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Abstract

Ensuring fairness in machine learning models is a difficult problem from both a for-
mulation and implementation perspective. One sensible criterion for achieving fairness
is Equalised Odds, which requires that subjects in protected and unprotected groups
have equal true and false positive rates. However, practical implementation is chal-
lenging. This work proposes two ways to address this issue through the conditional
independence operator. First, given the output values, it is used as a fairness mea-
sure of independence between model predictions and sensitive variables. Second, it is
used as a regularisation term in the problem formulation, which seeks optimal models
that balance performance and fairness concerning the sensitive variables. To illustrate
the potential of our approach, we consider different scenarios. First, we use the Gaus-
sian model to provide new insights into the problem formulation and numerical results
on its convergence. Second, we present the formulation using the conditional cross-
covariance operator. We anticipate that a closed-form solution is possible in the general
problem formulation, including in the case of a kernel formulation setting. Third, we
introduce a normalised criterion of the conditional independence operator. All formula-
tions are posed under the risk minimisation principle, which leads to theoretical results
on the performance. Additionally, insights are provided into using these operators un-
der a Gaussian Process setting. Our methods are compared to state-of-the-art methods
in terms of performance and fairness metrics on a representative set of real problems.
The results obtained with our proposed methodology show promising performance-
fairness curves. Furthermore, we discuss the usefulness of linear weights in the fair
model to describe the behaviour of the features when enforcing fairness over a particu-
lar set of input features.

1 Introduction

Machine learning systems are increasingly deployed in many applications with important societal, eco-
nomic, or environmental implications. Individuals and society are affected, so handling algorithmic
bias to obtain fairness guarantees has become an important research topic. The term bias generally
refers to an inclination or prejudice for or against one person or group based on their characteristics and
need not have negative connotations. In machine learning, bias can exist in many shapes and forms
and can be introduced at any stage in the model development pipeline (Fazelpour and Danks, 2021;
Pessach and Shmueli, 2022; Besse et al., 2021) When the such bias is related to the information in cer-
tain characteristics involving sensitive information, the concept of algorithmic fairness is raised. In this
sense, an algorithm is considered fair if it makes predictions that do not favour or discriminate against
certain individuals or groups based on sensitive characteristics. This definition, however, needs to be
properly formalised. Therefore algorithm design, implementation, and deployment need a formal and
concrete definition of favouring or disadvantaging a certain population subgroup. Such quantification of
favour or discrimination is one of the fundamental points of contention where ethical issues come into
play. Artificial Intelligence (Al) regulation is beginning to be formalised, and it is vitally important that
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the scientific community is part of this. Indeed, the European Union has recently released the “Ethics
guidelines for trustworthy Al” report where it is stated that unfairness and biases must be avoided'.

The definition of fairness is an elusive question and the first cause of controversy in the field. In general,
fairness objectives can be categorised into individual and group fairness. On the one hand, individual
fairness (Dwork et al., 2012; Joseph et al., 2016; Kusner et al., 2017; Kim et al., 2018; Heidari et al., 2018;
Joseph et al., 2018) try to achieve “similar treatment to similar individuals”. On the other hand, group or
statistical fairness focuses on reducing inequalities at a group level, where groups may be defined using
sensitive variables such as race, gender, age, or disabilities. The objective is expressed through a mea-
sure of statistical independence between the variables involved in the learning process. This approach
is the most popular in the literature because of its ease of application to any data distribution (Calders
and Verwer, 2010; Kamishima et al., 2012; Kleinberg et al., 2016; Hardt et al., 2016; Chouldechova, 2017;
Zafar et al., 2017; Donini et al., 2018; Agarwal et al., 2018; Williamson and Menon, 2019). The first pro-
posal along this line is the demographic parity (DP) (Kamiran and Calders, 2009; Kamishima et al., 2011;
2012; Pérez-Suay et al., 2017), which requires the outcome to be independent of the sensitive variables.
However, it can impair the ultimate utility we want to achieve (Zhao and Gordon, 2019). In light of this,
when the ground truth is available, which is plausible in the supervised learning setup, this indepen-
dence can be relaxed on the true value of the target. This metric is called Equalised odds (EO) (Hardt et al,,
2016) and requires the true positive and false positive rates to be the same across different groups.

