Shedding Light on Large Generative Networks:
Estimating Epistemic Uncertainty in Diffusion Models

Lucas Berry'?

Axel Brando?®

David Meger'?

ISchool of Computer Science, McGill University, Montreal, Quebec, Canada
2Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada
3Barcelona Supercomputing Center - Centro Nacional de Supercomputacién (BSC-CNS), Spain

Abstract

Generative diffusion models, notable for their large
parameter count (exceeding 100 million) and op-
eration within high-dimensional image spaces,
pose significant challenges for traditional uncer-
tainty estimation methods due to computational
demands. In this work, we introduce an innova-
tive framework, Diffusion Ensembles for Captur-
ing Uncertainty (DECU), designed for estimating
epistemic uncertainty for diffusion models. The
DECU framework introduces a novel method that
efficiently trains ensembles of conditional diffu-
sion models by incorporating a static set of pre-
trained parameters, drastically reducing the com-
putational burden and the number of parameters
that require training. Additionally, DECU employs
Pairwise-Distance Estimators (PaiDEs) to accu-
rately measure epistemic uncertainty by evaluating
the mutual information between model outputs and
weights in high-dimensional spaces. The effective-
ness of this framework is demonstrated through
experiments on the ImageNet dataset, highlight-
ing its capability to capture epistemic uncertainty,
specifically in under-sampled image classes.

1 INTRODUCTION

In this paper, we introduce Diffusion Ensembles for Cap-
turing Uncertainty (DECU), a novel approach designed to
quantify epistemic uncertainty in conditioned diffusion mod-
els that generate high-dimensional images (256 x 256 x 3).
To the best of our knowledge, our method is the first in
addressing the challenge of capturing epistemic uncertainty
in conditional diffusion models for image generation.
illustrates an example of DECU generating images. In
sub-figure (a), a class label with low epistemic uncertainty
results in images closely resembling their class, while in
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Figure 1: Image generation progression through DECU,
each row refers to an ensemble component, for the class la-
bel of Bernese mountain dog with low epistemic uncertainty
(a) and moving van with high epistemic uncertainty (b).

sub-figure (b), a class label with high epistemic uncertainty
leads to images that do not resemble their respective class.

DECU employs two key strategies. Firstly, it efficiently
trains an ensemble of diffusion models within a subset of
the network. This is achieved through the utilization of pre-
trained networks from|[Rombach et al|[2022]. Training an
ensemble of diffusion models in a naive manner would de-
mand substantial computational resources, considering that
each model encompasses hundreds of millions of parameters
and requires weeks to train [Dhariwal and Nicholl, 2021]).

Secondly, DECU incorporates Pairwise-Distance Estima-
tors (PaiDEs), a non-sample-based method proven effective
in estimating the mutual information between the model’s
output and its weights in high-dimensional regression tasks
[Kolchinsky and Tracey}, 2017, [Berry and Meger, [2023a].
The mutual information between model weights and out-
put is a well-established metric for measuring epistemic

uncertainty [Houlsby et al} 2011]]. PaiDEs capture this mu-

tual information by assessing consensus among ensemble



mailto:<lucas.berry@mail.mcgill.ca>?Subject=Your UAI 2024 paper

components through the distributional distance between
each pair of components. Distributional distance serves as
a metric to gauge the similarity between two probability
distributions.

Epistemic uncertainty stems from a model’s ignorance and
can be reduced with more data, while aleatoric uncertainty
arises from inherent randomness in the data (e.g. when some
crucial variables are hidden) and is thus irreducible [Horal,
1996, |Der Kiureghian and Ditlevsen, 2009, [Hiillermeier and
Waegeman, |2021]]. With the increasing integration of large
diffusion models into automated systems [Rombach et al.}
2022, Dhariwal and Nicholl [2021]], gaining a comprehensive
understanding of the images generated by these black-box
models becomes paramount. Generative image models play
a crucial role in diverse applications, notably in medical
image generation and self-driving systems [|Guibas et al.,
2017, |[Kazerouni et al., 2022, |Hu et al., 2023]]. Both of these
domains are riddled with uncertainty, capable of yielding
catastrophic outcomes for human life. Our approach illumi-
nates the black box of diffusion models by estimating their
epistemic uncertainty, offering assistance in situations where
predictions from automated systems are more uncertain. In
addition, our proposed framework can be used to build so-
lutions that satisfy international safety standards for auto-
mated systems (self-driving ISO/IEC 26262:2011|Salay et al.
[2018]] or the generic Al systems ISO/IEC 23053:2022).

