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Abstract

We propose a new algorithm for the problem of recovering data that adheres
to multiple, heterogeneous low-dimensional structures from linear observations.
Focusing on data matrices that are simultaneously row-sparse and low-rank, we
propose and analyze an iteratively reweighted least squares (IRLS) algorithm that
is able to leverage both structures. In particular, it optimizes a combination of
non-convex surrogates for row-sparsity and rank, a balancing of which is built
into the algorithm. We prove locally quadratic convergence of the iterates to a
simultaneously structured data matrix in a regime of minimal sample complexity
(up to constants and a logarithmic factor), which is known to be impossible for a
combination of convex surrogates. In experiments, we show that the IRLS method
exhibits favorable empirical convergence, identifying simultaneously row-sparse
and low-rank matrices from fewer measurements than state-of-the-art methods.

1 Introduction

Reconstructing an image from (noisy) linear observations is maybe the most relevant inverse problem
for modern image processing and appears in various applications like medical imaging and astronomy
[7]. If the latent image is n-dimensional, for n € N, it is well-known that 2(n) observations are
required for robust identification in general. In practice, imaging problems are however often ill-
posed, i.e., the number of observations is smaller than n or the operator creating the observations
is defective [88, 93]. In such situations, the fundamental lower bound of 2(n) can be relaxed by
leveraging structural priors of the latent image in the reconstruction process.

Of the various priors that are used for solving ill-posed inverse problems in the literature, sparsity'
and low-rankness are most prevalent. This prominent role can be explained with their competitive

performance in imaging tasks and the rigorous mathematical analysis they allow [ 10, 68]. For instance,
consider the recovery of an n; X no-dimensional image X, € R™*"2 from linear observations
y = A(X,) +n €R™, 1)

where A: R"1*"2 — R™ is a linear operator modeling the impulse response of the sensing device
and 7 € R™ models additive noise. Whereas this problem is ill-posed for m < njne, it has been
established [38, 15, 78] that it becomes well-posed if X, is sparse or of low rank. The aforementioned
works prove that m = §2(s12) observations suffice for robust reconstruction if X, is s-row-sparse

'A vector x € R" is called s-sparse if x has at most s non-zero entries. For a matrix X € R"*"2 there
are various ways to count the level of sparsity. In this work, we use the most common definition and call X
s-row-sparse (resp. -column-sparse) if at most s rows (resp. columns) are non-zero.
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and sp-column-sparse, and that m = Q(r(n1 + n2)) observations suffice if X, is a rank-r matrix.
These bounds, which relax the general lower bound of m = Q(ning), agree with the degrees of
freedom of sparse and low-rank matrices, respectively.

A number of computationally challenging problems in signal processing and machine learning can be
formulated as instances of (1) with X, being simultaneously structured, i.e., X, is both of rank r and

s1-row-sparse/sa-column-sparse. Examples encompass sparse phase retrieval [51, 46, 11, 47, 85],
sparse blind deconvolution [59, 83], hyperspectral imaging [43, 41, 89, ], sparse reduced-rank
regression [22, ], and graph denoising and refinement [80, ]. In these settings, the hope is

that due to leveraging the simultaneous structure, {2(r(s1 + s3)) observations suffice to identify the
data matrix. For r < s, s2 < nj,ns, these bounds are significantly smaller than the bounds for
single-structured data matrices.

From an algorithmic point of view, however, the simultaneously structured recovery problem poses
obstacles that are not present for problems where X, is only of low-rank or (group) sparse: In the
latter case, variational methods [6] that formulate the reconstruction method in terms of optimizing a
suitable objective with a structural regularization term involving £,/¢s ,-(quasi-)norms and and S,,-
Schatten (quasi-)norms have been well-understood, leading to tractable algorithms in the information
theoretically optimal regime [28, 17, 38].

For simultaneously structured problems, on the other hand, Oymak et al. showed in [74] that a mere
linear combination of convex regularizers for different sparsity structures — in our case, nuclear
and /5 ;-norms — cannot outperform recovery guarantees of the “best” one of them alone. While
this indicates that leveraging two priors at once is a way more intricate problem than leveraging a
single prior, it was also shown in [74] that minimizing a linear combination of rank and row sparsity
can indeed lead to guaranteed recovery from (7 (s; + s2)) measurements. The downside is that
the combination of these non-convex and discontinuous quantities does not lend itself directly to
practical optimization algorithms, and to the best of our knowledge, so far, there have been no works
directly tackling the optimization of a combination of non-convex surrogates that come with any sort
of convergence guarantees.

1.1 Contribution

In this work, we approach the reconstruction of simultaneously sparse and low-rank matrices by
leveraging the positive results of [74] for non-convex regularizers. To this end, we introduce a
family of non-convex, but continuously differentiable regularizers that are tailored to the recovery
problem for simultaneously structured data. The resulting objectives lend themselves to efficient
optimization by a novel algorithm from the class of iteratively reweighted least squares (IRLS)
[26, 35, 70, 5, 1, 54, 55], the convergence of which we analyze in the information theoretically
(near-)optimal regime. Specifically, our main contributions are threefold:

(i) In Algorithm 1, we propose a novel IRLS method that is tailored to leveraging both structures
of the latent solution, sparsity and low-rankness, at once. The core components of the
algorithm are the weight operator defined in Definition 2.1 and the update of the smoothing
parameters in (12). Notably, the algorithm automatically balances between its low-rank and
its sparsity promoting terms, leading to a reliable identification of s;-row-sparse and rank-r
ground truths?.

(ii) Under the assumption that A behaves almost isometrically on the set of row-sparse and
low-rank matrices, we show in Theorem 2.5 that locally Algorithm 1 exhibits quadratic
convergence towards X,. Note that if A is, e.g., a Gaussian operator, the isometry as-
sumption is (up to log factors) fulfilled in the information theoretic (near-)optimal regime
m = Q(r(s1 + n2)) [60].

(iii) Finally, in Section 2.3 we identify the underlying family of objectives that are minimized by
Algorithm 1. To make this precise, we define for 7 > 0 and e denoting Euler’s number the
real-valued function f; : R — R such that

1r2log(et?/7%), if|t| > T
() =142 ’ ’ 2
f (1) {;ﬁ, if [t <7’ @

2To enhance readability of the presented proofs and results, we restrict ourselves to row-sparsity of X, here.
It is straight-forward to generalize the arguments to column-sparsity as well.




which is quadratic around the origin and otherwise logarithmic in its argument. Using
this definition, we define for ¢ > 0 the (¢—)smoothed log-determinant objective Fj, . :
R™*"2 — R and for 6 > 0 the (6—)smoothed sum of logarithmic row-wise {y-norms
objective Fy, 5 : R"*"2 — R such that

min{ni,no}

Fire(X) = > feon(X)), Fos(X) =D f5(IX,
r=1 i=1

2). 3

Combining the above, we further define the (e, d —)smoothed logarithmic surrogate objective
Fes : RM>X"2 — Ras

fs,&(x) = ‘/.'.lr,s (X) + -va,é(x)- “)

In Theorem 2.6, we prove for any A that the iterates of Algorithm 1 minimize quadratic
majorizations of F. s and form a non-increasing sequence on F. s. To the best of our
knowledge, the proposed method is the so far only approach for recovering simultaneously
sparse and low-rank matrices which combines local (quadratic) convergence with a rigorous
variational interpretation.

The numerical simulations in Section 4 support our theoretical findings and provide empirical
evidence for the efficacy of the proposed method.

1.2 Related Work

Sparse and Low-Rank Recovery. Whereas leveraging a single matrix structure like sparsity or
low-rankness in the reconstruction process can easily be obtained by convex regularizers [78, 16],
Oymak et al. [74] showed that, if one is interested in near-optimal sampling rates, one cannot expect
comparably simple solutions for identifying simultaneously structured objects; a minimization of
(4) with convex terms Fj,(-) and Fy, 5(-) would be only as good as using the one structure that
is information theoretically more favorable. A closely related problem? that appears in statistical
literature under the name Sparse Principal Component Analysis (SPCA) [104, 25] is known to be
NP-hard in general [67]. Despite the the intrinsic hardness of simultaneously structured recovery
problems, promising empirical results for hyperspectral image demixing were shown in [40], where
minimization problems involving the sum of reweighted convex surrogates are solved by a proximal
scheme based on ADMM for the case of simultaneously sparse, low-rank and non-negative matrices.
For the problem of simultaneously sparse and low-rank matrix recovery, there exist only a handful
approaches that come with rigorous theoretical analysis. The first line of works [4, 37] aims to
overcome the aforementioned limitations of purely convex methods in a neat way. They assume that
the operator .4 has a nested structure such that basic solvers for low-rank resp. row/column-sparse
recovery can be applied in two consecutive steps. Despite being an elegant idea, this approach clearly
restricts possible choices for .A and is of hardly any practical use.

In a second line of work, Lee et al. [60] consider general impulse response operators that satisfy
a suitable restricted isometry property for s;-row- and so-column-sparse rank-r matrices. They
propose and analyze a highly efficient, greedy method, the so-called Sparse Power Factorization
(SPF) which is a modified version of power factorization [48] and uses hard thresholding pursuit [36]
to enforce sparsity in addition. In particular, they show that if X, is rank-R, has s;-sparse columns
and so-sparse rows, then m 2 R(s1 + s2) log(max{eni/s1, ena/s2}) Gaussian observations suffice
for robust recovery, which is up to the log-factor at the information theoretical limit we discussed
above. The result however assumes a low noise level and requires that SPF is initialized by a, in
general, intractable method. Only in the special case that X, is spiky, which means that the norms
of non-zero rows/columns exhibit a fast decay, a tractable substitute for the initialization method
works provably. The analysis of SPF has been extended to the blind deconvolution setup in [59]. In
[100], a related approach that combines gradient descent of a smooth objective with hard thresholding
is considered, for which the authors show linear convergence from a suitable intialization if the
measurement operator satisfies a restricted strong convexity and smoothness assumption.

A third line of work, approaches the problem from a variational point of view. In [33, 69] the

3Since observations in SPCA are provided from noisy samples of the underlying distribution, whereas in
our case the matrix itself is observed indirectly, it is however hard to directly compare results from sparse and
low-rank matrix reconstruction with corresponding results for SPCA.



authors aim at enhancing robustness of recovery by alternating minimization of an ¢;-norm based
multi-penalty functional. In essence, the theoretical results bound the reconstruction error of global
minimizers of the proposed functional depending on the number of observations. Although the authors
only provide local convergence guarantees for the proposed alternating methods, the theoretical error
bounds for global minimizers hold for arbitrarily large noise magnitudes and a wider class of ground-
truth matrices than the one considered in [60].

The works [37, 29], which build upon generalized projection operators to modify iterative hard
thresholding to the simultaneous setting, share the lack of global convergence guarantees.

In [79], the authors examine the use of atomic norms to perform recovery of simultaneously sparse
and low-rank matrices, which uses a related, but different sparsity assumption compared to the row or
column sparsity studied here. From a practical point of view, the such norms are hard to compute and
the paper only proposes a heuristic polynomial time algorithm for the problem.

Finally, the alternative approach of using optimally weighted sums or maxima of convex regularizers
[52] requires optimal tuning of the parameters under knowledge of the ground-truth.

