Under review as a conference paper at ICLR 2021

INTRA-LAYER NEURAL ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an efficient neural architecture search (NAS) algorithm with a flexible
search space that encompasses layer operations down to individual weights. This
work addresses NAS challenges in a search space of weight connections within
layers, specifically the large number of architecture variations compared to a high-
level search space with predetermined layer types. Our algorithm continuously
evolves network architecture by adding new candidate parameters (weights and
biases) using a first-order estimation based on their gradients at 0. Training is
decoupled into alternating steps: adjusting network weights holding architecture
constant, and adjusting network architecture holding weights constant. We explore
additional applications by extend this method for multi-task learning with shared
parameters. On the CIFAR-10 dataset, our evolved network achieves an accuracy of
97.42% with SM parameters, and 93.75% with 500K parameters. On the ImageNet
dataset, we achieve 76.6% top-1 and 92.5% top-5 accuracy with a search restriction
of 8.5M parameters.

1 INTRODUCTION

Deep neural networks have very been successful in tackling various learning problems in computer
vision provided large amounts of training data [LeCun et al.| (2015). However, designing neural
network architectures for a particular task, especially under resource constraints, is a challenge
that requires some insights on the task and likely the involvement of a human expert. Researchers
have spent much effort attempting to automate this process, proposing a variety of methods known
collectively as neural architecture search (NAS) algorithms [Jaafra et al.|(2018)). These methods use a
wide variety of techniques such as random search |[L1 & Talwalkar| (2019)), reinforcement learning
Zoph & Le|(2017)), tournament selection |Real et al.|(2017), meta-networks [Luo et al.|(2018)), etc. to
determine the layer types and connections in the network. At a high level, a NAS algorithm defines a
search space A of architectures usually with a range of possible layer types and activation functions.
Using the aforementioned methods it chooses an architecture A € A, evaluates its performance, then
continues the search by attempting a new choice A’ that is expected to improve upon the current
A. These algorithms generally treat architecture search as hyper-parameter optimization problem
and earlier works focused largely on the accuracy of the architecture. However, as neural networks
are used widely today from data centers to mobile devices, the memory and computational cost of
inference is an increasingly important factor. Therefore, we place additional emphasis on practical
issues such as training efficiency and network size.

While most past works search for network architectures at the granularity of layers and layer-level
connections |Elsken et al.|(2018)), this paper addresses NAS at the level of individual parameters. We
propose intra-layer neural architecture search (ILNAS), a training process that integrates architecture
search with weight training, in essence, performing gradient descent on both weight values and
connections. Our search space consists of convolution and reduction cells similar to NASNet|Zoph
et al.| (2018)), but allows for architecture optimization within layers. This means that linear layers,
theoretically unbounded in width and depth, can be arbitrarily connected and convolutional layers can
be irregular with varying kernel dimensions, missing kernel weights (e.g. atrous), etc. The process
can be considered as reverse network pruning: we continuously expand a baseline network by adding
new weights rather than deleting them from a large pre-trained network.

The training process consists of two interleaved tasks: 1. Given the current network architecture,
we train by adjusting the current weights. 2. Given the current weights, we train by adjusting the
current architecture. To evaluate our method, we use the popular image classifications datasets

Under review as a conference paper at ICLR 2021

ImageNet Russakovsky et al.| (2015)), CIFAR-10 [Krizhevsky| (2009), STL-10 [Coates et al.| (2011]),
Fashion-MNIST [Xiao et al.[(2017), and MNIST [LeCun & Cortes|(2010). We compare test accuracies
achieved under parameter constraints against NAS algorithms in other recent works. We also evaluate
transfer and multi-task learning with the learned architectures to classify different or multiple datasets
with continuous evolution. Our results show that network evolution achieves competitive results
compared to state-of-the-art NAS approaches in terms of both accuracy and resources. In addition, we
show that this algorithm can be extended to learning multiple tasks by training multiple architectures
with parameter sharing.

2 RELATED WORK

Research in neural architecture search dates back a few decades to genetic algorithms that were
proposed to find both architecture and weights |[Schaffer et al.| (1992). One example is the NEAT
algorithm Stanley & Miikkulainen|(2002) which trains a population of models and uses a survival of
the fittest strategy to continuously improve. Evolutionary algorithm (EA) have seen a resurgence in
interest and recent works such as|Real et al.|(2017) have demonstrated success in finding architectures
for image classification. In most cases, however, EA methods concurrently train multiple models and
require significant computation resources.