By combining our efficient ensemble technique for diffusion
models with PaiDEs, we address the challenge of capturing
epistemic uncertainty in conditional diffusion models for
image generation. We evaluate DECU on the ImageNet
dataset Russakovsky et al.|[2015]], and our contributions can
be summarized as follows:

e We establish the framework of DECU for class-
conditioned diffusion models (Section 3).

* We assess the effectiveness of DECU on image gener-
ation on the ImageNet dataset, a commonly used but
significantly challenging benchmark within the com-

munity (Section 4. ).
* We provide an evaluation of image diversity within

DECU (Section 4.2).

These advancements illuminate the previously opaque area
of epistemic uncertainty in conditional diffusion models,
offering significant implications for decision-making pro-
cesses and risk evaluation.

2 BACKGROUND

Diffusion models create a Markov chain, where, at each tran-
sition, they sample from a Gaussian distribution. This inher-
ent feature makes them particularly suitable for uncertainty
estimation, as the Gaussian probability distributions provide
a natural framework for reasoning about uncertainty [Hiiller{

meier and Waegeman, 2021]]. PaiDEs present an efficient
method for estimating epistemic uncertainty by utilizing
established pairwise distance formulas between Gaussian
components within the ensemble.

2.1 PROBLEM STATEMENT & DIFFUSION
MODELS

In the context of supervised learning, we define a dataset
D = {xi,y; 0}, where z; represents class labels, and
each y; o corresponds to an image with dimensions of 256 x
256 x 3. Our primary goal is to estimate the conditional
probability p(y|x), which is complex, high-dimensional,
continuous, and multi-modal.

To effectively model p(y|z), we utilize diffusion models,
which have gained significant recognition for their ability to
generate high-quality images [[Rombach et al., 2022} |Saharia
et al., 2022]. These models employ a two-step approach
referred to as the forward and reverse processes to generate
realistic images. Please note that we will omit the subscript
1 from y; ¢ and z; for simplicity in notation. In the forward
process, an initial image 3o undergoes gradual corruption
through the addition of Gaussian noise in 7 steps, resulting
in a sequence of noisy samples y1, Y2, ..., yr:

N (ye: V1 = Beye—1, Bel)

T
q(yrrlyo) = H (Yelye—1)

(ytlyt 1

where 5, € (0,1) and 51 < f2 < ... < fr. The forward
process draws inspiration from non-equilibrium statistical
physics [Sohl-Dickstein et al., [2015]].

The reverse process aims to remove noise from the corrupted
images and reconstruct the original image, conditioned on
the class label. This is accomplished by estimating the con-
ditional distribution q(y:—1|y:, =) using the model pg. The
reverse diffusion process can be represented as follows:

T
po(yor|r) = HPO (Ye—1|ys, )
=1 M

Pe(yt71|yt,$) = N(yi—1; ﬂﬁ(ytvta 55)» Eg(yt,t,x)).

In this formulation, pg(y:—1|y:, x) represents the denois-
ing distribution parameterized by 6, which follows a Gaus-
sian distribution with mean pg(y;, ¢, ) and covariance ma-
trix g (ys, t, x). Note that pg(y:, t, z) and Xg(yq, t, x) are
learned models. The forward and reverse diffusion processes
each create a Markov chain to generate images.

To model the reverse process pg, calculating the exact log-
likelihood log(pg(yo|z)) is typically infeasible. This ne-
cessitates the use of the evidence lower bound (ELBO), a
technique reminiscent of variational autoencoders (VAEs)
[Kingma and Welling}, 2013]]. The ELBO can be expressed



as follows:

—log(po (yolz)) < — log(pe(yo|z)) 2
+ Dir(q(yr:r|yo) Il po(yr.rlyo, ).