Iteratively Reweighted Least Squares. The herein proposed iteratively reweighted least squares
algorithm builds on a long line of research on IRLS going back to Weiszfeld’s algorithm proposed in
the 1930s for a facility location problem [95, 5]. IRLS is a practical framework for the optimization
of non-smooth, possibly non-convex, high-dimensional objectives that minimizes quadratic models
which majorize these objectives. Due to its ease of implementation and favorable data-efficiency,

it has been widely used in compressed sensing [42, 18, 26, 57, 34, 55], robust statistics [45, 2, 72],
computer vision [19, 61, 84], low-rank matrix recovery and completion [35, 70, 56, 54], and in
inverse problems involving group sparsity [21, , 20]. Recently, it has been shown [62] that

dictionary learning techniques can be incorporated into IRLS schemes for sparse and low-rank
recovery to allow the learning of a sparsifying dictionary while recovering the solution. Whereas
IRLS can be considered as a type of majorize-minimize algorithm [58], optimal performance is
achieved if intertwined with a smoothing strategy for the original objective, in which case globally

linear (for convex objectives) [26, 1, 72, 55, 75] and locally superlinear (for non-convex objectives)
[26, 56, 54, 75] convergence rates have been shown under suitable conditions on the linear operator
A.

However, there has only been little work on IRLS optimizing a sum of heterogenous objectives [81]
— including the combination of low-rank promoting and sparsity-promoting objectives — nor on
the convergence analysis of any such methods. The sole algorithmically related approach for our
setting has been studied in [23], where a method has been derived in a sparse Bayesian learning
framework, the main step of which amounts to the minimization of weighted least squares problems.
Whereas the algorithm of [23] showcases that such a method can empiricially identify simultaneously
structured matrices from a small number of measurements, no convergence guarantees or rates have
been provided in the information-theoretically optimal regime. Furthermore, [23] only focuses on
general sparsity rather than row or column sparsity.

1.3 Notation

We denote matrices and vectors by bold upper- and lower-case letters to distinguish them from scalars
and functions. We furthermore denote the i-th row of a matrix Z € R™ *"2 by Z, . and the j-th
column of Z by Z. ;. We abbreviate n = min{ny, ne}. We denote the r-th singular value of a
matrix Z € R™*™2 by ¢,.(Z). Likewise, we denote the in £2-norm s-largest row of Z by p,(Z). (To
determine ps(Z), we form the in ¢5-norm non-increasing rearrangement of the rows of Z and, by
convention, sort rows with equal norm according to the row-index.) We use o to denote the Hadamard
(or Schur) product, i.e., the entry-wise product of two vectors/matrices.

We denote the Euclidean ¢3-norm of a vector z € R™ by ||z||2. For Z € R™*™2, the matrix
norms we use encompass the operator norm [|Z|| := supjjy,=1 [|Zw||2, the row-sum p-quasinorm

1
1Zlpe = (S 1Z0.]) """ the row-max norm | Zflc.s = maxicqu,)[|Zi.l2. and the

n

Schatten-p quasinorm ||Z|s, = (> ,_, UT(Z)P)I/ . Note that two special cases of Schatten
quasinorms are the nuclear norm ||Z||. := ||Z||s, and the Frobenius norm ||Z||z := ||Z]|s,.



2 IRLS for Sparse and Low-Rank Reconstruction

Recall that we are interested in recovering a rank-r and s-row-sparse matrix X, € R™*"2 from m
linear observations

y = A(X,) € R™, &)

ie, A: R"*"2 — R™ is linear. We write X, € MJL"2 1= M0"2 N NP2, where M"2 C
R™1*"2 denotes the set of matrices with rank at most r and N1z C R™*"2 denotes the set of
matrices with at most s non-zero rows. For convenience, we suppress the indices n; and ny whenever
the ambient dimension is clear from the context. In particular, we know that X, = U, 3, V], where
U, e N'om 3, € R™7, and V,, € R"2*" denote the reduced SVD of X,. Furthermore, the
row supports of X, and U, (the index sets of non-zero rows of X, resp. U,) are identical, i.e.,
supp(X,) = supp(Uy) = S, C [m] :={1,...,m}.

2.1 How to Combine Sparse and Low-Rank Weighting

As discussed in Section 1, the challenge in designing a reconstruction method for (5) lies in simul-
taneously leveraging both structures of X, in order to achieve the optimal sample complexity of
m & r(s + n2). To this end, we propose a novel IRLS-based approach in Algorithm 1. The key in-
gredient for computing the (k -+ 1)-st iterate X (¥+1) € R™1*"2 in Algorithm 1 is the multi-structural
weight operator Wx ) ., 5, : R"1*"2 — R™*"2 of Definition 2.1, which depends on the current

iterate X (%),

Definition 2.1. For 0y, > 0, oF := 0;(X*), and XK € R *72 et

ri = |{i € [n] : ng) > e} (6)
denote the number of singular values c(¥) = (ng));il

be

of X¥) larger than e, and furthermore

Sp 1= HZ €[] : HXEk)||2 > 51@}‘ @

the number of rows of X %) with ly-norm larger than &), Define the ry, left and right singular

vectors of X*) as columns of U € R™*"* and V. € R™>*"* respectively, corresponding to the
leading singular values o*) = (agk)):il = (O'Z'(X(k)));il.
We define the weight operator Wx ) ., 5, : R"*"2 — R"™"*"2 at jteration k of Algorithm 1 as

Wxw cp.8,(Z) = Wy ., (Z) + Wi, 5 Z ®)
where W)l&k)m s RMXm2 oy R XM2 g s Jow-rank promoting part
. -1 | U* -1 | V*
b @ =10 Uz T ey vass [V ©)

with ¥, = max(agk)/sk, 1) and W;[()w) 5. € R™*™ s jts sparsity-promoting part, which is
diagonal with

-1
(W), = (X0 2)" . praniciml o

The matrices U and V | are arbitrary complementary orthogonal bases for U and 'V that do
do not need to be computed in Algorithm 1.

Remark 2.2. For the sake of conciseness, we only consider row-sparsity here. Algorithm 1 and its
analysis can however be modified to cover row- and column-sparse matrices as well. For instance, in
the symmetric setting X, = X1 (naturally occurring in applications like sparse phase retrieval) one
would define the weight operator Wx ) ., 5, as in (8), but with an additional term that multiplies
W;p( A from the right to Z, which corresponds to minimizing the sum of three smoothed logarithmic
surrogates. In this case, the solving modified weighted least squares problem (11) will have similar
complexity (potentially smaller complexity, as additional symmetries can be exploited).



Algorithm 1 IRLS for simultaneously low-rank rand row-sparse matrices

1: Input: Linear operator 4: R™*"2 — R™ datay € R™, rank and sparsity estimates 7 and s.
2: Initialize k = 0, Wx (o) ., 5, = Id and set oy, e = oc.

3: fork =1to K do

4:  Weighted Least Squares: Update iterate X (*) by

X k) — argmin (X, Wx -1 o, _, 5., (X)). (11
X:AX)=y o
5:  Update Smoothing : Compute 7" + 1-st singular value agi)l = o741 (X®)) and (3 + 1)-st
largest row £3-norm pzy1 (X*)) of X(¥) update

e = min (251,08 ) 0 = min (dk-1, p50 (XH)). (12)

6: Update Weight Operator: For rj, and sj as in (6) and (7),
+  compute first rj, singular triplets (%) € R™, U € R™*" and V € R"2*"*,
* compute Wxw) ., 5, in (8) via W)]Z(,v),sk in (9) and W;‘Z(k)‘ék in (10).

7: end for /

8: Output: X %),

Recall F, 5., Fire,, and Fgp 5, from (3)-(4). The high-level idea of Algorithm 1, as for other IRLS
methods, is to minimize quadratic functionals, which we call Q, ., (-|X(*)) : R"1*"2 — R and
Q.5 (+|X*)) : Rm1>*m2 — R and define them by

1
Qe (ZIXM) 1= Fipo (X)) 4 (Vi e, (X)), 2 = XW) o (2= XV Wiy, (Z = X)),
1 s
Qsp,(?k (Z|X(k)) = -FS‘P,(sk (X(k)) + <V-FYP,5I¢ (X(k))a Z— X(k)> + §<Z - X(k)v W)g(k)’gk (Z - X(k))>v

(13)

that majorize 7, s, () (see Theorem 2.6 below) for any iteration k. This minimization leads to the
weighted least squares problem (11) in Algorithm 1. This step can be implemented by standard
numerical linear algebra (see the supplementary material for a discussion of its computational
complexity). As a second ingredient of the method, the smoothing parameters €, and d;, of F, s, are
updated (i.e., decreased) in step (12) before the weight operator is updated according to the current
iterate information. For the weight operator update, it is only necessary to compute row norms and
leading singular triplets of X (%),

Remark 2.3. The particular form of the low-rank promoting part of the weight operator W)lz( . in
(9) is due to [53, 54] and captures optimally spectral information both in the column and row space,
unlike prior work on low-rank IRLS [35, 70], while retaining the property that the induced quadratic
model Qj¢, (- |X*)) majorizes Firee, (+) (see proof of Theorem 2.6). This choice is critical to
enable a fast local rate as established in Theorem 2.5.

2.2 Local Quadratic Convergence of IRLS

Our first main result states that Algorithm 1 exhibits quadratic convergence in a local neighborhood
of X, a property Algorithm 1 shares with several methods from the IRLS family. We only need to
assume that 4 acts almost isometrically on the set M, ;.

Definition 2.4. We say that a linear operator A: R"*"™2 — R™ satisfies the rank-r and row-s-
sparse restricted isometry property (or (r, s)-RIP) with RIP-constant § € (0, 1) if
2 2 2
(1=0)[1Z]|p < [A(Z)]l; < (1 +6) | 2],
forallZ ¢ M, .

It is worth highlighting that Gaussian operators satisfy the above RIP with high-probability if
m > cr(s + ng)log(eny/s), for some absolute constant ¢ > 0, see for instance [60]. Up to log-
factors, this is at the information theoretic limit which we discussed in the beginning. The convergence
result for Algorithm 1 now reads as follows.



Theorem 2.5 (Local Quadratic Convergence). Let X, € M, ; be a fixed ground-truth matrix that
is s-row-sparse and of rank r. Let linear observations y = A(X,) be given and assume that A

has the (r,5)-RIP with § € (0,1). Assume that the k-th iterate X¥) of Algorithm 1 with 7 = r and
S = s updates the smoothing parameters in (12) such that one of the statements €, = 0,11 (X(k)) or
Ok = psi1(X®)) is true, and that vy, > r and 55, > .

If X ) satisfies

1 +(Xy) ps( Xy
1X® - X, || < Bmin{g ( ),p ( )} (14)
48\/HCIIAHH2 r s

_ ./ AN o — i . .
where ¢ q, , =1/1+ R and n = min{ny, na}, then the local convergence rate is quadratic

in the sense that
[XED — X, || < min{ul|X® — X, |2,0.9]X® - X, |},
for

5r 2s )

L 15
X0 T X (1)

_ 2
p=A4179¢] ), (g

and Xk+6 20 x|

The proof of Theorem 2.5 is presented in the supplementary material. To the best of our knowledge,
so far no other method exists for recovering simultaneously sparse and low-rank matrices that exhibits
local quadratic convergence. In particular, the state-of-the-art competitor methods [60, 37, 69, 29]
reach a local linear error decay at best.

On the other hand, (14) is rather pessimistic since for Gaussian A the constant YA, scales like

\/(n1n3) /m, which means that the right-hand side of (14) behaves like m3/2 /(n(n1n2)3/?), whereas
we observe quadratic convergence in experiments within an empirically much larger convergence
radius. Closing this gap between theory and practical performance is future work.