Another class of methods use reinforcement learning (RL). With RL, one can model parameter
choices for each layer of the network as a Markov decision process (MDP). In this environment,
an agent goes through a phase of exploration where it is encouraged to choose previously untested
parameters for each layer, and a phase of exploitation where it chooses the best parameters based on
past results. Baker et al. proposed MetaQNN Baker et al.|(2017), a meta-algorithm that generates
CNN architectures using Q-learning in this manner. The main trade-off in these greedy approaches is
that over-exploration is costly and leads to slow convergence whereas under-exploration potentially
converges the network to poor local minima. Hypernetworks (or meta-networks) use a separate neural
network to output a description of the architecture or make predictions on the performance of an
architecture. Luo et. al. Luo et al.[|(2018]) use an encoder to map the architecture into a continuous
space where gradient ascent can be performed based on estimated accuracy. A decoder then retrieves
the architecture from this space. Other recent approaches include using recurrent neural network
(RNN) controllers to generate layer parameters Zoph & Le| (2017); [Zoph et al.|(2018) and graph
methods that use various mutations on the computation graph to generate new architectures Liu et al.
(2018). If training efficiency is of greater concern, one-shot training methods that train the network
only once have been proposed. They are often combined with one or more of the above methods with
additional optimizations such as weight sharing to train the network with relatively little overhead
compared to regular training |[Pham et al.| (2018)).

This work differs most notably from existing approaches in its search space that consists of individual
weight connections and kernels between layers rather than the network’s global or cell structure. As a
result, the discovered architecture can have irregular linear layers that are neither fully convolutional
nor fully connected. This allows fine grained control over the exact size of the trained network (i.e.
the number of weights and multiply-accumulate operations) but also presents challenges due to the
enormous size of the search space. Any NAS method based on evaluating each new architecture
candidate is not scalable down to individual weights unless a tremendous amount of computation
resource is available. Finally, since our search space does not fully overlap with those of many
related approaches, our method can be used in conjunction with other NAS algorithms that search
for different aspects of network architecture (e.g. activation functions, architecture template, cell
structure).

3 ARCHITECTURE EVOLUTION

We consider a typical classification problem with a real-valued input vector x and labels y. A
feedforward neural network with linear layers, activation function o (z), and flattened weight vector
W € R9 defines a function f : (z, W) + y as follows:

f(x, W) = argmax(.. W g(WOog(Wg))..).

Generally, some variant of gradient descent is used in an attempt to find loss-minimizing weights W
for the network. The focus of this paper is to optimize network architecture in addition to weights.

Under review as a conference paper at ICLR 2021

3.1 PROBLEM FORMULATION

We define the network’s architecture A to be the vector o with the same dimension as W whose
elements a; € {0, 1} are Boolean. A network f with architecture « is then expressed as follows:

fi(x,a®W)—y, WeRY aecB

This definition is used identically in network pruning, however the dimensions of & and W are
dynamic during training. Viewing the network as a graph, a 1 element in the architecture vector
o indicates the presence of a corresponding weight or bias term in W, and a 0 element indicates
the absence of a term. Hence, a Boolean vector in B¢ maps to a subset of functions of fw () with
certain weights zeroed. Network architecture search for training inputs X and labels Y under some
parameter constraint || < ¢ can be formulated as a bilevel optimization problem:

min L(f(X. w(a)),Y). m
where w(a) = argmin L(f(X,aa ® W),Y). (2)
w

This formulation is similar to DARTS [Liu et al.| (2019) and SNAS Xie et al.| (2019) however
« is generalized to encode any subset of network weights rather than layer-level operations. This
optimization problem is difficult for two reasons: 1. the upper level decision space is large and consists
of non-differentiable Boolean values, and 2. the lower level optimization for W is computationally
costly if we train every architecture c.

