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ABSTRACT

Data selection, the problem of selecting a small dataset to be labeled from a large
unlabeled pool is an important practical problem. In particular, dense predic-
tion tasks such as object detection and segmentation require high-quality labels
at pixel level, which are particularly costly to obtain. We propose object-focused
data selection (OFDS), which leverages object-level representations from foun-
dation models to ensure that the selected image subsets semantically cover the
target classes, including rare ones. We show that OFDS achieves state-of-the-art
performance both for object detection and image segmentation with substantial
improvements over all baselines in scenarios with imbalanced class distributions.
Moreover, we demonstrate that pre-training with autolabels from foundation mod-
els on the full datasets before fine-tuning on human-labeled subsets selected by
OFDS further enhances the final performance. Finally, OFDS consistently im-
proves active learning methods when replacing the random selection of the initial
labeled dataset, the so-called “cold start problem” of active learning, with OFDS.

1 INTRODUCTION

The performance of machine learning systems critically depends on the availability and quality of
training data (Zha et al. [2023; |/Agnew et al., 2024)). In vision tasks such as object detection or se-
mantic segmentation, where pixel-level annotations are required, producing high-quality labels is
time-consuming and costly. Per image, dense labeling can take between a few seconds for simple
cases to over 90 minutes for complex scenes |[Lin et al.|(2019)). These demands make optimizing
the annotation process under a limited budget a longstanding challenge in computer vision. Recent
advances in open-world foundation models |Liu et al.| (2024)); Ren et al.| (2024)); Rav1 et al.| (2024)
have opened up new annotation and data selection possibilities. These models demonstrate strong
zero-shot capabilities, allowing them to generalize across tasks without further fine-tuning. How-
ever, directly deploying these large models in resource-constrained applications, such as autonomous
driving, is often impractical due to their size and computational demands. In this work, we focus
on training small, task-specific models and leverage foundation models to guide data selection and
reduce annotation costs for dense prediction tasks. This is also an important problem for active
learning where the initial data selection is typically done randomly (Chen et al.| (2024)); [Nath et al.
(2022); Samet et al.[(2023)).

Without any cost for human labeling, foundation models can provide machine generated annotations,
so-called autolabels. This raises the question: Can open-world foundation models eliminate the need
for dense human annotations? To investigate this, we introduce a calibration strategy for open-world
object detection and segmentation models (Liu et al., 2024} Ravi et al.l |2024) to generate reliable
autolabels and examine the results on different datasets (Everingham et al.| [2010; |Cordts et al.,
2016). We find that training on the full dataset with autolabels can outperform training on human-
annotated subsets in highly budget-constrained scenarios for simple tasks. However, as annotation
budgets or task complexity increase, human annotations are essential.

This leads to our second question. If the quality of autolabels is not sufficient to fully replace human
labels, can foundation models be used to improve the data selection for dense prediction tasks? A
reliable data selection method for real-world applications must effectively handle long-tailed class
distributions, where rare classes only have a few instances in the unlabeled dataset. Selecting images
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Figure 1: Illustration of the Setup for Object-Focused Data Selection. The figure describes our
holistic setup for dealing with constrained annotation budgets for dense prediction tasks. We first use
a foundation model to generate autolabels for the entire dataset and pre-train a model using them.
Subsequently, we use OFDS to select a subset of the unlabeled pool of images to be annotated by
humans. The blue box in the lower left summarizes the four main steps of OFDS. Its core advance-
ment is to use object-level features to ensure a semantic covering of the target classes through the
selected objects. The subset selected by OFDS is then used to fine-tune the model.

with objects from rare classes is essential to ensure that downstream models perform well on them.
For this purpose, we propose object-focused data selection (OFDS). Our method assumes knowl-
edge of the target class names and selects an initial subset of images from an entirely unannotated
pool under the constraint of a fixed annotation budget. OFDS operates under a budget defined at the
level of objects rather than images. This is motivated by the fact that the cost for annotations are
typically charged by the number of annotated instances (for object detection) or masks (for semantic
segmentation) also referred to as units. Unlike existing methods Xie et al.[(2023)); |L1 et al.| (2023b);
Sorscher et al.| (2022); (Chen et al.|(2024)), which rely on a fixed set of image-level feature vectors,
OFDS uses foundation models to propose object-level feature vectors. This enables choosing rep-
resentative objects and ensure that the selected subset semantically covers all classes, including rare
ones. We illustrate data selection with OFDS in Figure ]

To the best of our knowledge, data selection and autolabeling have so far only been considered
independently. We argue that the most effective approach to utilize a constrained annotation budget
is a combination of both. Therefore, we first pre-train the downstream models on the full dataset with
autolabels and then fine-tune on human-labeled subsets constrained by a fixed annotation budget.
Figure (1] illustrates the training setup and shows the performance for object detection on PASCAL
VOC with class imbalance. The depicted results highlight that pre-training on the autolabeled dataset
combined with fine-tuning on a human-annotated subset selected by OFDS leads to the best results.

Our main contributions summarize as follows:

1. Introducing Object-Focused Data Selection (OFDS). We present OFDS, a method that lever-
ages object-level representations provided by foundation models to guide data selection. The
core advancement of OFDS is to perform data selection with respect to semantic similarity on
the level of objects rather than entire images like existing methods Xie et al.| (2023); Li et al.
(2023b). OFDS consistently improves the performance over all existing baselines due to its
class-aware selection, in particular in scenarios with imbalanced class distributions.

2. Holistic Training Strategy for Dealing With Constrained Annotation Budgets. We rethink
training compact models for dense downstream tasks under constrained annotation budgets by
combining data selection with autolabels. Therefore, we pre-train the model on the entire dataset
with autolabels and fine-tune on subsets with human labels selected through OFDS. This ap-
proach enhances performance compared to training solely with autolabels or only on human-
labeled subsets as done in prior works on data selection.

3. Improving Cold Start of Active Learning Methods. Active learning methods commonly re-
quire a small initial labeled dataset (the “cold start problem’). We show that using OFDS instead
of a random selection consistently improves active learning methods for semantic segmentation
and object detection.
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2 RELATED WORK

Active Learning. Active learning is a long standing approach in machine learning that targets the
problem of reducing the labeling cost |[Ren et al.| (2021). There are three key distinctions between
our approach and classical active learning. First, active data selection is specific to a single model
training and the data selection process is carried out iteratively while training. OFDS is independent
of the downstream model being trained and the selection is performed “’passively” before training.
Second, most common active learning methods for dense prediction tasks are specific to single tasks
such as object detection |[Yang et al.| (2024) or semantic segmentation Mittal et al.| (2023)); Hwang
et al.| (2023); Kim et al.| (2024) while OFDS is agnostic to dense tasks. The third distinction is the
so-called cold start problem. Active learning frameworks typically assume the presence of an initial
labeled subset of data before selecting additional datapoints Nath et al.| (2022); |Samet et al.| (2023));
Chen et al.[(2024). Our work focuses on data selection which can be carried out without any labeled
images. This problem has been addressed specifically for 3D semantic segmentation by Nath et al.
(2022) and |Samet et al.| (2023). To the best of our knowledge, HaCON (Chen et al., |2024) is the
only task-agnostic method for the cold start problem which can be used comparably to OFDS.