The loss function in[Equation 2]represents the trade-off be-

tween maximizing the log-likelihood of the initial image and

minimizing the KL divergence between the true posterior

q(y1.7|y0) and the approximate posterior pg(y1.7|yo, ).

can be simplified using the properties of dif-

fusion models. For a more comprehensive introduction to
diffusion models, please refer to|Ho et al.|[2020].

2.2 EPISTEMIC UNCERTAINTY AND PAIDES

Probability theory provides a natural framework to reason
about uncertainty [[Cover and Thomas|, 2006, |[Hiillermeier
and Waegeman, 2021]]. In the context of capturing uncer-
tainty from a conditional distribution, a widely used metric
is that of conditional differential entropy,

H(yt71|yt,x) = _/p(ytfl‘ytvx) lnp(yt71|ytax)dyt~

Leveraging conditional differential entropy [Houlsby et al.
[2011]] defined epistemic uncertainty as follows,

I(ye—1,0lye, ) = H(ye—1|ye, )

3
By [Hlyn2,0)], O

where I(-) denotes mutual information and 6 ~ p(6). Mu-
tual information measures the information gained about one
variable by observing the other. When all of 6’s produce
the same pg (Yo|yr, ), I(yi—1,0|y:, ) is zero, indicating
no epistemic uncertainty and that each component agrees
about the output distribution. Conversely, when said distribu-
tions have non-overlapping supports, epistemic uncertainty
is high and each ensemble component disagrees strongly
about the output distribution.

A distribution over weights becomes essential for estimat-
ing I(y:—1, 0]y, x). One effective approach for doing this
is through the use of ensembles. Ensembles harness the col-
lective power of multiple models to estimate the conditional
probability by assigning weights to the output from each
ensemble component. This can be expressed as follows:

M

domi=1 @
j=1

M
Po(Ye—1lye, ) = > wipe; (ye—1lye, )
=1

where M, 7; and 0; denote the number of model compo-
nents, the component weights and different component pa-
rameters, respectively. Note that the model components are
assumed to be uniform, 7; = ﬁ, as this approach has been
demonstrated to be effective for estimating epistemic uncer-
tainty [Chua et al., [2018| [Berry and Meger, |2023a]]. When

creating an ensemble, two common approaches are typically

considered: randomization [Breiman, [2001] and boosting
[Freund and Schapire, [1997]]. While boosting has paved the
way for widely adopted machine learning methods [Chen
and Guestrin, [2016]], randomization stands as the preferred
choice in the realm of deep learning due to its tractabil-
ity and straightforward implementation [Lakshminarayanan
et al., 2017].

In the context of continuous outputs and ensemble models,
Equation 3|often does not have a closed-form solution due
to the left hand-side:

M
H(yi-1lyt, ) :/Zﬂjpaj(yt—ﬂymx)
Jj=1

M

X In Z 7iPo; (Yt—1|yt, ©)dyz.
=1

Thus, previous methods have relied on Monte Carlo (MC)
estimators to estimate epistemic uncertainty [Depeweg et al.,
2018, [Postels et al.,2020]. MC estimators are convenient for
estimating quantities through random sampling and are more
suitable for high-dimensional integrals compared to other
numerical methods. However, as the number of dimensions
increases, MC methods typically require a larger number of
samples [Rubinstein and Glynn, [2009].