It is noteworthy that the theory in [60] — to our knowledge the only other related work explicitly
characterizing the convergence radius — holds on a neighborhood of X, that is independent of
the ambient dimension. The authors of [60] however assume that the RIP-constant decays with
the conditioning number « of A, a quantity that might be large in applications. Hence, ignoring
log-factors the sufficient number of measurements in [60] scales like m = Q(k?r(s1 + n2)). In
contrast, Theorem 2.5 works for any RIP-constant less than one which means for m = Q(r(s1 +n2)).

2.3 IRLS as Quadratic Majorize-Minimize Algorithm

With Theorem 2.5, we have provided a local convergence theorem that quantifies the behavior of
Algorithm 1 in a small neighbourhood of the simultaneously row-sparse and low-rank ground-truth
X, € R™t*"2 The result is based on sufficient regularity of the measurement operator 4, which in
turn is satisfied with high probability if .A consists of sufficiently generic random linear observations
that concentrate around their mean.

In this section we establish that, for any measurement operator .4, Algorithm 1 can be interpreted
within the framework of iteratively reweighted least squares (IRLS) algorithms [26, 70, 75], which
implies a strong connection to the minimization of a suitable smoothened objective function. In our
case, the objective F; ;5 in (4) is a linear combination of sum-of-logarithms terms penalizing both
non-zero singular values [31, 70, 14] as well as non-zero rows of a matrix X [50].

We show in Theorem 2.6 below that the IRLS algorithm Algorithm 1 studied in this paper is based on
minimizing at each iteration quadratic models that majorize F. s, and furthermore, that the iterates
(X*)) 1 of Algorithm 1 define a non-increasing sequence (., 5, (X®)), _, with respect to the
objective F, 5 of (4). The proof combines the fact that for fixed smoothing parameters &, and &y,
the weighted least squares and weight update steps Algorithm 1 can be interpreted as a step of a
Majorize-Minimize algorithm [86, 58], with a decrease in the underlying objective (4) for updated
smoothing parameters.

Theorem 2.6. Lety € R™, let the linear operator A: R™*"2 — R™ be arbitrary. If (X*));>
is a sequence of iterates of Algorithm I and (8x)r>1 and (€)r>1 are the sequences of smoothing
parameters as defined therein, then the following statements hold.



1. The quadratic model functions Qy, , (- |X®) and Q. 5, (- |X¥)) defined in (13) globally
majorize the (g, 0, ) —smoothed logarithmic surrogate objective F., s,, i.e., for any Z €
R™X72 it holds that

Feron (Z) < Q/I’,Ek (Z|X(k)) + QSP76k (Z|X(k)) (16)
2. The sequence (F., s, (X(’f)))k>1 is non-increasing.

3. IfE = limp_o0 € > 0 and 6 = limy_yo0 65 > 0, then limy_y o0 HX(k) — X(k+1)||p =0.
Furthermore, in this case, every accumulation point of (X(k))kzl is a stationary point of

i —=(X).
i _, TeaX)

The proof of Theorem 2.6 is presented in the supplementary material.

3 Discussion of Computational Complexity

It is well-known that the solution of the linearly constrained weighted least squares problem (11) can
be written as .

X =W LA (AW, A Ty (17)
where Wy, _1 := WX<k71>75k7175k71 is the weight operator (8) of iteration k — 1 [26, 54]. In [54,
Theorem 3.1 and Supplementary Material], it was shown that in the case of low-rank matrix com-
pletion without the presence of a row-sparsity inducing term, this weighted least squares problem
can be solved by solving an equivalent, well-conditioned linear system via an iterative solver that
uses the application of a system matrix whose matrix-vector products have time complexity of
O(mr + r? max(ny,ns)).

In the case of Algorithm 1, the situations is slightly more involved as we cannot provide an explicit
formula for the inverse of the weight operator Wj,_; as it amounts to the sum of the weight operators

W§<k4>,sk4 and W k-1) 5, , thatare diagonalized by different, mutually incompatible bases.

However, computing this inverse is facilitated by the Sherman-Morrison-Woodbury formula [97]
(ECF*+B) '=B!'-B'E(C"'+F'B'E)"'F'B!

for suitable matrices of compatible size E, F and invertible C, B and the fact that both TV

XO=1) gpy
and W;l(’( k=15, exhibit a “low-rank plus (scaled) identity* or a “sparse diagonal plus (scaled)

identity* structure. After a simple application of the SMW formula, (17) can be rewritten such that the
computational bottleneck becomes the assembly and inversion of a O (7 max(ny,n2)) linear system.
We note that in general, this can be done exactly in a time complexity of O(r{maz(n1,n2)?) using
standard linear algebra. A crucial factor in the computational cost of the method is also the structure
of the measurement operator A defining the problem, as the application of itself and its adjoint
can significantly influence the per-iteration cost of IRLS; for dense Gaussian measurements, just
processing the information of A amounts to mmnns flops. If rank-one or Fourier-type measurements
are taken, this cost can significantly be reduced, see [29, Table 1 and Section 3] for an analogous
discussion.

We refer to the MATLAB implementation available in the repository https://github.com/
ckuemmerle/simirls for further details. While our implementation is not optimized for large-scale
problems, the computational cost of Algorithm 1 was observed to be comparable to the implementa-
tions of SPF or RiemAdaIHT provided by the authors [69, 29]. We leave further improvements and
adaptations to large-scale settings to future work.

4 Numerical Evaluation

In this section, we explore the empirical performance of IRLS in view of the theoretical results
of Theorems 2.5 and 2.6, and compare its ability to recover simultaneous low-rank and row-
sparse data matrices with the state-of-the-art methods Sparse Power Factorization (SPF) [60]
and Riemannian adaptive iterative hard thresholding (RiemAdaIHT) [29], which are


https://github.com/ckuemmerle/simirls
https://github.com/ckuemmerle/simirls

among the methods with the best empirical performance reported in the literature. The method ATLAS
[33] and its successor [69] are not used in our empirical studies since they are tailored to robust
recovery and yield suboptimal performance when seeking high-precision reconstruction in low noise
scenarios. We use spectral initialization for SPF and RiemAdaIHT. The weight operator of IRLS is
initialized by the identity as described in Algorithm 1, solving an unweighted least squares problem
in the first iteration. A detailed description of the experimental setup can be found in Appendix A.1.

Performance in Low-Measurement Regime. Figures 1 and 2 show the empirical probability of
successful recovery when recovering s-row sparse ground-truths X, € R2%6%40 of rank r = 1 (resp.
r = 5) from Gaussian measurements under oracle knowledge on r and s. The results are averaged
over 64 random trials. As both figures illustrate, the region of success of IRLS comes closest to the
information theoretic limit of (s +ns — ) which is highlighted by a red line, requiring a significantly
lower oversampling factor than the baseline methods.

% 200 200 200 (1).8
E 150 150 150 0.6
u 100 100 100 0.4
2 50 50 50 8'2

10 20 30 40 10 20 30 40 10 20 30 40

Row sparsity s

Figure 1: Left column: RiemAdaIHT, center: SPF, right: IRLS. Phase transition experiments with
n1 = 256, ng = 40, r = 1, Gaussian measurements. Algorithmic hyperparameters informed by
model order knowledge (i.e., 7 = r and 5 = s for IRLS). White corresponds to empirical success rate
of 1, black to 0.
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Figure 2: Left column: RiemAdaIHT, center: SPF, right: IRLS. First row: As in Figure 1, but for data
matrix X, of rank » = 5. Second row: As first row, but hyper-parameters r and s are overestimated
as7™=2r =10,5 = [1.55]

In Appendix A.2 and Appendix A.3 in the supplementary material, we report on similar experiments
conducted for other measurement operators than dense Gaussians, in which cases the empirical
relative behavior of the methods is comparable.

Sensitivity to Parameter Choice. In applications of our setting, the quantities r and s might be
unknown or difficult to estimate. In the second row of Figure 2, we repeat the experiment of the first
row (rank-5 ground truth), but run the algorithms with rank and sparsity estimates of 7 = 2r and
§ = |1.5s]. Whereas all considered methods suffer a deterioration of performance, we observe that
IRLS deteriorates relatively the least by a large margin. Furthermore, we observe that even if IRLS
does not recovery X, it converges typically to a matrix that is still low-rank and row-sparse (with



larger r and s) satisfying the data constraint, while the other methods fail to convergence to such a
matrix.

Convergence Behavior. Finally, we examine the convergence rate of the iterates to validate the
theoretical prediction of Theorem 2.5 in the setting of Figure 2. Figure 3 depicts in log-scale the
approximation error over the iterates of SPF, RiemAdaIHT, and IRLS. We observe that the IRLS
indeed exhibits empirical quadratic convergence within a few iterations (around 10), whereas the
other methods clearly only exhibit linear convergence. The experiment further suggests that the rather
pessimistic size of the convergence radius established by Theorem 2.5 could possibly be improved by
future investigations.

—<— IRLS-LowRankRowSparse
—f— Sparse Power Factorization [60]
Riemannian Adaptive ITHT [29]

1071 s

10-¢

Rel. Frobenius error
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Figure 3: Comparison of convergence rate. Setting as in Figure 2 with s = 40 and m = 1125.

Further experiments. In Appendix A.4, we provide additional experiments investigating the self-
balancing property of the objective (4), as well as the experiments on the noise robustness of the
method in Appendix A.S.

5 Conclusion, Limitations and Future Work

Conclusion. In this paper, we adapted the IRLS framework to the problem of recovering simulta-
neously structured matrices from linear observations focusing on the special case of row sparsity
and low-rankness. Our convergence guarantee Theorem 2.5 is hereby the first one for any method
minimizing combinations of structural surrogate objectives that holds in the information-theoretic
near-optimal regime and exhibits local quadratic convergence. The numerical experiments we con-
ducted for synthetic data suggest that, due to its weak dependence on the choice of hyperparameters,
IRLS in the form of Algorithm 1 can be a practical method for identifying simultaneously structured
data even in difficult problem instances.

Limitations and Future Work. As in the case of established IRLS methods that optimize non-
convex surrogate objectives representing a single structure [26, 56, 54, 75], the radius of guaranteed
quadratic convergence in Theorem 2.5 is the most restrictive assumption. Beyond the interpretation in
terms of surrogate minimization as presented in Theorem 2.6, which holds without any assumptions on
the initialization, our method shares a lack of a global convergence guarantees with other non-convex
IRLS algorithms [70, 54, 75].

The generalization and application of our framework to combinations of structures beyond rank and
row- (or column-)sparsity lies outside the scope of the present paper, but could involve subspace-
structured low-rankness [31, 24, 99, 87] or analysis sparsity [30, 77]. A generalization of the
presented IRLS framework to higher-order objects such as low-rank tensors is of future interest as
convexifications of structure-promoting objectives face similar challenges [71, 74, 98] in this case.

In parameter-efficient deep learning, both sparse [39, 44, 32, 91] and low-rank [96, 94, 82] weight
parameter models have gained considerable attention due to the challenges of training and storing, e.g.,
in large transformer-based models [92, 9]. It will be of interest to study whether in this non-linear case
IRLS-like preconditioning of the parameter space can find network weights that are simultaneously
sparse and low-rank, and could potentially lead to further increases in efficiency.
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Supplementary material for Recovering Simultaneously Structured Data via
Non-Convex Iteratively Reweighted Least Squares

This supplement is structured as follows.

* Appendix A presents some details about the experimental setup as well as additional
numerical experiments.

