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Abstract

Algorithms that utilize bandit feedback to optimize top-k recommendations are
vital for online marketplaces, search engines, and content platforms. However, the
combinatorial nature of this problem poses a significant challenge, as the possible
number of ordered top-k recommendations from n items grows exponentially with
k. As a result, previous work often relies on restrictive assumptions about the
reward or bandit feedback models, such as assuming that the feedback discloses
rewards for each recommended item rather than a single scalar feedback for the
entire set of top-k recommendations. We introduce a novel contextual bandit algo-
rithm for top-k recommendations, leveraging a Gaussian process with a Kendall
kernel to model the reward function. Our algorithm requires only scalar feedback
from the top-k recommendations and does not impose restrictive assumptions on
the reward structure. Theoretical analysis confirms that the proposed algorithm
achieves sub-linear regret in relation to the number of rounds and arms. Addi-
tionally, empirical results using a bandit simulator demonstrate that the proposed
algorithm outperforms other baselines across various scenarios.

1 Introduction

The top-k recommendation problem involves providing a ranked list of k items, such as news
articles or products, from a pool of n items [34, 13]. Online algorithms must adapt to dynamic user
preferences, making bandit algorithms suitable due to their use of limited feedback [1]. Developing
bandit algorithms is challenging due to limited feedback and the need for computational efficiency in
real-time recommendation environments. Recent research on user interfaces for recommendations
highlights that the overall layout of the recommendation page is crucial for user appeal, as modern UI
designs have evolved from simple dropdown lists to complex, visually engaging layouts [17, 13, 18].
Consequently, bandit algorithms must jointly select and display all top-k items, rather than simply
choosing the most relevant k items and ordering them by decreasing user relevance [31].

The joint consideration of top-k items makes the number of arms (possible actions for the bandit
algorithm) combinatorially large, i.e., Θ(nk). Previous research on bandit algorithms often imposes
strict assumptions on feedback models [30, 21]. For instance, semi-bandit feedback provides a scalar
reward for each of the top k items, thus decomposing the combinatorial feedback into item-level
feedback. However, this type of feedback is frequently unavailable [32]. Another common feedback
model is cascade browsing [16], which assumes that users examine items in a predetermined order
and cease browsing once a desirable item is found, offering item-specific scalar feedback but failing
to capture potential non-linear interactions among items [26]. Figure 1 illustrates the limitations of
the cascade model in capturing user interactions within modern top-k recommendation interfaces.
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These limitations motivate us to adopt a more general full-bandit feedback setting, where only a
single scalar value is provided for the entire top-k set of recommendations [24].

Figure 1: A snapshot from Etsy show-
cases Father’s Day shopping recommenda-
tions. The lack of an obvious linear search
order challenges the assumptions of the cas-
cade model. Additionally, the proximity and
arrangement of items are likely to influence
clicks, indicating complex interaction pat-
terns and supporting the need for full-bandit
feedback without assumptions about user in-
teractions with recommended items.

Table 1: Compute and memory analysis for the proposed GP-
TopK bandit algorithm. Rows represent different costs: total com-
pute and memory of the GP-TopK algorithm for T rounds, time
for matrix-vector multiplication (mvm) with the kernel matrix
KXt for tth round, and time to update KXt . Columns represent
different approaches: the kernel approach, which uses full ker-
nel matrices, and our novel feature approach, which performs
the same operations through feature expansions and scales more
efficiently with respect to T. The symbols c, k, and T denote
the embedding size for contexts, the number of items, and the
number of rounds, respectively.

Tasks kernel approach feature approach

compute O(T3) O(c · k2 ·T2)
memory O(T2) O(c · k2 ·T)
mvm(KXt

) O(t2) O(c · k2 · t)
compute KXt O((c+ k2) · t) O(c · k2)

Beyond feedback assumptions, the reward structure in bandit algorithms must be decomposable into
scalar values for individual items to prevent a combinatorial explosion of arms—something that is
not always feasible. For example, modern e-commerce platforms value and track metrics such as
diversity and fairness [1], which cannot be captured by focusing solely on individual items [15]. This
necessitates algorithms for full-bandit feedback settings that operate without specific assumptions
about the objectives or reward structures [24].

This work introduces a bandit algorithm that uses Gaussian processes (GPs) to model rewards
under full-bandit feedback (i.e., a single scalar value). GPs are selected for their flexibility in
accommodating feedback across discrete, continuous, and mixed domains, such as continuous
contexts and discrete rankings [33]. Additionally, unlike parametric models that require optimization
incorporating accumulated feedback from previous rounds, GP updates are computationally efficient,
involving only data updates [24]. Although GP inference may face computational limits, we will
develop efficient inference methods tailored to our proposed algorithm. A further challenge in
designing GP-based bandit algorithms for top-k recommendations is constructing expressive positive-
definite kernels that capture similarities between top-k recommendations [9]. This work mitigates
these computational and modeling challenges, as illustrated in the following sections.

Broadly speaking, GPs have been previously explored for bandit algorithms [27, 19]. Krause et
al. [14] employed GPs for contextual bandits in continuous domains; we focus on the discrete domain
of top-k recommendations. Vanchinathan et al. [28] used GPs with a position-based feedback model,
and Wang et al. [31] used GPs with semi-bandit feedback for recommending top-k items. In contrast,
our work does not rely on a specific reward model or feedback assumption, and develops an an
efficient GP-based bandit algorithm for top-k recommendations.

1.1 Contributions

Our primary contribution is the GP-TopK algorithm, a contextual bandit algorithm for recommending
top-k items. This algorithm operates in a full-bandit feedback setting without relying on assumptions
on reward, making it broadly applicable compared to prior works. We leverage GPs with variants
of the Kendall kernel [12] to model the reward function and optimize the upper confidence bound
(UCB) [27] acquisition function for selecting the next arm. Additionally, we introduce a novel
weighted convolutional Kendall kernel for top-k recommendations that address pathologies in existing
variants of the Kendall kernel when applied to top-k recommendations.

Our second key contribution is enhancing the scalability of the GP-TopK algorithm for longer time
horizons. Initially, the computational cost for top-k recommendations using the GP-TopK algorithm
is O(T 4) for T rounds. We first reduce this to O(T 3) by leveraging iterative algorithms from
numerical linear algebra [25]. Next, we derive sparse feature representations for the novel weighted

2



convolutional Kendall kernel, further reducing the compute requirements from O(T 4) to O(T 2) and
memory requirements from O(T 2) to O(T ). Table 1 summarizes these improvements in time and
memory requirement, including their dependence on other parameters.

We provide a theoretical analysis showing that GP-TopK’s regret is sub-linear in T , benefiting from
the feature representations of the Kendall kernels introduced in this work. Specifically, we establish
an upper bound on regret that is nearly quadratic in n, significantly improving over the naive Θ(nk)
bound for top-k recommendations without using feature representations [27]. Finally, we empirically
validate GP-TopK’s regret on real-world datasets, demonstrating improvement over baseline methods.

1.2 Organization

The remainder of this paper is organized as follows: Section 2 introduces Kendall kernels for full
and top-k rankings, including the novel weighted convolutional Kendall kernel. Section 3 presents
faster matrix-vector multiplication algorithms for Kendall kernels, enhancing the efficiency of the
proposed bandit algorithm, which is further detailed along with the regret analysis in Section 4.
Finally, Sections 5 and 6 present empirical results and concluding discussion, respectively.

2 Kendall Kernels for Full and Top-k Rankings

This section introduces Kendall kernels and their extensions for top-k recommendations, forming the
foundation of our approach. We first establish key notations and them present Sections 2.1 and 2.2,
which introduce Kendall kernels for full rankings and top-k rankings, respectively.

Notations: Let [n] = 1, 2, . . . , n, with π representing a top-k ranking—an ordered tuple of k
distinct elements from [n]. For a full ranking (k = n), we use σ and denote the set of all possible
top-k rankings by Πk, with cardinality |Πk| = Θ(nk). To capture ranking positions, the vector
pσ ∈ Rn corresponds to a full ranking σ with entry pσ

i gives the rank of item i. For top-k rankings,
pπ ∈ Rn is similarly constructed by arbitrarily assigning distinct ranks to items not in the top k. For
relative ranks, indicator functions pσi<j and pσi>j denote whether item i is ranked before or after item
j, respectively in σ. Also, pπi<j and pπi>j are similar indicator functions defined for top-k rankings.

2.1 Kendall Kernels for Full Rankings

Jiao et al. [9] showed that the Kendall tau rank correlation coefficient [12] is a positive definite (p.d.)
kernel for full rankings, which we refer to as the standard Kendall (SK) kernel. The weighted Kendall
(WK) kernel generalizes the SK kernel by differentially weighting item pairs [10]. Specifically, the
SK and WK kernels for full rankings σ1, σ2 are defined as:

ksk(σ1, σ2) :=
1(
n
2

) ∑
i<j

ηi,j(σ1, σ2) (1)

kwk(σ1, σ2) :=
1(
n
2

) ∑
i<j

w((pσ1
i ,pσ1

j ), (pσ2
i ,pσ2

j )) · ηi,j(σ1, σ2), (2)

where ηi,j is 1 if the pair (i, j) is concordant (ordered the same in both rankings) and −1 oth-
erwise; concretely, ηi,j(σ1, σ2) := pσ1

i<j · pσ2
i<j + pσ1

i>j · pσ2
i>j − pσ1

i<j · pσ2
i>j − pσ1

i>j · pσ2
i<j ; and

w((pσ1
i ,pσ1

j ), (pσ2
i ,pσ2

j )) is the value of a positive definite weighting kernel w(·, ·) : [n]2×[n]
2 7→ R

that operates on pairs of ranks. The wi,j adds flexibility and can assign varying importance to ranks,
similar to the discounted cumulative gain (DCG) metric [7]. Note that both SK and WK kernels are
p.d. and right-invariant with respect to Πn [10]. In other words, they compute similarity based only
on the relative ranks of pairs, not on the labels of items, as clearly evident from Equations 1 and 2.

2.2 Kendall Kernels for Top-k Rankings

Weighted Kendall and Convolutional Kendall (CK) kernels. To adapt the WK kernel from full
rankings to top-k rankings, Jiao et al. [10] set the weighting function w(i, j, σ1, σ2) to zero if either
item is not in the top-k of either ranking. While this approach yields a p.d. kernel, it disregards
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items outside the intersection of top-k rankings. In contrast, the convolutional operation provides an
alternative for adapting the standard Kendall kernel to top-k rankings.

Let Bπ denote the set of full rankings consistent with the top-k ranking π (i.e., for every item i in π,
∀σ ∈ Bπ,p

π
i = pσ

i ). The convolutional Kendall kernel can be defined as follows:

kck(π1, π2) =
1

|Bπ1 | · |Bπ2 |
∑

σ1∈Bπ1
, σ2∈Bπ2

ksk(σ1, σ2), (3)

where ksk is the standard Kendall kernel. Since the CK kernel is a convolution of another p.d. kernel,
it is also a p.d. kernel [5]. Unlike the WK kernel for top-k rankings, the CK kernel accounts for items
not in both top-k rankings. However, computing the CK kernel is expensive, requiring exponentially
many evaluations of the kernel ksk in the double summation. Therefore, Jiao et al. [9] developed an
efficient algorithm to bypass this double summation, reducing compute to O(k log k) time.

Proposed Weighted Convolutional Kendall (WCK) Kernel. To combine the strengths of the WK
and CK kernels for top-k rankings, we propose the weighted convolutional Kendall kernel for top-k
rankings π1 and π2 ∈ Πk:

kwck(π1, π2) :=
1

|Bπ1 | · |Bπ2 |
∑

σ1∈Bπ1
,σ2∈Bπ2

kwk(σ1, σ2), (4)

where kwk represents the weighted Kendall kernel for full rankings σ1, σ2 ∈ Πn.

The proposed WCK kernel combines the flexibility of differentially weighting ranks among the top-k
items (as in the WK kernel) with the ability to account for items outside the intersection of both
top-k rankings (as in the CK kernel). Additionally, as a convolution of a p.d. kernel, it is also a p.d.
kernel. However, computing the WCK kernel remains challenging, as it requires exponentially many
evaluation of the kwk kernel, as given in the RHS of Equation 4. To address this, we focus on a
specific form of rank weights of the kwk kernel, called as product-symmetric rank weights:

wps((i1, j1), (i2, j2)) := ws(i1, j1) · ws(i2, j2), (5)

where, ws(i, j) : [n]× [n] 7→ R is a symmetric function, i.e., ws(i, j) = ws(j, i). Notably, the WCK
kernel can be computed efficiently for the case of these weights (see Claim 1 below).

