stopping when the free-energy decrease AG(") falls below
a threshold, enabling adaptive inference cost without architectural branches (Graves| 2016}, [Teer-
apittayanon et al., 2016)). In practice, these engineering choices make TEL drop-in compatible with
standard deep architectures while keeping its overhead modest.

2.3 EXPRESSIVE PROPERTIES AND GUARANTEES OF TEL

Throughout, let y(®) = Wz and, fori = 0,...,K — 1, evolve (y®,7(® T®) via the TEL up-
dates equation 8] equation [7l-equation[9] We analyze stability, convergence, and expressivity of the
resulting map gy, () = y(K ). This section formalizes the conditions under which TEL behaves
as a stable and well-conditioned refinement operator. Formal statements and proofs are collected in

Appendix[C]
Assumptions:

Al ¢y is globally Lg-Lipschitz, i.e., || Jg, (y)|l2 < Lg for all y. Jy, (y) denotes the Jacobian
of ¢g at y. This ensures controlled nonlinearity across the refinement steps.

A2 Step sizes satisfy 1; € (0, Jmax] With nmax < 0o (we clip logn; in practice). Step-size
clipping prevents overly aggressive updates that would break non-expansiveness.

A3 Temperatures are bounded 7(*) e [Tiin, Tmax) With 0 < Tiin < Tax < oo (enforced
by T-clipping in equation [7}-equation[9). This guarantees that TEL’s effective gain remains
uniformly bounded.

One-step non-expansiveness and bounded iterates: Using the primal update in equation [8] we
write each refinement step as

y Y = Fi(y®), (11)
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where F; is the one-step update map induced by equation[8] and its Jacobian is
Jily) = I —ni(I =TI, (y)). (12)

Here Jy, (y) denotes the Jacobian of ¢y at y and serves as the key object for controlling the Lipschitz
behavior of each refinement step.
Proposition 2.1 (Non-expansive TEL update). Under AI-A3, if

2
14 TmaxLy’
then | Fi(y1) — Fi(y2)|l2 < |lyr — yz2ll2 for all y1, ya. If the inequality is strict, F; is a contraction
(Banach fixed-point theorem applies). The full proof is given in Lemma|C.1)in Appendix[C]

Corollary 2.2 (Boundedness). Under AI-A3 and equation the iterates {y(i)}iK:O remain
bounded and anchored near W x. In particular, non-expansiveness prohibits divergence even when
K is moderately large as a direct consequence of Proposition[2.1]in Appendix[Q)

0<mn < 13)

Convergence with frozen temperature: Fix T € [Tinin, Tmax) and constant 7 € (0, ﬁ) Then

the iteration in equation [8| (with 7() = T" and 1; = 1) converges linearly to the unique fixed point
y* solving y = Wax — T'¢g(y), with rate governed by max{|1 — 7|, |1 —n(l — TLy)|} < 1
(see Proposition [C.4] in Appendix [C] for details). This provides a baseline convergence guarantee
analogous to classical gradient-descent results.

Two-time-scale tracking with adaptive temperature: Let the dual step be small relative to the
primal, o < min; 7, so that 7 evolves on a slower time-scale. Under A1-A3, the coupled dynamics
are bounded, and y(*) tracks the instantaneous fixed point y*(7()) with tracking error O(a); see
two-time-scale stochastic approximation (Borkar & Borkar, |2008; |[Konda & Tsitsiklis), 2004) and
our formal statement in Proposition [C.6| (Appendix [C)). Intuitively, y nearly equilibrates before 7'
changes appreciably. This separation of time-scales allows TEL to adjust temperature smoothly
while retaining near-equilibrium behavior at each iteration.

Expressivity: recoveries and regimes: TEL covers several useful regimes:

« Linear recovery. If 7(9) =0 (or ¢y = 0), then y() = Wz for all i and TEL reduces to a
linear layer.

* One-step MLP. With K =1, y") = Wz + 1oT©) ¢pg(Wz), recovering a residual MLP-
style nonlinearity with data-dependent gain 7T,

* Implicit-layer limit. For K — oo with fixed 7', the iteration converges to the solution of

y = Wz — T'¢g(y) (if the contraction condition holds), i.e., an implicit/DEQ (Geng &
Kolter, [2023)) like fixed point obtained by a bounded, controllable solver when K is finite.

These regimes illustrate how TEL interpolates smoothly between classical feedforward layers, resid-

ual blocks, and implicit architectures through its temperature and iteration budget.

Global Lipschitz control: Under A1-A3 and equation the end-to-end map z +— Prgr(z) is
globally Lipschitz:

K-1 K-1
Lrer < Wl JT 172 < IWle [T max{it = nl, [1 = 0i(1 = Tnax L)} (14)
=0 =0

Smaller step sizes and tighter temperature bounds decrease Lrgp, (improving smooth-
ness/robustness), while larger values increase adaptivity. This provides a direct mechanism for
controlling model sensitivity through TEL’s design parameters.

Gradient stability: By submultiplicativity and equation [I3]

|22 < e T (i - 1100 T}, 19
o , S 2 1 max Nl T maxX¢p )

Gradients neither explode nor vanish beyond the scaling inherited from ||I¥ ||z when (1;, 7)) re-
spect the design bounds. In practice, this yields stable training behavior even for moderately large
K.
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Parameter efficiency and computational complexity: TEL shares weights across refinement
steps: parameters are those of W (and bias), ¢, a few per-step scalars {n; }, and the log-temperature
initialization (global or channel-wise), plus an optional tiny MLP for §(-). Thus, the parameter
count is essentially independent of K. Forward FLOPs consist of one matrix multiply Wz of cost
O(B ninnout) plus K elementwise refinements on y € RBX7mout (and a small entropy-estimation
overhead), i.e.,

FLOPs = ©(Bninnout) + K -O(Bnoy) + (estimator overhead). (16)

Training memory is O(K) under standard backprop; rematerialization/checkpointing can reduce this
to O(1) at modest extra compute (Chen et al.l 2016). Overall, TEL offers near-constant parameter
count with linearly controllable compute, allowing practitioners to tune accuracy—latency trade-offs
without architectural redesign. We report latency/throughput/memory trade-offs in §3|and provide
full FLOP and memory derivations in Appendix [E]

In the next section, we investigate how these stability and efficiency guarantees translate into empir-
ical performance under compute-matched budgets and ablations of TEL’s design choices.

3 EXPERIMENTS

We structure our empirical evaluation in three stages that progressively increase architectural com-
plexity. This staged design lets us isolate what TEL contributes as a building block, then test its
robustness as we move from toy settings to standard backbones and finally to large-scale bench-
marks. Because TEL introduces an internal K -step refinement, its behavior can depend on depth,
width, and surrounding modules, so disentangling these regimes is essential. Comprehensive train-
ing details are presented in Appendix|[G] and all supplementary results per-dataset curves, full tables,
and extended ablations are provided in Appendix [H]

Stage I: Shallow building-block analysis. We start with the minimal setting: a single hidden
layer where the standard MLP block is replaced by TEL. This removes confounders such as depth,
skip connections, normalization, and attention, and allows us to (i) measure the intrinsic benefit
of iterative refinement, (ii) compare TEL directly to other equivalent building blocks under strictly
matched width, parameter count, and FLOPs, and (iii) Identify a robust default configuration for TEL
through ablations. These experiments show that TEL improves accuracy/error and reduces variance
even without depth, indicating that its gains come from the refinement dynamics themselves.

Stage II: Mid-scale backbones. We then insert TEL into lightweight, widely used
CNN/LSTM/Transformer architectures. This stage probes whether TEL is a practical drop-in re-
placement for feedforward blocks in standard networks and compares two deployment patterns:
TEL-head (replace only the first MLP block) and TEL-full (replace all such blocks). These models
are still small enough to keep effects interpretable but rich enough to include convolution, recur-
rence, and attention.

Stage III: Large-scale benchmarks. Finally, we test TEL in larger benchmarks with more complex
tasks. This stage evaluates whether TEL’s thermodynamic refinement remains stable and beneficial
at scale, and whether the TEL-head pattern continues to be preferable in deep residual and attention-
based models.

Across all three stages, TEL layers are configured to satisfy the design constraints of §2.3](step-size
clipping, temperature bounds, and non-expansive refinement), so performance differences can be
attributed to TEL’s mechanism rather than to ad-hoc tuning.

3.1 STAGE I: SHALLOW BUILDING-BLOCK ANALYSIS

Stage I evaluates TEL in the most controlled setting possible: We evaluate the Thermodynamic
Equilibrium Layer (TEL) across classification, regression, and reconstruction benchmarks MNIST,
Fashion-MNIST, CIFAR-10/100, STL10 (classification); standard UCI datasets such as Diabetes,
Energy, Concrete, Wine, and California Housing (regression); and synthetic manifolds including 1D
sinusoids, 2D moons/spirals, and 3D swiss roll/spheres for autoencoding (reconstruction). Baselines

include Linear, MLP (Linear+ReLU), KAN [2024), EBM (Du & Mordatch| [2019), and
DEQ (Geng & Kolter}, 2023)). Stage I evaluates TEL in the most controlled setting, a single hidden
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Figure 2: Average performance (&£ std) over 20 runs across 5 different random seeds, evaluated
on three representative datasets, one each for classification, regression, and reconstruction using
six building-block models: Linear, MLP, KAN, EBM, DEQ, and TEL. Results are plotted against
parameter count and FLOPs for hidden embedding sizes ranging from 8 to 1028.

layer where TEL directly replaces the (Linear+ReLU) block, ensuring matched width, parameter
count, and FLOPs across all models and removing confounding architectural factors. This provides
a clean test of TEL’s intrinsic properties, including refinement, temperature adaptation, and stability.

Performance at Matched Width, Params, and FLOPs Fig. 2] reports representative results on
one dataset per task CIFAR-10 (classification), California (regression), and the Swishroll 3D (re-
construction). Across these examples, TEL consistently lies on or dominates the Pareto frontier in
terms of accuracy (or RMSE / reconstruction error), parameter count, and FLOPs.

Matched width (8-1028): TEL outperforms all baselines at the same width in 35/40 classification
comparisons, 31/40 regression comparisons, 32/40 reconstruction comparisons. TEL’s improve-
ments appear even at very small widths (16—-64), where the benefits of iterative refinement and
temperature adaptation are most pronounced. This demonstrates that TEL is intrinsically more ex-
pressive than standard one-step nonlinearities. For results across all 15 datasets, see Appendix [H.I}

Matched parameter count: TEL dominates the “low-params, high-performance” quadrant. Be-
cause TEL reuses parameters across K steps, increasing K improves accuracy without increasing
parameters moving TEL vertically in Pareto plots. KAN and DEQ must increase parameter count
or depth to match TEL’s frontier. Full results across the 15 datasets are provided in Appendix [H.2]

Matched FLOPs: TEL more frequently occupies the “low-FLOPs, high-performance” region than
any other method. DEQ and EBM close the gap only at substantially higher FLOPs due to solver or
sampling overhead. TEL’s cost grows deterministically with /K, making it predictable and tunable.
Results for all 15 datasets are shown in Appendix [H:2}

Stability Across Seeds TEL consistently shows smaller variance often 2-3x lower than KAN and
EBM, and 1.5-2x lower than DEQ across all tasks and widths. This confirms that TEL’s refinement
dynamics are stable to initialization and stochasticity. TEL’s coefficient-of-variation remains the
lowest across nearly the entire width sweep.

Ablations Iteration budget (K): Fig.[3|shows clear diminishing returns for K > 5 across all tasks.
The accuracy/error curve exhibits a knee at K € [3,5]. FLOPs grow linearly, parameters remain
fixed. This matches TEL’s theoretical contraction-based refinement (§2.3).

Temperature adaptation: Fig.[dreports results on the three representative datasets, where adaptive
temperature (global or channel-wise) consistently outperforms fixed or learned-static temperature.
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Figure 5: TEL as a drop-in replacement in common backbones. Mean =+std test accuracy over
20 runs (5 random seeds) when swapping linear+ReLU blocks with TEL in three settings: LeNet,
DeepConvLSTM, and MiniLM. We compare the original (Vanilla), replacing only the first FFN with
TEL (TEL-head), and replacing all FFNs (TEL-full).

Global adaptive temperature provides the strongest gains with minimal parameter cost. Full results
across all 15 datasets are provided in Appendix [H4]

From the shallow-layer analysis, four conclusions emerge consistently: (i) TEL provides sizable
gains in accuracy/RMSE/reconstruction even in the absence of depth; (ii) TEL is more parameter-
and FLOP-efficient than all competing building blocks; (iii) TEL demonstrates markedly lower vari-
ance and stronger stability across seeds; (iv) the most reliable operating regime is K € [3, 5] with
adaptive global temperature. This configuration is used throughout the deeper evaluations in §3.2]

and §3.3

3.2 STAGE II: MID-SCALE BACKBONES

We next evaluate TEL inside lightweight CNN, LSTM, and Transformer backbones, using LeNet
(CNN) (LeCun et al.] 2002), DeepConvLSTM (LSTM) (Ordéfiez & Roggen| [2016), and MiniLM
(Transformer) (Wang et al., [2020) on the USPS image dataset (Van der Maaten), [2009), the UCI
HAR time-series dataset (Nayak et al.|[2022), and the AGNews natural-language dataset
[2019), respectively. This stage examines whether the trends from Stage I persist once TEL is em-
bedded in deeper, modality-diverse networks.

