
rvesimulator: An automated representative volume
element simulator for data-driven material discovery

Jiaxiang Yi
Department of Material Science and Engineering

Delft University of Technology
Mekelweg 2,Delft, 2628 CD, the Netherlands

J.Yi@tudelft.nl

Miguel Bessa
School of Engineering

Brown University
184 Hope St.,Providence, RI 02912, USA

miguel_bessa@brown.edu

Abstract

The rvesimulator aims to provide a user-friendly, automated Python-based frame-
work conducting Representative Volume Element (RVE) simulation via powerful
Finite Element Method (FEM) software Abaqus. By utilizing this repository, large
amount of reliable FEM data-set generation is possible with RVEs encompass-
ing materials from elastic to plastic composites . rvesimulator provides: (1) a
cross-platform function to run arbitrary Python-Abaqus script without graphical
user interface (GUI), it offers users a convenience way to run their unique scripts;
(2) Python-Abaqus scripts to simulate RVE with different design of experiments
including various micro-structures, material laws, and loading; (3) benchmarks
of running prevalent RVEs covering elastic, hyper-elastic, plastic materials are
provided, which illustrates the general pipeline (preprocess, execution, and postpro-
cess) of the developed framework; By sharing the developing framework, we are
aiming to reduce the labor-intensive process of generating massive of simulations
data for new materials and structure discovery. Therefore, it facilitates the appli-
cation and development of machine learning method for new material discovery.
More details about the rvesimulator can be referred to the GitHub repository:
https://github.com/bessagroup/rvesimulator.git

1 Introduction

The pursuit of discovering new materials remains the ultimate goal for materials scientists. Wing
kam Liu [1] reviewed the development of Finite Element Method (FEM) over the past eighty years,
and claimed that Neural Networks (NNs) based on FEM drives to new avenues for discovering
new material with unprecedented properties. Recently, advanced machine learning technologies
such as Multi Layer Perceptrons (MLP)[2], Convolution Neural Network (CNN) [3], Graph Neural
Network (GNN)[4], Recurrent Neural Network (RNN)[5], etc. are utilized for learning and finding
better material properties. Large high-fidelity data-set is expected for training well performed
aforementioned machine learning models, whereas the process of generating such data is notably
absent from the existing literature. There are several open-source FEM packages, such as Fenics[6],
JAX-FEM[7], however their capability for high nonlinear and complex material like composite is
limited. Abaqus [8], renowned for its powerful nonlinear solver capable of handling intricate and
large-scale simulations, is prevalent among material science researchers. However, GUI operation
still is the common way to obtain data-set for researchers who are using Abaqus even though it is a
repeatable process.

The rvesimulator is a flexible and user-friendly repository based on Python, focusing exclusively on
RVE simulations while filtering out other functionalities of ABAQUS, such as contact and thermal
analyses. With the developed framework, the repeatable processes such as geometry modeling,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/bessagroup/rvesimulator.git


periodical boundary condition, job submission, and postpocess are already coded. For the potential
design variables which are mirco-structures, material models, and loading; the user can use design of
experiments (DoE) methods to draw their DoE. Then, the DoE can be regard as the arguments to the
rvesimulator to run simulations automatically. By introduce this ease to use repository, we hope to
narrow of gap of machine learning and new material design.

2 General workflow

The schematic of the developing rvesimulator is shown in Fig.1, which comprises two important
modules. The first module is encapsulated as functions and could be seamlessly embedded into
the data-driven material design and optimization process. The other is Python-Abaqus scripts for
executing RVE simulations. Two modules only communicate with ’AbaquSimulator’ object that
handle the input and output data flow. In the Master control module, the essential configurations
like micro-structure information, material model parameters, and loading are set and then pass to

’AbaquSimulator’. Within this module, a Monte Carlo algorithm is implemented [9] to generate
the above depicted micro-structures Fig.1 such that users can generate desired RVE micro-structure
with certain volume fraction and particle distribution. Further details about will be illustrated in
Section 3 along with concrete examples. Additional information of ’AbaquSimulator’ object and
Python-Abaqus scripts will be presented in the following subsections.

Master-control

DoE + Other FEM Paras

 Postprocess Results

S
ys

te
m

 c
om

m
an

d

Particles Matrix

- Microstructure 

- Material properties 

- Loading conditions

Json

Pickle

DoE

ML 

Abaqus RVE Simulator

Abaqus scripts

- Modeling 

Abaqus solver

- FEM analysis 

-Rough post-process

Figure 1: Workflow of the developing rvesimulator. DoE goes into the Master control module. The
rvesimulator encodes DoE (including microstructure information, material properties, and loading
conditons) and other FEM parameters into a JSON file. Subsequently, rvesimulator has a class object

’AbaqusSimulator’ to execute Abaqus solver, following a standard ABAQUS simulation process and
postprocesss procedure. The resulting Pickle file from FEM simulation will be read back to Python
and can be utilized for various machine learning methods.