Table 2: Comparison of Kendall kernel similarities for top-
k rankings. The table shows kernel values k(π0, ·) for the
top-k ranking π0 = [1, 2, 3] with other rankings (π1, π2,
π3, π4) for n = 7 and k = 3. Rankings are arranged left to
right by increasing similarity to π0. The similarity values
provided by the proposed kernel increase from left to right
as expected, demonstrating the desirable behavior of the
WCK kernel with DCG rank weights, unlike other variants.
All kernels are unit-normalized. See text for further details.

Top-k π1 π2 π3 π4

Kernels [4, 5, 6] [3, 2, 1] [2, 1, 3] [1, 3, 2]

WK 0.00 −1.00 0.33 0.33
CK −0.60 0.60 0.87 0.87
WCK −0.38 0.09 0.46 0.87

The WCK kernel, even with the relatively
simple wps weights, exhibits notable proper-
ties, as shown in Table 2. In this table, we
use ws(i, j) = 1

log(i+1) ·
1

log(j+1) , inspired
by the DCG metric commonly applied in
recommendation systems [7]. Notably, the
WK kernel ranks two rankings with no over-
lap (π0 and π1) as more similar than two
rankings with the same items in reversed or-
der (π0 and π2), indicating a clear pathol-
ogy. Further, the CK kernel fails to dis-
tinguish between reversed pairs at different
ranks (kck(π0, π3) = kck(π0, π4)), present-
ing another limitation if known variants of
Kendall kernels for top-k rankings. By us-
ing product-symmetric ranking weights, the
WCK kernel addresses these shortcomings,
providing a more nuanced similarity compar-
ison for top-k rankings.

Claim 1. The weighted convolutional Kendall kernel (Equation 4) with product-symmetric rank
weights (Equation 5) can be computed in O(k2) time.

Appendix A provides the proof that leverages the structure of product-symmetric rank weights wps to
establish the existence of a feature representation for the WCK kernel, as formally stated below in
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Claim 3 below. We then demonstrate that the inner product of these features, and hence the WCK
kernel, can be computed in O(k2) time (Algorithm 2 in the appendix). Similar to the result of Jiao et
al. [9] for the CK kernel, this approach avoid exponentially many evaluations of kwk on the RHS of
Equation (4) by enabling a direct computation of the WCK kernel.

3 Fast Matrix-Vector Multiplication with Kendall Kernel Matrices

In Gaussian processes, inference can be accelerated by using iterative algorithms that take advantage
of fast matrix-vector-multiplications (MVMs) with the kernel matrix [3]. This section introduces fast
algorithms for kernel MVMs by exploiting the implicit structure of Kendall kernel matrices.

Let mvm(KXt
) denote the runtime required to multiply the t × t kernel matrix KXt

=
(k(xi, xj))xi,xj∈Xt

by any admissible vector. In the naive approach, this runtime is mvm(KXt) =

O(t2). However, if k(xi, xj) = ϕa(xi)
Tϕb(xj) for any arbitrary xi and xj , where the vectors ϕa(xi)

and ϕb(xj) are sparse and contain only z non-zero entries, then mvm(KXt
) reduces to O(z · t),

which is a significant improvement over O(t2) when z ≪ t. When ϕa = ϕb, we refer to ϕa as the
linear feature vector for the kernel k. Before focusing on top-k ranking kernels, we provide a linear
feature vector for the WK kernel on full rankings (given earlier in Equation 2).

Claim 2. Let ϕwk(σ) : Πn 7→ R(
n
2) be a vector indexed by unique item pairs (i, j), defined as:

ϕwk
i,j (σ) :=

1√(
n
2

) · ws(p
σ
i ,p

σ
j ) ·

(
pσi<j − pσi>j

)
,

where ws is the symmetric weighting function in product-symmetric weights. Then, ϕwk is a
linear feature vector for the weighted Kendall kernel with product-symmetric weights wps.

Using Claim 2, the linear feature vector for the WK kernel can be extended to the WK top-k ranking
kernel by utilizing the structure of product-symmetric weights, which allows weights to be set to
zero for items outside of the top-k rankings, as described in Section 2.2. Precisely, such a feature
vector for the top-k ranking kernel is sparse; specifically, the feature vector ϕwk(π) contains only
O(k2) non-zero entries due to the WK kernel’s focus on item pairs within the top-k. Consequently,
the runtime for mvm(KXt

) in the WK kernel matrix is reduced to O(k2 · t).

Claim 3. Let ϕwck(π) : Πk 7→ R(
n
2) be a vector in-

dexed by unique item pairs (i, j) given as: ϕwck
i,j (π) :=

1√
(n2)

· wwck
i,j (π) ·

(
pπi<j − pπi>j

)
, where wwck

i,j (π) is

determined as follows:

wwck
i,j (π) =


ws(p

π
i ,p

π
j ) if pπ

i ∈ [k] & pπ
j ∈ [k]

ws(p
π
i , ·) else if pπ

i ∈ [k] & pπ
j /∈ [k] ,

ws(p
π
j , ·) else if pπ

i /∈ [k] & pπ
j ∈ [k] ,

0 otherwise,

where ws denotes symmetric weights and ws(ℓ, ·) =
1

n−k

∑n
j=k+1 ws(ℓ, j). Then, the vector ϕwck is a lin-

ear feature vector for the WCK kernel kwck. By uni-
formly setting ws(·, ·) ≡ 1 in the definitions above,
ϕwck
i,j (π) specializes to a linear feature vector for the

CK kernel.

Moving forward, we focus on deriving
a sparse feature vector for the WCK
kernel, enabling fast MVMs with the
WCK kernel, which includes the CK
kernel as a special case. Notably,
any convolutional kernel inherits lin-
ear features from its constituent kernel.
Specifically,

∑
σ∈Bπ

ϕwk
i,j (σ) forms a

feature vector for the WCK kernel,
which follows from Equation 4 and
However, computing this feature vec-
tor explicitly is computationally chal-
lenging, as it requires summing over
all σ ∈ Bπ, which includes an expo-
nential number of terms, i.e., Θ(nk).

In response to this challenge, Claim 3
shows that the summation can be com-
puted analytically and provides ex-
plicit linear feature vectors for the
WCK and CK kernels. It also shows
that ϕwck has only O(k2 + 2nk) non-
zero entries among its O(n2) total en-
tries. Consequently, mvm(KXt

) for
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the WCK kernel requires O((k2 + 2nk) · t) operations, which improves from O(t2) to linear in t.
However, this introduces a dependence on n, the number of items, which poses a serious limitation
and is beneficial only when n ≤ t. In the following theorem, we leverage redundancy in ϕwck to
eliminate this dependence on n, leading to the following main theorem about the mvm(KXt

).

Theorem 1. For the WCK kernel with product-symmetric weights wps, the computational
complexity of multiplying the kernel matrix KXt

with any admissible vector is O(k2t), i.e.,
mvm(KXt

) = O(k2t), where Xt is any arbitrary set of t top-k rankings.

Appendix A provides the proof in two steps. First, we utilize the values of ϕwck from Claim 3 and
categorize ϕwck(π1)

Tϕwck(π2) based on item pairs, as summarized in Table 4. Next, we show that
only five combinations yield non-zero values, i.e., ϕwck(π1)

Tϕwck(π2) =
∑5

i=1 si(π1, π2). Each
term si(π1, π2) is a dot product of vectors ϕai(π1)

Tϕbi(π2), which contains at most O(k2) non-zero
entries. Thus, for the WCK and CK kernels, mvm(KXt

) = O(k2t), since these vectors across
all five terms include only O(k2) non-zero entries. Consequently, Theorem 1 demonstrates that
employing these vector representations for top-k rankings leads to faster MVMs, i.e., mvm(KXt

) =
O(k2t) ≪ O(t2).

4 Proposed GP-TopK Bandit Algorithm

In this section, we begin by formally defining the top-k recommendation problem within a bandit
framework and introduce a generic contextual bandit algorithm, detailed in Algorithm 1. We then
explain how the components of the algorithm are instantiated using the proposed GP approach,
followed by an analysis of its computational complexity and cumulative regret.

Let T denote the number of rounds. Contexts C are represented in a finite c-dimensional space,
i.e., C ⊆ Rc. In the tth round, we receive a context ct ∈ C and select a top-k ranking πt ∈ Πk.
Subsequently, a noisy reward yt = f̂(ct, πt)+ ϵt is observed, where f̂ is the true reward function and
ϵt is round-independent noise. The regret is defined as rt := maxπ

′ ∈ Πkf̂(ct, π
′
)− f̂(ct, πt), with

cumulative regret RT :=
∑T

t=1 rt. The accumulated data at the tth round is Dt = (ci, πi, yi)
t
i=1.

Below, the Algorithm 1 provides provides a generic schematic of the bandit algorithm.

Algorithm 1 Contextual Bandit Algorithm for Top-k Recommendations
Input: Total rounds T , initial reward model M0, and acquisition function AF .

1: for t = 1, · · · , T do
2: Observe a context ct from the context space C.
3: Select a top-k ranking πt that maximizes AF(Mt−1(ct, π)) for the context ct.
4: Obtain the scalar reward yt.
5: Update the reward model Mt using the accumulated feedback Dt.
6: end for

We aim to design the components of above Algorithm 1 with the objectives of minimizing cumulative
regret and ensuring computational efficiency. It requires two key components: (a) a reward model
Mt that estimates the reward for any context and top-k ranking utilizing the accumulated data Dt and
(b) an acquisition function AF for selecting πt given the reward model Mt and observed context ct.

Reward model M and acquisition function AF . The proposed GP-TopK bandit algorithm
leverages GP regression to model the reward function over the domain of contexts and top-k rankings.
Section B.1 briefs GP regression for the completeness. Essentially, the reward model M maintains a
distribution over functions f , i.e., f ∼ N (0, k(·, ·)), where k is a product kernel function over both
contexts and top-k rankings (C

⊗
Πk). Specifically, the kernel function k is defined as follows:

k((c1, π1), (c2, π2)) := kc(c1, c2) · kr(π1, π2), (6)
where kc(c1, c2) = cT1 c2 is the dot-product kernel and kr is a kernel for top-k rankings. We use
variants of the Kendall kernel for kr from Section 2. Updating the reward model Mt at the tth
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round involves adding new data points to our GP regression, which is computationally inexpensive
compared to the fine-tuning steps required by parametric models to incorporate the latest feedback.

We use the UCB function as the acquisition function, balancing exploration and exploitation by
selecting actions that maximize the upper confidence bound of the estimated reward [27]. The UCB
acquisition function is AF(Mt(ct, π)) := µf |D((ct, π))+β

1
2 ·σf |D((ct, π)), where σf |D((ct, π)) =√

kf |D((ct, π), (ct, π)) and β controls the trade-off between exploration and exploitation. Here,
µf |D and kf |D are the GP posterior mean and covariance functions, as detailed in Section B.1. At the
tth round, the algorithm selects the top-k ranking π ∈ Πk that maximizes AF(Mt(ct, π)), which is
performed using local search [19], as detailed further in Appendix B.

Computational complexity. The GP-TopK bandit algorithm does not require compute for model
updates. In other words, updating Mt, i.e., in the Line 5 of the Algorithm 1 requires only updating
the list of accumulated feedback data Dt. The GP-TopK relies on local search to optimize AF , so
the computational demands stem solely from AF evaluations within the local search. As shown in
Section B.1, computing the GP variance term for evaluating AF , i.e, σf |D((ct, π)) involves solving[
KXt

+ σ2I
]−1

v for a vector v, where Xt = [(c1, π1), · · · , (ct, πt)]. Naively, this operation
requires O(t3) time per round, amounting to total O(T 4) over T rounds. Iterative algorithms,
however, can expedite the process by leveraging fast MVMs with kernel matrices, as discussed in
Section 3. Below, Theorem 2 formalizes the computational demands of the GP-TopK algorithm.

Theorem 2. Assuming a fixed number of iterations required by the iterative algorithms, the
total computational time for running the GP-TopK bandit algorithm for T rounds of top-k
recommendations, using the contextual product kernel (Equation 6), is O(k2cℓT 2). This applies
to WK, CK, and WCK top-k ranking kernels, where ℓ is the number of local search evaluations.