As provided in Figure [3] replacing only the first feedforward block with TEL (TEL-head) yields
consistent accuracy gains of +0.8—1.5% in CNNs, +0.9-1.3% in LSTMs, and +0.6—1.0% in Trans-
formers, all with negligible parameter overhead. These improvements mirror the shallow-layer find-




Under review as a conference paper at ICLR 2025

ResNet-18 (Tiny ImageNet)  ResNet-50 (Tiny ImageNet ResNet-18 (ImageNet 1K) ResNet-50 (ImageNet 1K) ViT-B/32 (Coco stuff) ViT-L/32 (Coco stuff)
0.420

0.6025 0.698-
>0.634
9

o

0.806: 0.506
0.418

racy

0.6000 14
30.632 5069 0.504
g

3
20416

1 acc
mloU

0.5975 o
~0.630 0.694 0.502
&

Top-1 accuracy
Top-1 accuracy
o o
2 =
g 8
S 2

fop

8 0414
“o628 = 0.692 0500

0.800- 0412
Vanilla TEL head TEL full Vanilla TEL head TEL full Vanilla TEL head TEL full Vanilla TEL head TEL full Vanilla TEL head TEL full Vanilla TEL head TEL full

ViT-B/32 (Cityscape) ViT-L/32 (Cityscape) GPT-1 (LAMBADA) GPT-2 (LAMBADA) GPT-1 (WikiText-2) GPT-2 (WikiText-2)
0.820

0.812 8.7
0.818 2

0.5950

0.814

w
w
@

18.6

ity

N
©
o

% 18.4

miou
mloU
plex

0810 0816

Perplexity

w

&

>

=

®

>
Perplexity

£18.2
&

N
©
°

0.808 0.814

w
&
)

18.0

Vanilla TEL head TEL full Vanilla TEL head TEL full Vanilla TEL head TEL full Vanilla TEL head TEL full Vanilla TEL head TEL full Vanilla TEL head TEL full

Figure 6: Mean + std. performance across all high-capacity backbones and datasets: ResNet-
18/50 on Tiny-ImageNet and ImageNet-1K, ViT-B/L on COCO-Stuff and Cityscapes, and GPT-1/2
on LAMBADA and WikiText-2. Three configurations per model: vanilla, TEL-head, and TEL-full.
TEL-head consistently provides the largest improvements, while TEL-full remains close behind. All
models are trained with matched FLOPs and parameter budgets (Appendix [G).

ings of Stage I and indicate that TEL strengthens early representations across modalities. Replacing
all feedforward blocks (TEL-full) also improves over the vanilla architectures, but typically under-
performs TEL-head, reinforcing the emerging pattern that TEL is most impactful as an early-stage
feature refiner.

Across all architectures, TEL variants exhibit low run-to-run variance (std < 0.5%), continuing the
stability advantages first observed in Stage 1.

TEL introduces only negligible compute overhead: parameter increases remain below 0.2% for
CNNs, 0.05% for LSTMs, and 0.5% for Transformers, with FLOP changes < 0.3% in all cases.
TEL-head increases latency modestly, while TEL-full incurs larger but still manageable slowdowns.
These small costs accompany consistent +0.6—1.5% accuracy gains, making TEL-head the best ac-
curacy efficiency tradeoff. Detailed parameter, FLOP, and latency measurements for all models

appear in Appendix

Overall, TEL acts as a practical, architecture-agnostic, and parameter-efficient drop-in replace-
ment for feedforward blocks. TEL-head is consistently the strongest configuration and is therefore
adopted as the default in Stage III.

3.3 STAGE III: LARGE-SCALE BENCHMARKS

We evaluate TEL in high-capacity architectures ResNet-18/50 2016), ViT-B/L
[skiyl[2020), and GPT-1/2 (Radford et al.l 2018} [2019) across ImageNet-1K (Deng et al.,[2009), Tiny-
ImageNet (Le & Yang, [2015), COCO-Stuff (Caesar et al.| [2018), Cityscapes (Cordts et al., 2016),
LAMBADA (Paperno et al., 2016), and WikiText-2 (Merity et al.},[2016)), covering both large-scale
vision benchmarks and complex language reasoning tasks. This stage tests whether the refinement
behavior observed in Stages I-II persists in deep residual networks, attention-based models, and
large transformers operating on substantially more challenging datasets and tasks.

As shown in Figure [6] TEL-head yields consistent accuracy gains across all architectures. For clas-
sification, TEL-head improves ResNet-18 by +1.4% on Tiny-ImageNet and +0.9% on ImageNet-
1K, and improves ResNet-50 by +1.1% and +0.8%. For segmentation, it increases ViT-B/L mloU
by +0.7%-1.4%. For language modeling, TEL-head reduces GPT-1/2 perplexity by 0.7%—1.6%.
These patterns mirror earlier stages: TEL most strongly impacts early-layer representations.

TEL-full also improves performance but with consistently smaller gains and higher compute. For
example, improvements in ResNets and ViTs fall to +0.4%-0.8%, and GPT models show only
marginal perplexity changes. This confirms that TEL’s refinement is most beneficial in early layers.

TEL-head adds only modest overhead < 1% more FLOPs, and moderate latency increases. TEL-
full, by contrast, introduces substantially larger slowdowns. Comprehensive runtime, parameter, and
FLOP analyses for all architectures are provided in Appendix [H.6]
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In summary, TEL scales reliably to ResNets, ViTs, and GPT-style transformers. TEL-head offers a
strong accuracy efficiency tradeoff with robust improvements across all modalities, while TEL-full
remains functional but yields diminishing returns with depth.

3.4 INTERPRETABILITY & DIAGNOSTICS

TEL’s refinement dynamics expose internal thermodynamic quantities—enthalpy and entropy gra-
dients, temperature updates, and free-energy trajectories—that are both theoretically grounded and
empirically diagnostic. Unlike feedforward MLPs or implicit layers, which offer no reliable internal
observables, TEL provides physically interpretable signals tightly correlated with sample difficulty,
uncertainty, and the stability of the refinement process.

Across shallow, mid-scale, and large-scale architectures, four diagnostic families appear with strik-
ing consistency: (i) the enthalpy—entropy gradient ratio p(*), which separates anchor- dominated
from entropy-driven refinement and exhibits a clear difficulty ordering; (ii) the gradient alignment
x(), whose dips reflect disagreement between enthalpy and entropy updates and highlight geomet-
rically challenging or atypical samples; (iii) the temperature trajectory 7() and its mean 7', which
rise more strongly for harder examples and track epistemic uncertainty; and (iv) the free-energy
evolution AG"), which decreases smoothly under TEL’s stability constraints and serves as a simple
convergence or early-exit criterion.Comprehensive visualizations and per-example analyses appear

in Appendix[H.7]
3.5 LIMITATIONS

While TEL shows promising performance—efficiency trade-offs and stable refinement dynamics,
several limitations constrain the scope of our claims.

Stacking depth: Because a single TEL block already performs multiple iterative refinements in par-
allel, stacking many TEL layers would introduce several nested optimization processes, increasing
training complexity and often leading to instability. Consequently, even in deep architectures, we
primarily use TEL in its single-layer form (TEL-head) within each block. Despite this restriction,
TEL-head still provides meaningful improvements, much like diffusion-style refinement layers or
functional primitives such as KAN, where most of the gains arise from a single functional layer
rather than deep stacking. Thus, TEL acts as a high-capacity substitute for the MLP sub-layer rather
than a primitive designed for multi-layer stacking. Developing mechanisms that could support sta-
ble, deeper TEL stacks, such as cross-block residual pathways, propagating intermediate equilibrium
states, or sharing temperature priors across layers, remains valuable future work.

Diagnostics are not fully interpretable: Although TEL exposes diagnostic signals such as tem-
perature, entropy, and free energy, these quantities provide heuristic guidance rather than strict in-
terpretability or guarantees. Unlike symbolic or explicitly structured methods (e.g., spline-based
KANSs), TEL’s diagnostics are informative but not yet actionable. Closing this gap between useful
indicators and fully interpretable or verifiable behaviors remains an important research direction.

4 CONCLUSION

We introduced the Thermodynamic Equilibrium Layer (TEL), a drop-in adaptive nonlinearity that
replaces fixed activations with a short K -step free-energy refinement. TEL provides input-dependent
nonlinear behavior with predictable computation, comes with simple design rules ensuring non-
expansiveness and stable gradients, and integrates seamlessly into standard architectures. Across all
three evaluation stages, shallow building-block analysis, mid-scale backbones, and large-scale mod-
els TEL-head consistently delivers performance improvements under matched width and tightly
controlled Params/FLOPs. TEL’s gains persist even when used as a single layer inside deep ar-
chitectures, offering a strong accuracy efficiency trade-off with negligible parameter overhead and
modest latency increase. The thermodynamic formulation also provides useful diagnostic signals,
which correlate with sample difficulty, uncertainty, and refinement dynamics.

Future work includes designing stackable TEL primitives and improving the interpretability of TEL’s
diagnostic signals.

10



Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics. This work introduces a generic
neural layer (TEL) and evaluates it on standard, publicly available datasets (vision, text, and tab-
ular); no human subjects were recruited, and no personally identifiable information was collected.
We comply with dataset and software licenses and disclose no conflicts of interest or external spon-
sorship that could unduly influence results. Potential risks include amplification of dataset biases
and disparate behavior from dynamic inference (early exit) across subpopulations. To mitigate this,
we report mean=+std over multiple seeds, recommend subgroup analyses where labels permit, and
expose diagnostics (1", AG, p, x) to audit uncertainty, convergence, and shift. TEL’s compute scales
with the refinement budget K; we use early stopping and encourage energy/carbon tracking when
scaling. No new datasets are released, and no sensitive domains (e.g., surveillance, biometric iden-
tification) are targeted.

REPRODUCIBILITY STATEMENT

We aim for full reproducibility. The main text specifies the model and update rules (Secs. 2.1H2.2),
theoretical assumptions and guarantees (Sec. [2.3), and the experimental protocol (Sec. [3). The
appendix includes related work, additional proofs, design choices for enthalpy/entropy/temperature,
complexity analysis with early exit, and a step-by-step algorithm. An anonymous repository with
code, configs, and scripts is included in the appendix: it provides exact scripts, dataset preprocessing,
FLOPs/parameter counting, and figure scripts; training uses fixed K with early exit disabled, and all
hyperparameters are specified in config files.
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APPENDIX

A CODE AVAILABILITY

An anonymous repository with full source code, configs, and scripts to reproduce all results is pro-
vided here: [https://anonymous.4open.science/r/TEL-04C8/README.md]. The repo includes a
PyTorch implementation of TEL, dataset download/preprocessing scripts, one-line run commands
for width sweeps and Pareto plots, and figure notebooks. The link will be de-anonymized upon
acceptance.

B RELATED WORK

Adaptive nonlinearities and learned activations. A long line of work replaces fixed pointwise
nonlinearities with learned or input-adaptive variants to improve expressivity and optimization.
Early approaches include leaky/parametric rectifiers and ELU (Maas et al., 2013} He et al., 2015;
Clevert et al., 2015)), as well as smoother gates like GELU and Swish (Hendrycks & Gimpel, 2016
Ramachandran et al.l |2017). Gating-based feedforward layers (e.g., GLU/SwiGLU) and mixture-
of-experts route inputs through input-dependent sub-functions (Dauphin et al.,[2017;|Shazeer;, 2020;
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Shazeer et al., 2017). Dynamic activations further condition parameters on the input (e.g., Dy-
namic ReLU) (Chen et al., [2020). Kolmogorov—Arnold Networks (KANs) learn spline functions
on edges, offering flexibility and some interpretability at a considerable parameter/FLOP cost (Liu
et al., 2024). TEL differs from these one-shot transformations by performing a short, bounded
sequence of refinement steps on a free-energy Gy, with an adaptive temperature 7 that yields input-
dependent behavior under a predictable K -step compute budget and exposes per-layer diagnostics.

Implicit/equilibrium layers and differentiable optimization. Implicit deep learning replaces ex-
plicit stacks with the solution of an equilibrium or optimization problem. Deep Equilibrium Models
(DEQ) solve for a fixed point z* = fy(2*,x) via root finding with implicit differentiation; the
computation depends on solver tolerance and can vary across inputs (Bai et al., 20195 |2020). Dif-
ferentiable optimization layers embed QP/convex program solvers inside networks (Amos & Kolter,
2017; |Agrawal et al, |2019), and continuous-depth models evolve hidden states via ODE solvers
(Chen et al) 2018). TEL contrasts with these by using a deterministic, fixed K-step descent on
a Gibbs-inspired objective Gy, avoiding back-solves while retaining solution-driven semantics and
exposing temperature/energy trajectories.