3.2 ADDING NEW PARAMETERS

Before describing the optimization algorithm, we visually demonstrate how new parameters expand
the network. Figure [I] shows three types of architectural additions that do not initially affect the
network. Nodes in this figure Ny, No1, ... represent a single neuron with one output value. A new
connection between existing nodes (shown left) is the simplest. The missing connection is simply
treated as a 0 weight as defined above (¢ ©® W with & = [...., 0, ...]). However, we can still compute
loss gradient on the weights since 9W x/OW does not depend on the current W. Adding a new
node (shown center) is done by forming a connection from a placeholder node to the next layer. A
placeholder node here indicates one without forward connections and hence has no impact on the
network’s output. As before, zeroed weights for forward connections are differentiable. These nodes
are candidates to be selected and added to the network during training.

A useful property of ReLU activations o (z) = max{0, z} is that it is unchanged by composition, i.e.
o(x) = (0 oo oo...)(x). Each node can be extended into a composition of as many nodes as needed
with all connections weighted at 1 (and bias at 0) without changing its current input-output mapping.

o(z) = ..c(wo(wo(x) +b)+0b)... (w=1b=0).

As shown on the right of Figure[l| we can exploit this property to add an arbitrary number of layers
to the network without drawback, hence the network is unbounded in depth.

Figure 1: Left - adding a new weight connection from Ny; to N7;. Center - adding a placeholder
node Ns, to the network by adding connections to N3 and N3;. Right - forming a new layer with
Nyo, N4 without affecting the network’s outputs.

Under review as a conference paper at ICLR 2021

3.3 ARCHITECTURE OPTIMIZATION

We use a greedy algorithm, at each step, given the current architecture «, our objective is to determine
the best way to expand it &« — «’ such that w(a’) minimizes empirical risk. We use a two
step process to select new parameters to be added to the current network architecture. Prior to an
architecture optimization step, we assume the current network is trained to some local minima, thus
its weight gradient is non-zero only for non-existent weights in the current architecture. For example,
if the first j weights are active (i.e. oy, ... a; = 1, 11, j42,... = 0), then we have:

VwL(f(X,a®W),Y) = VyL(a, W) = [0,0,0,... 0OL/OW; 11, 0L/ OW; 5, ...

We choose first level candidate parameters based on the magnitude of the derivative of missing
connections: |0L/0(a;W;)| where o; = 0. We noted that since layers are linear, partial derivatives
with respect to zero weights are not necessarily zero. Naturally, the larger this value, the larger
the initial decrease in loss we expect if W; becomes a non-static network weight. In this step, we
denote the new ‘hyperarchitecture’ constructed by adding up to n candidate parameters included as
o, |a*| — |a] = n and updating all weights W* for this gradient descent step. These are the largest
n parameters based on their partial derivative magnitudes. From here, we want to determine the m
best parameters to add from candidates (m < n) such that the new architecture «’ that minimizes
loss after weight training.
min L(a’, W’),where W’ = argmin L(f(X,a’ ® W*),Y).

le’|<|a|+m w

The variables n and m change during training and are determined from on the architecture learning
rate Ay, that specifies how new parameters should be added each expansion step given the parameter
constraints of the search. For large networks with millions of parameters, the number of first level
candidates is already large. Evaluating (:1) possible architecture choices is impractical, especially
since inner optimization on weights requires additional training. Indeed, if the magnitude of the
Hessian is small, a linear approximation of weight changes across training iterations can be obtained
solely from the current weight gradients, so choosing the m largest among them like we did for a*
above should suffice. However, we perform an additional iteration of gradient descent on weights for
the hyperarchitecture a* to obtain another reference point. We simply linearly combine the gradients
of the base o and the hyperarchitecture a* to obtain a final magnitude |0L/0(c;W;)+0L/0(a; W)
to sort by the largest m. Our architecture expansion decisions can be rapidly determined from two
iterations of training.

3.4 SEARCH SPACE GRANULARITY

If each element of « is an independent Boolean variable, the search space would be at its largest.
On the other hand, we can group multiple element of « as one variable to control the search space
granularity. Figure 2] shows various levels of architecture search space from layer-level connections
to individual weights.

Optimization is more costly and difficult the more fine grained the search space, hence we use a
top-down approach and start with architecture changes at the level of layers and kernels. We use an
architecture template based on NASNet described in Section[d.T} In our experiments we do not search
at the level of layers to isolate the effectiveness of ILNAS, we search only at the level of kernels and
individual weights.

