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Abstract

Prompt privacy is crucial, especially when us-001
ing online large language models (LLMs), due002
to the sensitive information often contained003
within prompts. While LLMs can enhance004
prompt privacy through text rewriting, exist-005
ing methods primarily focus on document-level006
rewriting, neglecting the rich, multi-granular007
representations of text. This limitation restricts008
LLM utilization to specific tasks, overlook-009
ing their generalization and in-context learn-010
ing capabilities, thus hindering practical ap-011
plication. To address this gap, we introduce012
DP-GTR, a novel three-stage framework that013
leverages local differential privacy (DP) and014
the composition theorem via group text rewrit-015
ing. DP-GTR is the first framework to inte-016
grate both document-level and word-level in-017
formation while exploiting in-context learning018
to simultaneously improve privacy and utility,019
effectively bridging local and global DP mech-020
anisms at the individual data point level. Ex-021
periments on CommonSense QA and DocVQA022
demonstrate that DP-GTR outperforms exist-023
ing approaches, achieving a superior privacy-024
utility trade-off. Furthermore, our framework is025
compatible with existing rewriting techniques,026
serving as a plug-in to enhance privacy protec-027
tion. Our code is publicly available at anony-028
mous.4open.science for reproducibility.029

1 Introduction030

The rise of LLMs in natural language processing031

has spurred research into differential privacy (DP)032

techniques to mitigate the risk of sensitive informa-033

tion leakage (Abadi et al., 2016; Wu et al., 2023;034

Tang et al., 2023). While DP, the gold standard035

for computational privacy, has seen broad adoption036

in machine learning, existing text-based DP meth-037

ods face significant challenges. These methods038

generally fall into four categories: training-based039

optimizations (e.g., DP-SGD (Abadi et al., 2016)),040

embedding perturbations (Feyisetan et al., 2020),041

document-level paraphrasing (Mattern et al., 2022), 042

and in-context learning (ICL) enhancements (Wu 043

et al., 2023). However, training-based approaches 044

are computationally expensive, embedding pertur- 045

bations can compromise semantic coherence, and 046

ICL often neglects client-side prompt privacy. 047

Document paraphrasing offers a promising bal- 048

ance between privacy and utility. State-of-the-art 049

methods achieve differentially private next-token 050

generation using the exponential mechanism (EM) 051

(McSherry and Talwar, 2007; Carvalho et al., 2023), 052

replacing the standard softmax. Initial work em- 053

ployed decoder-only models like fine-tuned GPT- 054

2 (Mattern et al., 2022), progressing to encoder- 055

decoder (Igamberdiev and Habernal, 2023) and 056

encoder-only architectures (e.g., BART, RoBERTa) 057

(Meisenbacher et al., 2024b). DP-Prompt (Ut- 058

pala et al., 2023) leverages prompt learning for 059

zero-shot paraphrasing, and recent advancements 060

combine DP post-processing with adversarial fine- 061

tuning (Meisenbacher and Matthes, 2024). A crit- 062

ical limitation, however, persists: the lack of fine- 063

grained control over the privacy-utility trade-off. 064

Current EM-based DP methods provide only 065

coarse-grained control via the privacy budget, hin- 066

dering practical deployment. Most approaches 067

(except DP-Prompt) also necessitate resource- 068

intensive fine-tuning. While document-level para- 069

phrasing preserves more contextual information 070

than embedding perturbations, it often overlooks 071

word-level privacy vulnerabilities. These limita- 072

tions highlight the need for a training-free, fine- 073

grained privacy solution that fully leverages textual 074

information, a capability well-suited to the ICL 075

paradigm of LLMs. 076

Prior work on DP in ICL has predominantly fo- 077

cused on server-side, global DP implementations, 078

often using a "sample-and-aggregate" approach 079

(Nissim et al., 2007a) to privately partition and 080

aggregate context databases (Wu et al., 2023; Tang 081

et al., 2023). Client-side prompt privatization, in 082
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contrast, requires the stronger guarantees of local083