Given that our output is very high-dimensional, MC meth-
ods become extremely computationally demanding, ne-
cessitating an alternative approach. For this, we rely on
Pairwise-Distance Estimators (PaiDEs) to estimate epis-
temic uncertainty [Kolchinsky and Tracey, [2017]]. PaiDEs
have been shown to accurately capture epistemic uncer-
tainty for high-dimensional continuous outputs [Berry and
Meger, 2023a]. Let D(p; || p;) denote a generalized dis-
tance function between the probability distributions p; and
pj, where p; and p; represent p; = p(yi—1|y:, x,6;) and
pj = p(Ye—1|ys, x, 0;), respectively. More specifically, D is
referred to as a premetric, satisfying D(p; || p;) > 0 and
D(p; || pj) = 0if p; = p;. The distance function need
not be symmetric nor obey the triangle inequality. As such,
PaiDEs can be defined as follows:

M M
Lo(ye—1,0lys, @) = =Y milny_mjexp (=D(pi || ps))
i=1 =1

PaiDEs offer a variety of options for D(p; || p;), such as
Kullback-Leibler divergence, Wasserstein distance, Bhat-
tacharyya distance, Chernoff a-divergence, Hellinger dis-
tance and more.

3 METHODOLOGY

Diffusion models come with a substantial training cost, re-
quiring 35 V100 days for latent diffusion class-conditioned
models on ImageNet [Rombach et al.} 2022]. Naively train-
ing M distinct diffusion models only worsens this computa-
tional load. To address this challenge, we propose training
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Figure 2: The ensemble pipeline for DECU, shown here with two components. During the reverse process, the previous
latent vector z] passes through a UNet to yield z;_,. Dashed lines signify the random selection of one ensemble component
for rollout until the branching point. Our ensembles are constructed within the embedding layer, which accepts the class label
as input. We create diversity through random initialization and by training each component on different subsets of the data.
The encoders, decoders, and UNets for each component are shared, and we leverage pretrained networks from Rombach
et al.|[2022]]. Notably, this reduces the number of parameters required for training from 456 million to 512 thousand.

a sub-module within the diffusion model architecture and
show that this is adequate for estimating epistemic uncer-
tainty. Furthermore, there are multiple junctures within the
reverse diffusion process where one could effectively esti-
mate uncertainty. We demonstrate the specific point at which
this estimator yields accurate estimates.

3.1 DIFFUSION ENSEMBLES

We employ the latent diffusion models introduced by Rom+
bach et al.|[2022] to construct our ensembles. They proposed
the use of an autoencoder to learn the diffusion process in
a latent space, significantly reducing sampling and training
time compared to previous methods by operating in a lower-
dimensional space, z;, which is 64 x 64 x 3. Using this
framework we can estimate epistemic uncertainty in this
lower-dimensional space,

M
,Zﬂ-i
X anwJ exp (

where p; and p; now denote Gaussians in the latent space.
This approach is akin to previous methods that utilize latent
spaces to facilitate the estimation of epistemic uncertainty
[Berry and Meger, [2023b].

fp(zt_1,9|zt,z
&)
D(p; H pj))

To fit our ensembles, we make use of pre-trained weights
for the UNet and autoencoder from Rombach et al. [2022],

keeping them static throughout training. The only part of the
network that is trained is the conditional label embedding
layer, which is randomly initialized for each ensemble com-
ponent. This significantly reduces the number of parameters
that need to be trained (512k instead of 456M) as well as the
training time (by 87%), compared to training a full latent
diffusion model on ImageNet. It is important to note that
each ensemble component can be trained in parallel, as the
shared weights remain static for each component, further
enhancing training efficiency.

Upon completion of the training process, we utilize the
following image generation procedure:

1. Sample random noise z7 and an ensemble component
pj-

2. Use p; to traverse the Markov chain until reaching step
b, our branching point.

3. Branch off into M separate Markov chains, each asso-
ciated with a different component.

4. Progress through each Markov chain until reachlng
step 0, z{, and then decoding each z{ to get y}).

illustrates the described pipeline with two com-
ponents. Note that during the reverse process the previous

latent vector zf , the time step ¢ and the output from com-
ponent j are passed through a UNet to arrive at z;_;. By
leveraging the inherent Markov chain structure within the
diffusion model, we can examine image diversity at differ-
ent branching points. Note that our loss function for training
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Figure 3: Our estimator for epistemic uncertainty increases
with distance from the branch point, converging to — In % R~
1.6009.