Energy-based models and thermodynamic perspectives. Energy-based models (EBMs) define
unnormalized densities pg(y | =) o exp{—FEp(y;x)} and are typically trained with MCMC or
score-based dynamics (LeCun et al.| 2006} |Grathwohl et al., |2019; |Du & Mordatch, [2019; [Welling
& Tehl 2011; [Song & Ermon, 2019). They can be powerful but incur stochastic sampling cost and
mixing concerns. TEL shares the energy perspective, minimizing a free-energy functional inspired
by statistical physics (Callen & Scott, |1998)) but uses short, deterministic refinement steps with an
entropy-driven temperature; no Markov-chain sampling or negative-phase estimation is required.
Related thermodynamic/equilibrium ideas include Equilibrium Propagation and modern Hopfield
networks (Scellier & Bengio| [2017; [Ramsauer et al., | 2020); TEL leverages a free-energy view for
layer-level computation rather than network-level training or associative memory.

Stability, Lipschitz control, and diagnostics. Constraining networks to be approximately non-
expansive improves robustness and stabilizes training (Cisse et al.| 2017; Miyato et al.l 2018
Tsuzuku et al., 2018} |Gouk et al., [2021). TEL provides simple design rules, step-size, and tem-
perature clipping that ensure non-expansiveness (Lip < 1) and bounded gradients at the layer level
(proved in our analysis). Beyond accuracy, TEL exposes temperature and energy traces that func-
tion as diagnostics during training and inference, complementing work connecting flatter minima to
generalization (Hochreiter & Schmidhuber;, 1997 |[Keskar et al., 2016} |Li et al., [ 2018)).

TEL combines strengths of adaptive activations (input dependence), implicit layers (solution-driven
semantics), and energy-based views (principled objectives) while maintaining a fixed iteration bud-
get and providing per-layer diagnostics. Empirically, we compare against KANs (Liu et al., 2024)),
DEQ-style implicit layers (Bai et al., [2019), and EBM-inspired baselines (Grathwohl et al.| [2019)
under compute-matched budgets, highlighting TEL’s accuracy—efficiency Pareto advantages.

C ADDITIONAL PROOFS

Standing assumptions and notation. We adopt A1-A3 from the main text (global Lipschitz acti-
vation, clipped step sizes, and bounded temperatures). The TEL refinement map is exactly the update
rule in equation [§] with temperature defined by equation [7] and log-temperature update equation [0
we do not restate these equations here.

When useful, we also invoke:

A0 (elementwise ¢g). ¢g acts coordinatewise and is differentiable a.e., with 0 < ¢} (z) < L, for
all z. Then for any y;,y, there exists a diagonal D(y1,y2) with spectrum in [0, Ly] such that
do(y1) — do(y2) = D(y1,v2)(y1 — y2). Remark: A0 = Al; we use A0 only to sharpen constants.

Lemma C.1 (One-step Lipschitz bound). Let F; denote the one-step refinement operator induced
by the TEL update equation[8] Under A0-A3, for all y1,ys,

1Fi(y1) — Fily2)ll2 < pillyr — v2ll2, pi & max{|l —n;|, 1 —n;(1 = TDLy)[}. (17
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Proof. This follows by applying A0 to the TEL update equation [8| and collecting terms exactly as
done in the main-text discussion preceding Proposition 2.1} Explicitly, letting A = y; — ya,

Fily1) = Filye) = [ = m)I + 0T D(y1,32) ] A,
whose operator norm equals maxgeo,z,] |1 — 7:(1 — TWd)|. O

Proposition C.2 (Non-expansiveness; contraction under the design bound). Under AI-A3, the de-
sign rule equation[I3)in the main text implies the bound

0<n < )
TS T T

which ensures p; < 1 and hence that F; is non-expansive. If the inequality is strict, F; is a contrac-
tion.

Proof. The worst case is achieved at d = Ly and T = T, ax. Substituting this into the expression
for p; from Lemma [C.T] yields the claim. O

Corollary C.3 (Bounded refinements). Under AI-A3 and equation the sequence {y"}I
generated by the TEL refinement remains bounded and anchored near W x.

Proposition C.4 (Linear convergence for frozen T'). Assume AI-A3. Fix T € [Twin, Tmax] and
constant € (0, 2/(1 + T'Ly)). Then the frozen-T iteration

y(i+1) — ]:T(y(i))
converges linearly to the unique fixed point y* solving y = Wz — Toy(y), with rate p(n,T) =
max{|l —n|,|1 —n(1 —TLy)|} < 1. This is the main-text result referenced in
Lemma C.5 (Lipschitz dependence of y* on T'). Under AI-A3 with T Ly < 1, the fixed point y*(T')
satisfies
sup,cy [l¢o(¥)|

*(Ty) — y* (T <
Iy (1) =y (D) < P

[Ty — T3.

Proof. The argument follows directly from the implicit function theorem applied to the fixed-point
equation F'(y,T) = y— Wax+T¢y(y) = 0, using the contraction condition established in the main
text. O

Proposition C.6 (Two-time-scale tracking with adaptive T'). Assume AI1-A3, equation[I3} and that
15(y)| < Smax by clipping. Let T = exp(r®) with %) updated by equation@l If o < miny 7,
then the tracking error e := y() — 4> (T obeys
eV < plle®|+Ca,  sup|e?] < 3%
i - P
where p < 1 and C depends on Syax, Lg, €7, and Lemma@l

Proof. This follows by decomposing the error into the frozen-7' contraction term (from Proposi-
i

tion|C.4) plus the drift in y*(7"), bounded using Lemma and the clipped change in 7(*) specified
by equation [0} O
Lemma C.7 (Gradient norm bound). Under AI-A3 and equation[I3]
K—1
8<I>TEL X 7
|22 g, TT a1 — il - (= TOL)1).
i=0

Proof. Immediate from the chain rule applied to the Jacobians of the per-step update equation [8]
together with the bound in Lemma|C.1]

Remarks. (i) The elementwise condition A0 is needed only for Lemma @; all other results
require only A1-A3. (ii) The design rule (clipped n;, bounded T}y, ax so that Tia Ly < 1) guarantees
equation (iii) Replacing § by an EMA affects only constants in Proposition [C.6] and not the
qualitative behavior of the two-time-scale argument.
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D DESIGN CHOICES

D.1 ENTHALPY

TEL’s enthalpy term is the quadratic anchor already used implicitly in the primal refinement rule
equation The gradient V, Hy(y; ©) = y — Wx defines a 1-Lipschitz “harmonic well” centered at
W, and the corresponding equilibrium condition

0=(y"=Waz)-T¢s(y")
is precisely the stationarity relation associated with the TEL refinement map.

Because equation [8| uses the free-energy gradient defined in the global Lipschitz bound and
non-expansiveness properties follow directly from Lemmad?lnd Proposition 2.T]in Appendix [C]
In particular, the design rule equation[I3]guarantees stable refinement without needing to restate any
additional equations here.

More structured anchors—such as anisotropic quadratics, robust (Huber / ¢1) penalties, Bregman
divergences, or graph-regularized forms can be incorporated by replacing the unit Lipschitz constant
of the quadratic anchor with a generic Ly in Proposition 2.} the stability condition remains of the
form equation [[3] with 1 replaced by Ly;.

Empirically, the simple quadratic anchor offers the best trade-off between stability, interpretability,
and ease of tuning, and is therefore used by default in all experiments. Alternative anchors are only
warranted when one wishes to encode explicit geometry (e.g., anisotropy, sparsity, graph structure)
and is willing to adjust L and the temperature range accordingly.

D.2 ENTROPY

TEL models entropy via the activation force ¢y (y) appearing in the refinement update equation
equivalently, V,,.Sy(y) = ¢ (y) is already built into the free-energy gradient.

The stability analysis in Lemma [C.1]and Proposition 2.1]depends only on the global Lipschitz con-
stant Ly of ¢y, so any activation satisfying Assumption A1l inherits the same non-expansiveness
guarantees. No additional analytic constraints are required beyond this Lipschitz bound.

Different nonlinearities instantiate different entropy geometries inside the same refinement rule
equation [8} ReLU variants provide sparse, piecewise-linear forces; tanh/sigmoid provide smooth,
saturating forces; Swish/SiLU/GELU provide smooth, non-piecewise forces with good condition-
ing; ELU-family activations introduce asymmetric shaping on negative values; and learned activa-
tions allow data-adaptive entropy geometry. Empirically, Swish/SiLU and PReLU perform best; we
adopt Swish/SiLU as the default entropy gradient due to its strong performance and zero additional
parameter cost, and use learned or PReLU-type activations only in targeted ablations.

D.3 TEMPERATURE: DUAL VARIABLE AND ADAPTIVE CONTROL

Temperature 7" is updated via the log-temperature rule equation [7}-equation 9] defined in the main
TEL architecture and referenced throughout Appendix [C} we summarize their conceptual role.

The primal TEL evolution is given by the refinement update equation|[8] while the dual update of 7 =
log T is equation 9] Together, these form the two—time—scale system analyzed in Proposition [C.6]
which shows that, under bounded temperatures and the design rule equation the iterates y(*)
track the instantaneous fixed point y*(T(i)) up to an O(«) error. Intuitively, y nearly equilibrates at
the current temperature before 7' changes appreciably.

In practice, we treat " as a control variable that balances the anchor and entropy forces in Gy. A
small dual step c, clipping of 7 (and hence T'), and an entropy estimate entering through equation 9]
suffice to keep the temperature trajectory smooth. All constants governing stability and tracking
error follow directly from the analysis in Appendix [C]

Practical guidance is simple: choose 7); to satisfy equation[T3] use a comparatively small dual step
a, clamp T via equation 9} and optionally detach gradients through the entropy estimator to avoid
feedback loops. These settings were used in all experiments and were sufficient to keep TEL’s
refinement stable across architectures and datasets.
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D.4 ENTROPY ESTIMATION

Entropy estimation appears in TEL only through the log-temperature update equation [9, which de-
pends on a scalar (or channel-wise) proxy §(y). Since the refinement rule equation [3|is fixed, the
estimator affects only the dual dynamics and not the form of the primal update itself.

We compute §(y) from the entropy force z = ¢y(y) by pooling over batch and spatial/sequence
axes:
te = mean(z.), 02 = var(z.) + €.

Analytic estimators. Gaussian, Laplacian, and Student-¢ estimators are used in their standard
closed forms and only rescale the input to equation 0] A robust Gaussian variant with & =
k MAD(z) improves stability for small or noisy batches and is used as our default analytic choice.

Learned estimator. A tiny MLP processes summary moments and outputs a global or channel-
wise entropy proxy. Because the TEL update equations remain those of equation [§]and equation [9]
the only requirement on the learned estimator is to respect the Lipschitz assumptions needed for the
temperature dynamics; in practice, we enforce this via a simple slope and weight-norm constraints
and, when helpful, by stopping gradients through §(y).

Overall, Gaussian or robust-Gaussian estimators provide the best stability—cost trade-off in most set-
tings, Student-¢ is helpful in the presence of heavy tails, and MLP-based estimators slightly improve
cross-dataset calibration at negligible extra compute. In all cases, the estimator’s granularity (global
vs. channel-wise) is chosen to match the corresponding temperature variant in equation 9}

E COMPLEXITY ANALYSIS OF TEL

We detail parameters, FLOPs/latency, and memory of a TEL layer, align notation with the main text,
and describe early exit for inference.

Parameter count. For input width n;,, and output width noy¢:

 Linear map W € R™eutX"in (+bias): ni,Nous (+Nout)-

* Step sizes: {m}iK:Bl typically K scalars (optionally per-step vectors if desired).

* Log-temperature init(s): 7() one scalar (global) or nyy¢ (channel-wise).

* Entropy estimator: analytic (Gaussian/Laplace/t) adds no params; a tiny MLP on pooled mo-
ments adds O(h - d) where d is the number of pooled statistics (e.g., mean/var/kurtosis per chan-
nel) and h € [16, 64].

Hence, with the common (global-T, analytic-estimator) choice:
#params = Nipnout + O(Nout) + O(K) (18)

i.e., essentially the same as a linear layer (and far below spline-based KANs that scale like
O (ninnouwtG) for grid size G).

FLOPs and latency (forward). Let B be batch size and let y € RE*"out denote the hidden state
after the anchor Wz.

Anchor: Wz costs O(Bnijnnout) (once).
Per refinement step: ¢g(y), gu=y—Wz, TV Opg(y), axpy = O(Bnou)-
Estimator (optional): pool moments + tiny MLP = O(B Nout) (negligible).
With a fixed budget K:
FLOPSstorward = O(B Ninnout) + K - O(Bnoy) + (estimator overhead) (19)
Training memory and backward cost. Unrolling K refinements yields O(K) activation mem-
ory under standard backprop; gradient checkpointing/rematerialization reduces this to O(1) with a

modest extra forward pass per checkpoint. Backward FLOPs scale like forward FLOPs (within a
small constant).
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Early exit at inference (adaptive K). TEL supports a fixed maximum budget K and a per-
example effective budget Ko (x) < K decided on-the-fly by a cheap stopping rule. We use either:

(i) Gradient-norm rule: Hgg)H = || (y D —Wa) — TD py(y™) | < egraa for m consecutive steps,
(ii) Energy-decrease rule: |AG(i)\ = ’Gg(y(”l);x,T(i)) - Gg(y(i); x, TW) | < eg for m steps,

with patience m € {1, 2} to avoid premature exits. Rule (i) avoids computing Sy explicitly; rule (ii)
provides a literal free-energy criterion when Sy is available.