Dataset Pre-Selection. Dataset pre-selection |Li et al.[(2023b) is a specific setting for dataset selec-
tion. In contrast to our approach, dataset pre-selection is performed without any knowledge about
the downstream task or associated target classes. UP-DP |Li et al.| (2023b)) uses a prompt learning
approach together with multi-modal clustering to select images. In contrast, we argue that for dense
prediction tasks the classes must be known for the annotation process to conform the selection to
the annotation budget. Thus, we base our selection on the classes for the downstream task.

Coreset Selection. The goal of coreset selection is to select a subset of a large dataset to approx-
imate the entire dataset. It is commonly used to reduce the training cost of a model by training
on a subset but achieve performance as close to the full dataset as possible. This differs from data
selection where the main goal is reducing the labeling cost. Furthermore, approaches for coreset
selection Mirzasoleiman et al.| (2020); |Guo et al.| (2022)); [Feldman| (2020) typically require having
the full dataset labeled or a model trained on a labeled subset.

Data and Coreset Selection Beyond Image Classification. So far, most approaches for data or
coreset selection have been evaluated on image classification. However, the labeling costs for dense
prediction tasks are higher which motivates specific approaches for these tasks. To the best of our
knowledge, Yao et al.| (2023)),Zhou et al.|(2024) and|Lee et al.|(2024) are the only works considering
coreset selection for tasks beyond image classification. However, they require fully labeled datasets
for their selection. USL [Wang et al.[(2022) considers the combination of selected data with annota-
tions and unlabeled data for semi-supervised learning. Similarly, ReCo [Shin et al.|(2022) considers
the selection of reference images from an unlabeled dataset but specifically targets co-segmentation.
Li et al.| (2023b)) and |Xie et al.| (2023) included evaluations of their methods on dense prediction
tasks but perform the selection using image-level representation which we observe to be inferior in
the setting with class imbalance.

Pre-Training with Autolabels. Training small models for downstream tasks with autolabels from
a foundation model can be viewed as training under weak or noisy supervision Zhang et al.| (2023));
Kim et al.| (2024). This approach has been explored for specific domains such as remote sensing
segmentation [Zhang et al.| (2024) or tasks such as local feature learning Wu et al.| (2024). While
these works focus purely on training with autolabels on entire datasets which are assumed to be
pre-selected, we use autolabels for initial pre-training to enhance the data selection problem that
subsequently considers which images to label.

3 METHOD: OBJECT-FOCUSED DATA SELECTION

3.1 STRATEGY

The goal of Object-Focused Data Selection (OFDS) is to select a representative set of images to be
labeled for dense prediction tasks given a large pool of unlabeled images, a fixed annotation budget
and the target classes. OFDS leverages feature representations of individual objects with the aim
of sampling a balanced and semantically diverse subset. Therefore, it is important to consider both
inter- and intra-class diversity. To address this, we introduce a four stage selection process.

1. Object Proposals and Feature Extraction: For dense prediction tasks, single images can con-
tain objects from multiple classes. Thus, frequent classes or the background can dominate image-
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level features. To mitigate this, we adopt foundation models to extract features on object-level to
guide the selection process.

2. Class-level Clustering by Semantic Similarity: To gain additional knowledge about intra-class
semantic similarity, we cluster the object features within each class.

3. Object Selection Through Adaptive Clustering: To ensure intra-class semantic diversity in
the selected subset, we choose representative objects from the identified clusters. To ensure
inter-class balance, we adaptively set the number of clusters by evenly distributing the overall
annotation budget between the classes.

4. Exhaustive Image Annotation: For images containing selected objects, all objects from the
target categories are considered for human labeling. This ensures correct background informa-
tion which is required by most common training setups for dense prediction tasks and provides
additional information value.

The complete steps for OFDS are summarized by Algorithm [I] The selection strategy operates
without randomness, which is beneficial in practical situations where only one selection round is
possible and reliability is essential.

Algorithm 1 OFDS: Object-Focused Dataset Selection

Input: Set of unlabeled images {I1,...,In},
Annotation budgets by number of units: B,
Estimated number of annotation units per image: No
Classes to label, sorted by ascending number of object proposals per class: {C1, ..., Ca}
Output: Subset of images selected for labeling
1: Generate a set of object features and corresponding labels {(O;i, l;l)}ﬁl for every image I, using the
object proposer
2: Initialize the subset S = {}
3: forie{1,...,M}do
4: Select the object features predicted as class C; by the ob-
ject proposer: D; = {OZ I, = Ci}
S: Determine the number of images to add for the current

class: N¢, = % where N (S) is the number of
units annotated in S

6: Perform k-means clustering on D; with adaptive & to fea-
ture Ng, clusters without images from S

7: For every cluster without images from S select the object
O;L* which is closest to the cluster mean

8: Annotate the images with cluster medoids and update S:
S=SU{L;}

9: end for

10: Return S

3.2 DETAILED STEPS

Object Proposals and Feature Extraction. In the first step of Algorithm [I} a foundation model
- referred to as the object proposer - is used to detect which objects are present in an image. For
this purpose, we use Grounding DINO [Liu et al.| (2024); Ren et al.| (2024) as pre-trained open-
world object detector. Given an image and a set of class names, it returns a set of object detections
consisting of bounding boxes, labels and confidences. The bounding boxes are used as queries
to SAM 2 Ravi et al.| (2024) for generating object features. These models were chosen as they
are state-of-the-art open-world detection and segmentation models performing well across various
benchmarks |Liu et al.| (2024); [Ren et al.| (2024); Ravi et al.|(2024). A critical aspect of using the
object proposer is calibrating the confidence threshold that determines which object proposals to
consider. For data selection, the important aspect is to only obtain reliable, high-quality predictions
for class objects instead of noisy predictions for all potential objects. This requires controlling the
precision of the object proposer. Thus, the confidence threshold is set on a reference dataset such
that the false positive rate of object proposals is 5% which is a commonly used value Hendrycks &
Gimpel (2017)). Based on the object proposals, we construct the object features to provide semantic
information for clustering similar objects. We leverage object pointers from the SAM2 memory
bank, which contain high-level information of objects and are stored as 256-dimensional vectors.
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Figure 2: Illustration of Clusters for Two Classes from PASCAL VOC. Every object corresponds
to one object feature generated by the object proposer as described in Section [3.2] The clustering
was performed with N, = 30 clusters per class. The clusters provide information about intra-class
semantic similarity. By cluster center we refer to the datapoint closest to the cluster mean.

Class-level Clustering and Semantic Similarity. For clustering the object features, we perform
k-means clustering on the set of object features from each target class individually. The use of k-
means clustering is motivated by its effectiveness in the context of data selection for image-level
classification [Sorscher et al.| (2022); |/Abbas et al|(2024) and the covering of the feature space that
can be obtained from the cluster centers [Pollard (1981). An illustration with example clusters is
given in Figure[2] The resulting clusters provide information about intra-class similarity in addition
to the inter-class information given through the object proposals.

Object Selection Through Adaptive Clustering. We select the objects closest to the cluster centers
to get representative samples and choose at most one object per cluster to ensure semantic diversity.
Like this, we construct a density-based covering for the semantic feature space of the individual
classes. The number of clusters is chosen adaptively to accommodate for the overall annotation
budget as well as already annotated images that were selected for previous classes. Initially, the
annotation budget is evenly distributed between all classes and the class with the fewest object
proposals is considered first. After every class, the leftover budget is evenly redistributed among
the remaining classes. Importantly, this budget is measured in annotation units rather than images.
Given a budget in units to annotate per class, the number of objects N¢, to select is obtained by
dividing this budget through an estimate for the number of units per image. We increase the number
of clusters until there are N¢, clusters without object features from already selected images. Only
from these clusters, we select objects. This ensures that only one object per cluster is selected,
providing a diverse semantic covering of the target classes and avoids the explicit selection of near
duplicates. Steps 4 to 7 of Algorithm T|summarize the object selection process.