each component is the same as Rombach et al.| [2022]. We
utilize an ensemble of 5 components, a number we found
to be sufficient for estimating epistemic uncertainty. For

additional hyperparameter details, refer to

3.2 DIFFUSION ENSEMBLES FOR
UNCERTAINTY

Diffusion models yield a Gaussian distribution at each step
during the reverse process, as shown in[Equation I} One can
estimate epistemic uncertainty at any ¢ beyond the branch-
ing point b; however, the further away from the branching
point epistemic uncertainty is estimated, the more the Gaus-
sian distributions diverge from one another. Consequently,
when PaiDEs are applied in this scenario, they will converge
to —In % This behavior occurs because as the Gaussians
diverge more and more, the distance measure, D(p; || p;),
grows which implies exp(—D(p; | p;)) tends to 0.
shows this relationship in our context. Therefore, to
estimate I(z;_1, 0|z, x,b = t), we utilize PaiDEs right af-
ter the branching point as we found this sufficient to estimate
epistemic uncertainty.

To generate images, we utilize denoising diffusion implicit
models (DDIM) with 200 steps, following the training of
a diffusion process with 7' = 1000. DDIM enables more
efficient image generation by permitting larger steps in the
reverse process without altering the training methodology
for diffusion models [Song et al., [2020]. Furthermore, in
the DDIM implementation by Rombach et al.|[2022], the
covariance, Yg(z, t, ), is intentionally set to a zero ma-
trix, irrespective of its inputs, aligning with the approach
in|Song et al.|[2020]. However, this prevents us from using

KL-Divergence and Bhattacharyya distance, which are un-
defined in this case. Therefore, we propose a novel PaiDE
using the 2-Wasserstein Distance, which is well-defined
between Gaussians in such cases. This distance can be ex-
pressed as:

Wa(pi |l ps) = |l — pill3
1/2 12\1/2] (6
i [zi+2j—2(2/ zjz/) ,

where p; ~ N(p;,%;) and p; ~ N (g5, Z;). When ; and
3, are zero matrices, it yields the following estimator:

M
fW(zt_l, 0|zt,z,b=1t) = — Zm
i=1

M

X anwj exp (=Wa(pi || pj))s
j=1

@)

Wa(pi || pj) = | — p31l3-

This combination of ensemble creation and epistemic uncer-
tainty estimation encapsulates DECU.

4 EXPERIMENTAL RESULTS

The experiments in this study assessed the DECU method
by utilizing the ImageNet dataset, a comprehensive collec-
tion comprising 1.28 million images distributed across 1000
classes. ImageNet is recognized as a challenging bench-
mark dataset for large generative models [Brock et al.,[2018|
Dhariwal and Nichol} [2021]]. To evaluate the performance
of DECU, a specific subset called the binned classes dataset
was carefully curated in order to assess epistemic uncer-
tainty estimates. This subset included 300 classes divided
into distinct bins: 100 classes for bin 1, another 100 for bin
10, and an additional 100 for bin 100. The remaining 700
classes were grouped into bin 1300. For each ensemble com-
ponent, a dataset was formed with the following selection
process:

* 1 random image per class from bin 1.
* 10 random images per class from bin 10.
* 100 random images per class from bin 100.

 All 1300 images per class from bin 1300 were utilized.

Throughout the training process, each ensemble component
was exposed to a total of 28,162,944 images, accounting
for repeated images across training epochs. It is worth not-
ing that this stands in contrast to the 213,600,000 images
required to train an entire network from scratch for class-
conditioned ImageNet models [Rombach et al.| 2022].



Figure 4: The left image displays low epistemic uncertainty image generation (bin 1300) for five class labels: bullfrog,
carbonara, grey fox, container ship, and yellow lady’s slipper. The right image shows high epistemic uncertainty image
generation (bin 1) for cleaver, Sealyham terrier, lotion, shoji, and whiskey jug. Each row represents an ensemble component

with b = 1000.