Layer Level Kernel Level Within Kernel Individual Weights

Layer L
Q Q2 Q Qz Qz Qi Q12| Q13| Qg | Qs

: ;‘ “o|[EEa e | *2 i I R A
Layer L +1 01101

| s a Lo I U U
V: a o ap o az Fo 75 I N IR (P
Arch. Cell Layer L Layer L +1 Conv. Kernel Conv. Kernel

Figure 2: Dynamic search space granularity that varies from layer-level operations down to individual
weights and biases.

Under review as a conference paper at ICLR 2021

3 2 o 2
2 3 a5 2 3 |5 S =
g SRR * /g8 3 8 .} 8 |9
o - ™S5 o: ® ™ § - b T S T+ ™ 5
o o =3 r C =3 2 o 2
c. c. o c c) o @]
+ ! + ! S + + S - -
w ! W w ! w = <
- z z z
- J - J - J
BB BB BB
Expandable no. of Conv Layers Expandable no. of Linear Layers

Figure 3: Network architecture template consisting of variable convolutional layers between reduc-
tions followed by variable linear layers.

4 TRAINING METHODS

We separate the training process into two independently executed tasks where one variable is isolated
in each. As training samples are evaluated, we perform the following:

1. Given the current architecture c, adjust the weights W — W’ such that the network
f(z, o © W) can achieve lower loss.

2. Given the current weights W, adjust the architecture & — ' such that the network
f(z,a’ ® W) can achieve lower loss.

The algorithm pseudocode is given in Algorithm[T]and consists of the two phases we described: Phase
I: standard network weight training, and Phase II: network architecture expansion. The function
AddCandidates add n non-architectural weights with the largest gradient magnitudes to the
network. The function UpdateArch then selects a subset of m parameters to add to the network
based on the base and hyper-architecture as described in the previous section. Based on the parameter
constraints and number of training epochs, we can determine how many parameters are added each
epoch.

Algorithm 1 ILNAS Training Algorithm

1: Net < Base network with randomly initialized architecture.

2: while n < numEpochs do

3: 1. Perform standard SGD by updating weights based on Vy L(c, W).

4 if Viy L(a, W) = 0 or j epochs elapsed then

5 2.1 Compute network gradient Vy L(a, W) and add them to the hypernetwork.

6 HyperNet ¢+ Net.AddCandidates(Vw L(a, W))
7: 2.2 Compute hypernet gradient Vy L(a*, W*) and determine the new architecture o’.
8.
9

10:

Net < Net.UpdateArch(a,a*, Viy L(a, W), Vi L(a*, W*))
end if
end while

4.1 ARCHITECTURE TEMPLATE

We use an architecture template similar to NASNet [Zoph et al.| (2018) as shown in Figure [3] The
network consists of dimension preserving convolution layers with reduction layers inserted between
them. Note that we do not define layer types since they are all custom. Every layer between two
reduction cells can be connected to previous layers, and the total number of layers is unbounded (but
limited in implementation). At the start of training, we randomly sample a baseline architecture to
evolve from.

Under review as a conference paper at ICLR 2021

0.5M 1.0M — 2.5M — 5.0M

S o
o

2

7

o

Test Accuracy (%)

Avg. Loss Per Epoch (Log10)

Vo
o
o

ol

v
N
5

100 200 300 400 500
Training Epochs

Figure 4: Empirical loss and test accuracy results after 500 epochs of training for evolutionary
networks constrained to 0.5, 1.0, 2.0, and 5.0 million parameters.

4.2 EXTENDING TO MULTI-TASK LEARNING

We apply our algorithm to train one neural network for more multiple tasks with some of its parameters
shared and others independent across tasks. For example, in the case of lifelong learning, the network
is expected to learn multiple tasks arriving in sequence. Thus, we extend our algorithm to consider
multiple architectures avg, g, aug, ... applied on the same network f depending on which task is
being performed, the resulting networks are f(x,c1 © W), f(z, a2 © W), f(z,03 ©® W), ...
with weights W partially shared. We apply the same NAS algorithm for each network architecture,
however shared weights have gradients that are linearly combined for each architecture, we write:
Vwf=Vwflar ® W)+ Vw flas ® W) + ... for all architectures a1, g, We apply the
ILNAS algorithm to expand each architecture individually and the shared portion as a standalone
architecture.