The proof of Theorem 2, provided in Appendix B, demonstrates efficiency gains from combining
feature representations with iterative algorithms, reducing computational time from O(T 4) to O(T 2).
This is a substantial improvement, as even a single MVM with the matrix KXt

using the full kernel
matrix at each round would require O(T 3) compute time. Additionally, the theorem shows that the
running time of the GP-TopK algorithm does not explicitly depend on the number of items n.

Regret analysis. The cumulative regret is RT =
∑T

t=1 maxπ′∈Πk f̂(ct, π
′
)−f̂(ct, πt), where πt is

the ranking chosen at round t. Optimizing cumulative regret for top-k recommendations is challenging,
as it requires learning the context-arm relationship and matching the best possible mapping. To bound
cumulative regret, regularity assumptions are essential, as noted in prior works [27, 14]. We consider
the following two assumptions, either of which suffices. Also, X := C

⊗
Πk for below assumptions.

Assumption 1. X is finite, meaning that only finite contexts are considered (|C| < ∞), and the
reward function f̂ is sampled from the GP prior with a noise variance of ξ2.

Assumption 2. X is arbitrary and the reward function f̂ has a bounded RKHS norm for the kernel k,
i.e., ∥f∥k ≤ B. The reward noises ϵt form an arbitrary martingale difference sequence (i.e., reward
noise does not systematically depend on its past values) and are uniformly bounded by ξ.

The following theorem proves the regret bound for the GP-TopK algorithm under Assumption 1 or 2.

Theorem 3. If either Assumptions 1 or 2 hold, setting βt as 2 log
(

|C|·|Πk|·t2·π2

6δ

)
and 300γt ln

3
(
t
δ

)
respectively, the cumulative regret RT of the GP-TopK ban-

dit algorithm for top-k recommendations can, with at least 1 − δ probability,
be bounded by Õ(n

√
C1Tc(log|C|+ k + log(T 2π2/6δ))) under Assumption 1, and

Õ(n
√
C1(2B2c+ 300n2c2 ln3(T/δ))T ) under Assumption 2. Here, C1 = 8

log(1+ξ−2) , and Õ
excludes logarithmic factors related to n, k, and T .

Appendix B.4 provides the proof, leveraging the insight that log det|I + ξ−2 ·KXT
| for any set XT

can be effectively bounded using the finite-dimensional feature vectors introduced in this work.
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Specifically, Proposition 2 utilizes the feature vectors from Section 2. Building on Proposition 2,
Theorem 3 establishes that the cumulative regret of the GP-TopK bandit algorithm grows sublinearly
in T with high probability for both assumptions. Furthermore, this result also underscore the
importance of using top-k ranking kernels, which improve the asymptotic order in terms of n by
factors of nk/2−1 and nk−1 under Assumptions 1 and 2, respectively, compared to Srinivas et al. [27].
This improvement is substantial even for small values of k, such as k = 6, as shown in Table 3.

Table 3: Comparison with Srinivas et al. (2010) on regret bounds for the bandit algorithm under both assumptions.
Definitions of notations are provided in the main text.

Assumption 1

Srinivas et al. (2010) Proposed GP-TopK Algorithm

Õ

(
n

k
2

√
C1Tc

(
log|C|+ k + log

(
T2π2

6δ

)))
Õ

(
n

√
C1Tc

(
log|C|+ k + log

(
T2π2

6δ

)))
Assumption 2

Srinivas et al. (2010) This work

Õ
(
n

k
2

√
C1Tc

(
2B2 + 300nkc ln3

(
T
δ

)))
Õ
(
n
√

C1Tc
(
2B2 + 300n2c ln3

(
T
δ

)))

5 Experiments

This section empirically evaluates the proposed GP-TopK bandit algorithms for the top-k recom-
mendations using a simulation based on the MovieLens dataset [4]. The reliance on simulation for
evaluating bandit algorithms is prevalent in the literature. It stems from the difficulty of conducting
online evaluations in real-world bandit scenarios, mainly when there are combinatorial arms [28].
Next, we provide details of the simulation setup and considered reward settings. Following that, we
present results for the empirical regret for small and large numbers of arms below, respectively.

Simulation setup and reward settings. The bandit simulation setup follows the framework outlined
by Jeunen et al. [8], utilizing real-world datasets on user-item interactions. Specifically, we train user
and item embeddings using a collaborative filtering approach [6]. The user embeddings are accessed
by the bandit algorithms as context embeddings, while the item embeddings remain hidden. In the
non-contextual setup, the first user from the dataset is chosen as a fixed context throughout the bandit
algorithm run, allowing us to use the same reward functions as the contextual bandit algorithm.

For setting up the reward functions, we utilize a similarity function s(c, θ) := ς(a · (cT θ) − b) to
measure similarity between any user and item embeddings, where a and b are similarity score and
shift scalars, respectively. The sigmoid function ς maps similarity scores to a range between 0 and 1,
enhancing the interpretability of the reward signal [31]. We set a and b to 6 and 0.3, respectively, to
fully utilize the range of the similarity function, as assessed by evaluating its value for many arms.

We set up two preliminary reward functions based on the similarity function s. The first is the
DCG metric, f̂dcg(c, π) =

∑k
i=1

1
log2(i+1)s(c, θπi), where c and θπi represent the context and item

embeddings, respectively. The second is the diversity measure, f̂div(π) =
1
k2

∑k
i=1

∑k
j=1 θ

T
πj
θπi .

These metrics quantify the relevance and diversity of top-k recommendations, respectively.

We use these functions in two contextual reward settings. The first setting focuses on normalized-
DCG (n-DCG), f̂ndcg(c, π) =

f̂dcg(c,π)

maxπ′ f̂dcg(c,π′)
[7]. The second setting combines f̂ndcg and f̂div as

f̂ndcgdiv(c, π) = λ · f̂ndcg(c, π) + (1− λ) · f̂div(π), evaluating the aggregate effect of relevance and
diversity. We set λ = 0.75 to emphasize relevance over diversity.

Evaluation for small arm space. This section presents empirical results for the cumulative regret
of bandit algorithms with a limited number of arms. Specifically, with n = 20 and k = 3, there are
6, 840 top-k rankings, allowing for an exhaustive search to optimize the acquisition function. All
bandit algorithms run in batch mode, updating every five rounds. We consider both reward settings
for contextual and non-contextual scenarios, using a subset of five users for the contextual setting.
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Several baselines are set to assess the benefits of ranking (Kendall) kernels. Section C details the
remaining hyper-parameter configurations and details of other baseline bandit algorithms.
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Figure 2: Comparative evaluation of bandit algorithms: The cumulative regret RT over T rounds is shown.
Lower values indicate better performance. Plots (a) and (b) represent non-contextual settings for nDCG (f̂ndcg)
and nDCG + diversity (f̂ndcgdiv) rewards, respectively. Plots (c) and (d) show results for contextual settings for
five users using the same rewards. The y-axis for (a) and (b) is on the left, and for (c) and (d) on the right.
The GP-TopK algorithm with Kendall kernels, especially the weighted convolutional Kendall (WCK) kernel,
outperforms others. Details on other algorithms are in the text. Results are averaged over six trials.

The Random algorithm randomly recommends any k items. The ϵ-greedy algorithm alternates
between recommending a random top-k ranking with a probability of ϵ and choosing the top-k
ranking with the highest observed mean reward. In contextual settings, ϵ-greedy differentiates arms
for each unique context. Similarly, MAB-UCB conceptualizes each ranking as an independent arm,
an equivalent of using a direct delta kernel approach for GPs along with UCB AF . In contextual
scenarios, MAB-UCB also treats arms distinctly per context. Each variant of the top-k ranking kernel
yields one variation of the proposed GP-TopK algorithm, namely, WK, CK, and WCK. Figure 2
presents empirical values of the cumulative regrets for the above baseline and the proposed GP-TopK
algorithms. In all cases, across both reward settings and in both contextual and non-contextual setups,
the variants of the proposed GP-TopK algorithm outperform baselines that do not use Kendall kernels,
highlighting the significance of top-k ranking kernels for full bandit feedback. Specifically, the CK
and WCK kernels significantly outperform the WK kernel regarding the converged values of the
regret, with the WCK kernel further improving on the CK kernel variant.

0 50 100
T
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1600

R T

Random
-greedy

MAB
WK
CK
WCK

0 50 100
T

Figure 3: Comparative evaluation of bandit algorithms for large arm
spaces, with > 1.1 × 105 arms for the left plot and > 1.1 × 1010

arms for the right plot. Cumulative regret with respect to the rounds of
the bandit algorithm is depicted. Results are averaged over six trials.
In both settings, the WCK approach outperforms other baselines. For
more details, see the textual description.

Evaluation for large arm space.
We evaluate bandit algorithms in a
large arm space scenario with n =
50 and k = 3 and k = 5, resulting
in 1.1×105 and 1.1×1010 possible
top-k rankings, respectively. Using
local search, we focus on the nDCG
reward. The remaining configura-
tion is consistent with the small arm
space setup. We use 10 restarts and
5 steps in each search direction for
the local search, starting with 1000
initial candidates.

Figure 3 shows that the regret for
the GP-TopK variants remains con-
sistently lower even with a large arm
space, despite the use of local search. The WCK approach significantly outperforms the CK, es-
pecially for k = 5, as illustrated in the right plot of Figure 3. Additional empirical results on the
effectiveness of local search in a large arm space and other rewards are given in Appendix C.

6 Discussion

This work develops a contextual bandit algorithm for top-k recommendations using Gaussian pro-
cesses with Kendall kernels in a full-bandit feedback setting, without restrictive assumptions about
feedback or reward models. Gaussian processes provide computationally efficient model updates
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for accumulated feedback data, although inference can be challenging. We address this by deriving
features for Kendall kernels tailored to top-k rankings, resulting in a faster inference algorithm that
reduces complexity from O(T 4) to O(T 2). While demonstrated here for the product kernel between
contexts and top-k rankings, these computational improvements extend naturally to other kernel
types, such as additive kernels. Additionally, we address limitations of known variants and propose a
more expressive Kendall kernel for top-k recommendations. Finally, we provide both theoretical and
empirical results demonstrating the improved performance of the proposed GP-TopK algorithm.

Future Directions and Limitations. This work opens several research avenues. Efficient matrix-
vector multiplication with Kendall kernel matrices can enable faster bandit algorithms with various
acquisition functions, such as Thompson sampling and expected improvement. Exploring other
kernels, like Mallow kernels, for top-k rankings and developing efficient algorithms for them is
an intriguing direction, especially since the effectiveness of our algorithm depends on the function
space induced by the RKHS of the underlying kernel. Assessing how well these kernels approximate
various reward functions for top-k recommendations would provide valuable insights.

Exploring other bandit problem settings, such as stochastic item availability or delayed feedback,
would enhance the applicability of this work to more complex scenarios. Extending the finite-
dimensional GP framework to other acquisition functions using local search is another promising
direction. One limitation of our regret analysis is that it does not account for approximations in the
arm selection step due to local search [20]. This limitation is common in continuous domains, where
optimizing acquisition functions often involves non-convex optimization [27].

Impact. This research advances bandit algorithms for top-k item recommendations. By improving
recommendation efficiency and accuracy, our algorithms can enhance user experiences across plat-
forms, promoting content relevancy and engagement. However, they may reinforce implicit biases in
training data, limiting content diversity and entrenching prejudices. Therefore, monitoring over time
is essential when deploying these algorithms in real-world environments.
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A Kendall Kernels for Full and Top-k Rankings – Omitted Details

This section includes the proofs that were omitted from Section 2, presented in the following order:

• In Section A.1, we present proofs for Claims 2 and 3, which concern the feature representa-
tions of Kendall kernels.

• In Section A.2, we provide Algorithms 2 and a proof of its correctness for computing the
WCK kernel in O(k2) time, thereby proving Claim 1. Additionally, we extend this proof
to cover the proof of correctness for Algorithm 3, which can compute the CK kernel in
O(k log k), initially introduced by Jiao et al. [9]. The original paper presented the algorithm
without a formal proof of correctness, a gap we address and fill in this section.

• Section A.3 details the proof for Theorem 1, discussing the matrix-vector multiplications
with the Kendall kernel matrix for top-k rankings. This proof builds on the Algorithm 2
given for computing the WCK kernel for top-k rankings.

A.1 Feature Representation for Kendall Kernels for Top-k Rankings

This section revisits the claims regarding the feature representations of the weighted Kendall kernel
and the weighted convolutional Kendall kernel, subsequently providing the proofs for these claims
mentioned earlier.