4.1 RECOGNITION OF UNDERSAMPLED
CLASSES

In this section, we assess the capability of our framework
to distinguish classes with limited training images using the
binned classes dataset. Notably, bins with lower values pro-
duced lower-quality images, as illustrated in[Figure 4] This
figure showcases images with lower epistemic uncertainty
generated from five classes in bin 1300 on the left, and im-
ages with greater uncertainty generated from five classes
in bin 1 on the right. Each row corresponds to an ensem-
ble component, and we set b = 1000. The visual contrast
highlights a clear trend: with a higher number of training
images in bin 1300, our framework produces images that
closely align with the respective class labels. This observa-

tion is further supported by [Figure 9]in the Appendix, which
presents another illustrative example of the same trend.

Furthermore, we compute Iy (2o, 0|25, 2, b = 5) for each
class. To do this, we randomly select 8 samples of random
noise and use b = 5. It’s important to note that we can
only take steps of 5 through the diffusion process due to the
200 DDIM steps. We then average the ensemble’s epistemic
uncertainty over these 8 random noise samples.
illustrates the distributions of epistemic uncertainty for each
bin. The distributions for the larger bins are skewed more
towards O compared to the smaller bins. This trend is also
reflected in the mean of each distribution, represented by
the dashed lines. These findings demonstrate that DECU
can effectively measure epistemic uncertainty on average
for class-conditioned image generation.

Additionally to estimating the overall uncertainty of a given
class, we analyze per-pixel uncertainty in a generated image.
We treat each pixel as a separate Gaussian and apply our

b 1 10 100 1300
1000  0.36 £0.09 0.37£0.09 0.41£0.10 0.51+0.13
750 0.50 +£0.14 0.51+0.14 0.54+0.14 0.63 £0.13
500 0.64+0.13 0.64+0.13 0.67+0.11  0.76 £ 0.09
250 0.92+0.05 0.92£0.05 0.92£0.04 0.94+0.03

Table 1: SSIM calculated between all pairs of generated
images per class at different values of b across each bin.
Results shown are mean =+ one standard deviation. Higher
values indicate greater similarity and the highest mean in
each row is bolded.

estimator on a pixel-by-pixel basis. It’s worth noting that we
first map from the latent vector to image space, so we are
estimating epistemic uncertainty in image space and then
average across the three channels. An example of this proce-
dure can be seen in|Figure 6| For bin 1300, we observe that
epistemic uncertainty highlights different birds that could
have been generated from our ensemble. Furthermore, bins
with lower values exhibit a higher density of yellow, indicat-
ing greater uncertainty about what image to generate. Two
additional examples contained in the Appendix,
and [Figure T1] display the same patterns.

4.2 IMAGE DIVERSITY BETWEEN
COMPONENTS

Apart from assessing image uncertainty, we also conducted
an analysis of image diversity across the ensemble with re-
spect to different branching points. To gauge this diversity,
we generated images using our framework and computed
the Structural Similarity Index Measure (SSIM) between
every pair of generated images produced by each compo-



Uncertainty Distribution According to Bin

1
10
100 \
1300

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.08

fu,v(zo.9|z5,;z7,b =15)

Figure 5: This figure displays uncertainty distributions for each bin, derived from corresponding class uncertainty estimates.
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Figure 6: Pixel uncertainty (yellow for high, blue for low)
shown for one class in each bin (left to right: wall clock,
head cabbage, rubber eraser, Red Shank bird). Numbers
below images indicate mean estimated Iy (20,0|25,2,b =
5) + one standard deviation.

nent. The results can be found in[Table 1] Notably, bins with
larger values produced images that were more similar. This
is attributed to the fact that ensemble components learned to
better represent classes in the bin with larger values, result-
ing in greater agreement amongst the ensemble components.
Furthermore, as the branching point increases, the images
become more dissimilar. This phenomenon arises because,
with a higher b, each ensemble component progresses fur-
ther through the reverse process independently, leading to
greater image variation. Visualizations of this phenomenon

can be seen in[Figure 7] and [Figure 8] where the variety in
image generation clearly dissipates as the branching point

decreases. Additional visualizations are contained in the
Appendix (Figure 12|and [Figure 13).