Let g; be the probability of exiting exactly at step j (1 < j < K) and g>x the probability of using
the full budget. Then

K-1

E[Ket) = Y jaj + Kgsx,  FLOPSiner = O(Bninnont) + E[Ket] - ©(Bnout)  (20)
j=1

In practice, we apply early exit only at inference; training uses a fixed K for stable gradients.

F ALGORITHM

We have provided a simplified TEL layer visualization in Figure [7]accompanied by the Algorithm
for better understanding of its implementation.

Input (x) Gra(da;r;g;?lpy Final Output (y)

Iterative free energy
optimization

Intermediate
Output (y)

Grad entropy (0S/dy)

Adaptive Grad Free Energy
Temp (T) (0G/oy)

Entropy (S(y))

Figure 7: TEL at a glance simplified. Each TEL layer begins with a linear projection Wx (the
enthalpy anchor) and refines a hidden state y via K iterations that minimize a Gibbs free-energy
objective. At iteration ¢, the update balances the enthalpy gradient (y — Wx) against the entropy
gradient ¢(y), scaled by an adaptive temperature T. The temperature evolves online from entropy
estimates of the activations, yielding input-dependent adaptivity. The result is a bounded, nonlinear
transformation with a fixed and predictable iteration budget.

Step
size (s)

(1) »; and 7 can be global scalars or channel-wise vectors; broadcasting is elementwise. (ii) To
ensure the non-expansive regime, pick Tinax and clip n; so that 0 < n; < 2/(1 + TyaxLg). (iii)
For inference, freezing 7 avoids distributional drift; if adaptation at test-time is desired, reduce «
and keep tight 7 bounds. (iv) Early exit changes latency but not parameters; it is disabled during
training to keep gradients well-defined.

Computational cost. Each TEL iteration requires:

1. One matrix-vector multiplication Wz (O(ninnou))-
2. One application of activation ¢ (O (noy))-
3. Entropy estimation:

* Analytic: mean/variance computation (O(Bney) for batch size B).
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Algorithm 1 TEL forward with adaptive temperature and early exit.

Require: z € R"n; W € R™eutX™in; getivation ¢g; steps {m}iK: _01; log-temp init 7(%) (global

or channel-wise); bounds Tiin, Tmax; dual step a; estimator 5(-); scaler gg; flags TRAIN €
{True, False}, EARLY_EXIT € {True, False}; thresholds €404, £¢; patience m.

1: YO — W > Enthalpy anchor
2: 7 clip(79] Tiin, Tmax)
3. streak < 0
4: fori=0to K — 1do
5: TG exp(clip(r(i), Timins Tmax) )
6:  gg 1y Wz > Enthalpy gradient
7 gs <+ do(y?) > Entropy gradient
8: gG +— g — 7O & gs > Free-energy gradient
9; ytD — ) — @ gq > Primal update
10: if TRAIN then > Dual update during training
11: s; < 5(gs) (EMA/clamp as needed)
12: T(H_l) <~ Chp(T(Z) + Oégﬁ(Si), Tmin Tmax)
13: else
14: 7+ 70 > Freeze 7 by default at inference
15: end if
16: if EARLY_EXIT and — TRAIN then
17: Option A (default): x <« |gg|2; Option B: AG <+ Gy(y@tV;z, TW) —
18: if (Option A: k < £graq) or (Option B: |[AG| < e¢) then
19: streak < streak + 1
20: if streak > m then break > Early exit at Keg =7+ 1
21: end if
22: else
23: streak < 0
24: end if
25: end if
26: end for
27: return y (2 > Output at K.g (inference) or K (training)

» MLP: additional O(Bd},ney) where dy, is the hidden size (constant or small).

Repeating for K refinement steps, the total forward cost is
FLOPs ~ K - (O(ninnou) + O(Bnow))- 21)

Backward cost is at most a constant factor larger, as all operations are differentiable. Runtime is
predictable given the fixed K.

Memory usage. Memory is dominated by storing activations y(*) fori = 0, ..., K, which requires
O(K Bngy). Entropy statistics add O(Bn,y) per step. Total memory, therefore, scales as
O(KBnout + ninnout); (22)

which is comparable to deep MLPs and significantly lighter than spline-based KANs (which must
store grid evaluations).

Comparison summary.

* MLP layer: O(nisnou) params, O(Bninow) FLOPs.

* KAN layer: O(ni nouG) params, O(Bni,neuG) FLOPs.

» TEL layer: O(niznoy + K) params, O (K Bniznow) FLOPs, predictable by iteration budget K.

TEL achieves adaptive nonlinear transformations with complexity close to an MLP, and with sub-
stantially fewer parameters than KANs. The key trade-off is a factor K in compute, which is con-
trollable and modest in practice (e.g., ' = 5-10 suffices).
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G TRAINING AND EXPERIMENTAL SETUP

This appendix provides full experimental details for all models and datasets, complementing the pro-
tocol description in §3] Unless stated otherwise, all models—including TEL and every baseline—are
trained under identical optimization settings, hyperparameter search grids, early-stopping criteria,
and data preprocessing pipelines. This ensures that performance differences arise from the choice
of layer (TEL vs. baseline) rather than differences in training procedure.

G.1 SHARED OPTIMIZATION AND FAIRNESS PROTOCOL

Optimizer and gradient handling. Optimizer. We use the AdamW optimizer with default
(B1,B2) = (0.9,0.999),  e=107%. o3

Unless otherwise stated, the weight decay is fixed to 10~2 for all methods. Gradients are clipped to
have Euclidean norm at most
lgll2 < 1.0 (24)

before each optimizer step.

Learning-rate schedule. Unless noted otherwise, we use cosine decay with warmup:
t/Twarmupa t< Twarmupv

—Twarmu
%(1 +COS(’/T tip)), t 2 Twarmup»

Tinax—Twarmup

(f) = Ao - (25)

with Tyarmup = 5 epochs and T}, the maximum epoch budget (see below).

Training budget, early stopping, and model selection. All models are trained for up to Ty =
1000 epochs with early stopping on the validation metric:

e classification: validation accuracy,
* regression: validation RMSE,
e reconstruction: validation reconstruction error,
e segmentation: validation mloU,
 language modeling: validation perplexity.
We use patience 15 epochs: training stops if the validation metric does not improve for 15 con-

secutive epochs. All performance numbers in the main text and appendix are reported using the
checkpoint with the best validation value.

Batch size and hardware. We use a batch size of 512 for all tasks and methods, trained on
NVIDIA GPUs:

 Stages I-1II: a single RTX 6000 Ada (48GB).

 Stage III: training on 4 x A100 GPUs for efficiency, but all reported latency and throughput
are measured on a single RTX 6000 Ada.

Hyperparameter grids and fairness. For each dataset family (vision classification, tabular re-
gression, synthetic reconstruction, sequence classification, segmentation, and language modeling),
we sweep the following shared hyperparameter grids for all baselines (Linear, MLP, EBM-style
refinement, DEQ, and KAN) and TEL.:

e Learning rate:
{1x107% 3x107% 1x 1073, 3 x 1073}, (26)

* Dropout:
{0.0, 0.1, 0.2} (27)

for fully connected and Transformer-style models.
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e Weight decay:
{0, 1072}, (28)

For each model class and dataset, the hyperparameter configuration with the best validation perfor-
mance (averaged over seeds) is selected and used to report test metrics.

Random seeds and repeated runs. Unless otherwise stated, all reported numbers are computed
as a mean and standard deviation over multiple independent runs. For Stage I and II benchmarks,
we use

5 random seeds x 4 independent runs = 20 runs per dataset, (29)

and report the mean and standard deviation over these 20 runs. For all other benchmarks, we use 5
random seeds and report mean + standard deviation over these 5 runs.

G.2 TEL-SPECIFIC HYPERPARAMETERS

TEL introduces a small set of additional internal parameters that control the K-step refinement.
These do not affect the global training loss or outer optimizer; they only change the internal layer
dynamics.

Step-size parameters. Each TEL layer maintains K step sizes 7; parameterized in log-space,

1 = exp(7:), (30)
and clipped to the range
ni € [Wmin, nmax] = [10_4, 10] (31)

Unless otherwise stated, 7; are independent learnable scalars (shared across channels but not across
steps).

Temperature bounds. We set a minimum and maximum temperature
Tinin = 0.05, Tmax suchthat Ty L <1, (32)
following the non-expansiveness condition in We parameterize temperature via 7 = logI" and
clip
T E [Tmirn Tmax] = [lOg Tmiru IOg Tmax]- (33)

We use a global scalar 7 per TEL layer by default; channel-wise 7 is used in some ablations and
yields similar trends.

Dual step for temperature. The dual learning rate « controls how fast the log-temperature
evolves:
ac{5x107% 1072 2 x 107%}, (34)

with the best validation choice used per dataset. We always ensure o < min; 7; so that the temper-
ature evolves on a slower time-scale than the primal refinement (§2.3).

Entropy estimator. Unless otherwise noted, we use a simple Gaussian-entropy surrogate com-
puted from the batch mean and variance of the activations. Concretely, for a channel-wise activation
vector y with empirical variance &2, we define

5(y) o %log(&Q +¢), (35)

and optionally smooth this estimate with an exponential moving average with half-life 5. The scale
of the entropy estimate is normalized through the affine map

9p(2) = Bz + Bo (36)

with 8; € {0.5,1.0,2.0} and Sy = 0. For large-scale ViT and GPT experiments, we addition-
ally consider a tiny 2-layer MLP on pooled statistics as an entropy estimator; this adds < 0.01%
parameters.
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Iteration budget. TEL refines its hidden state with a fixed budget of K refinement steps. Except
where noted, we use K = 5 in all main comparisons. The ablation in Fig. [3]sweeps
K e€{1,2,3,5,8,10,12,15,20, 25} (37)

on all 15 Stage I datasets (5 classification, 5 regression, 5 reconstruction), with identical width and
outer optimization across all K.

G.3 DATASETS

We evaluate TEL in three stages. Stage I uses 15 shallow tasks (5 classification, 5 regression, 5
reconstruction) to analyze TEL as a building block. Stage II inserts TEL into mid-scale backbones
on 3 classification tasks. Stage III evaluates TEL at scale on 2 image classification tasks, 2 semantic
segmentation tasks, and 2 autoregressive language modeling tasks. All datasets use their standard
splits and evaluation protocols unless noted.

G.3.1 STAGE I: SHALLOW BUILDING-BLOCK ANALYSIS (15 DATASETS)
Classification (5 datasets). These match Fig. 2 in the main text.

* MNIST. 60k training and 10k test images of size 28 x 28 (grayscale), 10 classes (LeCun
2002). Pixel values are normalized to [0, 1]. No augmentation.

e Fashion-MNIST. Same structure as MNIST (60k/10k, 28 x 28, 10 classes) but with cloth-
ing categories 2017). Normalization identical to MNIST; no augmentation.

e CIFAR-10. 50k training and 10k test RGB images of size 32 x 32, 10 classes (Krizhevsky|
[2009). Preprocessing: per-channel mean/variance normalization. Augmentation:
random crop with 4-pixel padding, horizontal flip with probability 0.5.

¢ CIFAR-100. Same image format as CIFAR-10 but 100 classes (Krizhevsky et al.} 2009).
Preprocessing and augmentation identical to CIFAR-10.

e STL-10. 5k labeled train images, 8k test images, and 100k unlabeled images of size 96 x 96
(Coates et al} 201T). We downsample to 64 x 64, apply per-channel normalization, and
use random resized crop + horizontal flip for augmentation.

Regression (5 datasets). We use five tabular regression tasks following the standard UCl-style

protocol (Asuncion et al} [2007):

 California (housing).

* Concrete (compressive strength).
 Diabetes (Physiological variables).
* Energy (energy efficiency).
e Wine (wine quality).
For each dataset, we standardize all features to zero mean and unit variance. We follow a 20-split

protocol: each split uses 80% of the data for training/validation (further split 80/20 internally) and
20% for testing; we report mean = std of test RMSE across the 20 splits.

Reconstruction (5 datasets). We use five synthetic manifolds for autoencoder reconstruction, fol-
lowing common benchmarks for nonlinear manifold learning:

e sinusoid 1D (1D sinusoidal curve).

* moons 2D (two interleaving half circles).

e spiral2D (2D spiral).

 spheres 3D (points on one or multiple spheres).
e swissroll 3D (3D Swiss roll).

Each dataset is normalized to zero mean and unit variance per coordinate. We train autoencoders
with a 2D bottleneck and use mean-squared error reconstruction loss; performance is reported as
1/Recon. Error as in Fig. 2.
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G.3.2 STAGE II: MID-SCALE BACKBONES (3 CLASSIFICATION TASKS)

USPS. Grayscale 16 x 16 digit images, 10 classes (Van der Maaten|, [2009). We follow the standard
USPS train/test split.

UCI HAR. Human Activity Recognition dataset with multivariate time series from smartphone
accelerometer and gyroscope (Nayak et al, [2022)). We use the standard train/test split and prepro-
cessing with channel-wise normalization and fixed-length windows.

AGNews. News topic classification with 4 classes (Tang et al} 2019). We use the standard
train/test split.

G.3.3 STAGE III: LARGE-SCALE BACKBONES (2+2+2 TASKS)
Image classification (2 datasets).