Exhaustive Image Annotation. On images with selected objects, objects from all target classes
are being labeled by the human annotators. Although this may initially seem contrary to the object-
focused approach, exhaustive labeling yields information about the background of the selected im-
ages. This background information is required by most common training frameworks for dense
prediction tasks, either as a separate class|Zhao et al.[(2017) or to ensure correct negative samples
Xu et al.|(2019)). In particular, the negative samples sampled from the background are class-agnostic,
which provide greater information value than class-specific negative samples that could show ob-
jects from other target classes. While there exist potential solutions for training models for dense
downstream tasks with partial labeling Jain et al.| (2022)); |Cour et al.|(2011)), we aim to ensure com-
patibility with standard setups.

4 EXPERIMENTS

In this section, we outline the setup used to conduct our experiments and subsequently discuss the
results in four parts. First, we discuss the model performance on downstream tasks when training
purely with autolabels. Second, we conduct an extensive comparison of OFDS against existing data
selection baselines across six distinct settings. Third, we highlight the advantage of pre-training on
the full dataset with autolabels and fine-tuning with human annotations on selected subsets. Finally,
we demonstrate that OFDS can be used to improve active learning by selecting the initial data to be
labeled.
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Figure 3: Class Distributions for PASCAL VOC and Cityscapes for Semantic Segmentation. As
the distribution for PASCAL VOC is relatively balanced, we additionally construct a more realistic
setting for data selection with class imbalance by pruning the six classes with the fewest objects.
The class distribution for Cityscapes already features rare classes, such that we only consider the
entire dataset.

4.1 EXPERIMENTAL SETUP

Tasks and Datasets As downstream tasks, we consider object detection and semantic segmentation.
For object detection we use the joint training set from the PASCAL VOC [Everingham et al.| (2010)
2007 and 2012 splits, evaluated on the validation set from 2012 as well as the Cityscapes|Cordts et al.
(2016) dataset with the classes featuring instance-level annotations. Similarly, for segmentation we
consider the PASCAL VOC 2012 dataset and Cityscapes. The PASCAL VOC datasets feature a
relatively balanced object distribution as shown in Figure[3] This can be attributed to the fact that the
data set has already been selected and labeled by humans. However, unlabeled real-world datasets
typically follow class imbalanced distributions Johnson & Khoshgoftaar|(2019). Thus, we construct
two additional settings with rare classes. We reduce the six smallest classes of the PASCAL VOC
datasets by 99%, 95%, 85%, 80%, 75% and 50%. We refer to this setting as class imbalanced. The
original and class imbalanced object distributions are shown in Figure 3] The class distribution of
Cityscapes naturally contains rare classes such that we directly use the full dataset. Results on two
additional datasets from specific domains can be found in Section [C|

Models and Training Setup For our main experiments on object detection we use a Faster RCNN
Ren et al.|(2015) with ResNet-18 backbone He et al.| (2011) and for semantic segmentation a Seg-
menter [Strudel et al.| (2021) with ViT-T backbone |Dosovitskiy et al.| (2021). Ablations with a De-
formable DETR [Zhu et al.| (2021)) for object detection and a PSP Net|Zhao et al.| (2017) for semantic
segmentation can be found in the appendix. The backbones were pre-trained on ImageNet. In Sec-
tions 4.2] and 43| we train the decoder parts from scratch with the obtained human labels to evaluate
the influence of the data selection. In Section 4.4 we initialize the model with the checkpoint ob-
tained after pre-training with autolabels to improve the downstream performance. For every setting
consisting of dataset and tasks we train for the same number of steps on all subsets. We use augmen-
tations consistent with Xie et al.|(2023). The complete hyperparameters can be found in the Section
For the experiments with active learning we follow experimental setups from Yang et al.| (2024);
Mittal et al.| (2023)). Details can be found in Section@

Baselines In this section we provide a comprehensive overview over the baselines for data selection.
FreeSel: | Xie et al.| (2023) introduced FreeSel as a method for data selection based on a single pass
of the unlabeled dataset through DINO. The selection is based on local semantic features of images.
Contrary to our approach, the number of features per image is a fixed hyperparameter independent
of the number of objects on a specific image.

UP-DP: UP-DP L1 et al.|(2023b) performs data selection based on unsupervised prompt learning us-
ing vision-language models, in particular BLIP-2 [Li et al.| (2023a)). Contrary to our method, UP-DP
requires training. We compare to the UP-DP selection based on probabilities predicted by cluster-
level head which exhibited the best performance in the original publication.

Prototypes: The current state-of-the art approach for unsupervised data selection for image classifi-
cation was presented by [Sorscher et al.| (2022) for ImageNet|Deng et al.| (2009) and has since been
scaled to webdatasets |Abbas et al.| (2024). The method consists of two steps. First, extract image
features from an pre-trained model and perform k-means clustering using these features where k
equals the number of classes. Subsequently, the datapoints closest to the cluster centers are selected.
We compare to this protoype selection using image features from DINO-T |Caron et al.[(2021)).
Coreset: By coreset selection we refer to the k-centers algorithm, introduced to the coreset problem
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by Sener & Savarese| (2018). The selection requires image features and starts with a random image
as initial subset. The images with the greatest distance to the subset are then incrementally added to
the subset. We compare to coreset selection using features from DINO-T and the £, in the feature
space to determine the newly added points.

HaCON: (Chen et al.| (2024) developed HaCON to address the cold start problem for active learning.
Yet, the method can be applied to general data selection. HaCON clusters the features of a self-
supervised model and selects the samples which are located at the cluster boundaries.

Random Selection The simplest baseline is the selection of a random subset from the unlabeled
images.

4.2 CAN OPEN-WORLD FOUNDATION MODELS ELIMINATE THE NEED FOR DENSE HUMAN
ANNOTATIONS?

To analyze the model performance on downstream tasks when training with autolabels, we use
Grounding DINO-T and Grounding SAM2-T to annotate PASCAL VOC and Cityscapes. Ablta-
tions with larger foundation models can be found in Section[B] These models are also used as object
proposer in OFDS. Unlike for OFDS, the goal when generating autolabels is not to detect or segment
objects with high precision but to balance precision and recall. Therefore, to generate autolabels we
calibrate Grounding DINO by selecting the threshold that yields the highest F1 Score on reference
datasets. These reference datasets are constructed by selecting subsets of MSCOCO|Lin et al.|(2014)
consisting of relevant classes for PASCAL VOC or the streetscenes found in Cityscapes. Details on
the two calibration approaches for autolabeling and OFDS can be found in Section [J] The perfor-
mance of downstream models trained using the resulting autolabels can be found in Figures [4| and
[3] (horizontal lines). For PASCAL VOC, we observe that the performances of models trained with
autolabels are comparable to a 30% random subset with human labels for object detection and a 20%
subset for semantic segmentation. The performance of the model trained with autolabels achieves
a mAP of 70.7 which outperforms the reported mAP of 55.7 achieved by the Grounding DINO-T
model used to generate the autolabels. This can be attributed to the fact that Grounding DINO is
a model for open-set object detection while the downstream models are trained for closed-set de-
tection. For Cityscapes the models trained with autolabels perform substantially worse than even a
5% random subset with human labels. In summary, these findings indicate that for simpler datasets
and very limited annotation budgets, autolabels can outperform training on human-annotated sub-
sets. However, with increasing annotation budgets or more complex datasets, human annotations are
indispensable.