* Appendix B.1 presents the proof of Theorem 2.5.
* Appendix B.2 presents the proof of Theorem 2.6.

* Appendix C details some technical results that are used in Appendices B.1 and B.2.

A Experimental Setup and Supplementary Experiments

In this section, we elaborate on the detailed experimental setup that was used in Section 4 of the
main paper. Furthermore, we provide additional experiments comparing the behavior of the three
methods studied in Section 4 for linear measurement operators .4 that are closer to operators that can
be encountered in applications of simultaneous low-rank and group-sparse recovery. Finally, we shed
light on the evolution of the objective function (4) of IRLS (Algorithm 1), including in situations
where the algorithm does not manage to recover the ground truth.

A.1 Experimental Setup

The experiments of Section 4 were conducted using MATLAB implementations of the three al-
gorithms on different Linux machines using MATLAB versions R2019b or R2022b. In total, the
preparation and execution of the experiments used approximately 1200 CPU hours. The CPU models
used in the simulations are Dual 18-Core Intel Xeon Gold 6154, Dual 24-Core Intel Xeon Gold
6248R, Dual 8-Core Intel Xeon E5-2667, 28-Core Intel Xeon E5-2690 v3, 64-Core Intel Xeon
Phi KNL 7210-F. For Sparse Power Factorization (SPF) [060], we used our custom imple-
mentation of [60, Algorithm 4 "rSPF_HTP"] and for Riemannian adaptive iterative hard
thresholding (RiemAdaIHT) [29], we used an implementation provided to us by Max Pfeffer
in private communications. We refer to Section 3 for implementation details for the IRLS method
Algorithm 1.

In all phase transition experiments, we define successful recovery such that the relative Frobenius error

XU —x, . . . .
et - |l of the iterate X %) returned by the algorithm relative to the simultaneously low-rank

Xl p
and row-sparse ground truth matrix X, is smaller than the threshold 10~%. As stopping criteria, we
. . . . xX® _x*=1
used the criterion that the relative change of Frobenius norm satisfies W < tol for
F

IRLS, the change in the matrix factors norms satisfy |[Uy — Up_1|| < tol and |V — Vi_1|| <
tol for SPF, and the norm of the Riemannian gradient in RiemAdaIHT being smaller than tol for
tol = 10719, or if a maximal number of iterations is reached. This iteration threshold was chosen as
max_iter = 250 for IRLS and SPF and as max_iter = 2000 for RiemAdaTIHT, reflecting the fact that
RiemAdaIHT is a gradient-type method which might need many iterations to reach a high-accuracy
solution. The parameters were chosen so that the stopping criteria do not prevent a method’s iterates
reaching the recovery threshold if they were to reach X, eventually.

In the experiments, we chose random ground truths X, € R™**"2 of rank r and row-sparsity s such

that X, = X*/ HX* , where X, = U, diag(d,)VZ, and where U, € R"**" is a matrix with s
F

non-zero rows whose location is chosen uniformly at random and whose entries are drawn from i.i.d.

standard Gaussian random variables, d has i.i.d. standard Gaussian entries and V, € R"2*" has
likewise i.i.d. standard Gaussian entries.

A.2 Random Rank-One Measurements

In Section 4, we considered only measurement operator A : R™ %2 — R" whose matrix repre-
sentation consists of i.i.d. Gaussian entries, i.e., operators such that there are independent matrices
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A4, ... A, withii.d. standard Gaussian entries such that
AX); = (A}, X)F

for any X € R”**"2_ While it is known that such Gaussian measurement operators satisfy the
(r, s)-RIP of Section 4, which is the basis of our convergence theorem Theorem 2.5, in a regime
of a near-optimal number of measurements with high probability, practically relevant measurement
operators are often more structured; another downside of dense Gaussian measurements is that it is
computationally expensive to implement their action on matrices.

In relevant applications of our setup, however, e.g., in sparse phase retrieval [46, 11, 47] or blind
deconvolution [59, 83], the measurement operator consists of rank-one measurements. For this
reason, we now conduct experiments in settings related to the ones depicted in Figure 1 and Figure 2
Section 4, but for random rank-one measurements where the action of A : R"1*"2 — R™ on X can
be written as

A(X); = (a;b}, X)p

foreach j = 1,...,m, where a;, b; are independent random standard Gaussian vectors. In Figure 4,
we report the phase transition performance of RiemAdaIHT, SPF and IRLS for (256 x 40)-dimensional
ground truths of different row-sparsities and different ranks if we are given such random rank-one
measurements.

E | 200 200 200
: 150 150 150
: 100 100 100
f 50 50 50
10 20 30 40 10 20 30 40 10 20 30 40

1 T T T T T T T T T
H 1,000 1,000

800 800
600 600
400 400
20 40 60 20 40 60 20 40 60

Row sparsity s

1,000
800
600
400

Figure 4: Left column: RiemAdaIHT, center: SPF, right: IRLS. Success rates for the recovery of
low-rank and row-sparse matrices from random rank-one measurements. First row: Rank-1 ground
truth X, (cf. Figure 1. Second row: Rank-5 ground truth X, (cf. Figure 2).

We observe in Figure 4 that compared to the setting of dense Gaussian measurements, the phase
transitions of all three algorithms deteriorate slightly; especially for » = 1, one can observe that the
transition between no success and high empirical success rate is extends across a larger area. IRLS
performs clearly best for both » = 1 and r» = 5, whereas SPF has the second best performance for
r = 5. For r = 1, it is somewhat unclear whether RiemAdaIHT or SPF performs better.

A.3 Discrete Fourier Rank-One Measurements

We now revisit the experiments of Appendix A.2 for a third measurement setup motivated from blind
deconvolution problems [3, 59, 64, 66, 83, 29], which are prevalent in astronomy, medical imaging
and communications engineering [49, 13]. In particular, in these settings, if z € R™ is an (unknown)
signal and w € R is an (unknown) convolution kernel, assume we are given the entries of their
convolution y = z * w. If we know that z = Au for some known matrix A € R™*"™ and an
s-sparse vector u € R™ and w = Bv for some known matrix B € R™*"2 and arbitrary vector
v € R™2, applying the discrete Fourier transform (represented via the DFT matrix F € C™*™), we
can write the coordinates of

y = Fy = diag(Fz)Fw = diag(FAu)FBv
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as
yj = Aluv"); = (FA); FB, . uv')p

for each j = 1,...,m, which allows us to write the problem as a simultaneously rank-1 and s-row
sparse recovery problem from Fourier-type measurements.

200
150
100

50
10 20 30 40 10 20 30 40 10 20 30 40

1 T T T T T T T T T
L 1,000

800
600
400
20 40 60 20 40 60 20 40 60

Row sparsity s

Number of measurements m

Figure 5: Left column: RiemAdaIHT, center: SPF, right: IRLS. Success rates for the recovery of
low-rank and row-sparse matrices from Fourier rank-one measurements. First row: Rank-1 ground
truth X,. Second row: Rank-5 ground truth X, (cf. Figure 2).

In Figure 5, we report the results of simulations with A and B chosen generically as standard real
Gaussians for these Fourier-based rank-1 measurements (including for rank-5 ground truths, which
goes beyond a blind deconvolution setting). We observe that the transition from no recovery to exact
recovery for an increasing number of measurement (with fixed dimension parameters s, n; and ns)
happens earlier than for the random Gaussian rank-one measurements of Appendix A.2, but slightly
later than for dense Gaussian measurements. Again, IRLS exhibits the best empirical data-efficiency
with sharpest phase transition curves.

As a summary, we observe that IRLS is able to recovery simultaneously low-rank and row-sparse
matrices empirically from fewer measurements than state-of-the-art methods for a variety of linear
measurement operators, including in cases where the RIP assumption of Definition 2.4 is not satisfied
and in cases that are relevant for applications.

A.4 Evolution of Objective Values

While Theorem 2.5 guarantees local convergence if the measurement operator A is generic enough
and contains enough measurements (RIP-assumption), it is instructive to study the behavior of
Algorithm 1 in situations where there are not enough measurements available to identify a specific
low-rank and row-sparse ground truth X, which respect to which the measurements have been taken.

In this setting, Theorem 2.6 guarantees that the behavior of the TRLS methods is still benign as the
sequence of - and d-smoothed log-objectives (]—'Ek_’(;k (X(k))) x>, from (4) is non-increasing. In
Figure 6, we illustrate the evolution of the relative Frobenius error of an iterate to the ground truth X,
the (e, dx)-smoothed logarithmic surrogates -, 5, (X(*)) as well as of the rank and row-sparsity
parts F, o, (X)) and F;, 5, (X*)) of the objective, respectively, in two typical situations.

In particular, we can see the evolution of these four quantities in the setting of data of dimensionality
ny = 128, ny € {20,40}, s = 20 and r = 5 created as in the other experiments, where a number of
m = 875 and m = 175 (corresponding to an oversampling factor of 3.0 and 1.0, respectively) dense
Gaussian measurements are provided to Algorithm 1.

In the left plot of Figure 6, which corresponds to setting of abundant measurements, we observe that
the four quantities all track each other relatively well on a semilogarithmic scale (note that we plot the
square roots of the objective values to match the order of the (unsquared) relative Frobenius error),
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converging to values between 10~'2 and 107! (at which point the stopping criterion of the method
applies) within 12 iterations.

In the second plot of Figure 6, the number of measurements exactly matches the number of degrees
of freedom of the ground truth, in which case the X*) does not converge to X,. However, it
can be seen that Algorithm 1 still finds very meaningful solutions: It can be seen that within 86
iterations, F, 5, (X(*)) converges to ~ 10~'2 (since \/F, 5, (X*)) ~ 107%) in a manner that
is partially “staircase-like*: After 20 initial iterations where F, 5, (X(*)) decreases significantly
at each iteration, its decrease is dominated by relatively sudden, alternating drops of the (blue)
sparsity objective Fy, 5, (X(¥)) and the (red) rank objective Fy, ., (X(¥)), which typically do not
occur simultaneously.

This illustrates the self-balancing property of the two objective terms in the IRLS objective
Fe,..5.(X*)): while the final iterate at iteration & = 86 is not of the target row-sparsity s = 20 and
r = 9, it is still 20-row sparse and has essentially rank 6. This means that Algorithm 1 has found an
alternative parsimonious solution to the simultaneous low-rank and row-sparse recovery problem that
is just slightly less parsimonious.

Arguably, this robust performance in the low-data regime of IRLS is rather unique, and to the best of
our knowledge, not shared by methods such as SPF or RiemAdaIHT, which typically breakdown in
such a regime.

—><— Rank Objective 1/-7:l7‘.,€k (X(k)) + Sparsity Objective '7:51”7519 (X(k))
IRLS Objective /7, 5, (X(¥)) <~ Rel. Frob. error | X (%) — Xu | o /|1 X ||

102 T I 100 E

107 E

—2 | | B ]

10 10—2 ? é

10°%

1076 ) g ]

1074 E

1010 | 110 F

éggo

—14 ! ! ! | ! 7L ! ]
10 0 2 4 6 8 10 1 0 0 20

iteration k iteration k

Figure 6: Objective/ error quantities of iterates X (*) for iterations k. Left: Typical result for n; = 128,
n = 40, m = 875. Right: Typical result for n; = 128, n = 20, m = 175.