DP (LDP), protecting individual data points rather084

than entire datasets. This distinction creates a sig-085

nificant gap between global and local DP in ICL,086

motivating the need for approaches that bridge it.087

Addressing these gaps, we propose DP-GTR, a088

three-stage, differentially private prompt protection089

framework built upon a novel Group Text Rewrit-090

ing (GTR) mechanism (see Figure 1). DP-GTR091

is designed to provide fine-grained control over092

the privacy-utility trade-off while remaining com-093

patible with existing paraphrasing techniques. In094

Stage-1, GTR generates multiple client-side para-095

phrases of an input prompt, forming a "rewriting096

group" that preserves rich contextual information097

and enables bag-of-words-like count analysis. No-098

tably, GTR connects local and global DP principles099

on the client-side. Stage-2 uses these counts for100

fine-grained privacy-utility control, identifying po-101

tentially sensitive private consensus keywords –102

words appearing frequently across paraphrases de-103

spite DP-driven variations. We mitigate this risk104

by releasing a fixed number of these keywords or105

using a differentially private aggregator, and se-106

lect the lowest-perplexity paraphrase to maximize107

output quality. Stage-3 suppresses the identified108

keywords, limiting privacy leakage, and uses the109

selected paraphrase as an ICL example to improve110

utility. In addition, we evaluate DP-GTR in a real-111

istic question-answering (QA) scenario, simulating112

real-world LLM usage.113

Our key contributions are:114

• We propose Group Text Rewriting (GTR), a115

novel mechanism bridging local and global116

DP at the client-side prompt, enabling the in-117

tegration of various DP techniques.118

• We present DP-GTR, a three-stage prompt119

protection framework leveraging ICL for fine-120

grained privacy-utility control, compatible121

with existing paraphrasing methods.122

• To our knowledge, we are the first to unify123

document-level and word-level privacy con-124

siderations within a single framework.125

• We evaluate state-of-the-art DP paraphrasing126

methods in a realistic QA setting, demonstrat-127

ing DP-GTR’s superior privacy-utility trade-128

off compared to existing approaches.129

2 Related Work130

Global vs. Local DP: Differential privacy text131

sanitization methods are classified into Global Dif-132

ferential Privacy (Global-DP) and Differential Pri- 133

vacy (Local-DP) based on where the privacy mech- 134

anism is applied. In Global-DP, data is aggregated 135

centrally before applying the privacy mechanism, 136

while methods like DP-SGD use differentially pri- 137

vate optimization techniques for training text mod- 138

els. (Abadi et al., 2016; Ponomareva et al., 2022; 139

Feyisetan et al., 2020). DP-ICL operates within a 140

“sample-and-aggregate” framework by perturbing 141

the embedding and vocabulary selected for release 142

(Wu et al., 2023). In contrast, Local-DP incor- 143

porates the differential privacy mechanism before 144

data reaches the centralized processor, typically af- 145

fording stronger privacy protection (Duchi et al., 146

2013; Feyisetan et al., 2020). 147

Local-DP: Private document release methods are 148

categorized into three tiers based on where noise is 149

added: word-level, sentence-level, and document- 150

level. At the word level, noise is added to word 151

embeddings, and the perturbed vectors are then 152

mapped to the nearest vocabulary word (Feyisetan 153

et al., 2020; Xu et al., 2020; Yue et al., 2021). Car- 154

valho et al. (2023) employ the exponential mecha- 155

nism for token selection, while Chen et al. (2023a) 156

propose customized token mappings for individual 157

words. Moreover, Meisenbacher et al.’s (2024a) 158

study generates multiple candidate perturbations us- 159

ing various word embedding models, and Mattern 160

et al. (2022) highlight that word-level approaches 161

inherently lack contextual information. Similarly, 162

sentence-level methods inject noise into sentence 163

embeddings (Reimers, 2019; Meehan et al., 2022). 164

Document-level: At the document level, para- 165

phrasing technologies are grouped into three cat- 166

egories based on model architecture. Mattern 167

et al. (2022) uses a decoder-only fine-tuned GPT-2 168

model. Later work adopts encoder-decoder mod- 169

els, such as a BART-based approach (Lewis, 2019) 170

with sensitivity clipping via thresholding and prun- 171

ing (Igamberdiev and Habernal, 2023). Encoder- 172

only methods, like DP-MLM (Meisenbacher et al., 173

2024b), use a RoBERTa-based masked language 174

model for fine-tuning. These methods require fine- 175

tuning. In contrast, DP-Prompt Utpala et al.’s 176

(2023) introduces a zero-shot prompt learning 177

paradigm using black-box LLMs, and Meisen- 178

bacher and Matthes (2024) employ post-processing 179

and adversarial fine-tuning to enhance rewriting. 180

DP in ICL: The primary concern with applying 181

DP in ICL is that LLMs are not inherently secure, 182

potentially exposing sensitive context. Wu et al. 183

(2023)’s DP-ICL perturbs embeddings and extracts 184
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Figure 1: DP-GTR: A three-stage pipeline for Differentially Private prompt protection via Group Text Rewriting
(GTR). Stage-1 generates n paraphrases of the original prompt using a DP paraphrasing mechanism. Stage-2
identifies the lowest-perplexity prompt as the ICL exemplar and aggregates word counts to release k private
keywords. Stage-3 integrates these private keywords and the ICL exemplar into a prompt template for submission to
the LLM, producing the final, differentially private prompt.