Obtaining statistical fairness, either DP or EO has been mainly addressed by (i) preprocessing the data to
remove sensitive dependencies explicitly (Kamiran and Calders, 2009; Luo et al., 2015; Ristanoski et al.,
2013; Gordaliza et al., 2019) or (ii) modifying classification rules incorporating the fairness constraints
somehow (Pedreshi et al., 2008; Ruggieri et al., 2010). Furthermore, to a lesser extent, (iii) post-processing
the outputs from the learning algorithm with additional minimisation constraints to guarantee fairness
can also be found in the literature (Wei et al., 2021). Most methods in the first group seek fair represen-
tation learning, i.e. achieving fairness through finding an optimal way to preprocess the data and map
it into a latent space where all information about the sensitive variables is removed. After such pre-
processing, standard machine techniques are employed to build predictive models. Examples of these
methods include Zemel et al. (2013); Kamiran and Calders (2012); Adebayo and Kagal (2016); Calmon
et al. (2017); Madras et al. (2018); Song et al. (2018); Zhang et al. (2018). Down-weighting or removing
sensitive features has also been proposed (Zeng et al., 2016), yet it is often insufficient as related variables
may still enter the model (Besse et al., 2021).

The second group (ii) consists of empirical risk minimisation (ERM) approaches that incorporate fairness
constraints in the learning process using restrictions or an additional penalty term. From a theoretical
point of view, if we denote by £ a loss function, a fair algorithm can be achieved by restricting the
loss minimisation over a general class F of algorithms to a subclass Fp,j, satisfying a chosen fairness
criteria. Statistical consistency results for the quantification of the loss in the accuracy of an algorithm
under fairness constraints have been the topic of many authors, including Donini et al. (2018); del Barrio
et al. (2020). In the latter, authors introduced the term price for fairness for the difference between the
risk in the fair class and the general Bayes risk (achieved for the best, but possibly unfair, algorithm),
namely &(Frair) = inf pe pp,, L(f) —inf e 7 L(f). It is important to realise that awareness about sensitive
information conditions the learning scenario and, consequently, the definition of such a fair class. We
propose a bias-unaware kernel regression setting where the sensitive information is known and it is
decided not to be an input to the algorithm and to be used only to impose fairness constraints. In this
way, we obtain fair predictors both in the sense of DP and EO. Additionally, we propose an extension
to the bias-aware framework in the Appendix, where such a sensitive characteristics of the individuals
are not observed but assumed to be present in the input data, and solve it for the particular case of fair
Gaussian models.

The price for DP has been widely studied in the regression setting, e.g. including mini-max results
(Gouic et al., 2020; Chzhen et al., 2020). However, in a general nonlinear setting, there are few con-
tributions to controlling such a quantity. This is mainly due to the challenge of obtaining fair models,
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which could be characterised in terms of the optimal model in the least-squares sense. Fortunately, the
fairness regularisation setting (Kamishima et al., 2012) allowed us to provide a closed-form solution for
the general nonlinear setting (Pérez-Suay et al., 2017). In this framework, we precisely obtain an upper
bound (in Thm. 3.2) on the difference between the fair estimator and the unrestricted RKHS regressor.
On the other hand, it has been shown (Woodworth et al., 2017) that obtaining algorithmic outcomes
accomplishing EO is generally difficult to formulate and, more notably, to optimise. As an exception,
it is possible to obtain a closed-form solution to the minimisation problem in the case of linear mod-
els. However, this becomes infeasible in a general nonlinear setting. To address this issue, we propose
imposing EO through a measure of conditional dependence via conditional cross-covariance operators
defined on reproducing Kernel Hilbert spaces (Fukumizu et al., 2004) as an additional regulariser of the
risk minimisation problem (2). This allows us to obtain also upper bounds provided in corollary 3.3,
and with a normalised version of the conditional cross-covariance operator in corollary 3.5.

Contributions. This paper provides four main contributions: (1) a closed-form solution to the fair opti-
mal predictor under the linear regression model for multidimensional X and S in the EO setting; (2) the
use of the conditional independence measure as a fairness measurement; (3) a regularisation framework
to ensure EO in the general regression setting; and (4) a probabilistic treatment with Gaussian Processes
in the Appendix.