2.1 Cross-platform function for NoGUI Abaqus job execution

While it’s common for advanced Abaqus users to run simulations without opening the Abaqus
interface, this typically involves terminal operations for parameter adjustments. Although it can
accelerate the process, it doesn’t achieve the goal embedding RVE simulation to the data-driven
modeling and optimization process. Considering the commonalities of this repeatable process, we
implemented a class object in rvesimulator for resolving this bottleneck such that we can communicate

2



Python and Abaqus can realize the goal of getting data silently. The usage of the cross-platform class
object AbaqusSimulator is outlined as follows:

1 from rvesimulator.abaqus2py.abaqus_simulator import AbaqusSimulator
2 # folder info dict contains locations of ABAQUS benchmark scripts
3 folder_info = {}
4 # sim_info dict contains one raw of design of experiment numpy array
5 sim_info = {}
6 # intialize the simulator
7 simulator = AbaqusSImulator(sim_info=sim_info , folder_info=folder_info

)
8 # run simulation
9 simulation.run()

10 # get results
11 results = simulator.read_back_results ()

With this AbaqusSimulator object in place, it can handle any Abaqus simulation theoretically as long
as the user slightly modifies their scripts according to our online guidance. Specifically for running
RVEs simulations, we already abstracted basic Python-Abaqus scripts, and designated corresponding
Class objects for different benchmarks inherited AbaqusSimulator object.

2.2 Python-Abaqus scripts

In our developing repository, we have abstracted the essential functionalities required for conducting
RVE simulations. Following the common procedure of FEM, we have organized the Python-Abaqus
scripts following the illustration in Fig.2. As shown in Fig.2, we can see that the benchmark
scripts are assembled with seven different classes that handle different sub-modules of Abaqus
simulation pipeline. Benchmark scripts are managed by AbaqusSimulator where the user can call it
as conveniently. It’s important to note that the repository already includes numerous benchmarks
covering a wide range of cases, including RVEs with porous materials, composite material micro-
structures, elastic, hyper-elastic, and plastic material models, as well as regular and history-dependent
loading curves. For standard usage, users are not required to interact the Python-Abaqus scripts
directly, instead they can select the target cases from the Master control and dedicate on design the
variables they want to study and pass it to corresponding class inherited AbaqusSimulator. If users
have specific cases that beyond the scope benchmarks scripts, they can easily make their Benchmark
script following the existed ones.

LoadingMaterial PBCGeometry Mesh Job Postprocess

Benchmark script

AbaqusSimulator
Inputs: 

Simulation
information

Outputs:
Stress-strain curve,
Young's modulus

Figure 2: Abstraction of Abaqus script module. The script base is organized by different benchmark
scripts which are assembled by geometry, material, periodical boundary condition(PBC), mesh,
loading, job, and postprocess. For standard usage, users don’t need to touch this module because it is
already encapsulated to several common investigated RVEs categories.

3 Experiments

In the repository, we have provided several examples by replicating RVE simulations found in
the literature[5, 10, 11, 12, 13]. Detailed instructions for each RVE can be found in the online

3



documentation. In this section, we would like to give one concrete example on how to generate data
via our repository and how to make use of the data for training advanced machine learning models.

3.1 Data-generation for cooperative data-driven modeling

In context of Cooperative Data-Driven Modeling (CDDM) paper [13], the proposed continue learning
is employed to learn the constitutive law of composite RVEs under history dependent loading. Overall,
different tasks has some similarities and dissimilarities, where the size of RVEs, Young’s modules of
matrix materials, Poisson ratio of both matrix and paticles are same for all tasks; other parameters
like volume fraction, particle distribution, and other material properties are different among different
tasks. Different task can be realized by the same CDDM_RVE class object by updating different
simulation parameters. It is noting that a Microstructure class object is utilized in the CDDM_RVE
to generate corresponding micro-structures for different task, the arguments for the Microstructure
are the size of RVE, particle distribution parameters. The history dependent loading is the design of
experiment variable, 1000 different historical loadings are generated via the AmplitudeGenerator
class object.