4.3 DATA SELECTION FOR DENSE PREDICTION TASKS

In this section, we compare OFDS to six baselines in both class-imbalanced and balanced settings.
We note that the imbalanced settings are more representative for real-world data selection. We train
the decoder from scratch to investigate the influence of data selection alone and avoid confounding
influences from pre-trained network weights.

Full PASCAL VOC. Figure 4| displays the results for the full PASCAL VOC dataset. As the class
distribution is relatively balanced (see Figure[3)), we observe that random selection serves as a strong
baseline, with no other selection method achieving substantial improvements over it. FreeSel, Ha-
CON and OFDS perform on par with random selection, while the prototype-based approach con-
sistently yields the lowest performance. UP-DP and Coreset underperform compared to random
selection. We attribute this to the fact that these methods rely on image-level representations and
were developed for image classification while object detection and segmentation are multi-label
tasks.

PASCAL VOC with Class Imbalance. The results for object detection and semantic segmenta-
tion on the PASCAL VOC datasets with class imbalance are shown in Figure 4 We observe that
none of the existing baselines consistently outperform random selection. In contrast, our method
outperforms all baselines, including random selection for both object detection and semantic seg-
mentation. Notably, the difference to the baselines is largest when assessing the performance on the
six rare classes. While there exist post-hoc approaches to adjust training setups to the presence of
rare classes |Dong et al.|(2023); |Tan et al.| (2021); [Wang et al.|(2020; [2021a), OFDS targets the class
imbalance problem already at the level of data selection.

Cityscapes. The results for object detection and semantic segmentation on Cityscapes are shown
in Figure E} We observe that OFDS, FreeSel and Coreset outperform random selection. As the
dataset naturally has a more imbalanced class distribution than PASCAL VOC (see Figure[3), OFDS
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Figure 4: Data Selection on PASCAL VOC. The results correspond to a FasterRCNN with ResNet-
18 backbone and a Segmenter with ViT-T backbone with the decoder part of the models is trained
from scratch. The yellow and black line show the performance of the models being trained on the
full dataset with either autolabels or human labels. The remaining points correspond to training on
subsets with human annotations. We observe that OFDS consistently performs best amongst the on
the methods full dataset and outperforms all baselines on the class imbalanced datasets.
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Figure 5: Data Selection on Cityscapes. The results are obtained with the same models as for
Figure ] When training on subsets with human annotations, OFDS consistently performs best, in
particular when evaluating on rare classes.

achieves the highest overall performances. This improvement is especially notable when evaluating
only on the rarest classes, highlighting OFDS’s ability to select effective instances from rare classes.

Comparison Across All Settings. Conclusively, we highlight that OFDS outperforms or performs
on par with the best baselines across all experimental settings and models. OFDS performs best
in both balanced and imbalanced class scenarios. This is crucial for practical applications where
the presence of class imbalance may not be known in advance. Random selection remains a strong
baseline in the class-balanced setting but is substantially surpassed by OFDS in the class imbalanced
setting. FreeSel and Coreset outperform random selection on Cityscapes but fail to consistently
perform better than random selection on PASCAL VOC. The selection based on prototypes yields
the worst performance across all settings. This underlines the finding by [Sorscher et al.| (2022)) that
dataset selection with the prototypical approach amplifies class imbalance.

4.4 COMBINING AUTOLABELS WITH DATA SELECTION

In Section[#.2] we observe that training on the full dataset with autolabels on PASCAL VOC can be
superior to training with human-labeled subset under very constrained annotation budgets.
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As the autolabeling process can in any case = Full Dataset Human Labelled Full Dataset Autolabelled
. . . «=me Fu|l Dataset Autolabeled + OFDS = = OFDS
be carried out at little cost (see Section [, Full Dataset Autolabeled + Freesel Freesel
we assess whether the performance under con- = Full Dataset Autolabeled + Random == Random
1 1 1 Detection on PASCAL VOC Segmentation on PASCAL VOC
strained annotation budgets can be improved by tection on PASCAL V€ nentation on PASCAL

incorporating autolabels in addition to human-
labeled subsets. Therefore, we first pre-train the
models using autolabels on the entire dataset
and then fine-tune on human-annotated subsets.
In this setup, the purpose of the methods for
data selection is to determine the subset used

for fine-tuning. We compare random selec- 57 o 0.4 43 02" o4
tion, FreeSel and OFDS as the best perform- i ethlpid it eid

ing methods from Section [4.3] The results on
the PASCAL VOC datasets with class imbal-
ance and Cityscapes are shown in Figures[6]and
[23] We observe that fine-tuning with human-
labeled images improves the performance over
training purely with autolabels, even for the
smallest annotation budget. The improvements
on PASCAL VOC are larger in comparison to
Cityscapes. This is a result of the stronger per-
formance achieved by training with autolabels on PASCAL VOC. For both datasets, selecting the
data for fine-tuning through OFDS leads to the best performance. This highlights that data selection
can be effectively combined with autolabeling to obtain a holistic training setup for limited annota-
tion budgets.

Figure 6: Combining Autolabels With Data Se-
lection. The solid lines correspond to fine-tuning
from the checkpoint pre-trained with autolabels.
For the dashed lines the models were trained as
in Section [4.3] We find that selecting the subsets
for fine-tuning with OFDS consistently leads to
the best performances. Results for the cityscapes
datasets are shown in Figure@

4.5 INITIAL DATA SELECTION FOR ACTIVE LEARNING

As discussed in Section [} the cold start prob- T o0l etecion, Equal e Semantc seapntaton
lem refers to selecting an initial pool of la- 60 50

beled images for active learning which is typ- s 45

N . < °

ically done randomly. In Figure [/} we replace &40 —— Random initial Data|| E 40

this random initial dataset by datasets selected 30 — paoon mwelData | 35
through OFDS or HaCON, which is the only 005 010 015 020 30 01 02 03 04 05
baseline specifically devised for the cold start By Number of Labeled images By Numper of Labeled mages

problem. Exemplarily, we use the state-of-the- . . Tnits .

gure 7: Initial Data Selection Through OFDS
art frgmewp rk PP‘g‘LEYaXietGall' (202431 fg{r CI’(b' Improves Active Learning. We train a ResNet-
]ect' etection an qu: o estaqe 817 50 RetinaNet [Lin et al. (2017)for detection us-
tani) (2020) for .semantlc Segm(?matlon Whl?h ing PPAL and Wide-ResNet38 DeepLabv3+|/Chen
performed best in a benchmarking study [Mit] et al| (2018) for semantic segmentation using

gise (tlzilL (\2/%28) apg allaply .bo]tahlmethodsF O EquAL. The only difference between the differ-
with class imbalance. UI"  ent lines is the initial data selection. Further ex-

th.er experiments that Vahd,ate our observation periments and details on the cold start problem of
Wlth additional active learning me'thods apd the active learning can be found in Section IH
cityscapes dataset can be found in Section

We highlight that selecting the initial data through OFDS improves the performance during the en-
tire active learning process and yields better results than a random selection and HaCON.