keywords from subsampled datasets, while Tang185

et al. (2023) incorporate label information. Zheng186

et al. (2024) employ k-RR (Wang et al., 2017) to187

generate ICL answers, and Gao et al. (2024) ag-188

gregate next-token predictions from dataset shards.189

All the approaches follow a “sample-and-aggregate”190

framework (Nissim et al., 2007a), partitioning the191

data and applying private aggregation.192

Our work, DP-GTR, draws on the principles of193

prompt learning and the “sample-and-aggregate”194

strategy from DP-Prompt and DP in ICL respec-195

tively. This one-shot in-context learning frame-196

work, analogous to global DP, obviates resource-197

intensive fine-tuning while enhancing both privacy198

protection and utility.199

3 Preliminaries200

Pure Differential Privacy (DP) A randomized201

mechanismM : X → V satisfies ϵ-Pure DP if, for202

any neighboring datasets D and D′ differing by at203

most one element, and any output V ⊆ Range(M),204

the following inequality holds Pr[M(D) = V ] ≤205

eϵ · Pr[M(D′) = V ] (Dwork et al., 2006).206

Local Differential Privacy Local DP applies207

a mechanism M to each individual data point208

x, x′ ∈ X (where x and x′ are considered neighbor-209

ing in some sense), generating a local perturbation210

V before the data is submitted to the data center211

(Duchi et al., 2013; Dwork et al., 2006).212

Metric Differential Privacy To improve the util- 213

ity of DP, the indistinguishability of two outputs 214

for x and x′ can be scaled by the distance between 215

their corresponding inputs (Alvim et al., 2018). 216

A mechanismM satisfies ϵ-Metric DP if, for any 217

inputs x, x′ ∈ X and any output V ⊆ Range(M), 218

the following inequality holds: 219

Pr[M(x) = V ] ≤ eϵ·d(x,x
′) · Pr[M(x′) = V ], 220

where d(x, x′) is a distance metric defined on X . 221

Exponential Mechanism The Exponential 222

Mechanism (EM) injects noise into scoring func- 223

tions, making it suitable for non-numeric sensitive 224

queries (McSherry and Talwar, 2007). Given a 225

dataset D and a utility function u : D → V , where 226

V is the set of possible outputs, the mechanismM 227

is defined as 228

Pr[M(D) = v] ∝ exp

(
ϵ u(D, v)

2∆u

)
, 229

where the sensitivity ∆u is defined as 230

∆u = max
D,D′,v

∣∣u(D, v)− u(D′, v)
∣∣, 231

and the maximum is taken over all neighboring 232

datasets D and D′ and all possible outputs v ∈ V . 233
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Composition Property Differential privacy ex-234