Claim 2. Let ϕwk(σ) : Πn 7→ R(
n
2) be a vector indexed by unique item pairs (i, j), defined as:

ϕwk
i,j (σ) :=

1√(
n
2

) · ws(p
σ
i ,p

σ
j ) ·

(
pσi<j − pσi>j

)
,

where ws is the symmetric weighting function in product-symmetric weights. Then, ϕwk is a
linear feature vector for the weighted Kendall kernel with product-symmetric weights wps.

Proof. Following the definition of linear feature representation, we need to prove that kwk(σ1, σ2) =
ϕ(σ1)

Tϕ(σ2) for the product-symmetric weight kernel as given in Equation 5. Recalling from
Equation 2, we have kwk(σ1, σ2) as follows:

kwk(σ1, σ2) =
1(
n
2

) ·∑
i<j

w((pσ1
i ,pσ1

j ), (pσ2
i ,pσ2

j )) · ηi,j(σ1, σ2),

=
1(
n
2

) ·∑
i<j

ws(p
σ1
i ,pσ1

j ) · ws(p
σ2
i ,pσ2

j ) · ηi,j(σ1, σ2), (7)

where the second line incorporates the use of the product-symmetric weight kernel. Next, our focus
shifts to the simplification of ηi,j(σ1, σ2), which is elaborated as follows:

ηi,j(σ1, σ2) = pσ1
i<j · p

σ2
i<j + pσ1

i>j · p
σ2
i>j − pσ1

i<j · p
σ2
i>j − pσ1

i>j · p
σ2
i<j ,

= pσ1
i<j · (p

σ2
i<j − pσ2

i>j) + pσ1
i>j · (p

σ2
i>j − pσ2

i<j),

= (pσ1
i<j − pσ1

i>j) · (p
σ2
i<j − pσ2

i>j).

Combining the above factorization of ηi,j with Equation 7, we get:

kwk(σ1, σ2) =
1(
n
2

) ·∑
i<j

ws(p
σ1
i ,pσ1

j ) · ws(p
σ2
i ,pσ2

j ) · (pσ1
i<j − pσ1

i>j) · (p
σ2
i<j − pσ2

i>j)
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=
1(
n
2

) ·∑
i<j

ϕwk
i,j (σ1) · ϕwk

i,j (σ2)

= ϕ(σ1)
Tϕ(σ2).

Claim 3. Let ϕwck(π) : Πk 7→ R(
n
2) be a vector indexed by unique item pairs (i, j) given as:

ϕwck
i,j (π) := 1√

(n2)
·wwck

i,j (π) ·
(
pπi<j − pπi>j

)
, where wwck

i,j (π) is determined as follows:

wwck
i,j (π) =


ws(p

π
i ,p

π
j ) if pπ

i ∈ [k] & pπ
j ∈ [k]

ws(p
π
i , ·) else if pπ

i ∈ [k] & pπ
j /∈ [k] ,

ws(p
π
j , ·) else if pπ

i /∈ [k] & pπ
j ∈ [k] ,

0 otherwise,

where ws denotes symmetric weights and ws(ℓ, ·) = 1
n−k

∑n
j=k+1 ws(ℓ, j). Then, the vector

ϕwck is a linear feature vector for the WCK kernel kwck. By uniformly setting ws(·, ·) ≡ 1 in
the definitions above, ϕwck

i,j (π) specializes to a linear feature vector for the CK kernel.

Proof. The main idea revolves around leveraging the feature representation of the Weighted Kendall
kernel for a full ranking and the linearity of the convolution operation. It is already established
that kwk(σ1, σ2) = ϕwk(σ1)

Tϕwk(σ2), as demonstrated in Claim 2. Recall that the WCK kernel
requires a double summation over pairs of rankings from Bπ1

and Bπ2
, which represent the sets of

full rankings consistent with their respective top-k rankings, as described in Equation 4. We simplify
the WCK kernel as follows:

kwck(π1, π2) =
1

|Bπ1
|
· 1

|Bπ2
|
·
∑

σ1∈Bπ1

∑
σ2∈Bπ2

ϕwk(σ1)
Tϕwk(σ2)

=

 1

|Bπ1
|
·
∑

σ1∈Bπ1

ϕwk(σ1)
T

 ·

 1

|Bπ2
|
·
∑

σ2∈Bπ2

ϕwk(σ2)


︸ ︷︷ ︸

:=ϕwck(π2)

= ϕwck(π1)
Tϕwck(π2).

The simplification above reveals that the feature representation, ϕwck, for the WCK kernel, is a
(
n
2

)
dimensional vector and can be indexed by unique pairs of items (i, j), much like the ϕwk. However,
the double summation is over an exponentially large number of pairs of rankings. Moving forward,
we shift our focus to the individual entries of this representation involving this summation, elucidating
the analytical values within the summation by exploring four unique cases, each dependent on whether
these specific items fall within the top-k rankings.

In Case 1, we examine the scenario where items i and j are within the top-k ranking π. Here, the
focus is on the feature representation of the pair, specifically when both elements are ranked among
the top-k positions.

Case 1: pπ
i ∈ [k] and pπ

j ∈ [k].

ϕwck
i,j (π) =

1

|Bπ|
·
∑
σ∈Bπ

1√(
n
2

) · ws(p
σ
i ,p

σ
j ) ·

(
pσi<j − pσi>j

)

=
1

|Bπ|
· 1√(

n
2

) · ws(p
π
i ,p

π
j ) ·

(∑
σ∈Bπ

pσi<j −
∑
σ∈Bπ

pσi>j

)
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=
1

|Bπ|
· 1√(

n
2

) · ws(p
π
i ,p

π
j ) ·

(
|Bπ| · pπi<j − |Bπ| · pπi>j

)
=

1√(
n
2

) · ws(p
π
i ,p

π
j ) ·

(
pπi<j − pπi>j

)
. (8)

The simplification in lines 3rd and 4th follows from the fact that any full ranking σ ∈ Bπ , consistent
with the top-k ranking π, the relative ranks and weights of items i and j remains unchanged, given
pπ
i ∈ [k] and pπ

j ∈ [k]. Concretely, this implies pσi<j = pπi<j for all σ ∈ Bπ and similar with the
other term.

In Case 2, we analyze when item i is in the top-k ranking while item j is not.

Case 2: pπ
i ∈ [k] and pπ

j /∈ [k].

ϕwck
i,j (π) =

1

|Bπ|
·
∑
σ∈Bπ

1√(
n
2

) · ws(p
σ
i ,p

σ
j ) ·

(
pσi<j − pσi>j

)
=

1

|Bπ|
· 1√(

n
2

) · ∑
σ∈Bπ

ws(p
σ
i ,p

σ
j ) · (1− 0) (since pπ

i ∈ [k] and pπ
j /∈ [k])

=
1

|Bπ|
· 1√(

n
2

) · ∑
σ∈Bπ

ws(p
π
i ,p

σ
j ).

Next, every possible consistent ranking is considered jointly while fixating on a specific rank outside
top-k elements, leading to (n− k− 1)! different rankings. Given that |Bπ| = (n− k)!, we can refine
the above expression as follows:

ϕwck
i,j (π) =

1

|Bπ|
· 1√(

n
2

) · n∑
l=k+1

ws(p
π
i , l) · (n− k − 1)!

=
(n− k − 1)!

|Bπ|
· 1√(

n
2

) · n∑
l=k+1

ws(p
π
i , l)

=
1√(
n
2

) · 1

n− k
·

n∑
l=k+1

ws(p
π
i , l)

=
1√(
n
2

) · ws(p
π
i , ·). (9)

In Case 3, we analyze when item i is not in the top-k ranking while item j is.

Case 3: pπ
i /∈ [k] and pπ

j ∈ [k]. Similar to case 2, the simplification follows analogously, with the
only change being 1pσ

i<j
− 1pσ

i>j
= −1 instead of 1. Thus, by symmetry between i and j, we have

the following:

ϕwck
i,j (π) =

−1√(
n
2

) · ws(·,pπ
j ) =

−1√(
n
2

) · ws(p
π
j , ·) (using symmetry of ws). (10)

Lastly, in Case 4, we analyze when items i and j are not in the top-k ranking.

Case 4: pσ
i /∈ [k] and pσ

j /∈ [k].

ϕwck
i,j (π) =

1

|Bπ|
·
∑
σ∈Bπ

ϕwk
i,j (σ)
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=
1

|Bπ|
· 1√(

n
2

) · ∑
σ∈Bπ

ws(p
σ
i ,p

σ
j ) ·

(
pσi<j − pσi>j

)
= 0 (by symmetry). (11)

The result of zero arises from symmetry. Since pσ
i and pσ

j are not in the top-k ranking, they are
treated symmetrically in the summation overall rankings in Bπ . For any ranking σ, suppose pσ

i = l
and pσ

j = m, there exists a corresponding ranking σ′ such that only the items i and j are swapped.
Therefore, jointly, these two rankings yield ws(l,m) and −ws(l,m). Since ws is symmetric, the
overall contribution from each pair of such rankings is zero. Hence, the entire summation nets to
zero.

Thus, with the explanation provided for each case and combining results from Equations 8, 9, 10 and
11, it’s trivial to validate the Claim 3, i.e., ϕwck

i,j (π) = 1√
(n2)

·wwck
i,j (π) ·

(
pπi<j − pπi>j

)
for all unique

pair of items. From Case 4, we have O((n− k)2) entries leaving at max only O(k2 +2nk) non-zero
entries.

A.2 Algorithms for Computing Kendall Kernels for top-k Rankings

In this section, we provide and delve into the proofs of Algorithms 2 and 3 for the weighted
convolutional Kendall kernel and the convolutional Kendall kernel, as previously discussed in Section
2. Section A.2.1 for valid both the correctness and computational complexity of Algorithm 2 as given
earlier in Claim 1. Following this, Section A.2.2 revisits Algorithm 3, initially introduced by Jiao
et al. [10]. The original publication presented the algorithm without formal proof of its correctness,
which we rectify and offer in Section A.2.2.

A.2.1 Efficiently Computing the Weighted Convolutional Kendall Kernel

This section provides a proof to Claim 1 to establish the efficiency and accuracy of Algorithm 2 in
computing the weighted convolutional Kendall kernel, as specified in Equation 4, with a focus on its
computational complexity.

Claim 1. The weighted convolutional Kendall kernel (Equation 4) with product-symmetric rank
weights (Equation 5) can be computed in O(k2) time.

Proof. The claim is proven through Algorithm 2, where we establish its correctness and demonstrate
its computation requirement is O(k2). The essence of our proof centers on analyzing the feature
representation of the WCK kernel, ϕwck, as outlined in Claim 3. The feature vectors of ϕwck

reside in a
(
n
2

)
dimensional space, indexed by pairs of items. Our approach is to demonstrate

that Algorithm 2 accurately computes the right-hand side (RHS) of the equation kwck(π1, π2) =
ϕwck(π1)

Tϕwck(π2). This involves a summation over item pairs, expressed as kwck(π1, π2) =∑
l<m ϕwck

l,m (π1)
Tϕwck

l,m (π2).

Our proof analyzes various scenarios: cases where pairs of items, namely l and m, fall within the
top-k, scenarios with one item within the top-k and the other outside, and situations where neither
item is within the top-k. Each of these cases contributes distinctively to the computation of the
overall kernel, resulting in different terms in the algorithmic computation. This is encapsulated in
Algorithm 2, where kwck(π1, π2) =

∑5
i=1 si(π1, π2), and each si corresponds to the terms given

earlier in Algorithm 2 from Section 2.

Before proceeding with the cases of this summation as given in Table 4, we recall the notations utilized
by Algorithm 3 in Definition 1. Also, remember that we will be proving for product-symmetric
weights as given in Equation 5, where, ws : [n]× [n] 7→ Rn and its one-dimensional marginals are
ws(ℓ, ·) = 1

n−k

∑n
j=k+1 ws(ℓ, j) Table 4 shows how these cases are organized and relate to different

si terms required for computing the WCK kernel. The key strategy involves breaking down the
kernel’s computation into cases based on the positioning of item pairs within the top-k rankings.
In case 1, we consider all the scenarios when both indices are within the set of items in both top-k
rankings, i.e., all items in the set I1 ∪ I2.

16



Case Description
1 Both items (l,m) in I1 ∪ I2. Branches into the following three sub-cases based

on the presence of items in I1 ∩ I2:
1-a: Both items in I1 ∩ I2. The concerned term is s1.
1-b: One item in I1 ∩ I2. Subdivided into 1-b-i (other in I1 \ I2) and 1-b-ii
(other in I2 \ I1); concerned terms are s2 and s3.
1-c: No item in I1 ∩ I2. Addresses cases where l and m are in different sets
(I1 \ I2 and I2 \ I1); concerned term is s4.