5 CONCLUSION

In this work, we discuss how foundation models can be leveraged to effectively utilize a fixed anno-
tation budget for training compact models for dense prediction tasks. We find that only for simple
datasets and under very constrained annotation budget, training purely with autolabels yields com-
petitive results. For more complex datasets, human annotations remain indispensable. Next, we
address the question of which images to select for annotation with OFDS. Our method demonstrates
an advantage by consistently improving the performance in comparison to existing baselines for
data selection, particularly in class imbalanced settings. This is due to the fact that unlike prior
approaches, OFDS guides the data selection at the level of objects rather than images and constructs
a semantic covering of all target classes. Finally, we demonstrate that pre-training with autolabels
on the full dataset before fine-tuning on human labeled OFDS-selected subset further enhances the
final performance of the downstream models.
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APPENDIX

We start with an overview of the content of the Appendix:

In Section[A] we perform ablations with different models for the downstream tasks.

In Section [B| we evaluate OFDS with object proposals from larger foundation models.
Results on two additional datasets from specialized domains are shown in Section|[C|

To demonstrate the advantage of using object-level instead of image-level features for the
data selection, we compare to an additional image-focused baseline in Section D}

We provide further insights into the effect of clustering the object features for OFDS in
Section [El

In Section [ we provide additional experiments on improving the cold start problem for
active learning with OFDS.

In Section |G| we report class balance scores for the selected subsets to validate the effec-
tiveness of OFDS in selecting subsets with improved class balance.

Since the random baseline and FreeSel are based on a probabilistic selection process, we
repeat the data selection on PASCAL VOC with class imbalance and assess the extent of
the resulting fluctuations in Section [H]

In Section[l] we provide further details on the class distributions including the rare classes
used for evaluation and the subsets used to calibrate the object proposer.

In Section[J]] we discuss the calibration of the foundation model for generating autolabels
and object proposals.

Further details on the implementation of OFDS and coreset selection are discussed in Sec-
tion[Kl

In Section [L} we provide a discussion on the computational cost of OFDS and generating
autolabels.

The complete results for combining autolabels with data selection are shown in Section[M]
In Section[O} we provide the hyperparameter configurations used for all training runs.
Potential limitations of our approach are discussed in Section N}

A  MODEL ABLATIONS FOR DOWNSTREAM TASKS

To highlight that the performance advantages of selecting data through OFDS are independent of
the model chosen for the downstream tasks, we perform ablations using a Deformable DETR [Zhu
et al.|(2021)) for object detection and a PSP Net|Zhao et al.| (2017) for semantic segmentation. Both
models are based on ResNet-18 backbones which were pre-trained on ImageNet. As in Section
[4.3] the decoders are trained from scratch to assess only the influence of data selection without any
confounding effects from autolabels. The results are shown in Figure [§| We observe that selecting
the data through OFDS results in the best performances which confirms our previous findings.

Full Dataset Autolabelled e=== Random  e=== OFDS
= Full Dataset Human Labelled Freesel
Detection on PASCAL VOC Detection on PASCAL VOC
With Class Imbalance With Class Imbalance
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Figure 8: Ablations with Different Models for the Downstream Tasks. OFDS also leads to
the best results for training a Deformable DETR for object detection and a PSP Net for semantic
segmentation.
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Figure 9: Stronger foundation models improve OFDS. We compare object feature extraction for
OFDS using Grounding SAM with tiny and base models. The results are obtained through training
downstream models on the selected subsets with the same setup as for Figure @ Using the base
instead of the tiny models yields small but consistent improvements.

B ABLATIONS ON THE CHOICE OF FOUNDATION MODELS

In Section 4] we utilize the Grounding DINO-T and SAM2-T backbones to generate object-level
representations. This choice is motivated by the fact that these models achieve the fastest inference
time among the Grounding SAM variants. In this section we ablate on this choice by using OFDS
with features from the Grounding DINO and SAM?2 base models. We highlight that the base models
not only feature an architecture with more parameters than the tiny models but were also trained on
larger datasets. The results for object detection on the PASCAL VOC dataset with class imbalance
are shown in Figure 0] We observe that using features from the base yields small but consistent
improvements. As these performance gains remain relatively modest and we use the tiny models
for our main experiments as these provide a more favorable trade-off between performance and
inference cost of the foundation models.

C ADDITIONAL DATASETS

In this section, we evaluate OFDS in more specialized domains. We consider the LoveDA |Wang
et al.| (2021b) dataset for semantic segmentation of satellite images and the GRAZPEDRWRI-DX
Nagy et al.|(2022)) dataset for fracture detection on radiology images. Both of these dataset features
imbalanced class distributions. Due to the lack of calibration datasets for these domain, we use the
best confidence threshold for Grounding DINO determined by Kim et al.|(2024)). For some classes in
GRAZPEDRWRI-DX we do not obtain any object proposals. With the annotation budget allocated
to these classes in Algorithm [I} we perform a random selection and perform the clustering-based
approach with the remaining budget on the classes with object proposals. For training the down-
stream model use the same experimental setup as for the cityscapes dataset in Sectiond] The results
are shown in Tables |l|and |I} We observe that on LoveDA, OFDS yields a consistent improvement
over all baselines. However, the margin is smaller than on PASCAL VOC with class imbalance
or cityscapes. On GRAZPEDRWRI-DX, OFDS performs only as good as a random selection but
not worse like the coreset approach for example. This indicates that the more specialized the target
domain of the dataset is, the smaller the improvement of OFDS over random selection becomes.
However, we highlight that OFDS never performs worse than random selection unlike coreset for
example.

D IMAGE-FOCUSED VS. OBJECT-FOCUSED FEATURES

In order to motivate the use of object-level features in OFDS, we compare to an additional baseline
which uses image-level features. Therefore, we perform CLIP retrieval on the unlabeled training
datasets with a CLIP ViT-B/32 model Radford et al.| (2021). We evenly distribute the annotation
budget between all classes and retrieve the images with the highest text-to-image similarity using the
prompts ”a photo of a {classname}”. The major drawback of such an approach is that image-level
features can be dominated by large or frequent objects and can be confounded by objects outside of
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Table 1: Object detection on GRAZPEDWRI-DX Reported results are the mAP on the test set of
FasterRCNN models with ResNet-18 backbone trained on the selected subsets. The train and test
splits is taken from Ju & Caif (2023). The subset size is determined by number of annotation units.
Random selection was performed three times and averaged. OFDS performs on par with random
selection, while Coreset and FreeSel exhibit lower performance.

Subset Size 5% 10% 15%  20%

OFDS 36.39 40.87 43.00 4348
Random 36.60 40.03 4229 43.66
FreeSel 3455 3796 40.88 42.55
Coreset 32.04 36.65 39.07 41.07

Table 2: Semantic Segmentation on LoveDA Reported results are the mIoU on the test set of Seg-
menter models with ViT-T backbone trained on the selected subsets. The subset size is determined
by number of annotation units. As for Table [I] random selection was performed three times and
averaged. OFDS consistently outperforms all baselines.

Subset Size 5% 10% 15% 20% 25%  30%

OFDS 44.10 4539 46.12 46.51 47.16 47.35
Random 4320 44.14 4461 45.16 46.06 46.37
FreeSel 41.13 4451 4548 4577 4624 47.01

Coreset 40.60 43.87 44.63 45.63 4594 46.29

the target classes. In Figure[T T} we highlight the three images with the highest similarity to the class
“train” in the cityscapes dataset. None of the images actually contains a train (even though there
are several images with clearly visible trains in the dataset) but only streets with streetcar tracks.
In Figure [I0} we compare the model performances when training on subsets selected through CLIP
retrieval in comparison to OFDS on the cityscapes dataset. We observe a clear improvement of
OFDS over the image-focused baseline for both object detection and semantic segmentation.