A.5 Robustness under Noisy Measurements

The convergence theory for the IRLS method Algorithm 1 established in Theorem 2.5 assume that
exact linear measurements y = A(X,) of a row-sparse and low-rank ground truth X, are provided
to the algorithm. However, in practice, one would expect that the linear measurement model is
only approximately accurate. For IRLS for sparse vector recovery, theoretical guarantees have been
established for this case in [26, 57]. We do not extend such results to the simultaneously structured
case, but we provide numerical evidence that IRLS as defined in Algorithm 1 can be used directly
also for noisy measurements.

To this end, we conduct an experiment in the problem setup of Figure 1 in Section 4 for a fixed
row-sparsity of s = 40, in which the measurements provided to the algorithms IRLS, RiemAdaIHT
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and SPF are such that

Y= A(X*) + w,
2
where w is a Gaussian vector (i.i.d. entries) with standard deviation of o = 4/ % and where

SNR is a varying signal-to-noise ratio. We consider SNRs between 10 and 102, and report the
resulting relative Frobenius error statistics in Figure 7.
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—— IRLS-LowRankRowSparse
—— Sparse Power Factorization [60]

Riemannian Adaptive IHT [29]
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/
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relative Frobenius reconstruction error || X — Xo|| ¢ /|| Xo |l 7
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10t 102 10® 10* 10° 10 107 10® 107 10 10'* 10%2

Signal-to-noise ratio SNR

Figure 7: Median relative Frobenius reconstruction errors of different algorithms given noisy Gaussian
measurements, ny = 256, ny = 40, row-sparsity s = 40 and rank r = 1, oversampling factor of 3.
Error bars correspond to 25% and 75% percentiles.

We observe that the reconstruction error is consistently roughly proportional to the inverse square
root of the signal-to-noise ratio, for all three algorithms considered. This suggests that IRLS is as
noise robust as comparable algorithms, and expected to be return estimates of the original ground
truth that has a reconstruction error that is of the order of the norm of the noise.

B Proofs

The following two sections contain the proofs of our main results. Let us begin with some helpful
observations.

First note that the low-rank promoting part W)’g(k) -
can be re-written as

Wi . (Z) = [U IL](EKU“%@Jo({Sg]ZDf'Vﬂ)){ez}, (18)

: RMxm2 5 R™X"2 of our weight operator

where
H(a(k),éfk) = [min <5k/0§k), 1) min (Ek/0§k)a 1)} o

i,j=1
2 Tk ri,dz
& () ()
T % Jag=1 i Jig=1
dy,r)
ek
Pi ij=1

Consequently, all weight operators in Definition 2.1 are self-adjoint and positive. Whereas for

WP this is obvious, for W it follows from the matrix representation
X®) 5, X e

W@w%%::<ﬂI'ULM@Bf VLDIhﬂdmﬁw(n; Ul eV er)

€ R™Mxnz,
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where Dy (o) ., ) € R™"7"2%7172 is a diagonal matrix with the entries of H(c®) ¢,), which are all
positive, on its diagonal.

B.1 Proof of Theorem 2.5

Before approaching the proof of Theorem 2.5, let us collect various important observations. In order
to keep the presentation concise, we defer part of the proofs to Appendix C.

For a rank-r matrix Z = UXV*, we define the tangent space of the manifold of rank-r matrices at
Z as

TU,V = {UZT +ZoV*: 7, € anxr’ Z; € Rnlxr}. (19)
In a similar manner, we can define for Z = UXV* € M, ; and S = supp(Z) = supp(U) C [n4]
the tangent space of M, restricted to S as
Tuv,s ={UZ} +Z;V*: Zy € R"*" Zy € R™*" with supp(Zz) = S}. (20)
As the following lemma shows, orthogonal projections onto the sets M"1:"2, N'"1:"2 Ty v/, and
Ty, v,s can be efficiently computed.

Lemma B.1. We denote the projection operators onto M?>"2 and N2 by T, and Hs. T,
truncates a matrix to the v dominant singular values; Hg sets all but the s in {5-norm largest rows to
zero. In case of ambiguities (multiple singular values/rows of same magnitude), by convention we
choose the r (respectively s) with smallest index.

For U and V fixed, the orthogonal projection onto Ty v is given by
Pyv :=Pr,yZ=UU"Z+ZVV* -UU'ZVV™
For S C [n1] and U,V fixed with supp(U) = S, the orthogonal projection onto Ty v g is given by
Pyv,s:=Pr, 24 =Ps(UUZ+ZVV" - UUZVV™)
=UUZ+PsgZVV* —UU'ZVV™,
where Pg projects to the row support S, i.e., it sets all rows to zero which are not indexed by S.
The proof of Lemma B.1 is provided in Appendix C.2. In contrast to the above named projections,

the projection onto M1>"2 is not tractable. However, [29, Lemma 2.4] shows that locally P, _ can
be replaced by the concatenation of T,. and Hg, i.e., for Z, € M, s and Z = Z,, one has that

PMr,s (Z) = Tr(Ha(Z))

For a matrix X € R™ ™2 and i € [n4], we set p;(X) = ||(X)s.||2 where ¢’ is a row index corre-
sponding to the i-th largest row of X in fo-norm. More precisely, if X is a decreasing rearrangement
of X with rows ordered by magnitude in ¢3-norm, then p;(X) = [|(X);.]|2. As the following

lemma shows, the quantity p,(X) determines a local neighborhood of X on which H; preserves the
rOW-support.

Lemma B.2. Let X € R™*"2 be a matrix with row-support S C [n1] and |S| = s. Then, for
any Z € R™>*"2 with || X — Z|cc,2 := maX;epn,) | Xs,: — Zj:[]2 < %pS(X) the matrix Hs(Z) has
row-support S.

Proof: Note that 1

mac [[(Z):. — (X)e: 2 € £pe(X)

i€[n1]
implies that any non-zero row of X corresponds to a non-zero row of Hs(Z) and hence yields the claim.

A first important observation is that if A has the (r, s)-RIP, then the norm of kernel elements of A is
bounded in the following way.

Lemma B.3. If A has the (v, s)-RIP with§ € (0,1) and U € R™*",V € R"*" withsupp(U) = S,

|S| < s, then
o oy A e =
=l < 1+ T2 [P @),
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The proof of Lemma B.3 is presented in Appendix C.3.
Remark B.4. If A is a Gaussian operator with standard deviation \ / % one has with high probability
that ||A||§—>2 ~ %

We use of the following lemma to characterize the solution of the weighted least squares problem
(11). Its proof is analogous to [54, Lemma B.7] and [26, Lemma 5.2].

Lemma B.S. Let A: R" "2 — R™ andy € R™. Let Wxw) ., 5, : R"*"2 — R™*"2 be the

weight operator (8) defined based on the information of X*) € R™*"2_ Then the solution of the
weighted least squares step (11) of Algorithm 1

X (k+1) — arg min(X, WXUC),Ek»ék (X)), @b
AX)=y

is unique and solves (21) if and only if
AXE Yy =y and  (Wxw o, 5 (XFET)E) =0 forall E€ker A.  (22)

For any iterate X(¥) of Algorithm 1, we furthermore abbreviate the tangent space (20) of the fixed
rank-r manifold M, restricted to S at H,(X¥)) by

T =Ty v 5 (23)
where U € R™ %" and V € R"2%" are matrices with leading* r singular vectors of HS(X(k)) as
columns, and S € [n] is the support set of the s rows of X (*) with largest £5-norm.

The following lemma is the first crucial tool for showing local quadratic convergence of Algorithm 1.

Lemma B.6. Let X, € M, ; and let X %) be the k-th iterate of Algorithm 1 with rank and sparsity
parameters v = r and s = s, let 0y, €1, be such that sy, and ry, from Definition 2.1 satisfy s, > s and
r > 1. Assume that there exists a constant ¢ > 1 such that

1Ellp < ¢||Pre(8)
k

‘F forall E € ker(A), (24)

where T, = Tg ¢ is as defined in (23) for matrices U € R"%" gqnd V € R2xr of leading r

left and right singular vectors of Hy(X®)) and S C [n,] is the support set of H,(XF)). Assume
furthermore that

1 1 1
k) _ < m 1 .
IX X, < mln{2pS(X*),m1n{487196}0T(X*)} . (25)

Then,

k k)Y Y 2
HX(kH) _ X*H < 4¢% min o1 (X! ))7 psi1 (X))
- €k Ok

(e 000+ W5, x],).
where |[M|[, 5 = 3, [M; ||, denotes the row-sum norm of a matrix ML, and W;éw ., and W;Ié(’“%ék

are the weight operators (9) and (10) from Definition 2.1.

The proof of Lemma B.6 is presented in Appendix C.4.

Remark B.7. By revisiting the proof of Lemma B.6 (omit the bound in (48) and keep the term
(B, WE) until the end), one can show under the same assumptions as in Lemma B.6 that

o1 (XH) poyg (X*

) 2
|E||%g4c2mm{ - 5 } <E (PILJ)VW)IQ(;C)7Ek]}D%},V+PScW;‘Z(k)ﬁkﬂpsc)E>,

where U and V are containing the left and right singular vectors of X¥), see Definition 2.1.

‘As U and V might not be unique, any set of r leading singular vectors can be chosen in this definition.
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The contribution of the norms of the weighted X, terms in Lemma B.6 can be controlled by Lemmas
B.8 and B.9 below.

Lemma B.8. Let Wy,

the spectral information of X*) and let X, € R™*"2 be a rank-r matrix. Assume that there exists
0<(< %such that

s R™M X2 RMXM2 he the rank-based weight operator (9) that uses

max{ey, [|X® - X, ||} < Con(X,). (26)
Then for each 1 < q < 00,
rl/a

s = =0 (X

Wik ., (X2)

1
(1 — Csi + ep K | X® — X, || 4 2||X®) — X*||2)

and

1 rt/a ,
< e —|—2HX(")—X*‘ (g Fx® - x, ))
Sq (1 - C)UT(X*) (1 - C b Sq g ” ”
where K is such that K, = 21/qf0r1 <q¢<2and4 <q K, = \/§for2 <q<4and K; =1
for q = .

Lemma B.9. Let W;’;(k)7 5

current iterate X¥) with §;, = min (5k_1, pS_H(X(k))) and let X, € R™*™2 pe an s-row-sparse
matrix. Assume that there exists 0 < ( < % such that

Wik ., (X)

€ R™*™ pe the row-sparsity-based weight operator (10) that uses the

IX® =X loc,2 = max IX®)i = (Xa)isllz < Cps(Xa), 27)
1 ny

where ps(M) denotes the Uy-norm of the in {y-norm s-largest row of M. Then
s6%

WP - X, %%
| 1= 0% (X.)

X (%) 6,

l12 <

Lemma B.8 is a refined version of [54, Lemma B.9] the proof of which we omit here.’ The proof of
Lemma B.9 is provided in Appendix C.5. Finally, the following lemma will allow us to control the
decay of the IRLS parameters 0y, and £y.

Lemma B.10 ([54, Lemma B.5]). Let X, € M,. ,, assume that A has the (r, s)-RIP with ¢ € (0, 1),
and let us abbreviate n = min{ny,na}.