2 One item in I1∪I2. I.e., either l is I1∪I2 or m is in I1∪I2, leading to sub-cases
2-a and 2-b; concerned term is s5.

3 No item in I1 ∪ I2. Addresses the scenario where neither l nor m is in I1 ∪ I2;
value trivially zero.

Table 4: Case categorization for the proof of Algorithms 2 and 3 based on item pair ranks, where I1 and I2 are
the sets of items for top-k rankings π1 and π2, respectively.

Definition 1. Algorithm 2 and 3 and utilize following notations.

• I1 and I2 are the sets of items in rankings π1 and π2, respectively.

• σ1 ∈ Π|I1| and τ1 ∈ Π|I1∩I2| are the full rankings of I1 and I1 ∩ I2, both consistent
with the input top-k ranking π1. I.e., relative ranks of items is same yielding ∀l,m ∈
I1 ∩ I2, pπ1

i>j = pτ1i>j .

• Analogously, σ2 and τ2 are constructed utilizing the set I2 and ranking π2.

Algorithm 2 Computing Weighted Convolutional Kendall Kernel
Input: Two permutations π1, π2 ∈ Πk. Ranking weighting function ws : [n]× [n] 7→ Rn and

its one dimensional marginals are ws(ℓ, ·) = 1
n−k

∑n
j=k+1 ws(ℓ, j).

Output: Convolutional Weighted Kendall kernel kwck(π1, π2).
− Let I1 and I2 be the sets of items in rankings π1 and π2, respectively.

1: if |I1 ∩ I2| ≥ 2 then
2: s1(π1, π2) =

1

(n2)

∑
1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · ηl,m(π1, π2)

3: end if
4: if |I1 ∩ I2| ≥ 1 and |I1 \ I2| ≥ 1 then
5: s2(π1, π2) =

1

(n2)
·

∑
l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
pπ1

l<m − pπ1

l>m

)
6: end if
7: if |I1 ∩ I2| ≥ 1 and |I2 \ I1| ≥ 1 then
8: s3(π1, π2) =

1

(n2)
·

∑
l∈I1∩I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2

l ,pπ2
m ) ·

(
pπ2

l<m − pπ2

l>m

)
9: end if

10: if |I1 \ I2| ≥ 1 and |I2 \ I1| ≥ 1 then
11: s4(π1, π2) = − 1

(n2)
·

∑
l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2
m , ·)

12: end if
13: if |I1 ∩ I2| ≥ 1 and |[n] \ (I1 ∪ I2)| ≥ 1 then
14: s5(π1, π2) =

1

(n2)
· (n− |I1 ∪ I2|) ·

∑
l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·)

15: end if
16: kwck(π1, π2) = s1(π1, π2) + s2(π1, π2) + s3(π1, π2) + s4(π1, π2) + s5(π1, π2)

Case 1: The pair (l,m) ∈ I1 ∪ I2 falls within the top-k, leading to three distinct cases. Below, we
provide si terms for each case as given in Table 4.
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Case 1-a: Two items in I1 ∩ I2, meaning both l and m belong to I1 ∩ I2. Using Claim 3 regarding
the feature vector ϕwck, we simplify s1 as follows:

s1(π1, π2) =
∑

1≤l<m≤n|l,m∈I1∩I2

ϕwck
l,m (π1) · ϕwck

l,m (π2)

=
∑

1≤l<m≤n|l,m∈I1∩I2

1√(
n
2

) · ws(p
π1

l ,pπ1
m ) ·

(
pπ1

l<m − pπ1

l>m

)
· 1√(

n
2

) · ws(p
π2

l ,pπ2
m ) ·

(
pπ2

l<m − pπ2

l>m

)
=

1(
n
2

) ∑
1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · ηl,m(π1, π2). (12)

Case 1-b: When one item is in I1 ∩ I2, the other must reside either in I1 \ I2 or I2 \ I1, thus leading
to two distinct sub-cases. This is specified in Table 4. Concretely, if the other item is in I1 \ I2, it
contributes to the s2 terms, whereas if it’s in I2 \ I1, it contributes to the s3 terms.

Corresponding to Case 1-b-i, when the other item is in I1 ∩ I2, i.e., s2 is the term corresponding to
indices where l is in I1 ∩ I2 and m in I1 \ I2, or the reverse, represented by partial sums u and v. For
the partial sum u, with l in I1 ∩ I2 and m in I1 \ I2, we find that pπ2

l is in [k], while pπ2
m is not. The

simplification of u proceeds using Claim 3 as follows:

u =
∑

1≤l<m≤n|l∈I1∩I2|m∈I1\I2

1√(
n
2

) · ws(p
π1

l ,pπ1
m ) ·

(
pπ1

l<m − pπ1

l>m

)
· 1√(

n
2

) · ws(p
π2

l , ·)
(
pπ2

l<m − pπ2

l>m

)
=

1(
n
2

) ∑
1≤l<m≤n|l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
pπ1

l<m − pπ1

l>m

)
.

Similarly, the partial sum v can be simplified as follows:

v =
∑

1≤l<m≤n|m∈I1∩I2|l∈I1\I2

1√(
n
2

) · ws(p
π1

l ,pπ1
m ) ·

(
pπ1

l<m − pπ1

l>m

)
· −1√(

n
2

) · ws(p
π2

l , ·) ·
(
pπ2

l<m − pπ2

l>m

)
=

−1(
n
2

) ∑
1≤l<m≤n|m∈I1∩I2|l∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·) ·
(
pπ1

l<m − pπ1

l>m

)
=

−1(
n
2

) ∑
1≤m<l≤n|l∈I1∩I2|m∈I1\I2

ws(p
π1
m ,pπ1

l ) · ws(p
π2
m , ·) ·

(
pπ1

m<l − pπ1

m>l

)
=

1(
n
2

) ∑
1≤m<l≤n|l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
pπ1

l<m − pπ1

l>m

)
.

In the above, the first two lines use results from Claim 3 and use similarity of ws. In the following
line, l and m are exchanged. Lastly, the negative sign is pushed into the indicator functions to make
the summand function of this partial sum v similar to the partial sum u, and the similarity of the ws

is utilized. The above partial sums simplify s2 as follows:

s2(π1, π2) =
1(
n
2

) · ∑
l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
pπ1

l<m − pπ1

l>m

)
. (13)
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Analogously, in Case 1-b-ii, we deduce the corresponding term s3 for the pair of indices as described
in Table 4 through symmetry. Specifically, the term s3 can be outlined as follows:

s3(π1, π2) =
1(
n
2

) · ∑
l∈I1∩I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2

l ,pπ2
m ) ·

(
pπ2

l<m − pπ2

l>m

)
. (14)

Case 1-c: Both items are outside I1 ∩ I2, specifically, l ∈ I1 \ I2 and m ∈ I2 \ I1 or the reverse.
Like Case 1-b-i, we divide s4 into partial summations u and v. Now, we calculate u under the
condition that l ∈ I1 \ I2 and m ∈ I2 \ I1.

u =
∑

1≤l<m≤n|l∈I1\I2|m∈I2\I1

1√(
n
2

) · ws(p
π1

l , ·) ·
(
pπ1

l<m − pπ1

l>m

)
· 1√(

n
2

) · ws(p
π2
m , ·) ·

(
pπ2

l<m − pπ2

l>m

)
,

=
1(
n
2

) · ∑
1≤l<m≤n|l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · (1− 0) · ws(p
π2
m , ·) · (0− 1) ,

=
−1(
n
2

) · ∑
1≤l<m≤n|l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2
m , ·).

Similarly, we can estimate partial sum v for the set l ∈ I2 \ I1 & m ∈ I1 \ I2. Using calculations
similar to Case-1-b-i for summing u and v, we have:

s4(π1, π2) =
−1(
n
2

) · ∑
l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2
m , ·). (15)

Case 2: One item exists in I1 ∩ I2, the other in [n] \ (I1 ∩ I2). It branches into two sub-cases: Case
2-a with one item in I1 ∪ I2, and Case 2-b, where one item outside I1 ∩ I2 but is in I1 ∪ I2. Focusing
on Case 2-a, represented by s5, we simplify as follows. This involves two index scenarios, either
l ∈ I1 ∩ I2 and m /∈ I1 ∪ I2 or vice versa, represented by partial sums u and v. We now simplify u
below:

u =
1(
n
2

) ∑
1≤l<m≤n|l∈I1∩I2|m/∈I1∪I2

1√(
n
2

) · ws(p
π1

l , ·) ·
(
pπ1

l<m − pπ1

l>m

)
· 1√(

n
2

) · ws(p
π2

l , ·) ·
(
pπ2

l<m − pπ2

l>m

)
,

=
1(
n
2

) ∑
1≤l<m≤n|l∈I1∩I2|m/∈I1∪I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

=
1(
n
2

) ∑
1≤l<m≤n|l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) · (n− |I1 ∪ I2|).

Using steps similar to the previous case, we get the following value for s5:

s5(π1, π2) =
1(
n
2

) · (n− |I1 ∪ I2|) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·). (16)

For Case 2-b, l or m are absent from I1 or I2, leading to two sub-scenarios. Consequently, either
ϕwck
l,m (π1) is zero or ϕwck

l,m (π2) is zero. Therefore, these terms don’t contribute to the overall WCK
kernel value.
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Case 3: No item is in the top-k, i.e., both l,m /∈ I1 ∪ I2. As both items are absent from the top-k
in either ranking, the value trivially reduces to zero.

After covering all configurations of l and m, we incorporate results from Equations 12, 13, 14, 15,
and 16. This integration yields the expression kwck(π1, π2) =

∑5
i=1 si(π1, π2), where, each term si

matches precisely with its corresponding expression in Algorithm 2. The proof for the correctness of
Algorithm 2 is complete, as each term si corresponds to its respective expression in the algorithm.
Regarding the time complexity of Algorithm 2, each term si sums at most k2 quantities, and each
quantity summed can be computed in O(1) time. Therefore, the computation time required for
Algorithm 2 is O(k2).

A.2.2 Efficiently Computing the Convolutional Kendall Kernel

This section provides Algorithm 3 for computing the convolutional Kendall kernel, as specified in
Equation 3. Later, its efficiency and accuracy are proved in Claim 4.

Algorithm 3 Computing Convolutional Kendall Kernel [10]
Input: Two top-k rankings π1, π2 ∈ Πk.
Output: Convolutional Kendall kernel kck(π1, π2).
− Let I1 and I2 be the sets of items in rankings π1 and π2, respectively.
− Let σ1 ∈ Π|I1| and τ1 ∈ Π|I1∩I2| be the full rankings of I1 and I1 ∩ I2, both consistent
with the input top-k ranking π1.
− Analogously, construct σ2 and τ2 utilizing the set I2 and ranking π2.

1: if |I1 ∩ I2| ≥ 2 then
2: s1(π1, π2) =

1

(n2)
·
(|I1∩I2|

2

)
· ksk(τ1, τ2)

3: end if
4: if |I1 ∩ I2| ≥ 1 and |I1 \ I2| ≥ 1 then
5: s2(π1, π2) =

1

(n2)
·
∑

l∈I1∩I2
2 · (σ1(l)− τ1(l))− k + |I1 ∩ I2|

6: end if
7: if |I1 ∩ I2| ≥ 1 and |I2 \ I1| ≥ 1 then
8: s3(π1, π2) =

1

(n2)
·
∑

l∈I1∩I2
2 · (σ2(l)− τ2(l))− k + |I1 ∩ I2|

9: end if
10: s4(π1, π2) = − 1

(n2)
· |I1 \ I2| · |I1 \ I2|

11: s5(π1, π2) =
1

(n2)
· |I1 ∩ I2| · |[n] \ (I1 ∪ I2)|

12: kck(π1, π2) = s1(π1, π2) + s2(π1, π2) + s3(π1, π2) + s4(π1, π2) + s5(π1, π2)

Claim 4. Algorithm 3 computes the convolutional Kendall kernel (as given in the Equation 3)
with a computational complexity of O(k2).