* Tiny-ImageNet. 100k training and 10k validation images across 200 classes (Le & Yang,
2015). Images are resized to 64 x 64; augmentation includes random resized crop and
horizontal flip. We evaluate ResNet-18 and ResNet-50 with and without
TEL.

* ImageNet-1K. 1.28M training and 50k validation images across 1000 classes (Deng et al.}
2009). We use the standard 224 x 224 pipeline: resize — random crop — horizontal flip.
We evaluate ResNet-18 and ResNet-50 2016) in vanilla, TEL-head, and TEL-full
configurations.

Semantic segmentation (2 datasets).

e COCO-Stuff. 164k images with 171 semantic segmentation classes (Caesar et al., 2018]).
We use ViT-B/32 and ViT-L/32 backbones (Dosovitskiy,2020) with standard segmentation
heads. Augmentation: resize, scale jitter (0.5-2.0), random crop, horizontal flip. Metric:
mean IoU (mloU) on the validation split.

e Cityscapes. 5k high-resolution urban street scenes with 19 classes (Cordts et al.| 2016).
We use ViT-B/32 and ViT-L/32 (Dosovitskiy, [2020) with the same augmentation protocol
as for COCO-Stuff. Metric: mloU.

Autoregressive language modeling (2 datasets).

 LAMBADA. A long-range word prediction benchmark (Paperno et all, 2016). We use
GPT-1 and GPT-2 style decoder-only Transformers (Radford et al.,2018;[2019)), with byte-
level BPE tokenization. Metric: perplexity.

* WikiText-2. Word-level language modeling dataset (Merity et al., 2016). We use the same
GPT-1/GPT-2 backbones (Radford et all, 2018} 2019) as for LAMBADA, with identical
tokenizer and vocabulary. Metric: perplexity.

G.4 ARCHITECTURES AND TEL INSERTION POINTS

TEL is inserted differently depending on model family. We summarize here how TEL replaces or
augments standard MLP/FFN blocks in each architecture, grouped by the three experimental stages.
In all cases, TEL-head means “replace the first MLP/FFN block in the backbone”, and TEL-full
means “replace all such blocks”.

G.4.1 STAGE I: SHALLOW MLP AND AUTOENCODER
Shallow MLP (classification and regression). The base model is a single-hidden-layer MLP:
geRiIn Mperd 2., W2 g (38)

where d is the hidden width (varied in {8, 16, 32, 64, 128, 256, 512, 1024}), and o is the nonlinearity.
Baselines use o = ReLU or the corresponding DEQ/EBM/KAN-style layer (Geng & Kolter, 2023}
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[Du & Mordatch}, 2019; [Liu et al.} 2024); TEL replaces this nonlinearity block with a TEL layer with
K refinement steps.

Autoencoder (reconstruction). The autoencoder has a symmetric encoder—decoder:

Wenc. Wenc.
T —0y by T hy —=25 2 € R?, (39)
W, ec, 7 7 W, ec, ~
y—2l s by T By — 22 5 (40)

TEL replaces the central hidden nonlinearity in both encoder and decoder with a TEL layer, keeping
the overall parameter count matched to the MLP baselines.

G.4.2 STAGE II: LENET, DEEPCONVLSTM, MINILM

LeNet-5. We use a standard LeNet-5 backbone (LeCun et al.}[2002) with two convolutional blocks
followed by two fully connected (FC) layers.

* TEL-head: TEL replaces the first FC hidden MLP block immediately after flattening (i.e.,
the first nonlinear projection after the conv part).

e TEL-full: TEL replaces both FC hidden MLP blocks, leaving the final classifier layer
linear.

DeepConvLSTM. We use the architecture of|Ordénez & Roggen|(2016): several 1D convolutions
over the temporal dimension followed by stacked LSTM layers and a final classifier MLP.

* TEL-head: TEL replaces the first feedforward MLP block after the convolutional feature
extractor (before the LSTM or classification head, depending on the variant).

e TEL-full: TEL replaces all feedforward MLP blocks in the post-convolutional head, keep-
ing the LSTM recurrence and gating mechanisms unchanged.

MiniLM. We use a lightweight Transformer encoder with self-attention and FFN sublayers
(MiniLM-style) 2030).
* TEL-head: TEL replaces the first FFN sublayer in the encoder stack (i.e., in the first
Transformer block).

* TEL-full: TEL replaces every FFN sublayer in all Transformer blocks.

Attention, positional embeddings, and LayerNorm are unchanged.

G.4.3 STAGE III: RESNET, VIT, GPT

ResNet-18 / ResNet-50 (Tiny-ImageNet and ImageNet-1K). We follow the standard torchvision
implementations of ResNet 2016). Each residual block contains a convolutional path and,
in bottleneck blocks, an internal “MLP-like” 1 x 1 projection. In our experiments we treat the
post-activation projection inside the residual unit as the MLP block to be replaced.

* TEL-head: TEL replaces the first such MLP block in the first residual unit of the network
(i.e., the first block after the stem). All later residual units remain standard.

* TEL-full: TEL replaces the MLP block in every residual unit throughout the network,
keeping channel dimensions and parameter count matched as closely as possible.

The convolutional stem, downsampling shortcuts, and global average pooling remain unchanged;
only the internal MLP-style transformation within the residual units is replaced by TEL.

ViT-B/32 and ViT-L/32 (COCO-Stuff, Cityscapes). We use ViT backbones with patch embed-
ding, multihead self-attention, and FFN blocks (Dosovitskiyl, [2020).

* TEL-head: TEL replaces the FFN in the first Transformer block only.
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e TEL-full: TEL replaces every FFN block in all Transformer layers.

Patch embeddings, attention blocks, and normalization are unchanged; TEL affects only the FFN
sublayers.

GPT-1 and GPT-2 (LAMBADA, WikiText-2). We use decoder-only Transformer architectures
following GPT-1 and GPT-2 configurations (Radford et al., 2018} 2019).

e TEL-head: TEL replaces the FFN in the first decoder block.
e TEL-full: TEL replaces all FFN sublayers across all decoder blocks.

Attention, positional encodings, and LayerNorm are identical to the baselines; only the FFN nonlin-
earity is replaced.

G.5 Loss FUNCTIONS AND EVALUATION METRICS

TEL does not modify the global task loss; the free energy Gy is used only to define the layer’s
internal refinement dynamics. All networks—TEL and baselines—are trained with the same task
losses and evaluation metrics.

Classification losses. For a classification task with C' classes, a model producing logits fy(z) €
R¢, and one-hot label vector ey, we use the standard cross-entropy loss:

Lon(e,y) = -3 1ly=dlogm(c| 2),  polc] z) = —o2tI(D)e) @n

= S exp(fo(2)e)

This is used for all classification tasks: Stage I image classification (MNIST, Fashion-MNIST,
CIFAR-10, CIFAR-100, STL-10), Stage IT USPS / HAR / AGNews, and Stage III Tiny-ImageNet /
ImageNet-1K.

Regression losses. For regression tasks with target y € R¢ and prediction § = fy(x), we use
mean squared error (MSE):

Luse(x,y) = [ fo(z) — ylI3- (42)

Evaluation uses root mean squared error (RMSE):

N
1
RMSE = | = > [l fo(zn) — ynl3. (43)
n=1

Reconstruction losses. For autoencoders with encoder Ey and decoder Dy, the reconstruction
loss is

Lree(w) = ||Do(Eo(w)) — I3 (44)
For reporting in Fig. 2, we use 1/Recon. Error, where Recon. Error is the mean squared reconstruc-

tion error on the test set.

Semantic segmentation losses. For segmentation with C' classes and per-pixel logits fy(z);; €
RY, we use per-pixel cross-entropy:

| H oW c
Lseg(z,y) = W Z Z Zyijclogpe(c | )35, (45)

s
Il
-
<
Il
-
(]
I
-

where H and W are height and width, y;;. is the one-hot label, and pg(c | x);; is the softmax of
the logits at pixel (4, j). We report mean Intersection-over-Union (mIoU) on the validation and test
splits.
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Autoregressive language modeling losses. For language modeling, given a token sequence
(21,...,x7), the model defines conditional probabilities pg(x:+ | x<¢). We minimize the negative
log-likelihood:

T
Lim(zrr) == logpy(zs | z). (46)
t=1
Perplexity is computed as
1 I
PPL = exp(T ; —log pg (x| x<t)). 47)

Evaluation metrics summary.
* Accuracy: used for all classification tasks (Stage I, Stage II, and Stage III image classifi-
cation).
* RMSE: used for all tabular regression benchmarks in Stage I.
* Reconstruction error / 1/Recon. Error: used for Stage I reconstruction tasks.
* mloU: used for semantic segmentation (COCO-Stuff and Cityscapes).
* Perplexity: used for language modeling (LAMBADA and WikiText-2).

G.6 PREPROCESSING AND DATA SPLITS

We follow standard splits and normalization for all datasets, and apply simple data augmentation
only for vision tasks where commonly used.

Splits.
 Stage I classification/reconstruction: official train/test splits (or standard synthetic dataset
protocols).
» Stage I regression: 20 random splits per dataset, as detailed above.
Stage II: standard splits for USPS, UCI HAR, and AGNews.

Stage III: standard training/validation splits for Tiny-ImageNet, ImageNet-1K, COCO-
Stuff, Cityscapes, LAMBADA, and WikiText-2.

Normalization.

* Images: per-channel mean/std normalization (using dataset statistics).
e Tabular: z-score standardization of each feature (zero mean, unit variance).
* Sequences (HAR): channel-wise normalization over the training set.

* Language: byte-level BPE tokenization (GPT-style) with a fixed vocabulary; tokens are
mapped to integer IDs without additional normalization.

Augmentation.

e MNIST / Fashion-MNIST / USPS: no augmentation.

e CIFAR-10 / CIFAR-100 / STL-10 / Tiny-ImageNet / ImageNet-1K: random crop, ran-
dom horizontal flip; Tiny-ImageNet additionally uses light color jitter.

* Segmentation (COCO-Stuff, Cityscapes): scale jitter, random resized crop, horizontal
flip.

* Tabular regression, reconstruction, and language modeling: no augmentation.
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Table 1: Accuracy (1) & Std across models. Best per (dataset, hidden size) in bold; second-best
underlined.

Dataset Hidden Size Linear MLP EBM DEQ KAN TEL
8 0.92314+0.0021  0.9244+0.0021  0.92614+0.0020 0.9316+0.0020  0.9274+0.0074  0.9367+0.0019
16 0.923740.0015  0.9436+0.0015  0.928040.0016  0.9485+0.0016  0.9285+0.0050  0.9554-0.0015
32 0.924340.0009  0.96294+0.0009  0.92684+0.0010 0.9653+0.0010  0.9296+0.0033  0.9684-0.0011
MNIST 64 0.92624+0.0004  0.9635+0.0004 0.92674+0.0005 0.9801+0.0004 0.9249-+0.0022  0.9789-+0.0005
128 0.9239+0.0006  0.9754+0.0006 0.926440.0007 0.9812+0.0007 0.9276+0.0026  0.9819-+0.0006
256 0.92314+0.0003  0.9783+0.0003  0.92604+0.0004  0.9846+0.0003  0.9305+0.0016  0.9849-0.0004
512 0.921840.0003  0.9813+0.0003  0.926740.0003  0.9859+0.0003  0.9268+0.0014  0.9883-:0.0003
1024 0.921940.0003  0.9812+0.0002  0.9259+0.0004  0.9860-£0.0002 0.9270+0.0011  0.9860+0.0002
8 0.8416+0.0015  0.8432+0.0015 0.845440.0016 0.8443+0.0016 0.8535+0.0048 0.8532+0.0015
16 0.8397+0.0014  0.8540+0.0014  0.8460+0.0015 0.8577+0.0014 0.8567+0.0045 0.8668-0.0013
32 0.8379+0.0013  0.8649+0.0013  0.84614+0.0013  0.8712+0.0014  0.8598+0.0050  0.8762-£0.0015
FashionMNIST 64 0.841610.0024  0.8818+0.0024  0.845840.0023  0.8877+0.0025 0.8608-+0.0063  0.8902-:0.0024
128 0.8405+0.0014  0.8846+0.0014  0.8445+0.0015 0.8917+£0.0013  0.8603+0.0061  0.8942+0.0014
256 0.8425+0.0025  0.8842+0.0025 0.84324+0.0022 0.8934+0.0025 0.8508+0.0074  0.8991-£0.0026
512 0.8390+0.0012  0.8897+0.0012  0.841540.0013  0.9012+0.0012  0.8525+0.0035 0.9102+0.0011
1024 0.83874+0.0010  0.88954+0.0012  0.841740.0011  0.9082+0.0011  0.8526+0.0043  0.9108-£0.0010
8 0.39914+0.0019  0.40124+0.0019  0.405140.0020  0.4147+0.0018 0.4119+0.0051  0.4137+0.0019
16 0.39954+0.0023  0.4345+0.0023  0.4100£0.0024  0.4434£0.0024 0.4073£0.0061  0.4597+0.0025
32 0.3999+0.0026  0.4679+0.0026 0.411440.0025 0.472240.0026 0.4028+0.0083  0.4964-+0.0024
CIFAR10 64 0.4028+0.0021  0.4890+0.0021  0.410440.0020 0.4935+0.0022 0.4103+0.0079  0.5128-+0.0021
128 0.400640.0024  0.5128+0.0024  0.409140.0023  0.514440.0023  0.4025+0.0075  0.5227+0.0022
256 0.402540.0018  0.51474+0.0018  0.407840.0017 0.5228+0.0018  0.3965+0.0045  0.5325+0.0019
512 0.3870+0.0026  0.5203+0.0026  0.4040£0.0027  0.5327-£0.0028 0.3957+0.0092  0.5371+0.0027
1024 0.38724+0.0027  0.52054+0.0024  0.4003+0.0026  0.5326+0.0028 0.3956+0.0079  0.5451+0.0029
8 0.1368+0.0014  0.1271+0.0014  0.140040.0015  0.1394+0.0015 0.1266+0.0047  0.1441+0.0016
16 0.15384+0.0015  0.1588+0.0015  0.16704+0.0016  0.1728+0.0017  0.1528+0.0045 0.1783-+0.0017
32 0.170840.0017  0.1906+0.0017  0.173440.0018  0.2063+0.0018  0.1790+0.0053  0.2075+0.0019
CIFAR100 64 0.1723+0.0020  0.2102+0.0020  0.17654+0.0021  0.2227+0.0020  0.1876+0.0077  0.2284-+0.0021
128 0.1613+0.0016  0.2223+0.0016  0.17464+0.0017 0.2307+£0.0015 0.1827+0.0039  0.2390-£0.0014
256 0.1640+0.0011  0.23074+0.0011  0.172740.0012  0.2380+0.0012  0.1807+0.0040  0.2495+0.0013
512 0.162040.0019  0.2344+0.0019  0.165740.0020 0.2467+0.0021  0.1769+0.0053  0.2532+0.0022
1024 0.162240.0019  0.23424+0.0017  0.162640.0018 0.2470+0.0019  0.1771£0.0053  0.2591+£0.0018
8 0.3396+0.0047  0.3108+0.0047  0.3403£0.0048  0.3568+£0.0050  0.3785+£0.0152 0.3343=£0.0051
16 0.33954+0.0038  0.3439+0.0038  0.36344+0.0037 0.3716+0.0038  0.3810+£0.0116 0.3624+0.0039
32 0.33944+0.0029  0.3771+0.0029  0.34984+0.0030  0.3863+0.0031 0.3836+0.0115 0.3806+0.0032
STL10 64 0.32884+0.0022  0.3899+0.0022  0.349940.0023  0.392240.0022  0.3719+0.0081  0.3991-£0.0023
128 0.314940.0025  0.393940.0025  0.341740.0026  0.401440.0026  0.3779+0.0091  0.4096-:0.0027
256 0.2988+0.0014  0.4060+0.0014  0.3335+0.0015 0.4068-+0.0013  0.3784+0.0061 0.4141+0.0014
512 0.30054+0.0027  0.4024+0.0027 0.33334+0.0026 0.4146+0.0027 0.3681+0.0086  0.4178-+0.0028
1024 0.30074+0.0028  0.4023+0.0028  0.333440.0029 0.4146+0.0030 0.3683+0.0075 0.4183-0.0029