5 RELATED WORKS

Constructing ensembles of diffusion models is challenging
due to the large number of parameters, often in the range
of hundreds of millions [Saharia et al.},[2022]]. Despite this
difficulty, methods such as eDiff-I have emerged, utilizing
ensemble techniques to improve image fidelity
2022]. In contrast, our approach specifically targets the mea-
surement of epistemic uncertainty.

Previous research has employed Bayesian approximations
for neural networks in conjunction with information-based
criteria to tackle the problem of epistemic uncertainty es-
timation in image classification tasks
[Kendall and Gall, 2017, [Kirsch et al, [2019]]. These works
apply epistemic uncertainty estimation to simpler discrete
output spaces. In addition to Bayesian approximations, en-
sembles are another method for estimating epistemic un-
certainty [Lakshminarayanan et al., 2017 [Choi et al., 2018
[Chua et al.}, 2018]]. They have been used to quantify epis-
temic uncertainty in regression problems
2018, [Postels et al., 2020} Berry and Meger, 2023bja].
tels et al][2020] and [Berry and Meger| [2023b]] develop effi-
cient ensemble models based on Normalizing Flows (NF)
that accurately capture epistemic uncertainty.
advances these findings by utilizing PaiDEs
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Figure 7: Image generation progression through DECU for
the class label coral fungus from bin 1300 for each branch-
ing point: (a) 1000, (b) 750, (c) 500, (d) 250.

to estimate epistemic uncertainty on 257-dimensional out-
put space with normalizing flows. Our work builds on this
line of research by showcasing how to extend these methods
to higher-dimensional outputs (196,608 dimensions) and for
large generative diffusion models.

To capture epistemic uncertainty, we employ the mutual
information between model outputs and model weights
[Houlsby et al.},[2011]]. This metric has previously been uti-
lized for data acquisition in active learning settings, notably
in BALD [Houlsby et al [2011]] and BatchBALD

2019]. Applying such techniques to diffusion mod-
els is well justified, as collecting data for image generation

models proves to be a costly endeavor. However, currently,
it is infeasible to do active learning for large diffusion mod-
els due to the high computational costs associated with
training after each acquisition batch. Anticipating future
advancements in computational resources holds the promise
of increased feasibility to explore these ideas. This under-
scores another potential use case for epistemic uncertainty
in diffusion models.

In addition to PaiDEs, various methods have emerged for
estimating epistemic uncertainty without relying on sam-

pling [Van Amersfoort et al., 2020} [Charpentier et al.}[2020].
[Van Amersfoort et al.| [2020] and [Charpentier et al.| [2020]

(@

Figure 8: Image generation progression through DECU for
the class label monastery from bin 1 for each branching
point: (a) 1000, (b) 750, (c) 500, (d) 250.

primarily focus on classification tasks. While

[2021]] extends tackle regression tasks, it is limited
to modeling outputs as distributions within the exponen-

tial family and is less general than PaiDEs. Furthermore,
they only consider regression tasks with 1D outputs as their
method is Bayesian and more computationally expensive.

6 CONCLUSION

To the best of our knowledge, we are the first to address the
problem of epistemic uncertainty estimation for conditional
diffusion models. Large generative models are becoming
increasingly prevalent, and thus insight into the generative
process is invaluable. We achieve this by introducing the
DECU framework, which leverages an efficient ensembling
technique and Pairwise-Distance Estimators (PaiDEs) to es-
timate epistemic uncertainty efficiently and effectively. Our
experimental results on the ImageNet dataset showcase the
effectiveness of DECU in estimating epistemic uncertainty.
We explore per-pixel uncertainty in generated images, pro-
viding a fine-grained analysis of epistemic uncertainty. As
the field of deep learning continues to push the boundaries
of generative modeling, our framework provides a valuable
tool for enhancing the interpretability and trustworthiness
of large-scale generative models.
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A COMPUTE AND HYPERPARAMETER DETAILS

We employed the same set of hyperparameters as detailed in[Rombach et al.|[2022] while training our ensemble of diffusion
models. To facilitate this, we utilized their codebase available at (https://github.com/Comp Vis/latent-diffusion), making
specific modifications to incorporate DECU. It’s important to note that we specifically adopted the LDM-VQ-8 version of
latent diffusion, along with the corresponding autoencoder, which maps images from 256x256x3 to 64x64x3 resolution.
Our training infrastructure included an AMD Milan 7413 CPU clocked at 2.65 GHz, boasting a 128M cache L3, and an
NVidia A100 GPU equipped with 40 GB of memory. Each ensemble component was trained in parallel and required 7 days
of training with the specified computational resources. Our code is available at the following link.