Structure of the paper. The remainder of the paper is structured as follows. In section 4, we solve the
fair minimisation problem under the normal regression model. The general setting is studied in section
3 in a regularisation framework using the conditional cross-covariance operator as the EO penalty to the
loss minimisation problem. Finally, we give empirical evidence of performance in both synthetic and
real-life experiments 5. Appendices contain technical details, a probabilistic treatment based on GPs,
and information about the data and implementation issues. A working implementation, demos and
code snippets are available at anonymised-git-repo.

2 Problem setting

The crucial aim of fair learning is designing procedures to remove or control the influence of sensitive
information on the forecast that could lead to unfair decisions. Let us denote a general class of ML
algorithms by F. We consider a supervised fair learning setting where an algorithm f € F is designed
to learn the relationships between input variables and a target variable Y € R. Here we consider both
input variables multidimensional, namely X € X C R¢, S € S c R, withd,s > 1.

Depending on the algorithm’s awareness of the sensitive information, the learning setting is different.
On the one hand, in most real problems, the input can be separated into a sensitive part S € S and a non-
sensitive, but a proxy of the former, part X € X. In this bias-unaware scenario where ¥ = {f : X — R},
even if the algorithm f is trained only from X, it may be able to learn the information in S, resulting
in potentially biased outcomes ¥ = f(X) as represented in Figure 1. The other possible formulation of
the problem is to consider a bias-aware setting where the algorithm f(X) is trained from the complete
input data X = (X, S). This framework is useful in fields such as Econometrics, where it is common
to assume the presence of an unobserved sensitive variable S within the input data X, as described for
instance by (Fabris et al., 2022; Bird et al., 2019) and references therein.

G‘Q ¥

Figure 1: Bias-unaware scenario.

From a mathematical point of view, group fairness consists of statistical independence between the
predictions Y and the sensitive variable S (del Barrio et al., 2020). The most stringent and common
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definition is demographic parity (DP), which requires the independence between the outcome and the
protected attribute Y I S. When the ground truth is available, which is plausible in the supervised
learning setup, the equalised odds (EO) criteria relaxes this independence on the true value of the target,
namely Y L S| Y. Hence, building fair algorithms through an ERM-based approach turns the minimi-
sation of the loss £(Y) = E[(Y — Y)?] into a multi-objective problem which requires a trade-off between
the model’s accuracy and fairness. While in some fields of application, it is desirable to ensure the high-
est possible level of fairness, in others, including health care or criminal justice, performance should not
be decreased since the decisions would have serious implications for individuals and society. Establish-
ing such a trade-off has been one of the important challenges in the ML community in the last years,
and a wide array of approaches has been proposed in the literature (Dwork et al., 2012; Chouldechova,
2017; Zafar et al., 2017; Gordaliza et al., 2019; Chiappa et al., 2020). The majority of the works focus on a
bias-unaware learning setting where the risk minimisation problem is

figffﬁ(f)=E[(Y—f(X))2]7 F={f:X—>R}h ¢))
Set the learning sample as i.i.d. observations (z1,51,¥1), - -, (Zn, Sn, yn) of (X, S,Y) drawn from an un-

known distribution IP. Then, for a given model class F, consider f,, the best model that can be estimated
by minimising over F,

fo € arg?ﬂeig{Z(yi —f(l‘i))2+/\9(f)}7 2
i=1
where Q(f) acts as a regularizer of the predictive function and controls the smoothness and complexity
of the model. We denote by f* the oracle rule

fre arggggEn»{E(f) +2Q(f)}

which is the best (yet unknown) predictor that could be constructed if the true distribution were known.

Now we want to additionally impose group fairness constraints. For this, we include an additional
regularisation term I(f(X), S) into the general problem (2) accounting for independence between the
predictive function f and the sensitive variables in S as follows

n

Laxu(f) =Y (i = f(2) + XS + ul(f(X), S), ®)

=1

where A, 1 > 0. The solution f, x, € argmin ez L, .(f) is the optimal fair predictor. Notice that the
above formulation (3) allows us to impose the two notions of group fairness. Indeed, I(f, X, S) would
be a measure of dependence between f and S, in the case of imposing DP, or f|Y and S, in the case of
EO.

In this work, we propose a regularisation approach for (1) to obtain a solution for a bias-unaware fair
predictor in a general non-linear setting, under both fairness criteria. To do this, we measure the inde-
pendence via two different covariance operators, precisely the well-known Hilbert-Schmidt Indepen-
dence Criterion (HSIC) for DP, and the conditional cross-covariance operator (Fukumizu et al., 2008) for
EO. Additionally, we propose in the Appendix an extension to the bias-aware setting where minimisa-
tion (1) would be done from functions f € F = {f : X x § — R}. In particular, we address this case
for Gaussian models and obtain a closed-form solution for the optimal fair predictor as well as a lower
bound for the minimal excess risk.