Proof. To establish the correctness of Algorithm 3, we will adopt the same proof approach as the one
used for Claim 1 concerning Algorithm 2. Specifically, we will adhere to the earlier categorization in
Table 4 and notations given in Definition 1. Since the CK kernel can be derived by uniformly setting
the weight function ws(i, j) = 1, we will insert them in si terms as given in Algorithm 2. These
cases will be revisited and simplified by applying the condition ws(i, j) = 1. Note that this also
implies its one-direction marginal weights to be 1, i.e., ws(i, ·) = 1

Simplifying the s1 Term: For the WCK kernel, Case 1-a leads to the expression of s1 as stated in
Equation 12. In this case, when two items, specifically l and m, are both in the intersection I1 ∩ I2,
it implies that pπ1

l , pπ1
m , pπ2

l , and pπ2
m all rank within the top-k, denoted as [k]. We simplify the s1

term for CK kernel as follows:
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s1(π1, π2) =
1(
n
2

) ∑
1≤l<m≤n|l,m∈I1∩I2

ws(p
πl
i ,pπ1

m ) · ws(p
π2

l ,pπ2
m ) · ηl,m(π1, π2)

=
1(
n
2

) ∑
1≤l<m≤n|l,m∈I1∩I2

ηl,m(π1, π2)

=
1(
n
2

) ∑
1<l′<m′≤|I1∩I2|

ηl′,m′(τ1, τ2) =

(|I1∩I2|
2

)(
n
2

) ksk(τ1, τ2). (17)

The simplification process begins by assigning unit rank weights in the first line, i.e., wi = 1.
Following this, by relabeling the items in I1 ∩ I2 and using τ1 and τ2, which are the rankings of
π1 and π2 limited to the set I1 ∩ I2 as defined in Definition 1, it is established that ηl′,m′(τ1, τ2) =
ηl,m(π1, π2). This is because the relative order of any pair of items is maintained in τ1 and τ2.
Consequently, this leads to the final simplification to a scaled value of the standard Kendall kernel
ksk, as given in Equation 1.

Simplifying the s2 and s3 Terms: The s2 and s3 terms are obtained for Case 1-b, which is for
case when one item is in I1 ∩ I2 and the other item is either in I1 \ I2 or I2 \ I1. We divide this into
two sub-cases. Case 1-b-i: The other item is in I1 \ I2, with s2 representing the summation terms
derived from the CK’s inner product. Case 1-b-ii: The other item is I2 \ I1, where s3 denotes the
summation terms. We simplify the s2 term for the CK kernel as follows:

s2(π1, π2) =
1(
n
2

) ∑
l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2
m , ·)

(
pπ1

l<m − pπ1

l>m

)
=

1(
n
2

) ∑
l∈I1∩I2|m∈I1\I2

(
pπ1

l<m − pπ1

l>m

)
=

1(
n
2

) ∑
l∈I1∩I2|m∈I1\I2

pπ1

l<m︸ ︷︷ ︸
:=u

− 1(
n
2

) ∑
l∈I1∩I2|m∈I1\I2

pπ1

l>m︸ ︷︷ ︸
:=v

.

Next, we examine the terms u and v in detail, starting with u. The term u, which corresponds to
pπ1

l<m, signifies instances where item l is ranked before item m in the top-k ranking π1. This can be
derived from the observation that σ1(l)− 1 items are positioned before item l in the set I1. Out of
these items, τ1(l) − 1 also belong to the intersection I1 ∩ I2. This follows from the definition of
the full rankings σ1 and τ1 on the set I1 and the intersection I1 ∩ I2, respectively. Consequently, it
can be concluded that σ1(l) − τ1(l) items from the set difference I1 \ I2 are ranked before item l.
The second term, v, corresponds to pπ1

l>m and involves a calculation that takes into account the items
ranked after the l-th item in the set I . Specifically, there are k − σ1(l) items following the l-th item.
Within the intersection I1 ∩ I2, the number of items before l is given by |I1 ∩ I2| − τ1(l). Therefore,
the expression (k − σ1(l))− (|I1 ∩ I2| − τ1(l)) represents the count of elements that are positioned
after l in the set difference I1 \ I2.

Combining the above calculations for both terms u and v, the s2 term for the CK kernel can be
simplified as follows:

s2(π1, π2) =
1(
n
2

) ∑
l∈I1∩I2

2 · (σ1(l)− τ1(l))− k + |I1 ∩ I2|. (18)

Using the symmetry between Case 1-b-i and Case 1-b-ii, we can simplify s3 for the CK kernel as
follows:

s3(π1, π2) =
1(
n
2

) ∑
l∈I1∩I2

2 · (σ2(l)− τ2(l))− k + |I1 ∩ I2|. (19)
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Simplifying the s4 and s5 Terms: We simplify the s4 and s5 terms for the CK kernel starting from
Equation 15 and Equation 16, respectively, as follows:

s4(π1, π2) =
−1(
n
2

) · ∑
l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2
m , ·) = −|I1 \ I2| · |I2 \ I1|(

n
2

) (20)

s5(π1, π2) =
1(
n
2

) · (n− |I1 ∪ I2|) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) = |I1 ∩ I2| · |[n] \ (I1 ∪ I2)|(
n
2

) .

(21)

We have obtained the values of all the simplified si terms for the CK kernel in Equations 17, 18,
19, 20, and 21. By combining these terms, we get kck(π1, π2) =

∑5
i=1 si(π1, π2), where each term

si precisely matches its corresponding expression in Algorithm 3. This completes the proof of the
correctness of Algorithm 3. Regarding its time complexity, each term si sums at most k2 quantities,
and each quantity can be computed in O(1) time. Therefore, the time required for Algorithm 3 to
compute the CK kernel is O(k2).

A.3 Fast Matrix-Vector Multiplication with Kendall Kernel Matrix on Top-k Rankings

This section revisits Theorem 1 about the fact matrix-vector multiplication time for the Kendall kernel
matrix for top-k rankings. Specifically, we aim to eliminate the mvm(KX)’s dependence on the
number of items, i.e., n on and linear dependence in the number of rounds, i.e., T , as claimed in
Theorem 1.

Theorem 1. For the WCK kernel with product-symmetric weights wps, the computational
complexity of multiplying the kernel matrix KXt with any admissible vector is O(k2t), i.e.,
mvm(KXt

) = O(k2t), where Xt is any arbitrary set of t top-k rankings.

Proof. The cornerstone of this proof lies in the computation of the WCK kernel, as delineated in
Algorithm 2. This algorithm requires only O(k2) computation. For brevity, we write X to represent
XT , and the proof follows for any Xt, i.e., any value of t, not just T .

As also suggested previously, we will demonstrate through the equation KX = (Φa
X)TΦb

X , where
both matrices Φa

X and Φb
X have columns with only O(k2) non-zero entries. Consequently, this

leads to the computational complexity of matrix-vector multiplication, denoted as mvm(KX), being
O(k2 · T ).
From Algorithm 2, we know that each entry of the kernel matrix k(π1, π2), can be expressed as a sum∑5

i=1 si(π1, π2). Assuming each si(π1, π2) equals ϕai(π1)
Tϕbi(π2), and considering that all vectors

ϕai and ϕbi exhibit this property, we can express KX as (Φa
X)TΦb

X . Here, the ith row of (Φa
X)T

and the jth column of Φb
X are represented by [ϕa1(πi)

T , · · · , ϕa5(πi)
T ] and [ϕb1(πj), · · · , ϕb5(πj)],

respectively. Therefore, the overall mvm complexity can be characterized by the sparsity of the
vectors ϕai and ϕbi , as is formalized in the claim presented below.

Claim 5. Consider a kernel matrix KX corresponding to any set X of cardinality T . Each entry
of KX , denoted as k(x1, x2), is defined by the sum

∑5
i=1 si(x1, x2), where each si(x1, x2) is

the result of the dot product ϕai(x1)
Tϕbi(x2), where, ϕai and ϕbi are vectors characterized by

having O(z) non-zero entries. Given this structure, the matrix-vector multiplication complexity
for KX is O(nnz · T ), i.e., mvm(KX) = O(z · T ).

Proof. We will demonstrate this in the following discussion by concentrating on the kth entry of the
output vector, specifically KXv, for any arbitrary vector v:

(KXv)k =
∑
j

KX(k, j)vj =
∑
j

(∑
i=1

si(πk, πj)

)
vj =

∑
j

(
5∑

i=1

ϕai(πk)
Tϕbi(πj)

)
vj ,
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=

5∑
i=1

∑
j

ϕai(πk)
Tϕbi(πj)vj

 =

5∑
i=1

ϕai(πk)
T

∑
j

ϕbi(πj)vj

 .

Given that for all i, ϕbi possesses only O(z) non-zero entries for any πj , the computation of∑
j ϕ

bi(πj)vj requires O(z) operations. This implies that the expression
∑

j ϕ
bi(πj)vj also neces-

sitates O(z) computation. Applying a similar rationale to ϕai , it follows that computing (KXv)k
demands only O(z) operations. Extending this argument to all entries of the output vector, it is
evident that computing KXv requires only O(z · T ) computation

Utilizing Claim 5, it suffices to complete the proof by showcasing that these exist vectors ϕai and
ϕbi , each with only O(k2) non-zero elements, corresponding to each si as specified in Algorithm 2.
Additionally, these vectors ensure that si(π1, π2) = ϕai(π1)

Tϕbi(π2). We will next establish such
vectors for all si terms. Starting with the s1 term below.

Showcasing s1(π1, π2) = ϕa1(π1)
Tϕb1(π2) for sparse ϕa1(π1) and ϕb1(π2) vectors. We begin

by manipulating s1, as defined in Equation 12. For the sake of brevity, their scalar factors will be
omitted in the following explanation.

s1(π1, π2) =
∑

1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · ηl,m(π1, π2),

=
∑

1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · (pπ1

l<m − pπ1

l>m) · (pπ2

l<m − pπ2

l>m),

=
∑

1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · (pπ1

i<j − pπ1

l>m) · ws(p
π2

l ,pπ2
m ) · (pπ2

l<m − pπ2

l>m),

=
∑

1≤l<m≤n

ws(p
π1

l ,pπ1
m ) · (pπ1

i<j − pπ1

l>m) · 1p
π1
l ,p

π1
m ∈[k]︸ ︷︷ ︸

:=ϕ
a1
l,m(π1)

· ws(p
π2

l ,pπ2
m ) · (pπ2

l<m − pπ2

l>m) · 1p
π2
l ,p

π2
m ∈[k]︸ ︷︷ ︸

:=ϕ
b1
l,m(π2)

,

= (ϕa1(π1)
Tϕb1(π2). (22)

Both ϕa1 and ϕb1 are sparse by design, taking non-zero values only when l and m appear in the top-k
rankings. This demonstrates the existence of sparse vectors for the s1 term. Next, we will establish
the same for the s2 and s3 terms.

Showcasing sparse vectors for s2 and s3. We begin by manipulating s2, as defined in Equation 13,
while ignoring its scalar factor. We will exploit symmetry between s2 and s3 terms.

s2(π1, π2)

=
∑

l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
pπ1

l<m − pπ1

l>m

)
,

=
∑

l∈I1∩I2

ws(p
π2

l , ·)
∑

m∈I1\I2

ws(p
π1

l ,pπ1
m )
(
pπ1

l<m − pπ1

l>m

)
,

=
∑

l∈I1∩I2

ws(p
π2

l , ·)

(∑
m∈I1

ws(p
π1

l ,pπ1
m )
(
pπ1

l<m − pπ1

l>m

)
−

∑
m∈I1∩I2

ws(p
π1

l ,pπ1
m )
(
pπ1

l<m − pπ1

l>m

))
,

=
∑
l∈[n]

1p
π2
l ∈[k]ws(p

π2

l , ·)︸ ︷︷ ︸
:=ϕ

b21
l (π2)

1p
π1
l ∈[k]

∑
m∈I1

ws(p
π1

l ,pπ1
m )
(
pπ1

l<m − pπ1

l>m

)
︸ ︷︷ ︸

:=ϕ
a21
l (π1)
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−
∑

l,m∈I1∩I2

ws(p
π2

l , ·)ws(p
π1

l ,pπ1
m )
(
pπ1

l<m − pπ1

l>m

)
, (23)

= ϕa21(π1)
Tϕb21(π2)−

∑
l,m∈I1∩I2

ws(p
π2

l , ·)ws(p
π1

l ,pπ1
m )
(
pπ1

l<m − pπ1

l>m

)
,

= ϕa21(π1)
Tϕb21(π2) +

∑
l,m∈[n]

−ws(p
π2

l , ·)1p
π2
l ,p

π2
m ∈[k]︸ ︷︷ ︸

:=ϕ
b22
l,m

· ws(p
π1

l ,pπ1
m )
(
pπ1

l<m − pπ1

l>m

)
1p

π1
l ,p

π1
m ∈[k]︸ ︷︷ ︸

:=ϕ
a22
l,m

, (24)