E INFLUENCE OF CLUSTERING OBJECT FEATURES

In this section, we discuss the impact of clustering object features in OFDS in greater detail. As
outlined in Section [3.2] the purpose of clustering the features and selecting individual objects close
to the cluster centers is to obtain a density-based covering of the semantic feature space of the in-
dividual classes and ensure intra-class diversity. In Section we compare the clustering-based
object selection in OFDS to an ablated variant that uses random selection per class without cluster-
ing. In Section [E.2] we illustrate further examples of semantic object groups identified through the
clustering.

=== |mage-Focused Selection (CLIP Retrieval) exm» QOFDS
Detection on Cityscapes Segmentation on Cityscapes
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Figure 10: OFDS Outperforms Image-Focused Baseline. The image-focused baseline is based on
CLIP retrieval with an evenly split budget between all classes. The model and training hyperparam-
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E.1 INFLUENCE ON THE PERFORMANCE

To assess the influence of the clustering of object features on the performance, we construct an ab-
lation of OFDS where the objects from every class are chosen randomly from the object proposals
instead of the clustering-based approach. More precisely, in Step 7 of Algorithm [I] we annotate
images with N¢, randomly chosen objects from the current class. When using already annotated
datasets like PASCAL VOC, the difference between these two variants of OFDS is diminished by
the fact that the images and class objects in the datasets were selected and annotated by humans
such that no or few very similar objects are contained. However, in datasets of e.g. webcrawled
images such as LAION, up to 30% of images have been found to be exact or near duplicates |Abbas
et al. (2023)); [Webster et al.| (2023)). As no dense human annotations are available for such datasets,
we construct a comparable setting by adding 20% random duplicates to the PASCAL VOC datasets
with class imbalance. The results for training downstream models for object detection and semantic
segmentation are shown in Figure[T2]both with and without duplicates. We observe that the cluster-
ing steps leads to a small but consistent improvement in performance. Furthermore, the difference
increases when training on the datasets with duplicates. Hence, we conclude that using OFDS with
the object selection based on clustering of object features is favorable.

E.2 ADDITIONAL CLUSTER ILLUSTRATIONS

In Section[3.2] we motivate the use of unsupervised clustering to construct a density-based covering
of the class semantics. In particular, the clustering is used to group semantically similar objects.
Figure[I3|further illustrates this aspect with object clusters for two additional classes.

F FURTHER DETAILS ON THE COLD START PROBLEM FOR ACTIVE
LEARNING

F.1 EXPERIMENTAL SETUP

For the experiments on active object detection using PPAL, we use a RetinaNet|Lin et al.|(2017)) with
ResNet50 backbone and the same training hyperparameters as in the original publications. We start
with a subset consisting of 2.5% of the overall images and add 400 images (roughly 5%) in every
active learning round. For semantic segmentation we use the training setup from the benchmarking
study by Mittal et al.|(2023)). The segmentation model is based on the DeepLabv3+|Lin et al.| (2017)
architecture with a Wide-ResNet38 |Zagoruyko & Komodakis| (2016) backbone. We start with a
subset consisting of 10% of the overall images and add 10% in every active learning round. Note
that|Mittal et al.|(2023) use weaker augmentations than we used for our main experiments in Section
[ For the active learning experiments, the budget is counted by the number of labeled images due
to the conception of the used frameworks.

F.2 COMBINING AUTOLABELS WITH OFDS FOR THE COLD START PROBLEM

In this section, we incorporate autolabels into the cold start problem for active learning. For methods
like PPAL [Yang et al.|(2024) or Sener & Savarese| (2018)), the cold start for active learning cannot
be started just with autolabels. This is due to the fact that these active learning methods base the
selection of new datapoints to label on an already existing set of labeled images and still require
an initial pool of labeled images. Thus, we start active learning methods using a model checkpoint
trained on the entire dataset with autolabels together with an initial labeled subset. In Figure [14{ we
perform active learning with PPAL for object detection on PASCAL VOC with class imbalance and
initial datasets selected through OFDS, HaCON and random drawing. We observe that pre-training

Figure 11: Images with Highest CLIP Text-to-Image Similarity for Class ” Train” in Cityscapes.
We use a ViT-B/32 CLIP model to perform retrieval on cityscapes. The images contain streets with
streetcar tracks but no actual trains. This highlights the downside of an image-focused approach
where the image features can be dominated by objects that are not actually from the target class.
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Figure 12: Influence of Clustering Object Features in OFDS. We perform an ablation of OFDS
where in Step 7 of Algorithm [I|the objects are chosen randomly per class from the object proposals
instead of using the clustering-based selection. We compare these two variants of OFDS on the
PASCAL VOC dataset with class imbalance. As an additional setting, we add 20% random dupli-
cate images to the dataset. This is motivated by the fact that for example unlabeled web crawled
datasets are known to feature a substantial amount of duplicates[Webster et al.| (2023). In such case,
it is particularly important to ensure that the objects in the selected subset are semantically diverse.
We observe that the clustering-based object selection yields small but consistent performance im-
provements over the random selection of object proposals per class, in particular when duplicates
are present. The results are obtained using the same model and training setup as in Section@
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Figure 14: Leveraging Autolabels Together with OFDS further improves the Cold Start Prob-
lem. The models are trained with the same setup as for Figure [7]but the model is first pre-trained
with autolabels before fine-tuning it on the initial labeled data and subsequently performing active
learning. Importantly, it is not possible to start active learning with PPAL only with autolabels as
the selection of additional datapoints requires a labeled pool to compare to. The only difference
between the three lines is the initial dataset. We observe that selecting the initial labeled dataset with
OFDS yields the best results.
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Figure 15: Different Initial Labeled Datasets for Active Semantic Segmentation on PASCAL
VOC with Class Imbalance. We train a DeepLavV3+ model with Wide-ResNet38 backbone on
PASCAL VOC with class imbalance using the setup from [Mittal et al|(2023). For every plot, the
models were trained with the same active learning frameworks only with different initial datasets.
Random selection refers to randomly selecting the additional images in every round. For all frame-
works apart from random selection, OFDS improves the performance of the model during the active
learning process.

with autolabels substantially improves the performance over training the model from scratch in the
initial round. Furthermore, selecting the initial dataset through OFDS improves the performance of
the entire training in comparison to random selection.
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Figure 16: Different Initial Labeled Datasets for Active Semantic Segmentation on Cityscapes.
We use the same setup as in Figure [T3] to train models for semantic segmentation on cityscapes.
We again observe that for all frameworks apart from random selection, selecting the initial dataset
through OFDS improves active learning.