hibits a robust composition property: when mul-235

tiple DP mechanisms are applied sequentially to236

the same dataset, the overall privacy loss accumu-237

lates (Dwork et al., 2014). Let D be a dataset and238

let M1,M2, . . . ,Mn be ϵi-DP mechanisms. The239

composed mechanism240

M = Mn ◦Mn−1 ◦ · · · ◦M1241

satisfies ϵ-DP with ϵ =
∑n

i=1 ϵi.242

Post-Processing Property The post-processing243

property states that any function applied to the out-244

put of a DP mechanism preserves the same privacy245

guarantee (Dwork et al., 2014). If a mechanism246

M : X → V satisfies ϵ-DP, then for any function247

F : V → V ′, the composed mechanism F ◦M(D)248

also satisfies ϵ-DP.249

DP-Guaranteed Paraphrasing Autoregressive250

language models (LMs) generate text sequentially,251

sampling tokens from a conditional likelihood252

distribution:
∏n

i=1 Pr[xi |x1, . . . , xi−1, C], where253

C = (c1, c2, . . . , cm) is the context. At each step,254

a logit vector u ∈ R|V| is transformed into a prob-255

ability distribution over the vocabulary V using a256

softmax function with temperature T :257

p(v) =
exp(uv/T )∑

w∈V exp(uw/T )
, ∀ v ∈ V.258

Prior work (Utpala et al., 2023; Mattern et al.,259

2022) has shown the equivalence between this soft-260

max selection process and the Exponential Mecha-261

nism (EM) of differential privacy, where the utility262

function corresponds to the logits. Assuming LM263

is not pre-trained on the distribution of the data264

being protected, and that logits uv are clipped to265

[bmin, bmax], generating n tokens at temperature T266

provides a (2n(bmax−bmin)
T )-local DP (LDP) guar-267

antee. This derives from the fact that each to-268

ken selection, with a maximum logit difference of269

(bmax−bmin), incurs a privacy loss of 2(bmax−bmin)
T .270

Sequential composition over n tokens then yields271

the stated LDP bound for a single document para-272

phrase. Logit clipping and EM sampling ensure the273

generated sequence respects a well-defined pure274

LDP budget. See Appendix A for Algorithm 2 and275

proof.276

4 DP-GTR277

Existing document-level prompt sanitization meth-278

ods often employ the EM for privacy-preserving279

rewriting. However, these coarse-grained ap- 280

proaches, relying on a single ϵ for the entire doc- 281

ument (prompt) rewriting, struggle to balance pri- 282

vacy and utility. Critically, noise introduced during 283

rewriting irreversibly alters textual elements, hin- 284

dering utility recovery. Maintaining acceptable util- 285

ity thus necessitates low initial noise levels, requir- 286

ing a high privacy budget and consequently reduc- 287

ing actual privacy protection. Furthermore, a high 288

privacy budget under the EM can even lead to com- 289

plete data exposure. To address these limitations, 290

we propose DP-GTR, a word- and document-level 291

hybrid prompt privacy adopted framework that 292

leverages group text rewriting and post-processing 293

to enhance privacy while maintaining high utility 294

under DP guarantees. DP-GTR enables low-noise 295

paraphrasing to identify and suppress the genera- 296

tion of privacy-sensitive terms with high exposure. 297

4.1 DP-GTR Framework Overview 298

DP-GTR comprises three distinct stages, as illus- 299

trated in Figure 1. In Stage-1, a DP-guaranteed 300

group text rewriting process explores diverse rep- 301

resentations of the original prompt, generating n 302

rewritten versions. Stage-2 leverages this group 303

of rewritten prompts in a parallel process. First, it 304

identifies the lowest-perplexity rewritten prompt 305

as an in-context learning exemplar, effectively se- 306

lecting the most confident paraphrase. Concur- 307

rently, it aggregates word counts across the rewrit- 308

ten prompts and releases k private keywords shared 309

within the group. Finally, Stage-3 employs a 310

prompt template. This template is populated with 311

both the selected in-context learning exemplar and 312

the released private keywords. The filled template 313

is then fed to the LLM to generate the final prompt, 314

effectively mitigating the risk of directly revealing 315

sensitive information from the original prompt. 316

4.2 Stage-1: Group Text Rewriting 317

DP-GTR employs group text rewriting to achieve 318

finer-grained control over privacy and utility com- 319

pared to document-level methods. Effective prompt 320

sanitization requires considering both document- 321

level context for overall meaning and word-level 322

information for protecting sensitive terms. While 323

LLMs excel with contextual input, directly using 324

the original prompt for in-context learning compro- 325

mises privacy. 326

Group text rewriting addresses this by generat- 327

ing a local paraphrased text database, effectively 328

mitigating the limitations of both document-level 329
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rewriting and the absence of suitable contextual330

information. This database, consisting of multi-331

ple rewritten versions of the prompt, serves several332

key purposes. First, it provides richer information333

than a single rewrite, capturing diverse facets of the334

original prompt. Second, aggregating word counts335

across the rewrites facilitates the identification of336

shared, potentially sensitive keywords. More im-337

portantly, the group enables more aggressive post-338

processing and additional DP mechanisms, which,339

while not reducing the formal ϵ-DP bound, further340

mitigate the risk of sensitive information disclo-341

sure by eliminating sensitive identifiers and limit-342

ing real-world exposure. Specifically, generating a343

paraphrased group P of m documents, each with344

n tokens, incurs an mnϵ-DP privacy budget.345

4.3 Stage-2: Utility and Privacy Control346

DP-GTR achieves fine-grained control over utility347

and privacy by leveraging the group of rewritten348

prompts. Utility is enhanced through in-context349

learning, while privacy is preserved via private key-350

word analysis.351

4.3.1 One-shot in-context learning for utility352

LLMs exhibit a strong capacity for in-context learn-353

ing (Brown et al., 2020), effectively learning from354

provided examples. To ensure the LLM under-355

stands the desired output format and content, con-356

textual information is crucial. Furthermore, LLMs357

often demonstrate a preference for learning from358

their own generated content. Therefore, we em-359

ploy a one-shot in-context learning approach to360

maximize the utility of the rewritten prompt.361

Specifically, rather than using the original362

prompt, we select the lowest-perplexity paraphrase,363

Plow, from the generated group P as the exemplar364

for guiding final prompt generation. This para-365

phrase, representing the most coherent and rep-366

resentative information within the group, serves367

as the most effective learning example. Criti-368

cally, this in-context learning process leverages369

the post-processing property of differential privacy,370

incurring no additional privacy budget. Formally,371

this can be seen as the temperature approaching372

zero as the privacy budget approaches infinity:373

T = limϵ→∞
2(bmax−bmin)