B DATA

In the binned classes dataset, classes were randomly selected for each bin, and the images for each component were also
chosen at random from the respective classes. In contrast, the masked classes dataset employed a clustering approach
that grouped class labels sharing the same hypernym in WordNet. This grouping strategy aimed to bring together image
classes with similar structures; for instance, all the dog-related classes were clustered together. Subsequently, each ensemble
component randomly selected hypernym clusters until each component had a minimum of 595 classes. Note that each class
was seen by at least two components.

C IMAGE GENERATION AND BRANCH POINT

In addition to the summary statistics concerning image diversity based on the branching point, we also provide visualizations
of these effects in [Figure 12| and [Figure 13| These illustrations highlight the observation that bins with higher values
tend to produce more consistent images that closely match their class label across all branching points. This distinction is
particularly noticeable when comparing bin 1300 to bin 1. Furthermore, as the branching point increases, a greater variety of
images is generated across all bins.

D LIMITATIONS

DECU has potential for generalization to other large generative models. However, it’s important to note that applying PaiDEs
for uncertainty estimation requires the conditional distribution of the output to be probability distribution with a known
pairwise-distance formula. This requirement is not unusual, as some generative models, such as normalizing flows, produce
known distributions as their base distribution [Tabak and Vanden-Eijnden, 2010, Tabak and Turner, 2013} [Rezende and
Mohamed, 2015]].

Furthermore, our ensemble-building approach is tailored to the latent diffusion pipeline but can serve as a logical framework
for constructing ensembles in the conditional part of various generative models. There’s also potential for leveraging
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low-rank adaption (LoRA) to create ensembles in a more computationally efficient manner [Hu et al., 2021]]. However,
it’s worth mentioning that using LoRA for ensemble construction raises open research questions, as LoORA was originally
developed for different purposes and not specifically designed for ensemble creation.

E UNCERTAINTY & BRANCH POINT
Assuming that the distributional distances between ensemble components grow as one progresses through the reverse process,
similar to other models with similar dynamics [Chua et al.|[2018]], we can demonstrate the following: if lim D(pil|p;)—oo for
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Figure 9: The left image showcases an example of image generation for five class labels with low epistemic uncertainty (bin
1300), arranged from left to right: water buffalo, harvester, sulphur crested cockatoo, european fire salamander, tow truck.
The right image illustrates an example of image generation for five class labels with high epistemic uncertainty (bin 1),
arranged from left to right: pedestal, slide rule, modem, space heater, gong. Note that each row corresponds to an ensemble
component and b = 1000.
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Figure 10: This shows the pixel uncertainty (high uncertainty in yellow and low uncertainty in blue) for one category from
each bin, from left to right: cocktail shaker, howler monkey, Dungeness crab, bullet train. The number below the images
shows the mean estimated I(zo, 8|25, x,b = 5) & one standard deviation.
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Figure 11: This shows the pixel uncertainty (high uncertainty in yellow and low uncertainty in blue) for one category from
each bin, from left to right: grey whale, knot, terrapin, agaric. The number below the images shows the mean estimated
I(z0, 60|25, 2,b = 5) £ one standard deviation.
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Figure 12: Image generation progression through the diffusion model for the class label marmoset from bin 100 for each
branching point: (a) 1000, (b) 750, (c) 500, (d) 250.
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Figure 13: Image generation progression through the diffusion model for the class label steel arch bridge from bin 10 for
each branching point: (a) 1000, (b) 750, (c) 500, (d) 250.
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