Assume that the k-th iterate X %) of Algorithm 1 with ¥ = r and 3§ = r updates the smoothing
parameters in (12) such that one of the statements ¢, = JT+1(X(k)) or 6 = psH(X(’“)) is true,
and that ry, > r and s > s. Furthermore, let

1
e < fUT(X*)

=18
with ey, , = 1+ 2, ler 85 = X0 — X, sarisfy
1 1 1
=0 < min{fps X, ,min{—,i}ar X, } (28)
I < min {506 min { . 57— ()

Then

||E(k)||F < 2\[2\/730”‘,4”2%2\/462 + 5%

The proof of Lemma B.10 is provided in Appendix C.6. We finally have all the tools to prove

Theorem 2.5. Note that (14) implies
min { 7r(Xs) , ps(X) } , ! ) (29)
r S 4/1,\/ 5nCHA||2H2

48¢2

[X® — X, | < min {
Al 5

5This result is a technical result of an unpublished paper. In this paper, we only use that result as a tool. If the
reviewers think that adding the proof is relevant here, we are happy to provide it.
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and
ek < —0,(X,) (30)
~ 48
which we will use in the proof below. The latter follows from the fact that for 7 = r

£x = min (g,H, i (X )) < o (X)) < [[XB) X, || < 0,(X..)/48.

1 <«
48¢2 =
1Al 2

the closeness assumption (29) implies that H, (X““)) and X, share the same support due to Lemma B.2.

Let X*) be the k-th iterate of Algorithm 1. Since the operator .A: R™**"2 — R™ has the (r, s)-RIP with
§ € (0,1), Lemma B.3 yields for all U € R™*"V € R"?*" with supp(U) = 5, | S| < s, that

n
PTU'V’S(E)HF’

for any E € ker(.A). Furthermore, due to our assumption that § = s and 7 = r, the smoothing parameter update

Proof of Theorem 2.5: First note, that by assumption 77 = r and § = s. Furthermore, since %,

1Elr < cpap,_,,

rules in (12), i.e., §x = min (Jk,hpS“(X(k))) and €, = min (Ek,l, 0'7»+1(X(k>)), imply that 7, > 7 and

sk > s for all k. We can thus apply Lemma B.6 for =2® .= X®) _ X, (note at this point that (29) implies the
closeness assumption (25) of Lemma B.6) and obtain

=2 = e - x|
(®) (O
2 o (X)) pepar (XTY) Ir
S 4CHA”2~>2 mln{ e 5 5k HWX(k),gk (X*) ‘* + HW;Ié(k)ﬂ‘;k . X* 1.2 )
(€29)
where W)’Q( S R™1*"2 s R™*"2 g the low-rank promoting part (9) of the weight operator associated to
X*) and W;ZUc) o € R™ ™ the sparsity promoting part (10). Since by assumption

= (k 1
max(zr, [EV]) < Lov(X.),

Lemma B.8 yields
42

Wy o, (X, < 0-995 165X

(air + 26, |X®) — X, |+ 2IX®) — X*HQ) )
Similarly, by assumption

=® <1EW) < Loy < Loux

B o2 S IIET < o=ps(X) < gopa(X),

such that Lemma B.9 yields

215632
sp k
wa(’f),ak - X2 < 0.995m. 33)
Inserting (32) and (33) into (31) we obtain that
2
HE(k-H) < 0.995 - 4'20ﬁAH min { or 1 (X*) paa (X™) }
- 252 )
Ek Ok (34)

. r 2 = (k) = (k)2 25 o
(i (6 + 200 =@+ 22 E) + —2?).

Due to the assertion that r;, > r, it holds that e, < 0,41 (X(k) ). Therefore, Lemma C.3 yields that
2 =(k =(k)| 2 —=(k) |2
(e + 26012 + 21207 < 5=,
and, since sx > s, also that
ok < I1EW )% < 12X,
since 8, < psy1(X®)) in this case.

Thus, using the assertion that one of the statements € = 0,41 (X(k)) or 0k = Ps+1 (X(k)) is true, we obtain
from (34) that

= (k1) 2 or 2s =2®|?
BT |
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For HE.““) H < éc[jﬂz , min{@, @} (as implied by (29)), this yields

IE*H)| < 0.91=®)| (36)
and the quadratic error decay

=(k =(k) (12
(=l I i=

. _ 2 51 2s
if we define o= 4.1790”.‘4“2‘}2 (m + m)
To show the remaining statement, we need to argue that the assertions of Theorem 2.5 are satisfied not only for
k, but for any k + £ with £ > 1. For this, it is sufficient to show that
. g1 2>,
2. Spy1 > s,
3. ex+1 < éo’r(x*),
4. (29) holds for X **1), and that
5

. one of the statements 51 = o1 (X FFD)

or 11 = psy1 (XEHD)Y is true,

as in this case, X *+9) £28° X, follows by induction due to successive application of (36).

For 1. and 2., we see that this follows from the smoothing parameter update rules (12) which imply that
ert1 < orp1 (XED) and Gp 1 < pogr (XFFY),
3. follows from (30) and the fact that due to (12), (ex)x>1 is non-increasing. 4. is satisfied due to (36) and (29).

To show 5., we note that due to (29), the assertion (28) is satisfied, and therefore it follows from (35) and
Lemma B.10 that

= (k+1) 2 or 2s =) . 2 2
H— H < 4179¢) 41, , (m + ps(X*)) H— H 2V2v/neyal, o\ 467 + 67

We now distinguish the case (i) 0x < € and the case (ii) d;, > €.
In case (i), it holds that

orpa (XEHD) < HE(k+1)H <4179 4y, (% + %) 2v10nc) 4y, ., E(k)H Ek
= ‘u2\/107nc“,4”2_>2 E(k)H €k
< €k,
where the last inequality holds since by (29) the k-th iterate X *) additionally satisfies
IX® - X, || < 1 (37

207/ 10¢) 4, ,,

In this case, due to the smoothing parameter update rule (12), we have that ex4+1 = or41 (X(k+1> ).
In case (ii), we have likewise that

pern (XE) < [|[240|| < p2v/ioneyay, L, [[E 60 < o,

due to (35), Lemma B.10, and (37). Hence, 0x+1 = ps+1 (X(kﬂ)) which shows the remaining statement 5. and
concludes the proof of Theorem 2.5. |

B.2 Proof of Theorem 2.6

1.) Lete, § > 0 be arbitrary. Due to the additive structure of F. 5(-), cf. (4), it is sufficient to establish
that

1 S
Fips(Z) < Qups(ZIX) = Fips(X) + (VFyps(X), Z = X) + S{Z = X, Wy 5(Z = X)) (38)
for any Z, X € R™"*"2 where W‘;g(; : Rmxm2 5 R™M 72 i defined analogously to (10) and
1
ﬂr,s(z) S er,e(Z|X) = ﬂr,a(X) + <V]:lr,6(X)7 Z — X> + §<Z - Xv W)IS,E(Z - X)>7 (39)

for any Z, X € R™*"2_ where W)lg,s s R1Xm2 5 R™1X72 g defined analogously to (9).
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The argument for (38) is standard in the IRLS literature [2, 73, 76] and is based on the facts that both

Qsp,5(Z|X) and F, 5(Z) are row-wise separable, and that ¢ — f ﬁ(\/f) is concave and therefore
majorized by its linearization: indeed, let g, : R — R be such that

g (t) — %T 10g(€|t|/7’), lf |t| > Ta
IR 7R if |t] < 7.

The function g,(-) is continuously differentiable with derivative g/ (t) =
furthermore, concave restricted to the non-negative domain R>.

)sign(t) and

— T __
2 max(|t|,T

Therefore, it holds for any ¢, € R>q that
g-(t) < g-(t') + g7 (1) (t = 1).
We recall the definition f,(t) = 37%log(et?/72) for [t| > 7 and f,(t) = 3t? for [t| < 7 from (2)

-2
with derivative f/(t) = ma"(g L maxT(;f)Tg). Thus, for any z, z € R, it follows that
Fr(2) = 9r2(2%) < gr2(?) + gla(a) (2% — 22)
2
_ T 2 2
= f-(x) + 2max(x2,7'2)(z %),
and inserting 7 = 9, z = ||Z; .||2, * = || X .||z and summing over ¢ = 1,...n; implies that
niy niy 52
S| Z) = Z’L < S| X Zi'2_ Xi'2
]:P,ti( ) ;J%(” ,~||2) —]:p,ti( )+;2max(||x,;7;“%,52)(” ,‘|2 H ,‘|2)
2
i 52 I s [|Zi: — X |
=FpsX)+ Y ———— (X Zi — X)) + = : i
! ; max([|X;,.[|3, 62) 2 ; max([|X;,.[|5/62,1)
From the chain rule, it follows that for all ¢ = 1, ..., n; for which X . # 0,
d d)| X2 01X, 2 X, 62X
Fs(I1Xi:l2) = f5(11Xi:|2) —= = : == ’
dX,: ’ dX;,. max (]| X;,.[15, %) [ X2 maX(”Xi’:”%’6210)

and therefore
1 ;
-Fspﬁ(z) S Ep,é(x) + <V-Fsp,5(X)7 Z — X> + §<Z - Xa W)?ﬁ(z - X)>

which shows the majorization of (38), recalling the definition W%, =
diag <max (I1X..]12/62, 1);1;1)*1) of (10).

The majorization of (39) is non-trivial but follows in a straightforward way from [53, Theorem 2.4]
as the objective Fj, . (Z) corresponds to the one of [53, Theorem 2.4] up to a multiplicative factor
of £2 and constant additive factors, and since the weight operator W;g,g corresponds to the weight
operator used in [53, Chapter 2] for p = 0.

2.) Due to the definition (3) of Fy, 5, (-) and the derivative computation of (40), we observe that

X k) 5

i=1

1\ 4
VFp.s., (X(k)) = diag ((max (H(X(k))i,:H;/CSz, 1) 1) ) X)) = W X *)

Sp

comparing the resulting term with the definition of (10) of Wy, P

equality follows from the the formula

—1\ ¢ *
VFirer (X(k)) =[U U, ]diag ((Uz(k) max ((Jgk))2 5%, 1) > > |:¥j_:|

=1

Furthermore, an analogue

with O'Z(k) = 0;(X™®) for any i < d, which is a direct consequence from the calculus of spectral

functions Lemma C.1, and inserting into the low-rank promoting weight operator formula (9)

d V*
2_1 ® | = r,e X(k)
I MBS

1=

W (XW) = [U UL S diag ((05’“))
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Inserting V., 5, (X®) = W, o - X® and VF, ., (XF) = W, (XH)) into the defini-
tions of Qy, -, (Z|X™®)) and Qy, 5, (Z| X)), we see that it holds that

1 r r
Qe (ZIX W) = Fir,(XW) 4 5 (12, Wik ., (2)) = (X, Wiy (XD)))
and

X 1 : s
QSp’ék (Z|X(k)) = ]:sp,ék (X(k)) + 5 (<Z’W;I(,(k>,5kz> - <X(k)7W;€(k>,5kX(k)>> '

Therefore, we see that the weighted least squares solution X1 of (11) for k 4 1 coincides with
the minimizer of

i (k) (k)
g [ Qe (ZIX ) 4 Qup, (21X V)]

= mi e (X)) 4 s (X
Z:;\?g)l_y[ﬂ,ek( )+ Fop.ai (X)) (41

1
+ 5 (2 Wxw cy 5.(2) = (XP, Wi o, (X“”»)]
with the weight operator Wx () O of (8), which implies that
Qe (X IX®) + 9, 5 (XEFIX®)) < ), (XK XW) + Q5 (XBXW). (42)
Using the majorization (16) established in Statement 1 of Theorem 2.6 and (42), it follows that
Fepsy (X)) < Qo (XFFDIXW) 4 Q) 5, (XFFDIX D)
< Qe XPXB) 4 Q) 5, (XFXW) (43)
= ‘Flr,Ek (X(k)) + ]:517,% (X(k)) = ‘Fakyék (X(k))v
using in the third line that Q. (X®|X®) = F,  (X®) and Qs (XH|XHK) =
’7:517761« (X(k))

To conclude, it suffices to show that & + F. 5, (X**1)) and § + F., 5(X#*1)) are non-decreasing
functions, since (43) then extends to

Fe (X(kJrl)) < Fe (X(k+1)) < ‘F&‘kﬁk (X(kJrl)) < ]:Ek,(sk (X(k))’

where we used that the sequences ¢, and J; defined in Algorithm 1 are decreasing. So let us prove
this last claim. We define for ¢ € R the function h; : R>g — R such that hy(7) = f- (1), i.e.,

142 ; >
ht(T):{%tﬁ 2/.2 %fT_ i
372 log(et?/7%), if T < |t].

k4+1:0k+1 ksOk+1

This function is continuously differentiable with h(7) = 0 for all 7 > |¢| and
hy () = 7 (log(et?/7%) — 1)

for 7 < |t|, which implies that 2}(7) > 0 for all 7 > 0 and thus shows that & — F. 5, (X**1)) and
§ > F., (X)) are non-decreasing functions due to the additive structure of F. 5(X(*+1)) and
.