ϵ → 0.374

4.3.2 Consensus-aware privacy protection375

Protecting prompt privacy requires identifying376

privacy-sensitive keywords. Unlike previous PII377

detection methods that focus on isolated words or378

phrases (Chen et al., 2023b,a), DP-GTR considers 379

the overall composition of sentences to comprehen- 380

sively capture privacy leakage risks. Due to the 381

paraphrasing tendencies of LLMs, key pieces of 382

information within these compositional relation- 383

ships often reappear across different paraphrased 384

examples. We define consensus words as those 385

that appear repeatedly across multiple paraphrased 386

prompts generated in Stage-1. This repetition is 387

treated as a privacy signal, as words appearing fre- 388

quently despite paraphrasing attempts are likely 389

either (a) crucial to the document’s meaning and 390

difficult to alter without significant utility loss, or 391

(b) inherently tied to sensitive or identifiable infor- 392

mation (e.g., names, locations) that existing LDP 393

methods struggle to effectively anonymize. 394

Consensus Keyword Extraction The paraphrased 395

group generated in Stage-1 can reproduce large 396

fragments, potentially "leaking" sensitive infor- 397

mation. Inspired by the bag-of-words approach, 398

we count word frequency (c) across the para- 399

phrased sentences, forming a set of frequency 400

counts S = {(w1, c1), (w2, c2), . . . , (wk, ck)}. 401

We then release a fixed number (K) of keywords, 402

K = {k1, k2, . . . , kK}, without manual interven- 403

tion. This can be achieved either through post- 404

processing or by employing the Joint Exponen- 405

tial Mechanism (Joint-EM) (Gillenwater et al., 406

2022) with privacy budget ϵ2 under the sample-and- 407

aggregate framework (Nissim et al., 2007b). The 408

consensus keyword extraction algorithm is detailed 409

in Algorithm 1. 410

Post-Processing Release Due to the post- 411

processing property of DP, keywords K can be 412

directly released, incurring no additional differen- 413

tial privacy (NDP) budget. This allows for diverse 414

downstream analyses without further privacy cost, 415

maintaining the total budget at (mn)ϵ1-LDP. This 416

approach is designated DP-GTR-NDP. 417

Joint-EM Release Joint-EM provides a privacy- 418

preserving DP mechanism for simultaneously re- 419

leasing the top-K keywords (Gillenwater et al., 420

2022), making it a suitable alternative. This ap- 421

proach has a total privacy budget of ((mn)ϵ1+ ϵ2)- 422

LDP and is designated DP-GTR-JEM. 423

4.4 Stage-3: Privacy-Preserving Prompting 424

To maximize utility while preserving prompt pri- 425

vacy, DP-GTR constructs the final prompt in Stage- 426

3. Leveraging LLM prompt learning, particularly 427

the stronger learning aptitude exhibited with neg- 428

ative commands (Zhong et al., 2024; Wei et al., 429

5



Algorithm 1 Top-K Private Keywords Extraction

Require: {P1, P2, . . . , PM}: paraphrased doc-
uments; K: output word count; method
∈ {post-processing, Joint-EM}; differetial
privacy budget ϵ

Ensure: Top-K highest-frequency words
1: for i← 1 to M do
2: Si ← SEPARATEBYSPACE(Pi)
3: Si ← REMOVESTOPWORDS(Si)
4: private_keywords← {}
5: for all w ∈ Si do
6: private_keywords[w] += 1
7: end for
8: SORTDESCENDING(private_keywords)
9: end for

10: if method = post-processing then
11: return TOPK(private_keywords, K)
12: else if method = Joint-EM then
13: return JOINTEM-TOPK

(private_keywords,ϵ, K)
14: end if

2022), we utilize the extracted consensus keywords430

to effectively prevent the generation of private in-431

formation. This approach offers both practical432

and gentle privacy protection. Practically, we di-433

rectly instruct the LLM to avoid generating the434

identified private keywords, eliminating the need435

for further word, token, or document modification,436

thus streamlining the process. Gentle privacy is437

achieved by strategically engineering prompts to438

selectively suppress model output, rather than re-439

lying on simple filtering rules or context-agnostic440

direct replacement.441

To maximize utility, we incorporate the lowest-442

perplexity rewritten prompt, Plow, selected in Stage-443

2, as a one-shot in-context learning example. Si-444

multaneously, to ensure privacy, we instruct the445

LLM to avoid generating the private keywords,446

w1, w2, . . . , wk, released in Stage-2. Our extracted447

keywords contain richer combinatorial information448

and global context, enabling this more nuanced449

control compared to other methods. The resulting450

prompt template is shown below.451

Privacy-Preserving Prompt Template
Refer to the following question to generate a new
question: <Plow> Avoid using the following to-
kens: <w1, w2, ..., wk>