After generating the data-set, integrating it into the continuous learning algorithm is straightforward.
Here, for illustrative purposes, we adopt standard RNN to learn constitutive law for a single task,
where 800 data points for training and 200 data points for testing. Fig. 3 shows a random point from
the test data set, it can observed that RNN learns the complex constitutive law excellently. The trained
model can subsequently be used for material property optimization and discovery. More details of
experiments can be found in Appendix A

0 20 40 60 80 100
time step

1.5

1.0

0.5

0.0

0.5

1.0

1.5

xx

×10 2

0 20 40 60 80 100
time step

1.5

1.0

0.5

0.0

0.5

1.0

1.5

xy

×10 2

0 20 40 60 80 100
time step

0.5

0.0

0.5

1.0

1.5

yy

×10 2

0 20 40 60 80 100
time step

4

2

0

2

4

6

xx
 (M

Pa
)

×10 1

simulation
prediction

0 20 40 60 80 100
time step

2

1

0

1

2

xy
 (M

Pa
)

×10 1

simulation
prediction

0 20 40 60 80 100
time step

2

1

0

1

2

3

4

5

yy
 (M

Pa
)

×10 1

simulation
prediction

Figure 3: Composite constitutive law learning via RNN: (1) the top row shows the strain components
of a random selected RVE of the test data set, which is served as the input of RNN; (2) The bottom
row illustrates the simulated stress components of the RVE (solid line) alongside the learned stress
components obtained via RNN (dashed line)

4 Conclusion

The shared rvesimulator is a flexible and user-friendly platform for generating high fidelity FEM
simulation data for RVEs. It includes a variety of implemented benchmarks that cover a wide range
of commonly investigated RVEs. Users also have the capability to generate their specific datasets by
designing unique experiments tailored for different machine learning methods. For users seeking
more advanced RVE simulations, the platform allows for the adaptation of their own Python-Abaqus
scripts, enabling the execution of numerous simulations with ease. Additionally, the developing
repository can easily adapt to parallelization tools, providing the potential for further acceleration of
simulations.

4



References
[1] Wing Kam Liu, Shaofan Li, and Harold S. Park. Eighty years of the finite element method: Birth,

evolution, and future. Archives of Computational Methods in Engineering, 29(6):4431–4453,
2022.

[2] Chun-Teh Chen and Grace X. Gu. Machine learning for composite materials. MRS Communi-
cations, 9(2):556–566, 2019.

[3] Zijiang Yang, Yuksel C. Yabansu, Reda Al-Bahrani, Wei keng Liao, Alok N. Choudhary,
Surya R. Kalidindi, and Ankit Agrawal. Deep learning approaches for mining structure-property
linkages in high contrast composites from simulation datasets. Computational Materials Science,
151:278–287, 2018.

[4] Nolan Black and Ahmad R. Najafi. Learning finite element convergence with the multi-fidelity
graph neural network. Computer Methods in Applied Mechanics and Engineering, 397:115120,
2022.

[5] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, and M. A. Bessa. Deep learn-
ing predicts path-dependent plasticity. Proceedings of the National Academy of Sciences,
116(52):26414–26420, 2019.

[6] Matthew W. Scroggs, Jørgen S. Dokken, Chris N. Richardson, and Garth N. Wells. Construction
of arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell
meshes. ACM Transactions on Mathematical Software, 48(2):1–23, may 2022.

[7] Tianju Xue, Shuheng Liao, Zhengtao Gan, Chanwook Park, Xiaoyu Xie, Wing Kam Liu, and
Jian Cao. Jax-fem: A differentiable gpu-accelerated 3d finite element solver for automatic
inverse design and mechanistic data science. Computer Physics Communications, 291:108802,
2023.

[8] Abaqus: Finite element analysis for mechanical engineering and civil engineering. https:
//www.3ds.com/products-services/simulia/products/abaqus/.

[9] A.R. Melro, P.P. Camanho, and S.T. Pinho. Generation of random distribution of fibres in
long-fibre reinforced composites. Composites Science and Technology, 68(9):2092–2102, 2008.

[10] Zeliang Liu, M.A. Bessa, and Wing Kam Liu. Self-consistent clustering analysis: An efficient
multi-scale scheme for inelastic heterogeneous materials. Computer Methods in Applied
Mechanics and Engineering, 306:319–341, 2016.

[11] M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, Daniel W. Apley, C. Brinson, W. Chen, and
Wing Kam Liu. A framework for data-driven analysis of materials under uncertainty: Countering
the curse of dimensionality. Computer Methods in Applied Mechanics and Engineering, 320:633–
667, 2017.