= ϕa21(π1)
Tϕb21(π2) + ϕa22(π1)

Tϕb22(π2),

= [ϕa21(π1);ϕ
a22(π2)]

T︸ ︷︷ ︸
:=ϕa2 (π1)T

[ϕa21((π2));ϕ
b22((π2))]︸ ︷︷ ︸

:=ϕb2 (π2

= ϕa2(π1)
Tϕb2(π2). (25)

Equation 25 demonstrates the existence of vectors ϕa2 and ϕb2 for the s2 term. The vectors ϕa21 and
ϕa22 , possessing O(k) and O(k2) non-zero entries respectively, are defined in Equations 23 and 24.
Consequently, the ϕa2 vector has O(k2) non-zero entries. Similarly, it can be shown that ϕb2 contains
O(k2) non-zero entries, thus fulfilling the proof requirements for proving the s2 term. For the s3
term, we observe a symmetry between s2 and s3, namely s3(π1, π2) = s2(π2, π1). This symmetry
makes it trivial to satisfy the requirements, as further highlighted by the following equation:

s3(π1, π2) = s2(π2, π1) = ϕa2(π2)
Tϕb2(π1) = ϕb2(π1)

T︸ ︷︷ ︸
:=ϕa3 (π1)

ϕa2(π2)︸ ︷︷ ︸
:=ϕb3 (π2)

= ϕa3(π1)
Tϕb3(π2). (26)

Showcasing sparse vectors s4(π1, π2) = ϕ4a(π1)
Tϕ4b(π2). We begin by manipulating the s4

term without scalar, as defined in Equation 15.

s4(π1, π2) = −
∑

l∈I1\I2

ws(p
π1

l , ·) · ws(p
π2
m , ·),

= −
∑

l∈I1\I2

ws(p
π1

l , ·) ·

(∑
m∈I2

ws(p
π2
m , ·)−

∑
m∈I1∩I2

ws(p
π2
m , ·)

)
.

Observing that w :=
∑

m∈I2

ws(p
π2
m , ·) represents a constant value that does not depend on I2, we can

further simplify the above expression for s4 as follows:

s4(π1, π2) = −
∑

l∈I1\I2

ws(p
π1

l , ·) ·

(
w −

∑
m∈I1∩I2

ws(p
π2
m , ·)

)
,

= −

(
w −

∑
l∈I1∩I2

ws(p
π1

l , ·)

)
·

(
w −

∑
m∈I1∩I2

ws(p
π2
m , ·)

)
,

= −w2 + w

( ∑
l∈I1∩I2

ws(p
π1

l , ·) +
∑

m∈I1∩I2

+ ws(p
π2
m , ·)

)
−

∑
l∈I1∩I2

ws(p
π1

l , ·)
∑

m∈I1∩I2

ws(p
π2
m , ·). (27)

Next, to simplify the above equation, we first focus on the second term and have the following:

w

( ∑
l∈I1∩I2

ws(p
π1

l , ·) +
∑

m∈I1∩I2

ws(p
π2
m , ·)

)
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=
∑
l∈[n]

1p
π1
l ∈[k]ws(p

π1

l , ·)︸ ︷︷ ︸
:=ϕ

4a1
l (π1)

1p
π2
l ∈[k]w︸ ︷︷ ︸

:=ϕ
4b1
l (π2)

+
∑

m∈I1∩I2

w · ws(p
π2
m , ·),

= ϕ4a1(π1)
Tϕ4b1(π2) +

∑
m∈[k]

1p
π1
m ∈[k]w︸ ︷︷ ︸

:=ϕ
4a2
m (π1)

ws(p
π1
m , ·)︸ ︷︷ ︸

:=ϕ
4b2
m (π2)

= ϕ4a1(π1)
Tϕ4b1(π2) + ϕ4a2(π1)

Tϕ4b2(π2). (28)

Next, we simplify the third and last term in the Equation 27 as follows:∑
l∈I1∩I2

ws(p
π1

l , ·)
∑

m∈I1∩I2

ws(p
π2
m , ·) =

∑
l∈[n],m∈[n]

ws(p
π1

l , ·)1p
π1
l ,p

π1
m ∈[k]︸ ︷︷ ︸

:=ϕ
4a3
l,m(π1)

ws(p
π2
m , ·)1p

π2
l ,p

π2
m ∈[k]︸ ︷︷ ︸

:=ϕ
4b3
l,m(π2)

,

= ϕ4a3(π1)
Tϕ4b3(π2). (29)

Next, combining the results from Equations 27, 28, and 29, we obtain the following:

s4(π1, π2) = [w, ϕ4a1(π1);ϕ
4a1(π1);ϕ

4a3(π1)]
T︸ ︷︷ ︸

:=ϕ4a(π1)T

[−w;ϕ4b1(π2);ϕ
4b2(π2);−ϕ4b3(π2)]:=ϕ4b(π2)

= ϕ4a(π1)
Tϕ4b(π2). (30)

Equation 30 showcases both ϕ4a and ϕ4b has three components with having only O(k2) non-zero
entries, thus fulfilling the requirements for the s4 term. Next, we focus on the s5 term.

Showcasing sparse vectors s5(π1, π2) = ϕ5a(π1)
Tϕ5b(π2). We begin by examining the s5 term,

excluding its scalar component, as outlined in Equation 16.

s5(π1, π2) = (n− |I1 ∪ I2|) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

= (n− (2k − |I1 ∩ I2|)) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

= (n− 2k) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) + |I1 ∩ I2| ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

=
∑

l∈I1∩I2

√
n− 2k · ws(p

π1

l , ·) ·
√
n− 2k · ws(p

π2

l , ·)

+
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) · |I1 ∩ I2|, (31)

=
∑
l∈[n]

√
n− 2k · ws(p

π1

l , ·) · 1p
π1
l [k]︸ ︷︷ ︸

:=ϕ
5a1
l (π1)

·
√
n− 2k · ws(p

π2

l , ·) · 1p
π2
l [k]︸ ︷︷ ︸

:=ϕ
5b1
l

(π2)

+
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) · |I1 ∩ I2|,

= ϕ5a1(π1)
Tϕ5b1(π2) +

∑
l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) ·
∑

m∈I1∩I2

1,

= (ϕ5a1(π1)
Tϕ5b1(π2) +

∑
l∈I1∩I2,m∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

= ϕ5a1(π1)
Tϕ5b1(π2) +

∑
l∈[n],m∈[n]

ws(p
π1

l , ·) · 1p
π1
l ,p

π1
m ∈[k]︸ ︷︷ ︸

:=ϕ
5a2
l,m(π1)

·ws(p
π2

l , ·) · 1p
π2
l ,p

π2
m ∈[k]︸ ︷︷ ︸

:=ϕ
5b2
l,m(π2)

,

(32)
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= ϕ5a1(π1)
Tϕ5b1(π2) + ϕ5a2(π1)

Tϕ5b2(π2),

= [ϕ5a1(π1);ϕ
5a2(π1)]

T︸ ︷︷ ︸
:=ϕ5a(π1)T

[ϕ5b1(π2) + ϕ5b2(π2)]︸ ︷︷ ︸
:=ϕ5b(π2)

= ϕ5a(π1)
Tϕ5b(π2). (33)

The equation shows that s5(π1, π2) = ϕ5a(π1)
Tϕ5b(π2), where both ϕ5a and ϕ5b possess com-

ponents with a maximum number of non-zero entries, as indicated in Equations 31 and 32. This
completes the proof requirements for the s5 term.

By combining the results from Equations 22, 25, 26, 30, and 33, we have demonstrated the existence
of vectors ϕai and ϕbi , each containing only O(k2) non-zero elements, and have established that
si(π1, π2) = ϕai(π1)

Tϕbi(π2) for each i ∈ 1, 2, 3, 4, 5. In conjunction with Claim 5, this completes
the proof.

B Proposed GP-TopK Bandit Algorithm– Omitted Details

This section includes the proofs that were omitted from Section 4, presented in the following order:

• Section B.1 outlines a brief of Gaussian process regression for any domain.
• Section B.2 summarizes the committed details about the local search utilized for optimizing

the UCB function.
• Section B.3 provides the removed proof for the Theorem 2 concerning the overall time for

the bandit algorithm.
• Section B.4 provides the proof for Theorem 3 concerning regret analysis of the proposed

bandit algorithm.

B.1 Gaussian Process Regression

In GP regression [22], the training data are modeled as noisy measurements of a random function
f drawn from a GP prior, denoted f ∼ N (0, k(·, ·)), where k : X × X → R is a kernel function
over any domain X . The observed training pairs (xi, yi) are collected as X = [x1, . . . ,xT ] and
y = [y1, . . . , yT ] ∈ RT , where, for an input xi, the observed value is modeled as yi = f(xi) + ϵ,
with ϵi ∼ N (0, σ2). The kernel matrix on data is KX = [k(xi,xj)]

T
i,j=1 ∈ RT×T . The posterior

mean µf |D and variance σf |D functions for GPs are:

µf |D(x) := kT
xz (34)

σf |D(x) := k(x,x)− kT
x (KX + σ2I)−1kx (35)

where kx ∈ RT has as its ith entry k(x,xi), z = (KX + σ2I)−1y, and I is an identity matrix. For
GP regression on an arbitrary domain X , the kernel function must be a p.d. kernel [23].

Naive approaches rely on the Cholesky decomposition of the matrix KX + σ2I , which takes Θ(T 3)
time [23]. To circumvent the Θ(T 3) runtime, recent works use iterative algorithms such as the
conjugate gradient algorithm, which facilitate GP inference by exploiting fast kernel matrix-vector
multiplication (MVM) algorithms, i.e., v 7→ KXv [3]. In practice, these methods yield highly
accurate approximations for GP posterior functions with a complexity of Θ(p · T 2) for p iterations
of the conjugate gradient algorithm, as mvm(KX) = T 2, and mvm(M) is the operation count for
multiplying matrix M by a vector. p ≪ T proves to be efficient in practical application [3].

B.2 Contextual GP Reward Model

Optimizing the AF , i.e., UCB function, poses a significant challenge due to its enormous size of Πk.
Drawing inspiration from prior research on Bayesian optimization within combinatorial spaces, we
employ a breadth-first local search (BFLS) to optimize the UCB acquisition function [2, 19]. The
BFLS begins with the selection of several random top-k rankings. Subsequently, each specific top-k
ranking is compared with the UCB values of its neighboring rankings, proceeding to the one with the
highest UCB value.
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The neighbors of a top-k ranking include all its permutations and the permutations of modified top-k
rankings obtained by swapping one item with any of the remaining items. For any top-k ranking,
there are (n− k) · k! + k! neighbors, which is often not huge as k is often ≤ 6. This search continues
until no neighboring top-k ranking with a higher value is discovered. Although BFLS is a local
search, the initial random selection and multiple restart points help it evade local minima, a strategy
that previous studies have corroborated [19].

B.3 Assessing GP-TopK Compute Requirements

Theorem 2. Assuming a fixed number of iterations required by the iterative algorithms, the
total computational time for running the GP-TopK bandit algorithm for T rounds of top-k
recommendations, using the contextual product kernel (Equation 6), is O(k2cℓT 2). This applies
to WK, CK, and WCK top-k ranking kernels, where ℓ is the number of local search evaluations
for selecting the next arm in every round.

Proof. The proof can be straightforwardly derived by combining the results presented in Table 1,
which succinctly summarizes the time complexities for each step of computing the UCB using both
feature and kernel approaches. It is important to emphasize that iterative algorithms enhance results
from O(T 4) to O(T 3) in computational complexity. Furthermore, these algorithms can further
reduce complexity to O(T 2) when used with the feature approach.

The results presented in Table 1 can be validated through straightforward observations and by
leveraging findings from previous Sections 2. Specifically, Section 2 offers proof for the mvm(KX)
row explicitly. For the compute KXt

row, the complexity of kernel approaches is deduced from
Algorithms 2 and 3. For feature approaches, the compute KXt row is inferred from the sparsity of the
feature representations as stated in Claim 3. Lastly, the memory row is straightforwardly deduced for
the kernel approach by counting its entries. For the feature approach, it is derived from the sparsity of
the feature representations.