452

5 Experiment453

5.1 Limitations of Current Metrics454

Prior work on prompt privacy preservation, primar-455

ily focused on author obfuscation (Utpala et al.,456

2023) using datasets like Yelp and IMDb, typi- 457

cally evaluates privacy via adversarial classifiers 458

attempting to identify the original author and 459

utility through binary sentiment classification us- 460

ing BERT-based models (Kenton and Toutanova, 461

2019). These evaluations, however, are often 462

coarse-grained and fail to capture nuanced changes 463

in meaning or style. For instance, a severely de- 464

graded paraphrase like "!!!!!" might be deemed to 465

protect the author’s identity and preserve the orig- 466

inal positive sentiment of "At least for me, this 467

movie is good!!," despite a significant loss of in- 468

formation, bordering on hallucination. Such "pro- 469

tection," arising from factors like high tempera- 470

ture settings, specific formatting, autoregressive 471

generation, or model limitations, highlights the in- 472

adequacy of these existing evaluation metrics for 473

assessing real-world applicability, as they fail to 474

penalize extreme modifications that compromise 475

the prompt’s informational content. 476

5.2 Experiment Setups 477

To evaluate prompt privacy and utility in a prac- 478

tical LLM service context, we propose an inte- 479

grated question answering (QA) evaluation frame- 480

work, conducting a single QA round to simulta- 481

neously measure both privacy and security. We 482

use two QA datasets: the 5-choice closed-answer 483

Commonsense QA (CSQA) (Talmor et al., 2019) 484

and the open-answer PFL-DocVQA (VQA) (Tito 485

et al., 2024), selecting 200 random items from each 486

dataset’s validation set. Note that VQA provides 487

pre-extracted OCR tokens. 488

Integrated Evaluation. We simultaneously eval- 489

uate prompt privacy and utility. Privacy is mea- 490

sured by minimizing Rouge1, RougeL (Lin, 2004), 491

and BLEU (Papineni et al., 2002) scores between 492

the original prompt p and the sanitized prompt 493

p′, indicating greater privacy with more dissim- 494

ilar prompts. Utility is assessed using a GPT-3.5 495

(OpenAI, 2025) based evaluator: Accuracy for the 496

closed-answer dataset (CSQA) and Rouge1 for the 497

open-answer dataset (VQA), comparing the LLM’s 498

answer a (generated from p′) to the ground truth. 499

Lower similarity scores indicate better privacy, 500

while higher accuracy/Rouge1 scores indicate bet- 501

ter utility. 502

Comparative Baselines. We employ three compet- 503

itive approaches as baselines: DP-Prompt (Utpala 504

et al., 2023), a strong baseline leveraging zero-shot 505

prompt learning on LLMs (GPT-3.5, Llama-3.1-8B 506

(Meta, 2024), and FLAN-T5-Base (Chung et al., 507
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2022)); DP-Paraphrase (Mattern et al., 2022), uti-508

lizing a GPT-2 model fine-tuned on SNLI; and DP-509

MLM (Meisenbacher et al., 2024b), based on a510

RoBERTa-Base masked language model.511

DP-GTR Settings. We use GPT-3.5 (black-box)512

and Llama-3.1-8B (white-box) as underlying mod-513

els for DP-GTR. Both the number of group text514

rewritings and private keywords are set to 10.515

For private keyword release in Stage-2, we imple-516

ment a non-DP post-processing method (DP-GTR-517

NDP) and a differentially private JointEM mech-518

anism (DP-GTR-JEM). In Stage-1, paraphrasing519

is controlled by temperature (black-box) and pri-520

vacy budget ϵ (white-box), with nine values tested:521

T ∈ {0.1, 0.15, . . . , 1.5}. Corresponding ϵ values522

for the white-box model are calculated based on523

temperature and pre-clipped sensitivity (see Ap-524

pendix Section A.2). Stage-3 prompt generation525

uses a temperature of 0 (or equivalently low) with-526

out a DP mechanism.527

Evaluation Repetitions. All experiments were528

repeated five times, and the reported results are the529

mean values with standard deviations (displayed as530

shaded areas in Figures 2 and 3).531
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Figure 2: Privacy-utility trade-off for baselines and DP-
GTR on open-answer PFL-DocVQA (VQA) dataset.
The left column presents GPT-3.5 results, and the right
column shows Llama-3.1-8B results. Refer to the x-axis
label for specific measurement metrics.
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Figure 3: Privacy-utility trade-off for baselines and
DP-GTR on close-answer Commonsense QA (CSQA)
dataset. The left column presents GPT-3.5 results, and
the right column shows Llama-3.1-8B results. Refer to
the x-axis label for specific measurement metrics.