G.7 HARDWARE

Stages I-II (shallow and mid-scale models) are trained and evaluated on a single workstation with
an RTX 6000 Ada GPU, a 16-core CPU, and 64 GB RAM. Stage III (large-scale ResNet/ViT/GPT
models) is trained on a cluster with 4 x NVIDIA A100 GPUs, 64 CPU cores, and 128 GB RAM, but
all reported runtime and latency measurements are taken on the RTX 6000 Ada workstation during
inference.

For latency measurements, we use batch size 1, discard 500 warmup iterations, and average over
the next 1000 iterations. TEL, MLP, DEQ, EBM, and KAN baselines use identical batch sizes,
FLOP budgets, memory budgets, and hidden dimensions wherever they are compared. FLOPs are
computed with a combination of analytical formulas for linear and convolutional layers and counting
TEL’s refinement as K additional elementwise passes over the hidden representation, as detailed in

Appendix [H.3]
H ADDITIONAL RESULTS AND INSIGHTS

H.1 DIMENSIONALITY COMPARISON

Tables [T} [2] and [B]summarize average classification accuracy, regression RMSE, and reconstruction
error (mean + std) over repeated runs and seeds across the above datasets. We sweep hidden dimen-
sions from 8 to 1024. At matched hidden size, TEL leads on the majority of tasks while exhibiting
equal or lower variability across seeds. Across 15 datasets, TEL delivers higher accuracy or lower
error than strong baselines at matched capacity (5/5 classification; 4/5 regression; 5/5 reconstruction)
and comparable or lower run-to-run variability, with especially large stability gains on reconstruc-
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Table 2: RMSE (]) 4 Std across models. Best (lowest) per (dataset, hidden size) in bold; second-
best underlined.

Dataset Hidden Size Linear MLP EBM DEQ KAN TEL
8 57.4949+0.3830  58.4617+0.4036 59.31004+0.3950  57.9041+£0.3600 61.480540.8298  56.1183-+0.3703
16 57.4693+0.4911  57.4000£0.3728  59.2949+0.4700  56.7867+0.3300 60.77354+0.7719  56.0947+0.3185
32 57.4503+0.4681  56.7506+0.3525  59.283640.4520 57.2521+£0.3100 60.01514+0.5628  56.0200-£0.3137
Diabetes 64 57.4281+0.4033  56.6082£0.4853  59.2695+0.4200 58.23554+0.3450  59.491640.7164  55.9541+0.3533
128 57.41774+0.4898  56.6344+0.3388  59.2527+0.4780  58.62731+0.3800  59.108940.7658  55.9195+0.3873
256 57.4073+£0.4957  56.660740.3887  59.2359-+£0.4890 59.0192+0.4000 58.7263+0.8066 55.8848+0.4045
512 57.39154+0.4137  56.7422£0.4511  59.2150+0.4250  59.4898+0.4200 58.583740.8055 55.9421+0.4149
1024 57.369440.4279  56.9094+0.4942  59.198740.4400 59.7696+0.3500  58.413240.9567  56.0335:£0.3625
8 2.82614+0.2235  2.6963+£0.2115  2.7734+0.2150  2.5827+0.1650  0.9885+0.1288  1.691240.1706
16 2.83544+0.2213  2.2565+0.1477  2.7786+0.2200  1.49034+0.0400  0.989140.0702  0.8441+0.0364
32 2.83774+0.1950  1.1616+£0.0413  2.7744+0.1900  0.527040.0270  0.989140.0458  0.4448+0.0258
Energy 64 2.8291+0.2188  0.5602+0.0441  2.7756+0.2100  0.459740.0320  0.9875+0.0613  0.4217+0.0306
128 2.82004+0.1943  0.4746+0.0292  2.7658+0.2000  0.45584+0.0280  0.98824+0.0591  0.3793+0.0270
256 2.8108+0.2641  0.3890+0.0271 2.75594+0.2550  0.4519+£0.0250  0.988940.0522  0.3370-£0.0236
512 2.81874+0.2299  0.3687£0.0232  2.7597+0.2350  0.477540.0240  0.984940.0504  0.3370+0.0247
1024 2.794240.2523  0.3653+£0.0283  2.7399+0.2400  0.507440.0260  0.978640.0605  0.3307+0.0264
8 10.5903+£0.8138  8.7529-+0.7301  10.0277£0.8000  7.677940.6200  6.2085+0.7789  5.6212+0.6167
16 10.5817+0.7901  8.12004+0.6533  10.0268+0.7700  6.67324+0.5200  6.1939+£0.7608  5.5128+0.5113
32 10.58494+0.7934  6.9765+0.5187  10.0238+0.7800  5.67414+0.3100  6.1946+0.5696  5.1550+0.3086
Concrete 64 10.5744£1.0725  5.96904+0.4754  10.02394+1.0200  5.34304+0.3150  6.1985+0.8572  4.6646+0.3084
128 10.5737+0.7713  5.52544+0.4681  10.0206+0.7600  5.08154+0.3000  6.1978+£0.6927  4.4251+0.3023
256 10.5730£0.7509  5.0817+£0.3899  10.0173£0.7400  4.82004+0.3100  6.1972+0.6680  4.1855+0.3051
512 10.5693+0.9758  4.7136+0.3203  10.0138+0.9500  4.4154+0.2700  6.1814+0.4876  3.8300+0.2612
1024 10.56954+0.9177  4.5960+0.3511  10.0192+£0.9000  4.27424+0.3800  6.1806+£0.6942  3.5965+0.3899
8 0.59844+0.0045  0.6095+0.0039  0.63924+0.0045  0.6849+0.0042  0.6288+0.0081 0.5831+0.0044
16 0.5978+0.0043  0.6048+0.0051  0.6390+0.0044  0.6481+0.0040  0.6213+0.0086  0.5858+0.0041
32 0.59774+0.0050  0.6050£0.0036  0.6389+0.0050  0.65224+0.0041  0.621540.0077  0.5816+0.0042
Wine 64 0.59624+0.0060  0.5977£0.0050  0.6385+£0.0060  0.6496+0.0047  0.621040.0091 0.5791+0.0048
128 0.5956+0.0042  0.5895£0.0043  0.6380+0.0042  0.6428+0.0030  0.619840.0056  0.5719+0.0030
256 0.59514+0.0050  0.5812+0.0054  0.6375+0.0049  0.6360+£0.0042  0.6186+0.0073  0.5647+0.0042
512 0.5953+0.0048  0.5671£0.0047  0.6357+0.0047  0.6464+0.0038  0.62214+0.0057  0.5507+0.0038
1024 0.59374+0.0044  0.5549+0.0041  0.6359+0.0045  0.6875+0.0043  0.619740.0108  0.5388+0.0042
8 0.7348+0.0110  0.5792+£0.0084  0.6963+0.0110  0.5448+0.0071  0.6238+0.0141  0.565540.0071
16 0.7351+0.0121  0.5549-+0.0089  0.6962+0.0120  0.4916+0.0076  0.6266+0.0159  0.5488+0.0076
32 0.73494+0.0107  0.5432£0.0076  0.6961+0.0105  0.4674+0.0067  0.623940.0129  0.5416+0.0066
California 64 0.7351+0.0129  0.5425+0.0093  0.6963+0.0128  0.4888+0.0077  0.6240+0.0164  0.537340.0076
128 0.7350+0.0112  0.5371£0.0079  0.6965+0.0112  0.4908+0.0067  0.62384+0.0127  0.5294+0.0067
256 0.73494+0.0118  0.5317+£0.0083  0.6967+0.0117  0.4929+0.0070  0.62364+0.0143  0.5215+0.0070
512 0.73624+0.0113  0.5209+0.0078  0.6967+0.0114  0.4745+0.0066  0.6238+0.0133  0.517640.0066
1024 0.7353+0.0127  0.5257+0.0089  0.6967+0.0126  0.4829+0.0080  0.6256+0.0177  0.5193+0.0081

tion. These empirical trends align with TEL’s iterative refinement and adaptive temperature, which
together provide reliable optimization dynamics even at higher widths.

H.2 PERFORMANCE AT MATCHED PARAMS, AND FLOPS

Figure [8] compares all six architectures in the joint space of parameter count, FLOPs, and down-
stream performance. Each point corresponds to a specific hidden size (8—1028), averaged over 20
runs and 5 random seeds across the 15 datasets. Across this Pareto frontier, TEL consistently occu-
pies the upper-left region, attaining higher accuracy or lower error at comparable or lower computa-
tional cost than strong nonlinear baselines such as MLP, EBM, DEQ, and KAN. In particular, TEL
typically matches the best-performing competitors in terms of raw metric while requiring fewer
parameters or FLOPs, indicating a more favorable performance—efficiency trade-off. This pattern
holds robustly across seeds, suggesting that TEL’s iterative refinement and adaptive temperature not
only improve absolute performance but also deliver these gains without incurring additional compu-
tational overhead.

H.3 RUNTIME AND MEMORY SCALING WITH K

We evaluate the empirical runtime behavior of TEL as a function of the refinement depth K, com-
plementing the FLOP characterization in §2.3] Although the theoretical cost scales linearly in K
due to the unrolled refinement equation [§] modern GPU runtimes can deviate from FLOP counts
because of kernel fusion, launch overhead, and memory traffic. Accordingly, we report wall-clock
throughput and memory from end-to-end forward+backward passes in Table ]
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Table 3: Reconstruction error () £ Std across models. Best (lowest) per (dataset, hidden size) in
bold; second-best underlined.