5 EXPERIMENTS

We implement our training algorithm in PyTorch and evaluate it on the popular image classification
datasets MNIST |LeCun & Cortes| (2010), Fashion MNIST Xiao et al.[(2017), CIFAR-10 |Krizhevsky
(2009), STL-10|Coates et al.|(2011), and ImageNet Russakovsky et al.| (2015)). Initial weights are
randomized by PyTorch defaults, and cross-entropy loss is used for all datasets. A hard limit of
maximum 1024 channels and 64 convolutional layers deep is imposed on the network. Our hardware
training platform consists of a single Nvidia RTX 2060 Super GPU and Intel Xeon E5-2660 v4 CPU
(used for architecture expansion functions).

5.1 IMAGE CLASSIFICATION

CIFAR-10. The CIFAR-10 [Krizhevsky| (2009) dataset offers 50,000 training images and 10,000
test images of dimension 32 x 32 for classification of simple objects into 10 categories. We use a
batch size of 128 and perform standard pre-processing with input normalization, random crops, and
horizontal flips. Four networks are trained for 500 epochs, each with a different parameter restriction
of 0.5, 1.0, 2.5 and 5.0 million respectively. We perform mixed architecture and weight training in
the first 400 epochs but fix the architecture for the last 100 epochs.

Figure [] shows training losses of all four networks at every epoch and test accuracies every five
epochs. A clear inverse correlation between network size and empirical loss is as expected. The
network allowed to evolve to 5SM parameters achieves a higher accuracy of 97.42% compared to
the 93.75% accuracy of the smallest network with 500K weights. Figure [5|shows training results
compared to a fixed network architecture and randomly evolved architecture of the same size (1.0M
parameters, best of 5 trained). ILNAS clearly outperforms a random baseline and a fixed identically
sized network. The architecture learning rate A;, regulates how many new parameters are added in
each expansion relative to the current network size. Its value decays as the epoch number increases.
Under the same total parameter constraint, we can have few expansions with many new parameters
added each step (large A;.), or many expansions with few additions. The results show that, as
expected, the latter performs better at the cost of increased training time.

Table[T]compares our results in CIFAR-10 with other recent NAS methods. Our training approach
yields results competitive with state of the art RL and EA-based methods despite its significantly

Under review as a conference paper at ICLR 2021

Work Method Type Accuracy (%) Params (M) GPU Days
Baker et al.|(2017) RL 93.08 11.2 100
Zoph & Le|(2017) RL 96.35 374 22400
Zoph et al.|(2018) RL 96.59 33 2000
Zhong et al.| (2018)) RL 96.46 39.8 96
Cai et al.|(2018) RL 95.77 234 10
Real et al.| (2017) Evolutionary 94.60 54 2600
Liu et al.| (2018) Evolutionary 96.25 15.7 300
Thomas Elsken| (2018) Evolutionary 94.80 19.7 1
Zhang et al.|(2019) One-shot 97.16 5.7 0.84
Pham et al.| (2018) One-shot 96.46 4.6 0.5
Bender et al.|(2018) One-shot 96.00 5.0 N/A
Brock et al.|(2018) One-shot 95.97 16.0 3
Liu et al.| (2019) One-shot 97.24 3.3 4
Xie et al.|(2019) One-shot 97.15 2.8 1.5
ILNAS (5.0M) Gradient-based 97.42 5.0 0.8
ILNAS (2.5M) Gradient-based 95.88 2.5 0.5
ILNAS (1.0M) Gradient-based 94.64 1.0 0.3
ILNAS (0.5M) Gradient-based 93.75 0.5 0.2

Table 1: Comparison of our results with recent works in neural architecture search on the CIFAR-10
dataset.

Ar=003 — AlIr=005 Alr=03

Loss (Log10)
Accuracy (%)

Accuracy (%)
Loss (Log10)

0 200 400 600 0 20 400 o0
Training Epochs (CIFAR) Training Epochs (CIFAR)

(a) Results for fixed and random baselines. (b) Results for different A;,..