5.3 Results on Open-answer VQA Dataset 532

Figure 2 shows the results on the VQA dataset. 533

DP-GTR (GPT-3.5) achieves a superior privacy- 534

utility trade-off, consistently offering better pri- 535

vacy than DP-Prompt (GPT-3.5) at comparable 536

utility, and sometimes higher utility at lower pri- 537

vacy. This validates our one-shot ICL utility design. 538

With Llama, DP-GTR also maintains the best trade- 539

off as temperature increases. DP-GTR-JEM, due 540

to noisy keyword release, shows slightly higher 541

privacy leakage compared to DP-GTR-NDP, but 542

both provide strong privacy. Other baselines (DP- 543

Prompt(T5), DP-MLM, DP-Paraphrase) achieve 544

high privacy but at the cost of unacceptably low 545

utility, demonstrating the limitations of prior evalu- 546

ations relying on simplistic semantic analysis for 547

utility in current LLM-based QA systems. 548

5.4 Results on Close-answer CSQA Dataset 549

Figure 3 shows results on the CSQA dataset. DP- 550

GTR converges faster and achieves a superior 551

privacy-utility trade-off than baselines, generally 552

outperforming them at equivalent privacy levels. 553
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Table 1: Performance of rewriting under different temperatures on the VQA and CSQA datasets. Values are reported
as mean (standard deviation) over five runs, for both Question (Privacy Leakage) and Answer (Utility).

Open-answer VQA Results
Methods Question (Privacy Leakage) Answer (Utility: Rouge1)

Rouge1 RougeL BLEU Value
DP-Prompt 56.91 (18.0) 51.54 (16.8) 23.24 (13.3) 45.87 (0.0)
NDP 43.94 (1.3) 40.22 (1.1) 13.40 (0.6) 43.18 (1.3)
JEM 47.28 (0.8) 44.15 (0.5) 20.98 (0.5) 43.07 (0.7)

Close-answer CSQA Results
Methods Question (Privacy Leakage) Answer (Utility: Accuracy)

Rouge1 RougeL BLEU Value
DP-Prompt 49.73 (13.5) 38.66 (10.6) 19.18 (9.4) 62.65 (8.3)
NDP 30.01 (0.3) 22.87 (0.2) 4.61 (0.1) 54.10 (1.0)
JEM 35.11 (1.1) 27.35 (1.2) 8.33 (0.8) 53.60 (1.7)