Dataset Hidden Size Linear MLP EBM DEQ KAN TEL
8 0.25834+0.029  0.2617+0.014  0.22074+0.028  0.2680+0.0145  0.3775+0.047  0.2096+0.015
16 0.25234+0.028  0.2548+0.013  0.2529+0.027  0.2605+0.0138  0.3647+0.045  0.2374+0.014
32 0.25534+0.027  0.2489+0.012  0.24854+0.026  0.2778+0.0136  0.3685+0.046  0.2277+0.014
Sinusoid 1D 64 0.2600+0.028  0.2703+0.014  0.22304+0.027  0.2495+0.0132  0.3500+0.043  0.2118+0.013
128 0.232240.025  0.28614+0.015  0.2493+0.024  0.2734+0.0122  0.3342+0.041 0.2048+0.012
256 0.24754+0.027  0.2998+0.016  0.22464+0.026  0.2495+0.0131  0.3681+0.047  0.2134+0.013
512 0.2751£0.031  0.31254+0.017  0.2506+0.030  0.4518+0.0158  0.36414+0.045  0.2381+0.016
1024 0.32044+0.036  0.3416+0.019  0.22764+0.035  0.6240+0.0185  0.4336+0.057  0.2162+0.019
8 0.3406+0.019  0.35414+0.009  0.3262+0.0185 0.3475+0.0098  0.3540+0.023  0.3099+0.010
16 0.34094+0.019  0.36164+0.009  0.3339+0.0188 0.33124+0.0093  0.3483+0.022  0.3143+0.0095
32 0.33594+0.0185  0.3627+0.009  0.32054+0.0182  0.3323+0.0094  0.3628+0.023  0.3044+0.0095
Moons 2D 64 0.34554+0.019  0.35774+0.009  0.3119+0.0189  0.3216+0.0089  0.3622+0.023  0.2963+0.009
128 0.36774+0.0205  0.34734+0.0085 0.31124+0.0202 0.3371+0.0097  0.3467+0.022  0.2956+0.010
256 0.3856+0.0215  0.3446+0.0085  0.3206+0.021  0.34734+0.0103  0.3480+0.0225  0.3062+0.0105
512 0.399540.0225  0.3517+0.009  0.3319+0.022  0.3847+0.0102  0.3681+0.024  0.3153+0.0105
1024 0.4076+0.0235 0.3623+0.0095  0.3455+0.023  0.4244+0.0108 0.3771+0.0245  0.3212+0.011
8 0.6279+0.073  0.5513+0.028  0.5251+0.071 0.5099+0.031 10.4261+1.39  0.4999+0.032
16 0.6486+0.075  0.5088+0.026  0.49584+0.073  0.5335+0.0285  10.5825+1.44  0.4710+0.029
32 0.5588+0.064  0.5687+0.030  0.44454+0.062  0.5371£0.0275 10.3620+1.35  0.4223+0.028
Spiral 2D 64 0.6466+0.075  0.5363+0.027  0.44624+0.073  0.5042+0.0295 11.0432+1.45  0.4239+0.030
128 0.6806+0.078  0.5714+0.031  0.5730+0.076  0.556140.032 10.5546+1.37  0.5413+0.033
256 0.9773+0.112  0.52384+0.026  0.6066+0.108  0.6176+0.029 11.8035£1.59  0.4971+0.030
512 1.10614+0.129  0.48314+0.024  0.5587+0.124  0.8603+0.027  10.8812+1.42  0.4559+0.028
1024 2.6649+0.323  0.6838+0.037  0.7369+0.310  1.137440.038 12.0361+1.76  0.697140.039
8 13.3184+1.49  13.34494+0.72  3.79754+0.145 13.0688+0.62 15.2981£1.99  3.6076+0.063
16 13.3565+1.50  13.3506+0.73  2.897440.148  13.0265+0.67 15.2440+1.95  2.7333+0.068
32 13.3426+1.48 13.4280+0.74  2.5612+0.146 13.0468+0.78  15.3001+£1.99  2.4331-£0.080
Swissroll 3D 64 13.3051+1.47 13.40274+0.73  2.040440.144  13.12224+0.64  15.36074+2.00  1.9383+0.065
128 13.3503+1.51 13.4676+0.75 1.7073+0.149  13.21454+0.68 15.9867+£2.08  1.3890+0.069
256 13.7316£1.57 13.3840+0.73  2.0952+0.155 13.1223+0.70  16.0167+2.12  1.8464+0.071
512 13.8267+1.59  13.43974+0.74  2.14154+0.157 13.2337+£0.60  15.8926+2.07  1.8105+0.061
1024 15.9496+1.89  13.4512+0.76  1.9840+0.185 13.7061+0.83 18.15104+2.37  1.8848+0.085
8 0.32304+0.035  0.3167+0.016  0.16844+0.034  0.3180+0.0125  0.3178+0.031  0.1600+0.012
16 0.2965+0.032  0.3180+0.016  0.1912+0.031  0.3191+0.0132  0.32414+0.042  0.1816+0.013
32 0.3188+0.035  0.3123+0.015  0.20214+0.034  0.3151£0.0115  0.3310+0.033  0.1790+0.011
Spheres 3D 64 0.3363+0.037  0.3213+0.016  0.15354+0.036  0.3394+0.0108  0.3541+0.046  0.1858+0.011
128 0.31724+0.035  0.29824+0.015  0.2222+0.034  0.3105+0.0112  0.34924+0.035  0.1901+0.011
256 0.32784+0.038  0.3348+0.017  0.24374+0.037  0.3350+0.0128  0.3202+0.031  0.2015+0.013
512 0.3171+0.035  0.3054+0.015  0.2206+0.034  0.4104+0.0112  0.3492+0.045  0.2095+0.011
1024 0.3658+0.043  0.35914+0.019  0.1660+0.042  0.5838+0.0155  0.3482+0.025  0.21774+0.016

All measurements use batch size 512 and hidden dimension 256. We compare: (i) an MLP baseline
with ReLU activations; (ii) TEL with K € {1,3,5,7,10}; (iii) an EBM-style energy refinement;
and (iv) a DEQ model with Anderson acceleration. All numbers are averaged over 20 warm-started
runs on a single RTX 6000 Ada GPU.

The empirical scaling matches the theoretical structure in §2.3} TEL’s runtime grows linearly with K
because each refinement step applies the same non-expansive update map equation[8] In the practical
range K € {3,5} that yields the best accuracy-latency tradeoff (, TEL is only 1.3x-1.9x%
slower than an MLP of identical width, while being significantly faster than DEQ and less memory-
intensive than KAN.

Peak memory increases modestly due to storing the K intermediate states; however, enabling check-
pointing (§2-2) reduces this to nearly constant memory in practice.

H.4 TEMPERATURE UPDATE

We analyze how different temperature—update strategies impact TEL’s performance. Figure 9] com-
pares a fixed temperature 1" with several adaptive schedules 7} at hidden dimension 256. We con-
sider two estimators for the adaptive temperature: (i) a Gaussian-based estimator and (ii) a two-layer
MLP estimator, each instantiated in both global and channel-wise variants. Across all configurations,
adaptive temperatures 7} consistently outperform a fixed 7', indicating that allowing the refinement
dynamics to adjust their sharpness over iterations reliably improves optimization and accuracy. The
MLP-based estimator yields the most stable behavior, remaining robust across batch sizes, while
the global Gaussian estimator attains the highest peak accuracy with only a negligible increase in
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Figure 8: Average performance (= std) over 20 runs across 5 different random seeds, evaluated on
15 datasets using six building-block models: Linear, MLP (Linear+ReLU), KAN, EBM, DEQ, and
TEL for hidden embedding size ranging from 8§ to 1028 plotted against parameter count and FLOPs.
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Figure 9: Temperature—update ablation at hidden dimension 256. We compare a fixed temperature 7'
against adaptive schedules 7} using either a Gaussian-based estimator or a two-layer MLP estimator,

each in global and channel-wise variants.

Adaptive T} consistently improves performance over
fixed T'; the MLP estimator is the most stable across batch sizes, while the global estimator achieves
the highest peak accuracy with minimal additional parameter cost.

parameter count. Overall, TEL is robust to the specific estimator choice, but benefits substantially
from using an adaptive rather than fixed temperature.

H.5 ADDITIONAL COMPARISON:

STAGE II

Table [3] reports inference-time costs for the medium-scale TEL benchmarks used in Stage II. For
each backbone model, we compare three variants: the original (Vanilla) architecture, a TEL head
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Table 4: Runtime and memory scaling with refinement depth K. All timing values are reported
per sample (converted from per-batch measurements). TEL scales linearly with K and remains
substantially cheaper than DEQ or KAN. TEL with K=1 is consistently the second-fastest method
after the MLP baseline.
Dataset / Method K Time (ms/sample)  Throughput (samples/s)  Peak Mem (GB)
CIFAR10 / Classification

MLP (ReLU) - 0.00016 1.17 x 107 0.018
TEL 1 0.00051 3.84 x 10° 0.020
TEL 3 0.00113 1.75 x 10° 0.020
TEL 5 0.00172 1.16 x 10° 0.020
TEL 10 0.00328 6.13 x 10° 0.020
EBM - 0.00133 1.51 x 10° 0.019
DEQ - 0.00285 6.99 x 10° 0.025
KAN - 0.00176 1.13 x 10° 0.056
California Housing / Regression
MLP (ReLU) - 0.00012 1.82 x 107 0.009
TEL 1 0.00063 3.27 x 10° 0.011
TEL 3 0.00195 1.02 x 10° 0.011
TEL 5 0.00320 6.21 x 10° 0.011
TEL 10 0.00609 3.28 x 10° 0.011
EBM - 0.00137 1.48 x 10° 0.011
DEQ - 0.00633 3.17 x 10° 0.011
KAN - 0.00113 1.75 x 10° 0.032
SwissRoll / Reconstruction
MLP (ReLU) - 0.00012 1.92 x 107 0.009
TEL 1 0.00055 3.76 x 10° 0.011
TEL 3 0.00117 1.73 x 10° 0.011
TEL 5 0.00176 1.14 x 10° 0.011
TEL 10 0.00324 6.20 x 10° 0.011
EBM - 0.00129 1.54 x 10° 0.011
DEQ - 0.00410 4.87 x 10° 0.011
KAN - 0.00109 1.85 x 108 0.035

Table 5: Inference cost for the medium-size TEL benchmarks.

Model Variant Params FLOPs Latency
USPS
Vanilla 8.28 x 10*  1.24 x 10° 0.10
LeNet TEL head 8.30 x 10*  1.25 x 10° 0.12
TEL full  8.31 x 10* 1.25 x 10° 245
UCI-HAR

Vanilla 272 x10°  6.60 x 107 055
DeepConvLSTM  TEL head ~ 2.72 x 10°  6.60 x 107 0.66
TEL full ~ 2.72 x 10°  6.60 x 107 1.04

Vanilla 3.34 x 107 5.45 x 10° 1.96
MiniLM TEL head 3.34 x 107 5.45 x 10° 2.07
TEL full  3.35 x 107 5.45 x 10° 2.81

applied on top of frozen features, and a full TEL-equipped model where every block is replaced
by its TEL counterpart. Across USPS, UCI-HAR, and AGNews, the TEL head introduces only
a small increase in latency while keeping the parameter and FLOP budgets essentially unchanged.
The full TEL variant is slower, as expected from its iterative refinement, but remains within practical
inference cost ranges for all three tasks.

H.6 FULL COMPARISON STAGE III

Table [ summarizes inference costs for the large-scale TEL benchmarks used in Stage III. We eval-
uate TEL in two configurations applied only at the output head (TEL head) or integrated throughout
the entire architecture (TEL full) and compare both variants against the original backbone model.
Results are reported across diverse modalities and model families, including convolutional networks
(ResNet-18/50), vision transformers (ViT-B/L), and GPT-2 language models, spanning classifica-
tion, segmentation, and auto-regressive text generation.
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Table 6: Inference cost for the large TEL benchmarks.

Dataset Task Model Variant Params FLOPs Latency
Vanilla ~ 1.13 x 107 2.98 x 10® 0.69
ResNet-18 TEL head 1.15 x 107 2.99 x 108 0.73

TEL full 1.15 x 107 2.99 x 10® 1.54
Vanilla ~ 2.39 x 107 6.75 x 10® 1.74
ResNet-50 TEL head 2.81 x 107  6.84 x 10° 1.89
TEL full  2.81 x 107  6.84 x 10® 2.58

Vanilla ~ 1.17 x 10" 3.65 x 10° 0.70
ResNet-18 TEL head 1.20 x 107 3.65 x 10° 0.74
TEL full  1.20 x 10”7 3.65 x 10° 1.54
Vanilla ~ 2.56 x 107 8.26 x 10° 1.72
ResNet-50 TEL head 2.98 x 107  8.27 x 10° 1.89
TEL full 2,98 x 107  8.27 x 10° 2.59

Vanilla ~ 9.38 x 107 5.03 x 10*° 3.28

Tiny-ImageNet  Classification

ImageNet-1K Classification

ViT-B/32 TEL head 9.44 x 107  5.06 x 10'° 3.45
7 10
COCO-Stuff Segmentation TEL full 991 x 108 5.79 X 1011 3.89
Vanilla ~ 3.16 x 10°  1.69 x 10 9.79
ViT-L/32 TEL head 3.17 x 10°  1.69 x 10" 9.84

TEL full  3.68 x 10°  1.94 x 10" 10.26

Vanilla ~ 9.37 x 107 5.02 x 10*° 3.30
ViT-B/32 TEL head 9.43 x 107 5.05 x 10'° 3.55
TEL full  9.90 x 107  5.77 x 10'° 3.96
Vanilla ~ 3.16 x 10°  1.68 x 10'*  10.15
ViT-L/32 TEL head 3.17 x 10° 1.69 x 10''  10.18
TEL full  3.68 x 10° 1.94 x 10" 10.29

Vanilla ~ 1.24 x 10 1.27 x 10" 5.85
WikiText-2 Auto-regression  GPT-1, GPT-2 TEL head 1.25 x 10°  1.27 x 10*! 7.09
TEL full  1.64 x 10% 1.27 x 10**  17.15

Vanilla ~ 1.24 x 10 1.27 x 10** 5.85
LAMBADA Auto-regression  GPT-1, GPT-2  TELhead 1.25 x 10% 1.27 x 10'* 7.09
TEL full  1.64 x 10® 1.27 x 10" 17.15

Cityscapes Segmentation

Across all datasets, TEL head introduces only a small increase in latency, while keeping the param-
eter count and FLOPs nearly identical to the original model. The TEL full variant incurs higher
inference cost, as expected from its iterative refinement, but remains within a practical range even
for large architectures such as ViT-L and GPT-2. These results demonstrate that TEL can be incor-
porated into large models with modest computational overhead, enabling its stability and accuracy
benefits at scale.