Figure 5: Training results compared to a fixed architecture VGG-like network and a NAS algorithm
that randomly adds new parameters, and training results with various architecture learning rates.

different search space. In addition to accuracy results, our method is efficient in training time and
performs well under weight parameter restrictions.

ImageNet. The ImageNet dataset is far more difficult to classify with its larger input dimensions and
number of output classes. We achieve a 76.6% Top-1/ 92.5% Top-5 accuracy with a restriction of
8M parameters and 70.7% Top-1/ 87.9% Top-5 accuracy with a restriction of 2.5M parameters. As
Table 2] shows, our results here are similarly competitive with other NAS approaches.

5.2 ARCHITECTURE TRANSFER AND MULTI-TASK LEARNING

We evaluate the potential for transfer learning by adapting a trained network architecture from one
dataset to a different classification task. Since our training method changes architecture incrementally
at each step, we can continuously evolve the previously trained architecture rather than starting from
a random base network.

STL-10. The STL-10 dataset has the same 10 classes as CIFAR-10 but its images have dimension
96 x 96. We evaluate the network trained on CIFAR-10 with SM parameters and resize STL-10
images to 32 x 32 to match input dimensions. Without further training, we achieve 81.8% accuracy.
We then train using the 5K provided images and allow the network to expand to achieve 83.4% with
6.0M parameters and 85.6% with 8.0M parameters.

Under review as a conference paper at ICLR 2021

Accurac
B Worli Method Type (Top-1/ SZ/o) Params (M) GPU Days
Zoph et al.|(2018) RL 82.7/96.2 88.9 2000
Zhong et al.| (2018) RL 77.4/93.5 N/A 96
_[Caietal[(2018) RL 74.6/91.9 594 200
Bender et al.| (2018)) One-shot 75.2 / N/A 11.9 N/A
Liu et al.| (2018) One-shot 73.3/91.3 4.7 4
Zhang et al.|(2019) One-shot 73.0/91.3 6.1 0.8
Brock et al.[(2018) One-shot 61.4/83.7 16.2 3
Liu et al.|(2019) One-shot 73.3/91.3 4.7 4
7Xie et al.7(2019) One-shot 72.7790.8 4.3 1.5
ILNAS (8.0M) Gradient-based 76.6/92.5 8.5 2
ILNAS (5.0M) Gradient-based 74.1/91.4 5.0 1.5
ILNAS (2.5M) Gradient-based 70.7/87.9 2.5 1

Table 2: Comparison of results with recent works in NAS on the ImageNet dataset.

Datasets Shared Params (%) Total Params Test Accuracies
(CIFAR, MNIST) 20.0% 5.0M (95.54%, 99.50%)
(CIFAR, FMNIST) 20.0% 5.0M (95.16%, 94.23%)
(CIFAR, FMNIST) 33.3% 4.5M (94.12%, 94.45%)
(ImageNet, CIFAR) 33.3% 7.5M (71.2% | 87.4%, 92.36%)

Table 3: Training results of multiple datasets on one network with partially shared weight parameters.

MNIST and Fashion-MNIST. Both datasets MNIST and Fashion-MNIST use grayscale input
images of dimension 28 x 28 and 10 output classes. Transferring even our smallest trained CIFAR-10
architecture we observe accuracies > 94% on Fashion-MNIST and > 99% on MNIST within 100
epochs of regular training. Doing the reverse by evolving a pre-trained architecture for Fashion-
MNIST on CIFAR-10 (with grayscale images), we achieve 90.9% accuracy within 150 epochs, with
2.5M parameters.

Training on two datasets. We simulataneously train two datasets on one network with weights
partially shared but outputs separated. The ILNAS algorithm is independently applied to the network
architectures dedicated to each task and the shared architecture. Table [3] shows training results of
various dataset pairs. For MNIST and FMNIST images, we duplicate inputs for three color channels,
and for CIFAR, we upscale input images when the network is shared with ImageNet.

6 CONCLUSION

We proposed a neural architecture search algorithm that uses local weight gradients to selectively
expand the current network’s architecture. The main contribution of this work is its different search
space consisting of the network’s individual connections and nodes that combine to form irregular
layers unbounded in both width and depth. Our algorithm trains in a two step cycle where each step
isolates either the current weights or architecture and adjusts the other in a similar fashion to the
k-means algorithm.