3.) First, we argue that (X(k))kzl is a bounded sequence: Indeed, if € := limy_, € > 0 and
0 = limy_, 0 > 0, we note that

1 <2
5= log(el XW2/2%) + 26" log(e max [ XM | 2/87)

5" log(e max || X" 5/3%)

IN

INA
N N =N

1
ek log(eoT(XM)/e}) + 507 log(e max X[ [l2/57)
Irek (X(k)) + ]:51775k (X(k)) = ]:Ek,(sk (X(k)) < ]:61,51 (X(l))

IN
N =

1
min(dy, da)o2(XW) + 51 max X3 =: Oxao,s
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which implies that {||X(®)||};; is bounded by a constant that depends on Cx(1).

Furthermore, we note that the optimality condition of (11) (see Lemma B.5) implies that X (k+1)
satisfies
Wx ) e, .5 (XY =) = 0 for all E € ker A and A(XFHD) = y.

Choosing E = X*+1) — X(¥) and using the notation W *) = Wx k) ¢, s, We see that
(X(’““), 17742 (X(k+1))> _ (X(k), w (k) (X(k))>
— (XD E) (x k1)) _x (R) p7(R) (x (R)yy (k) (x (k1) x (k+1) _ x(F)
(XPTD, WE(XEETY)) — (X, WH(X)) — 2(WH(XTTY), X X
— <<X<k+1>, W) (X EHD)) o) (X Ry X DY 4 (X (B) () (X<k>)>)
- _<(X(k+1) _ X(k)),W(k)(X(k'H) _ X(k))>_

Due to the definition of W (*), we note that its smallest singular value (interpreted as matrix operator)
can be lower bounded by

(44)

Umin(W(k)) Z Omin (W)lz(k,))gk) + Omin (Wsp

R g,) = 00/ max | X |+ 22 /o (X))

>0 [egpxa) +E /o x,
. =2 )
where ¢y, x1) and ¢, x 1) are constants that satisfy ¢y, x1) <9 exp(Cxw /0 — 1) and ¢ x1) <
22 exp(Cxa) /82 — 1).

Combining this with (44), the monotonicity according to Statement 2 of Theorem 2.6, and (41), it
follows that

Fer i1 (X(k)) _ fek+1,6k+1(X(k+1)) > <(X(k) _ X(k+1))7w(k)(x(k) _ X(k+1))>

AV
| — Do =

=2
5 (5% epxen + 22/ xan ) XD - XU

Summing over all k, this implies that limy,_, . [|X®*+D — X®)||» = 0.

Since (X(¥)) %>1 is bounded, each subsequence of (X Ry x>1 has a convergent subsequence. Let
(X( ))[>1 be such a sequence with limy_, o X*e) = X, i.e., X is an accumulation point of the

sequence. As the weight operator W (k<) depends contmuously on X(#¢) | there exists a weight
operator W : R™1X"2 — R™*"2 guch that W = limy_, o, W %),

Since limy, oo || X*+1 — X*)|| 2 = 0, it also holds that X(k¢+1) — X and therefore
(VF.5(%), ) = (V(R),5) = Jim (W00 (X0+) =) =

for all E € ker A. The statement is shown as this is equivalent to X being a stationary point of
F_ 5(°) subject to the linear constraint {Z € R™*"2 : A(Z) = y}.

C Technical addendum

C.1 Auxiliary Results

In the proof of Theorem 2.6, we use the following result about the calculus of spectral functions.

Lemma C.1 ([63],[35, Proposition 7.4]). Let F : R %92 5 R be a spectral function F = f oo
with an associated function f : R* — R that is absolutely permutation symmetric. Then, F is
differentiable at X € RN > if and only if f is differentiable at o(X) € R

In this case, the gradient VF' of F at X is given by
VF(X) = Udiag (Vf(U(X))V*
if X = Udiag(c(X)) V* for unitary matrices U € R"*% gnd V € R¥2%42 6

SHere, for v € R™n(d1:d2) diag(v) € R %2 refers to the matrix with diagonal elements v; on its main
diagonal and zeros elsewhere.
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C.2 Proof of Lemma B.1
The projection operators for M?1:"2, N'"1:"2 and Ty v are well-known, see e.g. [8]. To see the
final statement assume that U has row-support S and note that Py; v, is idempotent, i.e.,
Py v,sPuv,si
=UU*(UU*Z+PgZVV* —UU*ZVV™) 4+ Pg(UU*Z + PsZVV* — UU*ZVV*)VV*
—UU*(UU*Z +PgZVV* —UU*ZVV*)VV*
=UU"Z + UU'PgZVV* —UU*ZVV* 4+ UU*ZVV* + PgZVV* — UU*ZVV*
—UU*ZVV* —UU*PgZVV* + UU*ZVV~*
=UU'Z +PgZVV* —UU*ZVV* =Py v sZ.
One can easily check that Py v s acts as identity when applied to matrices in Ty v,s and that
Py,v,s = Py v g since (Z'.Puv sZ)r = (Puv,sZ' Z)p, for any Z,Z’. This proves the claim.

C.3 Proof of Lemma B.3

Let = € ker(.A). Note that
0= A@)l = [APry v <(®) +Ph, , @) 2 |14Pr, v @), - [ AP, @)
By the RIP we hence get that

HPTU,V,S(E)Hi‘

2

2

IN

s Mo @)} < 15 4@, . @]

2
HAH2~>2 IP)L (-:) 2
= (1=0) N Tovs T pe
Consequently,
2
—_2 =\ |2 1 = |I? ||A||2 2 L =7
1815 = [Pro.v.s )7 + [P @) < (1 T aog) [Pro @],

C.4 Proof of Lemma B.6

In the proof of Lemma B.6 we will use the following fact.

Lemma C.2. Let W)lg(,c) be the weight operator defined in (9), which is based on the matrices
€k

U € R %" and V € R™*"* of leading 1}, left and right singular vectors of X*). If M € Tu,v,

then W, . (M) € Tuv. If M € Ty, then Wy, (M) € T -

Proof : If M € T v, there exist M; € R™**"™ M, € R™**("277k) My € R(" ") X"k uch that

v=(u w0V

e.g., see [90, Proposition 2.1]. We thus observe that the weight operator W)’g(k) e R™1%72 _y R™M1%X12 from
(18) satisfies
Ir
Wxa o, (M)

=[U U] (H(awﬁk)o ({g{] [U U] {M; l\fﬂ P’q] v VL])) R{ﬂ

~[U U] (H(G““)fk) ° m; I\gQD Pfﬂ

HY oM, HY oM, {V}
.| eTuv.
ng o Msj 0 Vi oV

Similarly, if M € Téﬂv, there exists My € R =TR)*(n2=7k) guch that M = U, M4(V1)" and

-t (e ) ]

_ 0 0 ) L
=[U U] {0 M;/ai} {Vj] €Tuv-

SIGRA]|
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Proof of Lemma B.6: Let = € R™ *"2 be arbitrary. We start with some simple but technical observations.

First note that by Lemma B.1, if T}, = T ¢ g»

P, E = (Id — Pr, )(E)

k

—=- (002 +PEVY" - TO'EVV")

~ ~ 45)
= (Id — Py ¢)E + (Id - P5)EVV”
L = —_—7\T*
- ]P’ﬁ’(,.: —|— ]P’Sc.:VV s
with
<P$7\~/E,PSCE{IV*> = <ﬁLﬁiEvai7PSCEvv*> =0, (46)

where we used that P§ (& = (Id — Pg g)& = U, UTEV, V], for Uy € R*™* ™M and V, €
R™2*("277) peing the complementary orthonormal bases of U and V, and that \7]‘_\7 =0.

Second, let now U € R™"**" and V € R™2*" be matrices with r leading left and right singular vectors of X (¥’
in their columns which coincide with the matrices U and V from Definition 2.1 in their first 7 columns. Then it
follows from (45) and (46) that

[Pz @]

1 — 2 —— 7N T
e

2

F
2

" (47)

oL = 1 1 ov=ll? _ * S NE
= [PovE+ @S5 - PEVE| +[Psem(VVT + (VYT vV

F

2 2 ~ ~
<2 (HIP%WEHF + H(pg’{, - ]P%LV)EHF +PsBEVVT2 + H]P’SCE(VV* —VVY)

L)

2 ~ o~
HJP’%J,VEHF + [[PseEVV* |5 = (PG VvE + PscEVV™ PG yE + PscEVV™) = (£, E),

By an argument analogous to (46), we observe that

where & = P (E) is an element of the subspace M = M1 & Ma C R"*™ that is the direct sum of the
subspaces M1 := {P vZ: Z € R™ "™} and My := {PscZVV* : Z € R™*"2},

Let now W)[;( k) ey be the rank promoting part of the weight operator from (9) and W‘;’;( " s, be the row-sparsity
promoting part from (10). Note that the restriction of

17 . oL Ir L Sp
W — PUvVWX(k),Ek]P)va + IP)SCWX(IC),(S;CPSC

to M is invertible as its first summand is invertible on M = Téyv, its second summand is invertible on Mo
(recall that the weight operators are positive definite), and M, L M. Therefore it holds that

2
HP#J,VEHF +[[PseBEVV®2

_om e _ Jrl2e i—1rl/2e
= &.8) = (WiE wiuwiiE)

=1\ /= i = 1 = e
< - (2.WE)
Omin <(PJ0,VW)]2(I€)75,€PIJ3,V) ‘M> + Omin ((Pscwg;(k),akpsc) |M>
1 S
<—0p —(2.WE).

oT L (X) + 77 (X))

In the first inequality, we used that W| M is positive definite. In the second inequality, we used that omin (A +
B) > omin(A) 4 omin(B), for any positive semidefinite operators A and B, and and in the third inequality that

(é, WE) < (E, WE). The latter observation can be deduced as follows: Note that, by the self-adjointness of

(B, WE) = (PMm(E), WPM(E)) + (Pm(E), WP(E)) + (Px((E), WPMm(E)) + (P (B), WP (2))
= (B,WE) + 2(P1(B), WPM(B)) + (P (B), WP (E))



Since W is positive semi-definite (due to the fact that both W;;( B ep and W;‘;( K 5, are positive definite), all

that remains is to argue that the mixed term on the right-hand side vanishes. To this end, note that ]P%J,vz =
PscZVV™ =0, for any Z € M and compute

(P (2), WPm(E)) = (Pm(E), Po,v(Wxw o (Pov (Pa (B))) + (Pu(E), Pse Wy 5 PsePaty (E))
= (Po.v (Px(E)), W o, (Po v (Pa (B))) + (B P (E)VVT, Wiy, | PseE)
=0.