F.3 FURTHER ACTIVE LEARNING METHODS

In this section, we provide further results for cold start problem of different active learning meth-
ods. Due to the vast amount of methods for active learning, we restrict ourselves to the tasks of
semantic segmentation and assess the cold start problem on two datasets using four baselines from a
benchmarking study |[Mittal et al.| (2023). This includes the EQuAL framework |Golestaneh & Kitani
(2020), which achieved the most consistent results in the benchmarking study Mittal et al.| (2023)), as
well as entropy-based active learning|Holub et al.|(2008); Shannon| (1948)), coreset|Sener & Savarese
(2018)) and the random baseline. Entropy and coreset are two of the most commonly used frame-
works for active learning and remain strong baselines even in more recent works |Yang et al.| (2024).
Coreset for active learning differs from coreset for data selection from Section[3.2] Coreset for ac-
tive learning, which we refer to as CoresetAL, utilizes the features of the downstream model being
trained while coreset for data selection uses features from a pre-trained self-supervised model, in
our case DINO. In Figures [[5]and [T6] we report the results for semantic segmentation on PASCAL
VOC with class imbalance. We observe that for all frameworks apart from random selection, OFDS
improves the performance of the model during the entire active learning process. This validates our
observation from Section 4

F.4 DIRECT COMPARISON OF OFDS AND ACTIVE LEARNING

In Figure [T7] we compare training a model with PPAL active learning for object detection and
EquAL for semantic segmentation to a model trained from scratch on subsets selected with OFDS.
We observe that on PASCAL VOC with class imbalance, training a model from scratch on data
selected through OFDS yields results which are on par with the tested active learning methods.
Importantly, we do not claim that training models on data selected through OFDS is generally on
par with active learning as there is a vast amount of literature on active learning methods, many of
which are highly optimized for specific tasks Hwang et al.|(2023)), model architectures Rauch et al.
(2023) or even datasets Emam et al.| (2021)) to reach the best performance. Adequately comparing
to this line of methods requires extensive experiments which go beyond the scope of this work.
Instead, we highlight once more that data selection through OFDS is qualitatively different from
active learning as it does not require an initial dataset and is both model and task agnostic.
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Figure 17: Direct Comparison of OFDS and Active Learning. We compare the models trained
with the active learning frameworks from Figure[7] where the dataset sizes are iteratively enlarged, to
the same models trained from scratch on datasets selected through OFDS. We observe that training
on the subsets selected through OFDS without any active learning achieves results that are on par to
the active learning methods.

G CLASS BALANCE SCORES

To quantify how balanced the class distributions of the selected subsets are, we compute the class
balance scores introduced by |Sorscher et al.|(2022). The class balance score b € [0, 1] is defined as
the average balance between any two pairs of classes. It is determined by taking the expectation of
drawing two random classes and computing the fraction between the number of objects in the smaller
class in comparison to the larger class. A balance score of 1 corresponds to evenly balanced classes
and higher scores are generally better. In Figure[I8] we show the balance scores for subsets selected
from PASCAL VOC with class imbalance and Cityscapes using the six baselines and OFDS. The
subsets selected by OFDS consistently feature higher class balance scores compared to all baselines
as well as the full datasets. This demonstrates the effectiveness of OFDS in selecting subsets with
improved class balance. Since some of the classes in the segmentation split of PASCAL VOC with
class imbalance contain only very few objects, these classes are not represented in the small subsets
selected through random drawing. As a result, the balance scores for random selection on smaller
subsets are lower than the score of the full dataset.

H REPEATED DATASET SELECTION WITH FREESEL AND RANDOM

Since both the random baseline and FreeSel rely on a probabilistic selection process, we repeat
the data selection multiple times to assess the extent of the resulting fluctuations. Due to the high
computational cost of repeating all experiments, we focus on object detection and semantic segmen-
tation on PASCAL VOC with class imbalance and perform the selection three times for every subset
size. The results are depicted in Figure[I9] The performance improvement achieved by OFDS over
the baselines clearly surpasses the fluctuations caused by the randomness in FreeSel or random se-
lection. Importantly, OFDS features a deterministic selection process, which is advantageous for
practical applications where the data selection can only be performed once.

I CLASS DISTRIBUTIONS

In this section, we provide additional details on the class distributions as well as the subsets selected
for the evaluation on rare classes.

I.1 CLASS DISTRIBUTIONS FOR OBJECT DETECTION
Figure [20|displays the class distributions for the object detection datasets. It complements Figure
which shows the class distributions for the segmentation splits.

1.2 RARE CLASSES

For the evaluation on rare classes of PASCAL VOC with class imbalance, we consider the six classes
that were pruned from the full dataset. On the Cityscapes dataset, we focus on the smallest four
classes for object detection, representing half of the total classes. For semantic segmentation, we
evaluate the performance on the five smallest classes, accounting for one fourth of the total classes.
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Figure 18: OFDS Selects More Class-Balanced Subsets. We compute the class balance score in-
troduced by [Sorscher et al| (2022)) and find that the subsets selected by OFDS consistently feature

higher class balance scores than the baselines
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Figure 19: Repeated Data Selection For Baselines With Randomness. Since the random base-
line and FreeSel are based on probabilistic selection, we repeat the data selection process for object
detection and semantic segmentation on PASCAL VOC with class imbalance three times. The solid
lines represent the mean performance and the shaded areas indicate the range between the mini-
mum and maximum performance for each subset size. The improvement achieved by OFDS over
the baselines consistently exceeds the fluctuations resulting from the randomness in their selection
processes. OFDS is included for reference but features a fully deterministic selection.



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Class Distribution for Cityscapes Object Detection Original and Imbalanced Class distribution for
16000 PASCAL VOC Object Detection
25000
Jul 14000 Original
£ 20000 € 12000 Imbalanced
5 =} 10000 (6 classes were reduced)
15000 %5
] = 8000
Q v
€ 10000 -E 6000
=3
4000
= 5000 E 5000 I
0 — e R RN LT
& o o~ 2 < 2 < < O QA D@ 2. AR LR DI RS
&Y E SO CEF CREEF S ET GETEE A8
s » g & L e @ % & IS
é\o“ RN S &
Classes Classes

Figure 20: Class distributions for the Object Detection Datasets.

In both cases on Cityscapes, the rare classes jointly contain less than 3.5% of the overall number of
objects.

* Rare Classes for PASCAL VOC Object Detection: bus, train, diningtable, cow, motor-
bike, horse

* Rare Classes for PASCAL VOC Semantic Segmentation: diningtable, bicycle, train,
horse, tvmonitor, motorbike

* Rare Classes for Cityscapes Object Detection: train, bus, truck, motorcycle

* Rare Classes for Cityscapes Semantic Segmentation: train, bus, truck, motorcycle, wall

J CALIBRATING THE FOUNDATION MODEL FOR GENERATING AUTOLABELS
AND OBJECT PROPOSALS

J.1 CALIBRATION DATA

As discussed in Section EL we utilize a subset of the MSCOCO |Lin et al.| (2014) validation split
to calibrate the object proposer. Therefore, we select only images containing objects from classes
related to the target classes. Since MSCOCO does not feature the same classes as the target datasets,
we manually identify and select these related classes:

* PASCAL VOC: airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable,
dog, horse, motorcycle, person, potted plant, sheep, couch, train, tvmonitor
* Cityscapes: car, bus, truck, motorcycle, bicycle, traffic light

Importantly, these classes are only used to calibrate the confidence threshold. For generating the
object proposals and the autolabels, we use the actual target classes.

J.2  THRESHOLD CALIBRATION OF THE OBJECT PROPOSER

In Figure 21] we visualize the threshold calibration of the foundation model for autolabeling and for
generating the object proposer. The threshold bounds the confidence with respect to the bounding
boxes and the final class predictions are obtained by taking an argmax over the text scores. When
generating autolabels, we use the threshold which achieves the highest F1 score on the calibration
data. For generating object proposals, we use a threshold that yields 5% false positives on the
calibration data to control the precision of the object proposals.