Our results show that training by architecture expansion at the level of individual parameters is
efficient and achieves results on par with most recent works in NAS. Furthermore, we demonstrate
that architectures trained for one dataset can be continuously evolved or restructured to adapt to a
different task, and that we can adapt the ILNAS algorithm to train multiple tasks on one network
with shared parameters. Since our search space is fundamentally different from that of many related
approaches, it is possible to combine it with other methods that search for different aspects of network
architecture.

Under review as a conference paper at ICLR 2021

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. In Jennifer Dy and Andreas Krause (eds.), Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pp. 550-559, Stockholmsmissan, Stockholm Sweden, 10-15 Jul
2018. PMLR. URL http://proceedings.mlr.press/v80/benderl8a.htmll

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In 6th International Conference on Learning Representations,
ICLR 2018, 2018. URL https://openreview.net/forum?id=rydeCEhs—.

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network transformation
for efficient architecture search. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 678—687, Stockholmsmissan, Stockholm Sweden, 10—15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/cail8a.html.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudik (eds.), Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pp. 215-223, Fort Lauderdale, FL, USA, 11-13 Apr
2011. PMLR. URL http://proceedings.mlr.press/v15/coateslla.html.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research 20 (2019) 1-21, 2018.

Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber Naceur. A review of
meta-reinforcement learning for deep neural networks architecture search, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010. URL http://yann.lecun.com/exdb/mnist/|

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436-444,
2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/naturel4539.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
arXiv, 2019.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hi-
erarchical representations for efficient architecture search. In 6th International Conference on
Learning Representations, ICLR 2018, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview,
net/forum?id=SleYHoC5LFX.

Rengian Luo, Fei Tian, Tao Qin, En-Hong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in neural information processing systems, 2018.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018, pp. 4092-4101,
2018. URLhttp://proceedings.mlr.press/v80/phaml8a.html.

http://proceedings.mlr.press/v80/bender18a.html
https://openreview.net/forum?id=rydeCEhs-
http://proceedings.mlr.press/v80/cai18a.html
http://proceedings.mlr.press/v15/coates11a.html
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/nature14539
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
http://proceedings.mlr.press/v80/pham18a.html

Under review as a conference paper at ICLR 2021

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V.
Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, pp- 2902-2911, 2017. URL http://proceedings.mlr.press/v70/reall7al
htmll

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

J. D. Schaffer, D. Whitley, and L. J. Eshelman. Combinations of genetic algorithms and neu-
ral networks: a survey of the state of the art. In COGANN-92: International Workshop
on Combinations of Genetic Algorithms and Neural Networks, pp. 1-37, June 1992. doi:
10.1109/COGANN.1992.273950.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 10(2):99-127,2002. URL http://nn.cs.utexas.edu/
?stanley:ec02.

Frank Hutter Thomas Elsken, Jan Hendrik Metzen. Simple and efficient architecture search for
convolutional neural networks. In 6th International Conference on Learning Representations,
ICLR 2018, 2018. URL https://openreview.net/forum?id=SySaJ0xCZ.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms, 2017.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In International Conference on Learning Representations, 2019. URL https://openreviewl
net/forum?id=rylgqooRgK7.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
In International Conference on Learning Representations, 2019. URL https://openreviewl
net/forum?id=rkgW00A9FX.

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural network
architecture generation. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th
International Conference on Learning Representations, ICLR 2017, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In CVPR, pp. 8697-8710. IEEE Computer Society, 2018.

10

http://proceedings.mlr.press/v70/real17a.html
http://proceedings.mlr.press/v70/real17a.html
http://nn.cs.utexas.edu/?stanley:ec02
http://nn.cs.utexas.edu/?stanley:ec02
https://openreview.net/forum?id=SySaJ0xCZ
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rkgW0oA9FX
https://openreview.net/forum?id=rkgW0oA9FX

	Introduction
	Related Work
	Architecture Evolution
	Problem Formulation
	Adding New Parameters
	Architecture Optimization
	Search Space Granularity

	Training Methods
	Architecture Template
	Extending to Multi-task Learning

	Experiments
	Image Classification
	Architecture Transfer and Multi-Task Learning

	Conclusion