H.7 INTERPRETABILITY AND DIAGNOSTIC SIGNALS OF TEL

TEL exposes internal thermodynamic quantities—enthalpy and entropy gradients, temperature
schedules, and free-energy trajectories—that are not available in standard MLPs, residual networks,
or implicit layers. These signals arise directly from the refinement dynamics in equation [8}-equa-
tion [9) and correlate strongly with sample difficulty, model uncertainty, and convergence behavior
( . Across all model scales and datasets, the diagnostic patterns below appear consistently
and are supported by TEL’s theoretical properties: non-expansiveness (Proposition [2.1)), frozen-
temperature convergence (Proposition [C.4), and the two-time-scale tracking guarantees of Proposi-
tion[C.6

Enthalpy-entropy gradient balance. The ratio p(i) quantifies whether a refinement step is dom-
inated by the anchor term (p<1) or by entropy-driven exploration (p>1). Across synthetic recon-
struction datasets, the mean p(*) trajectories exhibit a clear difficulty hierarchy: sinusoid 1D (easy)
begins well below 1 and stabilizes quickly, spheres 3D (medium) briefly enters the entropy-driven
regime before returning toward 1, and swissroll 3D (hard) shows a pronounced entropy-driven surge
followed by gradual relaxation (see Fig.[T0). This behavior reflects the gradient scaling guarantees
of LemmalC.1]

Gradient alignment. The cosine alignment x(*) measures how closely the enthalpy and entropy
gradients agree during refinement. Easy examples maintain strong positive alignment, medium ex-
amples show a gradual reduction, and hard examples exhibit a temporary loss of alignment due to
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Figure 10: Mean p(*) across TEL refinement steps for three synthetic reconstruction datasets. Easy
data (sinusoid 1D) remains in the anchor-dominated regime, medium data (spheres 3D) transitions
between entropy and anchor regimes, and hard data (swissroll 3D) exhibits a pronounced entropy-
driven peak before stabilizing.
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Figure 11: Mean cosine alignment x(?) across refinement steps. Easy examples maintain high agree-
ment, medium examples gradually lose alignment, and hard examples exhibit a temporary decline
before stabilizing.

the complex geometry of their underlying manifolds (Fig. [[T). These trends illustrate how TEL
modulates refinement depending on dataset structure.

Temperature trajectories. The adaptive temperature schedule 7() provides a direct indicator of
sample difficulty. All datasets begin at a shared initial temperature, after which easy examples
remain low and saturate quickly, medium examples rise more noticeably, and hard examples exhibit
the strongest and slowest-saturating temperature increases (Fig. [I2). This matches TEL’s role in
allocating exploratory capacity to ambiguous or complex samples.

Free-energy descent. The free-energy G(?) decreases smoothly under stable refinement, with
plateaus marking saturation. Easy examples converge rapidly and achieve the lowest plateau,
medium examples descend more gradually, and hard examples converge the slowest and stabilize
at the highest energy levels (Fig. [I3). These behaviors support TEL's non-expansive refinement
dynamics across models.

Cross-scale invariance and practical use. Across Stages I-III and all architectures, these diag-
nostics exhibit remarkably consistent structure: (i) p>1 marks difficult samples, (ii) negative
indicates conflicting nonlinear corrections, (iii) 7" tracks uncertainty and difficulty, and (iv) AG de-
creases smoothly under stable refinement. This invariance follows from the shared refinement rule
equation [8]and the bounded-gain dynamics in equation[I3]
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Figure 12: Mean temperature trajectories 7() across refinement steps. Easy examples remain near
the initial temperature, medium examples show a moderate rise, and hard examples exhibit the
strongest increase before saturation.
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Figure 13: Free-energy evolution G(*) across refinement steps. Easy examples converge fastest and
lowest, medium examples stabilize later, and hard examples converge slowest and plateau highest.

Practically, these signals provide lightweight tools for early exits, OOD detection, mislabel iden-
tification, and calibration improvements, requiring no architectural changes or auxiliary training
objectives.

H.8 TEL vs. RNNS AND ADAPTIVE-RESIDUAL BASELINE

To enable a fair comparison, we instantiated TEL, the unrolled RNNs, and the adaptive-residual
baselines under identical settings: all models use the same 256-dimensional hidden width, the same
input/output projections, and the same number of refinement steps K. Each method therefore re-
ceives exactly K corrective updates, ensuring that differences in behavior arise solely from their
update rules rather than disparities in model size or depth. The resulting parameter counts, FLOPs,
and performance metrics for all three methods are summarized in Table[7}

The adaptive-residual baseline is a single residual block with a fixed linear “anchor” projection and
a Dynamic-ReL.U-style gain. A sigmoid gate predicted from the input scales a tanh update on the
anchored hidden, producing h = anchor(x) + o(g(z)) ® u(h). Parameters are shared across the K
passes, but each pass is just another gated residual correction with no coupling to a global objective.

35



Under review as a conference paper at ICLR 2025

Table 7: TEL vs. 5-step RNN vs. adaptive residual baselines across classification, regression, and
reconstruction tasks.

Dataset Task Model Metric £ Std Params FLOPs
TEL (K = 5) 0.5325 4+ 0.0019  7.90 x 10>  1.58 x 10°
CIFAR-10 Classification ~ 5-step RNN 0.4203 £0.0048  8.55 x 10°  8.52 x 10°
Adaptive residual  0.5134 4 0.0101  1.64 x 106  3.28 x 108
TEL (K = 5) 0.5284 4+ 0.0064 6.86 x 10*  4.15 x 10*
California Housing ~ Regression 5-step RNN 0.6816 £0.00  1.34 x 10°  6.76 x 10°
Adaptive residual ~ 1.0701+0.00  1.36 x 10°  1.40 x 10°
TEL (K = 5) 1.9324+0.0081  6.79 x 10*  1.48 x 10°
SwissRoll-3D Reconstruction  5-step RNN 2.0324+0.024  1.33x 10°  7.96 x 10°
Adaptive residual ~ 2.126 £0.013  1.34 x 10°  2.67 x 10°

The unrolled RNN baseline uses a GRU-like update implemented as a single affine transform on
the concatenated input and hidden state, followed by a tanh. The same cell (weights shared across
steps) is applied exactly K times and is followed by a single output head. This provides K state
re-projections with learned hidden-to-hidden mixing but no anchor or energy constraint.

Although TEL can be written as a sequence of residual-style updates, it is not equivalent to Dynamic
ReLU, gated activations, or any learnable-activation mechanism, nor to an unrolled RNN. Learnable
activations such as Dynamic ReLU, ACON, or gated MLPs operate by modulating the shape of a
static pointwise nonlinearity, typically by predicting slopes, offsets, or mixing coefficients from the
input. Their effect is instantaneous: a single forward pass applies the gated activation once, with
no notion of refinement, anchoring, or iterative consistency across steps. TEL, in contrast, is built
around a multi-step equilibrium refinement in which the representation is progressively corrected
relative to a fixed linear anchor. These corrections are not arbitrary or independently learned residual
mappings: they are constrained updates derived from a single underlying free-energy objective,
which forces each iteration to remain consistent with the same energy—entropy geometry rather than
drifting through unrelated nonlinear transformations. Standard learnable activations do not impose
any global coherence across steps and therefore cannot ensure that the update sequence follows a
descent direction or stays within a stability range.

Moreover, TEL’s temperature is not a simple gate applied to an activation. It is a dual variable that
governs the balance between structure-seeking (anchor-following) and complexity-seeking (entropy-
driven) behavior. Its update depends on global statistics of the intermediate activations, rather than
local self-gating heuristics, and its range is explicitly constrained to maintain non-expansive and
predictable updates. Dynamic ReLLU and similar mechanisms lack this two-timescale structure,
lack any coupling between activation geometry and stability, and cannot produce the interpretable
diagnostics that TEL naturally yields.

The “K-step RNN” baselines represent a different contrast. They repeatedly apply a GRU-style cell
with its own learned gates and hidden-to-hidden projections, effectively reprojecting and mixing
the hidden state at every iteration. Even when parameters are shared across steps, the recurrence is
structurally unconstrained: it has no fixed anchor, no energy-based consistency, and no stability con-
ditions linking one step to the next. The hidden state can drift, rotate, or amplify freely because each
update is a general learned transformation rather than a controlled correction. This makes the RNN
strictly more parametric and expressive, but also less stable, less interpretable, and fundamentally
different from TEL’s refinement semantics.

In summary, although all methods are matched in width, compute, and number of update steps,
they implement fundamentally different computational principles. TEL performs anchored, energy-
consistent refinement governed by an adaptive dual variable; unrolled RNNs repeatedly transform
the state using parametric recurrent projections; and dynamic or gated activations apply step-local
modulation without any unifying global objective. These structural distinctions, not differences
in model scale or training protocol, explain the consistent empirical advantages of TEL over both
unrolled-RNN and adaptive-residual baselines.

H.9 TEL DROP-IN PLACEMENT STUDY
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Table 8: TEL drop-in placement study on USPS using LeNet-5. TEL@1 and TEL@2 replace the
two hidden FC layers; TEL@3 replaces the classifier head.

Model Test Acc. (%)

Vanilla 93.6 +£0.012
TEL@1 95.8 + 0.014
TEL@2 94.3 £0.017
TEL@3 93.7 £ 0.011
TEL-full 93.9 +£0.018

Table 9: CIFAR-10 entropy-estimator study using a shallow TEL block with SiLU activation.

Estimator type Extra params Test acc. (%) Throughput
Gaussian +0 53.25+£0.19 1.16 x 10°
Laplacian +0 53.19+£0.21  1.02 x 10°
Student-¢ +0 53.214£0.25 1.10 x 10°
MLP (pooled moments) +10 53.74+0.71 0.98 x 106

Classic LeNet-5 contains two fully connected (FC) hidden layers after the convolutional blocks
(120—84), followed by a linear classifier. Accordingly, TEL@ 1 and TEL@2 correspond to replac-
ing either of these two hidden FC blocks. For completeness, we also include a TEL @3 configuration
in which the final classifier head itself is replaced with TEL. Thus, TEL @3 does not represent a third
hidden MLP block, but rather a replacement of the original linear classifier with a TEL refinement
module.

We evaluate the following configurations:

* Vanilla: standard LeNet-5 head (two hidden FC layers + linear classifier).

TEL@1: TEL replaces the first hidden FC block.

* TEL@2: TEL replaces the second hidden FC block.

TEL@3: TEL replaces the classifier head.

TEL-full: TEL replaces all three components (both hidden FC blocks and the classifier
head).

All models share the same training configuration (AdamW, identical hyperparameters, early stop-
ping), ensuring that observed performance differences arise only from the placement of TEL.

The results show that TEL placement significantly impacts accuracy as given in Table[§] TEL@1
yields the strongest improvement, reflecting the fact that the first FC block has the widest represen-
tation and therefore provides TEL with the largest effective parameter budget. Moving TEL deeper
(TEL@2) reduces this width and narrows the space available for refinement, leading to a smaller
accuracy gain. When TEL replaces the classifier itself (TEL@3), the representational width col-
lapses to the 10-way output space, dramatically reducing TEL’s capacity and producing minimal
improvement over the baseline.

Replacing all three components with TEL (TEL-full) does not recover the performance of TEL@1.
Although TEL-full applies TEL everywhere, stacking multiple refinement modules introduces ex-
cessive refinement complexity, an effect observed consistently across architectures, which ultimately
degrades performance.

In summary, TEL is most effective when applied early, where the feature dimensionality is highest.
Deeper placement or replacing only the classifier head restricts TEL’s capacity, while stacking TEL
across all layers amplifies refinement complexity and limits accuracy.
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H.10 ENTROPY ESTIMATOR ARCHITECTURE STUDY

We compare four entropy estimator architectures within a shallow TEL block on CIFAR-10, using
SiLU activation, =5 refinement steps, and width 256. Each estimator maps the entropy force
z = ¢y(y) to a scalar score §(y) used in the TEL refinement update.

Analytic estimators. Gaussian, Laplacian, and Student-¢ estimators all behave similarly in this
shallow setting: they require no extra parameters, achieve nearly identical accuracy (around 53%),
and differ only slightly in throughput due to minor computational overheads.

Learned estimator. A small 2-layer MLP operating on pooled activation statistics offers a modest
accuracy improvement (53.74%) but shows the highest variance across runs and is the slowest in
throughput due to its additional computation.

Overall, as stated in Table [9] analytic estimators provide comparable performance at minimal cost,
while the learned MLP trades speed and stability for a small accuracy gain.
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