We can now continue by estimating

E,WE) = (E,PovWikw . PGVE E,PseW? ,,  PgE
<~7W~>7<-—-, U, VWx(k) o T UV= + SeW (k) 5, " 5=
= (P6.v (), Wy . PEv(E)) + (PseB, W, | PseE)
— Ir — sp =
< (8 W5, Z) + (= Wieo %)
= <E7Wx(k),5k,5k5>a

using the positive semidefiniteness of W)/é( . and VVV”( " s, in the last inequality. To be precise, the last

(43)

inequality can be argued as follows: Due to complimentary supports .S and S¢, we see that

(B W;(k) o B)= <]P’s._‘,W;(k) . PsE) + <Psc_,W;[;(k) o PscE)
<]P)sE, WX(’“),ék]P)SCE> + <]P)ScE., Wx(k),(;kP55>
49)
=0 =0

> (PseE, W;’;(k)’ék]P)SCE).
Similarly, we note that W)lz( K)o, acts diagonally on Ty, v and Téjv. Indeed, we have by Lemma C.2 that if
M € Ty, v, then W ., (M) € Tu,v andif M € T v, then W, (M) e T& v, which implies
(PuvE Wxw . PGvE) =0 and (P vE Wy ., (PuvE)) =0
due to the orthogonality of elements in Té’v and Ty,v, respectively, and therefore it follows from & =
Tuv(E) + Tg,v(E) that
& Wxw ., (B) = (PuvE, Wxw ., (PuvE)) + (PoVvE, Wya ., (PovE))
= Ir L = L = Ir =
+ PuvE, Wxau ., (PuvE)) + (Pu vE, Wxa ., (PuvE))
=0 =0
> (PG vE, Wy ., (PG vE)).

Combining the previous estimates with (47) and noticing that

1 < mi or1(XW) pl (X))
2 2 —_ min 2 I 2 )
s €k o,

(50)

€

k + k
o2 (X)) T2 xR

= ot X)) (X)) /o =
HIPTICL (:)HF <2 (mln{ 6% ) 5]3 <‘=‘7 Wx(k),sk,ék='>

1 L — 2 _—x TN Tk * 2
+2H(Pﬁy\~, —PU,V)=HF+2HPSC=(VV VvV )(F.

we obtain

(61

Next, we control the last two summands in (51) using matrix perturbation results. Recall that U, € R™ *" and
V, € R™2*" are the singular vector matrices of the reduced singular value decomposition of X. First observe
that

’(Pﬁ,\”f - PU*,V*)E‘

- H(ﬁﬁ* — U, U)E(d — V, V) + (Id - UU)E(VV* = V, V)

<‘~~*—
<( uuU* —

.

Id—V,V Hfff/* —-V,

)=
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Now note that, by [12, Lemma 1] and [65, Theorem 3.5], we obtain

5o o o [ (X*) = X. |
uu” -U,U U,U V.V <4
H (H LH + || LH) — UT(X*) _ Ur+1(Hs(X(k)))
IX® — X, | IX™ — X, ||

S X — (X)) =T 1), (X))

(52)
where we used some small observations in the last two inequalities: First, 0,41 (HS(X(’“))) < Ort1 (X(k)),
which follows from the rectangular Cauchy interlacing theorem [27, Theorem 23]. Second, according to
Lemma B.2 and (25), the row-support .S of Hs(X™®)) coincides with the row-support S, = {i € [ni] :
[(X)i|l2 # 0} of X, and hence H (X )} — X, is a submatrix of X*) — X, Finally, ,1(X®) =
IT (X(k)) X®E| <X, = X®| < +50+(X,) due to (25). Consequently,

IX™® — X

Py — P EH <q 2 — Rl g
H( ov ~Pu v B S A e x,) (B

and, by a similar argument,

= IX® X,
P —-P Sl <4d—r———7—"—||IE
1P, v, ~Pom)Elr <4 e 18
such that it follows from ]P’U v =1Id — Py v and ]P’~ ~=1Id — IF’ that
T S T (i -

IX® — X,
ST S .

To estimate the fourth summand in (51), we argue analogously that

H]PSCE(VV* —VVY)

‘ < HE(W* —VVY)
F

)F < (||\~f\7* - V.V + VLV - VV*H) 1=l

2(IV.VLI+ IV Vi) =l

<o [Hs(X™) = X, || n IX® — X, || 1=
=\ or (X)) — o1 (Ho (X)) T 0 (Xs) — orga (XR)) ) HT0F
<4 IX® = X. | (= u =
S0 v (x) 1=l S AT g0, o 1B e
(54)
using again that o1 (X®) < ||X, — X®)|| < =0r(X,) due to (25).
Let now 2*+D = X+ _ X Combining (24) and (51)-(52) we can proceed to estimate that
IE*HY)1%
2
2 = (k1)
< & ||Pry @4
2
s . for 1 (X®) peyg (XB) = (k1) =(k+1)
< 2¢” min { €k ’ 5k <_' 7WX(’“>,€1¢,51€_ >
8 \2 4 = (k41) (|2 | x* —X*H2
2 () + (as) 1= 1 ey
2\ mm) am) [FIE I %
s o (X®) pea(X*))? =(k+1) Z0+1)) = (k4 1)
<2c mln{ o o (B W) o5, EFTY)) +167¢% B |7 W
2
2 foran(X®) pen (X)) St Z(HD)) =+
< 2¢ mm{ - , 5 (= Wxt) o6, (B >+ 1= 1%,
(55)

where the third inequality follows from (8) and (25). Hence, rearranging (55) yields

2
(k1) 2 o forp 1 (X®) pen (X7 e (k1
=4 < actmin { 2O LoD o gy, (=00

33



By Lemma B.5, we know that X**+1) fulfills
0= <E(k+1)7 WX(k),sk,ék (X<k+1))> — <E('“+1), WX(’“),sk,ék (E(k+1))> + <E(k+1), WX(M’%% (X*)>

such that we conclude that

H5<k+1> < H5<k+1> 2

F
< 4¢? min { 0r+1€(kX(k))’ p5+1((si(<k)) }2 <E<k+1>, Wy o, 5, (E(k+1))>
=t {21 pen KON g k)
= —4¢® min { Jr+1€(f(k>), ps“éi((k)) }2 ((E(k“), W;]E(k),sk(X*» + <E(k+l)’wi<k>,5k : X*>)
< 4" min{arﬂs(kX(k))’ Ll } (H X0 e, X () o X 12)
— 4c” min{‘”“a(kx(k)) P “g(k) } (HW)’ME (X.) +stp<k> 5 X 172) H5<k+1>
which completes the proof. We used in the penultimate line Holder’s inequality and that

(8 B)r| = |3 AusBus) < 32 1Al 1Bl < (max | Al ) - > IBill, < IA] B,
i,j i

for all matrices A, B. |

C.5 Proof of Lemma B.9

Note that by Lemma B.2 and (27), S := supp(Hs(X(’“))) = supp(X,). Since by assumption
8 < ps(X®)) we have by definition of W that Z := Wy, o - X, is a matrix with
row-support .S and rows

52 52
Z;.= {H X0, ‘ 1} (Xy )i = m(x )iy

for ¢ € S. Now note that if (27) holds, then
RN Kl . 5
IXE)i: 13~ (1= 0)?ps(Xs)’

where we used in the last estimate that with (27) and [|(X.);..||2 > ps(Xy), fori € S, we have
X3 > (1K)ill2 = HX®) i = (Xa)isll2)? = (1K) ll2 = Cps(X0))?
> (1= 00 (X)) (1 = QIX)icll2 )

for all ¢ € S. The claim easily follows since Z has only s non-zero rows.

X (k) 5,

1Zi:||2 =

C.6 Proof of Lemma B.10

In the proof of Lemma B.10, we use a simple technical observation.

Lemma C3. Let X, € M, ,, let X*) pe the k-th iterate of Algorithm 1, and abbreviate =0 —
X(*) — X,. Then the following two statements hold true:

L Ifep < 0py1 (XR), then g, < 2P

2. If 6 < psir (X0, then 8, < [|E® oo 2.

s
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Proof: By defining [X(’”]T to be the best rank-r approximation of X®) jn any unitarily invariant norm, we
bound

er < o (XP) = |X® - XPL || < XY = X = 1BV,
where the inequality follows the fact that X, is a rank-r matrix.
Similarly, for the second statement, we have that
0k < psr1 (X)) = |X® — Hy(X®)[|oo2 < 11X = Xifloo2 = [E® oo,z
using that X, is s-row sparse. |

Proof of Lemma B.10: First, we note that, using Lemma B.3, the observation in Remark B.7 yields

2
=12 2 . Ur+1(X(k)) Ps+1(X(k))
IElF < 4cjay,_,, mm{ P

(56)
'<—, (PU v Wi . Py,v + Psc WY ]P’SC)E>
for all & € R™ *"2 a5 the assumption (28) implies | X*) — X, || < min { i85 92 }UT(X*) Thus, this holds

in particular also for = (F) — X*) _ X, . (Recall that U and V contain the leading singular vectors of X®),
see Definition 2.1.) We estimate that

- = I—
\/<P6,V: W)l((k) EkPILJ,V'=‘<k)> = H x(k> Ek (PU,V(:( )))HF

< Wk o) 2 EE N XD+ |V )Y (Pawxm))H

x ()5

F

min(ni,ng)

‘Ql\)

< vt

< o 20+ e

q
“‘l\)

1

i=r41 max

Furthermore, since max(eg, |E®||) < +0+(X,) by assumption and £, < 2| by Lemma C.3, we can
use a variant of Lemma B.8§ to obtain
H(er )1/2(X ) ‘ Vrek + 2e ”=<k)HF + 2||:U€)HHH k)HF
X k) e * = 47 k k o (X,) or(X,)
4.16=M| )
< 1.04+/re k+7“— 7
(Xy)

On the other hand, we note that =*) restricted to S¢ coincides with the restriction of X to S¢ under
assumption (28), cf. Lemma B.2, and therefore

<PSC:<1€) W;‘Zm pscs(k)>:<p5cx W;é(m ]P’ScX(’“)>

_ X0).. 3 s
= > iRy S (9%

1=s+1

With the estimate of above, this implies that
<Ev (P%LVW (k) ey, ]P)U v+ PSCWX(M s ]P’sc)E>

< (H(W’IE“) 6k)l/Q(X*)H +vn — TSk) +(n1 — s)o;
~13 0 52||=®) |2
T o (Xs)
Inserting these estimates into (56), we obtain
(k) XEYVY? /13 52|22
2|12, < 402 fori (X)) psya (X)) 13 52 E =Z(*)
I I+ < 4cjjay,_,, mln{ " ; o 1 nep + i1y + 2(X.) =% ).
If now either one of the two equations €, = 0,41 (X(k>) or 0 = Ps+1 (X(k)) is true, it follows that
208/ =%)|? = (k) |2
— < IEF

IE®[% + 3(n — 7)ek + (n1 — )37

=k 2« 2 2 p i
IE®% < cfay,_, (13nek +4n187) + cfay, .,

02(X4)
2 2 2 1 =2
S CHAH2_>2 (13n€k +4n15k) + 5“5( )”F
if the proximity condition |E®| = [|X® — X, || < WUT(X*) is satisfied. Rearranging the latter
2
inequality yields the conclusion of Lemma B.10. |
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