While DP-Prompt (GPT-3.5 and Llama) shows554

higher utility in some cases, this comes at the cost555

of unacceptable privacy leakage. We identify a556

Rapid Equilibrium Deterioration Interval (REDI),557

where privacy degrades sharply with minor utility558

gains. DP-Prompt’s REDI is wide and discrete (16-559

45% for GPT-3.5, 20-55% for Llama on question560

Rouge1), making parameter tuning difficult. DP-561

GTR mitigates this, converging around a question562

Rouge1 of 30% and utility of 55-60%, achieving a563

more stable and robust trade-off. The early conver-564

gence of DP-GTR on CSQA, a dataset with strong565

logical coherence, indirectly confirms the effective-566

ness of our privacy keyword suppression.567

5.5 Non-Uniform Rewriting Strategies568

Beyond uniform temperature or epsilon settings,569

we investigated the impact of non-uniform rewrit-570

ing strategies during group text rewriting. We con-571

ducted 10 rewriting tasks using DP-Prompt (Ut-572

pala et al., 2023) and our method (DP-GTR) on573

the GPT-3.5 model, with temperatures T ranging574

from 0.5 to 1.5 in increments of 0.1. Table 1 illus-575

trates that our method achieves a favorable privacy-576

utility trade-off. For VQA, DP-GTR-NDP reduces577

privacy leakage from 56.91% to 43.94% while in-578

curring a 2.69% utility loss. For CSQA, privacy579

leakage decreases from 56.91% to 43.94%, with580

a corresponding 8.55% utility loss. The total pri-581

vacy budget in this non-uniform setting is
∑10

i=1 εi,582

where εi =
2n∆u
Ti

, Ti ∈ {0.5, 0.6, . . . , 1.5}, and n583

is the number of tokens in the i-th generated text.584

5.6 Generalizable Plug-in Framework585

A significant contribution of this work is the devel-586

opment of a generalizable framework that functions587

as a plug-in, compatible with any existing para- 588

phrasing method. The modular design, indicated by 589

the blue arrow representing Stage-1 in Figure 1, en- 590

ables the replacement of our DP-based text rewrit- 591

ing component with alternative paraphrasing tech- 592

niques. To demonstrate this generalizability, we 593

integrated the strong baseline method, DP-Prompt 594

(Utpala et al., 2023), prior to our method, using 595

the same base models (GPT-3.5 and Llama) in se- 596

quence. Thus, the results presented in Figures 2 597

and 3 also validate the plug-in capabilities and effi- 598

ciency of our framework. 599

6 Conclusion 600

This paper proposes DP-GTR, a novel three-stage 601

local differential privacy (LDP) framework that 602

leverages differentially private paraphrasing and 603

the composition theorem through group text rewrit- 604

ing to enhance the privacy-utility trade-off. DP- 605

GTR is the first approach, to our knowledge, to 606

apply in-context learning for LDP prompt privati- 607

zation and to connect global and local DP mecha- 608

nisms via grouped paraphrased text. Furthermore, 609

our framework is generalizable and compatible 610

with any existing paraphrasing technique. Eval- 611

uations on open- and closed-answer QA datasets 612

(DocVQA and Commonsense QA), simulating real- 613

world LLM application scenarios, demonstrate that 614

DP-GTR achieves a significantly superior privacy- 615

utility trade-off compared to existing state-of-the- 616

art methods. With the rapidly increasing adoption 617

of LLMs, DP-GTR provides a practical, robust, and 618

readily deployable solution for mitigating the risk 619

of user prompt privacy leakage. 620
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7 Limitations621

The primary limitation of our work is that LLMs622

may sometimes fail to follow instructions, poten-623

tially leading to privacy leakage or an inability to624

learn from one-shot utility exemplars. In future625

work, an important direction is to shift control from626

outlier prompting to an internal LLM generation627

configuration. This approach will fundamentally628

address the issue of prompt failure in LLMs.629

Another limitation arises from computing re-630

source constraints, which led us to choose the631

Llama-3.1-8B open-source model. This model may632

not effectively learn from its prompt, resulting in633

relatively poor performance. We believe that with634

a more capable open-source model, the framework635

would perform better.636
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A Appendix835

A.1 DP-guaranteed Paraphrasing Proof836

Proof. Let D and D′ be any two documents, and837

u and u′ ∈ R|V | be their corresponding logits and838

[bmin, bmax] is the minium and maximum value839

of the logit. Let v ∈ V , and i be its index, with840

ui being its corresponding logit. We then have841

that (Utpala et al., 2023),842

Pr[M(D) = v]

Pr[M(D′) = v]
=

exp(
ui
T
)∑|V |

j=1 exp(
uj
T

)

exp(
u′
i

T
)∑|V |

j=1 exp(
u′
j
T

)

=
exp(ui

T )
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u′
i
T )
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j=1 exp(

u′
j

T )∑|V |
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= exp
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ui − u′i

T
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j=1 exp(

u′
j

T )∑|V |
j=1 exp(

uj
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≤ exp

(
bmax − bmin

T

)
exp

(
bmax − bmin

T

)
≤ exp

(
2(bmax − bmin)

T

)
.

843

Algorithm 2 DP-Prompt Algorithm (Utpala et al.,
2023)
Require: Language model LM, Private document

D, Private Budget ϵ, Prompt template T , Logit
bounds b ∈ R|V| with bmin ≤ uv ≤ bmax,
Number of generated tokens n

Ensure: Sanitized text P
1: Generate Prompt: Construct an initial con-

text C̃ from {D,T} and tokenize it
2: LM← clipLogits(u,b)

3: Temp←
(2(bmax−bmin

)
ϵ

)
4: LM← setTemperature(Temp)
5: for i = 1 to n do
6: u← LM(C̃)
7: v ← ExponentialMechanism(u)
8: P ← P ∪ {v}, C̃ ← C̃ ∪ {v}
9: end for

10: Output: Detokenize(P )

A.2 Epsilon and sensitivity clip844

The sensitivity bound is the other critical theoret-845

ical parameter. Following prior work, we adopt a846

pre-clipping strategy following the previous stud-847

ies (Igamberdiev and Habernal, 2023). Specifically,848

we randomly sample 1,000 examples from the849

CSQA training dataset and perform the DP-Prompt850

paraphrasing task while recording all logits. We851

then compute the mean (µ) and standard deviation852

(σ), and define the sensitivity bound as (µ, µ+4σ)853

to better preserve high-value logits (Meisenbacher 854

et al., 2024b). 855

The corresponding ϵ is computed using the 856

alignment target temperature with the formula 857

(2(bmax−bmin)
T ). See the Table 2 for detailed values. 858

Temperature DP-MLM
(ROBERTA)

DP-Paraphrase
(GPT-2)

DP-Prompt
(T5)

Ours-NDP
(llama)

Ours-JEM
(llama)

0.1 390.0 1760.0 534.2 194.0 194.0
0.15 260.0 1173.3 356.1 129.3 129.3
0.2 195.0 880.0 267.1 97.0 97.0

0.25 156.0 704.0 213.7 77.6 77.6
0.5 78.0 352.0 106.8 38.8 38.8

0.75 52.0 234.7 71.2 25.9 25.9
1.0 39.0 176.0 53.4 19.4 19.4

1.25 31.2 140.8 42.7 15.5 15.5
1.5 26.0 117.3 35.6 12.9 12.9

Table 2: Epsilon values for different methods across
temperatures
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