B.4 Regret Analysis

In this section, we revisit Theorem 3 and provide its proof. The proofs build on the work by Krause
et al. [14], delivering results for bounding the contextual regret in the context of the top-k ranking
problem. To set the stage for our regret analysis, let’s first define the critical term maximum mutual
information, denoted by γt, is given below:

γt := max
X⊆X :|X|=t

I(yX ; f), I(yX ; f) = H(yX)−H(yX |f),

where I(yX ; f) quantifies the reduction in uncertainty (measured in terms of differential Shannon
entropy) about f achieved by revealing yA [27]. In Gaussian observation case, the entropy can be
computed in closed form: H(N(µ,Σ)) = 1

2 log |2πeΣ|, so that I(yX ; f) = 1
2 log |I + ξ−2KX |,

where KX = [k(x, x′)]x,x′∈X is the Gram matrix of k evaluated on set X ⊆ X . For the contextual
bandit algorithm, X represents contexts and arms considered until round t.

Before proving Theorem 3, we align the Krause et al. [14] results with our notation for consistency.
Furthermore, we modify βt to accommodate embeddings encompassing negative values, aligning
with the fact that contextual embeddings may exhibit negative dimensions.

Proposition 1 (Theorem 1, [14]). Let δ ∈ (0, 1), and the unknown reward function f̂ be sampled
from the known GP prior with known noise variance σ2. Suppose one of the following holds:

1. Assumption 1 holds and set βt = 2 log(|X |t2π2/6δ).

2. Assumption 2 holds and set βt = 2B2 + 300γt ln
3(t/δ).

Then the cumulative regret RT of the contextual GP bandit algorithm with
the UCB acquisition function is bounded by Õ(

√
C1TγTβT ) w.h.p. Precisely,
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Pr
{
RT ≤

√
C1TγTβt) + 2 ∀T ≥ 1

}
≥ 1 − δ, where, C1 = 8/ log(1 + σ−2) and

the notation Õ hides logarithmic factors in n, 1
δ and T .

Proposition 1 shows that the regret RT for the contextual GP bandit algorithm, utilizing the UCB
acquisition function is bounded with high probability within Õ(

√
C1TγTβT ), where the notation

Õ hides logarithmic factors in n, 1
δ and T . To ascertain the Õ order for RT , it is imperative to first

bound the Õ order of γTβt. We begin by examining the γT term in the subsequent proposition.

Proposition 2. Under the assumptions of Theorem 3, γT can be succinctly characterized as
γT = O(n2c log(n2T ) + c log T ), which also simplifies to Õ(n2c), where the Õ notation omits
logarithmic factors in n and T .

Proof. For the GP bandit algorithm with the UCB acquisition function, γT = C ·
log
(
|I + σ−2KXT

|
)
, where C equals (1/2) · (1 − 1/e)−1 and KXT

represents the kernel ma-
trix computed over contexts and arms across T rounds [27, 14]. Precisely, KXT

is calculated using
the contextual kernel defined in Equation 6. It is applied to contexts and top-k ratings from the
feedback data Dt, corresponding to Line 6 of the generic contextual bandit Algorithm 1.

Next, we leverage the characteristic of the contextual kernel being a product kernel. Consequently, the
maximum mutual information term for the joint kernel, γT , can be upper bounded by c · (γπ

T +log T ),
where c denotes the dimensionality of contexts and γπ

T represents the maximum information gain in a
non-contextual setting [14]. Specifically, γπ

T is computed similarly but is confined to top-k rankings.
That is, γπ

T = C · log
(
|I + σ−2KXπ |

)
, with KXπ

T
being calculated exclusively using the top-k

kernels on the top-k rankings as selected by the bandit algorithm. Xπ
T represents the top-k rankings

selected by the bandit algorithm, i.e., excluding the contexts from the collected feedback.

Recalling the formulation for top-k rankings kernels, we have KXT
= ΦT

Xπ
T
ΦXπ

T
, where ΦXπ ∈

R(
n
2)×T comprises feature columns pertinent to the top-k ranking kernels, as elucidated in Section A.

Utilizing the Weinstein–Aronszajn identity, γπ
T is expressed as C ·log

(
|I + σ−2ΦXπ

T
ΦT

Xπ
T
|
)

. Further,

we deduce that γπ
T ≤ C ·

∑(n2)
i=1 log

(
|1 + σ−2λi|

)
, where λi is an eigenvalue of ΦXπ

T
ΦT

Xπ
T

. Given
the Gershgorin circle theorem, which bounds all eigenvalues of a matrix by the maximum absolute
sum of its rows, therefore we can conclude that γπ

T = O(n2 log(n2T )), as for all the columns of the
ΦXπ have bounded normed as given in Claims 2 and 3, i.e., ||ϕ(π)||22 ≤ 1 [29].

By combining γπ
T = O(n2 log(n2T )) with the contextual product kernel, we obtain γT =

O(n2c log(n2T ) + c log T ), thereby providing the claimed bound in the proposition.

Next, we build on Propositions 1 and 2 to prove the main theorem regarding the regret of the proposed
GP-TopK bandit algorithm for top-k recommendations.

Theorem 3. If either Assumptions 1 or 2 hold, setting βt as 2 log
(

|C|·|Πk|·t2·π2

6δ

)
and 300γt ln

3
(
t
δ

)
respectively, the cumulative regret RT of the GP-TopK ban-

dit algorithm for top-k recommendations can, with at least 1 − δ probability,
be bounded by Õ(n

√
C1Tc(log|C|+ k + log(T 2π2/6δ))) under Assumption 1, and

Õ(n
√
C1(2B2c+ 300n2c2 ln3(T/δ))T ) under Assumption 2. Here, C1 = 8

log(1+ξ−2) , and Õ
excludes logarithmic factors related to n, k, and T .

Proof. We will prove the above theorem for both cases separately.

For Assumption-1. Given |C| is finite and βT = 2 log(|D|T 2π2/6δ). First, we focus on bounding
βT as follows:

βT = 2 log(|D|T 2π2/6δ)
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= O
(
log|C|+ log|Πk|+ log(T 2π2/6δ)

)
As
(
n
k

)
≤ nk and k! ≤ kk, we also have log|Πk| = log

((
n
k

)
k!
)
≤ log

(
nkkk

)
= O(k log(nk)),

which implies that βT = O(log|C|+ k log(nk) + log(T 2π2/6δ)). Combining this with Proposition
2, we have following:
O(γTβT ) = O

(
(n2c log(n2T ) + c log T )(log|C|+ k log(nk) + log(T 2π2/6δ)

)
= O

(
n2c log(n2T )(log|C|+ k log(nk) + log(T 2π2/6δ)

)
(Ignoring c log T term)

= Õ
(
n2c

(
log|C|+ k + log(T 2π2/6δ)

))
.

Thus, we showcase the asserted bound for the regret RT as Õ
(√

C1TγTβT

)
=

Õ
(
n
√
C1Tc(log|C|+ k + log(T 2π2/6δ))

)
.

For Assumption-2. Given ∥f∥k ≤ B and βt = 2B2 + 300γt ln
3(t/δ). First, we bound the βT term

using Proposition 2 as follows:

βT = 2B2 + 300 · γT · ln3(T/δ),
= 2B2 + 300 ·

(
n2c log(n2T ) + c log T

)
· ln3(T/δ).

Using the above result, we have the following:

O(
√

C1TγTβT ) = O
(√

C1TγT ·
(
2B2 + 300 · γT · ln3(T/δ)

))
,

= O
(√

C1Tn2c log(n2T ) ·
(
2B2 + 300 · n2c log(n2T ) · ln3(T/δ)

))
,

= Õ
(
n

√
C1Tc(2B2 + 300n2c ln3(T/δ))

)
.

Comparison with Srinivas et al. (2010). Using the identity kernel for top-k rankings, we can
develop a finite-dimensional feature for the contextual kernel and apply Theorem 5 by Srinivas et al.
(2010). Given that γT = O(nkc log T ), the regret bounds are as follows under both assumptions. For
instance, the calculations for the O(

√
C1TγTβT ) under the Assumption 2 are as follows:

O(
√
C1TγTβT ) = O

(√
C1TγT ·

(
2B2 + 300 · γT · ln3(T/δ)

))
,

= O
(√

C1T (nkc log T ) ·
(
2B2 + 300 · (nkc log T ) · ln3(T/δ)

))
,

= Õ
(
n

k
2

√
C1Tc(2B2 + 300nkc ln3(T/δ))

)
.

Similarly, we can analogously perform the analysis for Assumption 1 and combine it with Proposi-
tion 1 to obtain the regret bounds mentioned in the Table 3.

C Experiments – Omitted Details

This section presents omitted details from the main body of the text.

C.1 Compute resources

We utilized multiple NVIDIA Tesla M40 GPUs with 40 GB RAM on our in-house cluster for our
experiments. The experiments in Section 5 required approximately 5 GPU-hours for small arm
space and 24 GPU-hours per iteration for large arm space. We conducted about 50 to 100 iterations
throughout the project. The results reported in Section C.3 required the same computational resources
as the large arm space experiments.
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Figure 4: Local search results for optimizing combinatorial objectives in Πk for n = 50 and k = 6. For details,
see the textual description. Left (a) shows how many times out of 100 trials the local search recovers the exact
maximizer, i.e., π

′
, and right plot (b) shows the average value of the objective for the returned maximizer. These

results indicate that the local search utilized in this work is effective.

C.2 Bandit Simulation and Hyper-parameter Configurations – Omitted Details

To set up the simulation, we utilized embeddings trained on the MovieLens dataset using a collabora-
tive filtering approach [6]. We consider a 1M variant of the MovieLens dataset, which contains 1
million ratings from 6040 users for 3677 items. Specifically, we train user embeddings cu and item
embeddings θi such that the user’s attraction to the items are captured by the inner product of the user
embedding with the item embeddings, respectively. Both context and item embeddings, i.e., cu and
θi, are 5-dimensional, optimized by considering the 5-fold performance on this dataset. The reward
provided in our experiments is contaminated with zero mean and standard deviation equals 0.05.

For the ϵ-greedy baselines, we considered various values of ϵ are considered, specifically ϵ =
{0.01, 0.05, 0.1}. The outcomes are presented for the configuration that demonstrates optimal
performance. For MAB-UCB baseline, the algorithm has an upper confidence score ucb(i) =

µi + βmab

√
2 ln(t+1)

ni
[11]. Here, µi represents the average reward, n denotes the total number of

rounds, and ni signifies the frequency of arm i being played. βmab is a hyper-parameter. We evaluate
βmab values within the set {0.1, 0.25, 0.5} and disclose results for the best-performing configuration.
For the parameters of proposed GP-TopK bandit algorithms, we set βt = βgp · log(|X | · t2 · π2) with
βgp ∈ {0.05, 0.1, 0.5}, reporting results the value that yields the best performance. The choice of βt

is informed by prior work in GP bandits [27]. The selection of σ for all variants is determined by
optimizing the log-likelihood of the observed after every 10 rounds by considering values in the set
{0.01, 0.05, 0.1}.

C.3 Additional results

Local search results for optimizing combinatorial objectives in Πk for n = 50 and k = 6. Specif-
ically, π⋆ = maxπ ϕ

r(π)Tϕr(π
′
), where ϕr(π

′
represents the feature vector for Kendall kernels

on top-k rankings. Notably, for this optimization problem, it is known that the optimal value is 1
obtained by only π

′
. Figure 4 shows results for this optimization problem when applied to WK, CK,

and WCK kernels.

Reward results for large arm space for the nDCG + diversity reward. Similar to Figure 3, a large
setup with n = 50 for k = 3 and k = 6, is considered. For k = 6, the possible arms are over
1.1 × 1010 possible top-k rankings. Given the vastness of this arm space, computing the optimal
arm for the diversity reward is not straightforward. Therefore, we focus on reporting the cumulative
reward in Figure 5. We implement this setup using a Local search in batch mode, updating every 5
round and considering a substantial horizon of T = 100 rounds. Specifically, we use 5 restarts, 5
steps in every search direction, and start with 1000 initial candidates. Figure 5 shows that the WCK
approach demonstrates superior performance, continuing to learn effectively even after extensive
rounds.
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Figure 5: Comparative evaluation of bandit algorithms for large arm spaces for the nDCG + diversity reward,
with > 1.1 × 105 for the left plot and > 1.1 × 1010 for the right plot, respectively. Cumulative reward with
respect to the rounds of the bandit algorithm is depicted. Results are averaged over 6 trials. In both settings, the
WCK approach outperforms other baselines. For more details, see the textual description.
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5 provides necessary details of bandit simulator and experimental
setups considered in this work.
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material?
Answer: [Yes]
Justification: Our code can be accessed using this hyper-link.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5 provides experimental details and a few remaining details are given
in the Appendix C.
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