K IMPLEMENTATION DETAILS

In this section, we provide further details on the implementation of OFDS and coreset.

OFDS In step 5 of Algorithm the number of objects to select is set as N¢, = %. Here,

Ng, is determined from the leftover budget of annotation units B — N(S) which is updated after
every class. This budget is equally distributed between the M — [ 4+ 1 remaining classes at every
iteration of step 5. Therefore, we divide the leftover budget by the number of remaining classes
to obtain the annotation budget per class. To obtain the number of objects to annotate from this
annotation budget, we further divide by Np which is expected number of annotations per selected
object.

Since we select objects only from clusters that do not contain any annotated objects from previous
steps, the number of selected objects does not necessarily correspond to the number of clusters.
Instead, we initialize the number of clusters by N¢, and gradually increase it until we find N,

10
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Figure 21: Calibration of the Object Proposer using the FPR to control the precision for OFDS
and the F1 score for autolabeling. The calibration data is as described in Section@
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Figure 22: Compute Time for the Data Selection in OFDS Without the Time to Generate the
Object Proposals The clustering and selection was performed on a Xeon Gold 6150 CPU.

clusters without any annotated objects. In practice, we achieve this by iteratively multiplying the
number of clusters with 1.05 until enough clusters are present.

Furthermore, in step 1 of Algorithm [I] we only consider object proposals with bounding boxes
smaller than 0.05% of the overall image area to filter out noisy proposals.

Coreset When using the k-centers algorithm to select subsets that are relatively large compared
to the full dataset, the complexity becomes prohibitive due to the quadratic cost of computing the
distances between all points in the selected subset and the non-selected subset. To overcome this
problem, we use a batched version that considers batches of size 512 when selecting new points for
the subset. Thereby, the complexity becomes independent of the size of the unlabeled image pool.

L COMPUTATIONAL COST OF AUTOLABELING AND OFDS

We use a modified pipeline of Grounding SAM 2 to compute the object proposals using a NVIDIA
v100 GPU. We selected the DINO-T and SAM2-T models to achieve the highest throughput. In this
setup, the throughput is 3 images per second on average. The clustering and selection process of
OFDS takes only in the order of seconds on a Xeon Gold 6150 CPU. The times for the clustering
steps on the cityscapes dataset are shown in Figure[22] We emphasize that generating autolabels or
object proposals and the selection process are thereby substantially less computationally expensive
than the model trainings carried out in Section @ Each training took between 6 hours for object
detection on PASCAL VOC to 21 hours for semantic segmentation on PASCAL VOC using the
same compute hardware as for the data selection.

M COMBINING DATASET SELECTION WITH AUTOLABELS

M.1 COMBINING AUTOLABELS WITH OFDS ON CITYSCAPES

To complement Figure [6] we report the results of the models pre-trained with autolabels and then
fine-tuned on selected subsets with human labels on the cityscapes dataset in Figure 23] As for
PASCAL VOC, we observe that fine-tuning with human-labeled images improves the performance
over training purely with autolabels. The improvements achieved through pre-training on autolabels

11
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Figure 23: Combining Autolabels With Data Selection on Cityscapes. The training setup is
the same as for Figure [] but with hyperparameters adjusted for the cityscapes dataset as stated in
Section [O] The results validate our observation that fine-tuning with human-labeled improves the
performance over training purely with autolabels and selecting the subset for labeling with OFDS
yields the best performances.

are smaller in comparison on PASCAL VOC as a results of the weaker performance of the models
trained with autolabels.

M.2 COMPLETE RESULTS ON PASCAL VOC WITH CLASS IMBALANCE AND CITYSCAPES

The complete results including all six baselines for fine-tuning on selected datasets with human
labels are shown in Figures [24and 23] As in Section [#.4] the pre-trained checkpoints are obtained
through training with autolabels on the full datasets. The results confirm that selecting the data for
fine-tuning through OFDS consistently leads to the best performances and yields improvements over
all baselines.

N LIMITATIONS

OFDS depends on features generated by the object proposer and thereby inherits its biases and
limitations, which may reduce its effectiveness in specialized target domains. Furthermore, achiev-
ing a balanced class distribution in some cases can be challenging even with OFDS due to class
co-occurrences on image level.

O TRAINING HYPERPARAMETERS

The hyperparameter configurations for all models trained in this work can be found in Table [3] for
object detection and in Table[d] for semantic segmentation respectively. Due to the smaller resolution
and subset size for the PASCAL VOC segmentation split, we trained with higher weight decay and
learning rate in comparison to Cityscapes. Loss functions including loss weights are taken as in the
original works that presented the model architectures.

12
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Figure 24: Complete Results for Combining Autolabels with Data Selection on PASCAL VOC
with Class Imbalance. The results correspond to a FasterRCNN with ResNet-18 backbone and a
Segmenter with ViT-T backbone. The models were first pre-trained on the full dataset with autola-
bels and then fine-tuned on selected subsets with human labels. These subsets were selected by the
six baselines or OFDS given the fixed annotation budgets indicated on the x-axis.
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Figure 25: Complete Results for Combining Autolabels with Data Selection on Cityscapes. The
results were obtained using the same setup as for Figures[6|and [24}
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Hyperparameters \ Faster-RCNN \ Deformable DETR

Backbone ResNet-18 ResNet-18

Optimizer AdamW |Loshchilov & Hutter (2019) AdamW

Optimizer Parameters e =10e-8, 5 €(0.9, 0.999) € =10e-8, 8 €(0.9, 0.999)

Base Ir le-4 le-4(VOC)

backbone scaled by factor 0.1

Weight decay Se-4, 3e-1 (VOC Fine-Tuning) le-4 (VOC)

Optimizer Steps 80k, 60k (Fine-Tuning) 80k

Batchsize 8 8

Lr schedule Cosine Annealing Cosine Annealing

Warmup steps 1k 1k

Warmup configuration Linear Warmup, Factor 0.1 Linear Warmup, Factor 0.1

Augmentations PhotoMetric Distortion, PhotoMetric Distortion,
Random Crop, Random Flip Random Crop, Random Flip

Table 3: Hyperparameters for Object Detection. We provide the hyperparameter configurations
for all object detection models trained in this work. The specified values correspond to the setup
described in Section Unless explicitly stated otherwise, the same configurations are used for
fine-tuning in Section [4.4]

Hyperparameters \ Segmenter \ PSPNet
Backbone ViT-T ResNet-18
Optimizer AdamW SGD
Optimizer Parameters € =10e-8, 8 €(0.9, 0.999) momentum 0.9
Base Ir le-5 (VOC), le-4 (Cityscapes) le-2 (VOC)

le-6 (VOC Fine-Tuning)
Weight decay le-2 (VOC), 5e-4 (Cityscapes) 5e-4 (VOC)

le-1 (VOC Fine-Tuning)
Optimizer Steps 80k, 60k (Fine-Tuning) 80k
Batchsize 4 4
Lr schedule Cosine Annealing Cosine Annealing
Warmup steps 1k 0
Warmup configuration Linear Warmup, Factor 0.1
Augmentations PhotoMetric Distortion, PhotoMetric Distortion,

Random Crop, Random Flip | Random Crop, Random Flip

Table 4: Hyperparameters for Semantic Segmentation. For all models trained for semantic seg-
mentation in this work, we list the hyperparameters configurations. The stated values refer to the
setup for Section [4.3] When not explicitly stated otherwise the configurations used for fine-tuning
in Section[#.4] are the same.
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