[12] Bernardo P. Ferreira, F. M. Andrade Pires, and Miguel A. Bessa. Adaptive clustering-based
reduced-order modeling framework: Fast and accurate modeling of localized history-dependent
phenomena. 2021.

[13] Aleksandr Dekhovich, O. Taylan Turan, Jiaxiang Yi, and Miguel A. Bessa. Cooperative data-
driven modeling. Computer Methods in Applied Mechanics and Engineering, 417:116432,
2023.

A Descriptions of experiments set up

Four tasks have been generated in the CDDM paper [13] and the first task is adopted in this paper for
illustration purpose.

5

https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.3ds.com/products-services/simulia/products/abaqus/


X

Z

Y

Figure 4: Micro-structure and loading configuration of the illustrated RVE simulation task. The
orange area is represents the matrix material phase and green domain is the particle material phase

A.1 Problem description

RVE simulation serves as an effective computational approach to investigate the constitutive laws
of composites. Generally, An RVE has two material Phases which are matrix phase and fiber phase.
The micro-structure and loading configurations of the illustrated task is shown in Fig. 4.

According to Fig. 4, the size of the RVE is 0.048mm; and the particle is not uniformed distributed.
Instead, they follow a normal distribution N (0.01, 0.003). As for the materials of both phases, an
elastic material law with Young’s modulus 10MPa and Poisson ratio 0.19 is utilized. The matrix
phase employs a Von Mises plastic material law with Young’s modulus 100MPa Poisson ratio 0.3,
and hardening law σy = 0.5 + 0.5ε̄, where ε̄ is the accumulative plastic strain. Meanwhile, as shown
in Fig. 4 complex loadings [εxx, εxy, εyy]

1 will be enforced to the RVE simultaneously. These
loadings are path dependent as shown on the top row of Fig. 3.

A.2 Implantation for getting quantity of interests

In terms of implementing the above-mentioned RVE configuration, obtaining 1000 data points
sequentially is easily accomplished by submitting the following command to the Python terminal. No
additional GUI operation is required after submitting the script, simulation results will be extracted
automatically upon finishing all jobs, one of which is shown as the solid line on the bottom plots of
Fig. 3. While parallelization is not implemented in the rvesimulator, users can leverage any third
party package to achieve this functionality2.

1 # import objects from rvesimulator
2 from rvesimulator.benchmarks.cddm_rve import CDDM_RVE
3 from rvesimulator.additions.ampitudesampler import AmplitudeGenerator
4 from rvesimulator.additions.hardening_law import LinearHardeningLaw
5

6 # number of path
7 num_paths = 1000
8 # initialize path sampler
9 path_sampler = AmplitudeGenerator(num_dim =3)

10 # get paths
11 paths = path_sampler.get_amplitude(
12 num_amplitude=num_amplitude ,

1εxy usually same as εyx, so it is omitted for simplifying notation
2For instance, another package named f3dasm is employed for parallelizing the data generation process, the

python scripts for this can be found in the GitHub repository

6

https://github.com/bessagroup/f3dasm


13 num_control =8,
14 num_steps =100,
15 arg_name="strain_amplitude",
16 )
17 # convert to dict
18 samples_dict = paths.to_dict("records")
19 # initialization for simulation task
20 task = CDDM_RVE ()
21 # update simulation info
22 task.update_sim_info(mesh_partition =100,
23 vol_req =0.45 ,
24 radius_mu =0.01,
25 radius_std =0.003 ,
26 youngs_modulus_fiber =10,
27 youngs_modulus_matrix =100,
28 hardening_law=LinearHardeningLaw(a=0.5, b=0.5,

yield_stress =0.5))
29 # empty dict to save results
30 results = {}
31 # calculate responses of simulation in sequential
32 for ii in range(len(samples_dict)):
33 results[ii] = task.run_simulation(sample=samples_dict[ii],
34 folder_index=ii)

A.3 Machine learning model for learning material law

While the main focus of this paper is not on the machine learning model, a standard RNN is employed,
given its widespread use in learning composite constitutive laws [5, 13]. In principle, other machine
learning models, such as MLP, also hold potential for this problem. Researchers are encouraged to
explore the dataset and experiment with different models according to their preferences.

7


	Introduction
	General workflow
	Cross-platform function for NoGUI Abaqus job execution
	Python-Abaqus scripts

	Experiments
	Data-generation for cooperative data-driven modeling

	Conclusion
	Descriptions of experiments set up
	Problem description
	Implantation for getting quantity of interests
	Machine learning model for learning material law