3 Fair kernel regression through dependence regularisation

Several authors have considered the framework of penalised regression either to achieve fairness or to
provide guarantees for independence. In (Kamishima et al., 2012), the authors propose to use a logistic
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loss and a version of the mutual information estimator. In the framework of RKHS regression, Pérez-
Suay et al. (2017) quantified the dependence using the Hilbert-Schmidt Independence Criterion (HSIC),
based on the norm of the particular cross-covariance operator on the corresponding RKHS. In a seminal
paper (Gretton et al., 2005), closed-form solutions to the kernel ridge regression are obtained even when
the sensitive variable is multidimensional.

3.1 Notations and preliminaries

We shall first introduce some notations on kernel theory that will be used in the following sections. Let
X be a metric space and assume K : X x X — R is a measurable kernel with associated RKHS H g
and canonical feature map ¢ : X — Hg. Suppose K is bounded, i.e. sup,cy K(z,z) =: £ < co. By
Sg : Hix — L*(X, Px) we denote the inclusion. The adjoint operator S} : L*(X, Px) — Hx is given by

Sig= /X o(2)6(x) dPx (),

for any g € L?(X, Px). We further introduce the non-centred covariance operator Ty := S;S4 : Hrx — Hx
that is given by

T,f = /X (f, 6(2)) () dPx (),

and the integral operator Ly, := S¢S : L*(X, Px) — L*(X, Px), given by

Log = [ a(@)(0().0(e)x dPx(e)
It can be shown that both operators T; and Ly are positive and trace class, hence compact, satisfying
ITo|l < tr(Ty) < %, ||Lgll < tr(Lg) < K7,

where t¢r(-) denotes the trace of an operator. Note that for any f € Hx we have
IVTofllk =156 fllz2(py) -
For given data x = (21, ..., x,) drawn i.i.d. from Px we define the sampling operator by

Sy:HMHrg =R, frs8uf = (f(x1), s f(T0)) -

One easily verifies that the adjoint operator 5‘; :R" = H is given by

,\* 1 n
Spy = > yio(x;)

Jj=1

forany y = (y1, ..., yn) € R™. With these definitions, we additionally introduce T¢ : Hikg — Hg as

i n 1 <
o =555 = > b)) @ ()

<.
I
—

and Ly : R” — R" as

where K = (K (z;,;))i j=1,..n denotes the kernel matrix.
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3.2 Bias-unaware fair kernel regression setting

Let & and S be standard Borel. Consider the non-parametric regression model
Y =71(X) +e, )

where E[¢| X, S] = 0and (X,S5,Y) € X x S x [-M, M] are random variables, distributed according to
some unknown measure P. We consider the corresponding feature maps

¢ X =>Hrg, v:5—Hks,

into separable RKHSs (M, (-, ) i) and (Hks, (-, ) i) With associated reproducing kernels

K(z,3") = (¢(2), ¢(2")) s, Ks(s,5") = (¥(s), ¥(s")) e
see e.g. (Steinwart and Christmann, 2008, Ch. 4).

In a bias-aware framework, the sensitive information S is given in conjunction with the other character-
istics of the individuals X in the data. Therefore, the problem consists in minimising (2) over functions
f: X — R. Itis well-known that the regression function f*(z) = E[Y|X = z] € L?>(X, Px) is the unique
minimiser of £. Now, given a sample (x,s,y) := ((z1,51,%1), ---s (Zn, Sn,Yn)), we consider the empirical
minimisation problem (2) with the usual penalty Q(f) = ||f||%. Using the representer’s theorem, the
minimiser fn » = argmin £, »(f) can be written as

Frn(@) =" 6K (x,2;),
i=1

where model weights &, are estimated by minimising the new loss in the dual argmin |ly — Ka||* +
Ao K o, which has a closed-form solution &,, = (K + A\I)~'Y.

In order to impose group fairness constraints, we include an additional regularisation term into the
general problem (2) accounting for independence between the predictive function f and the sensitive
variables in S:

n

Lonu(f) = (v — f(2:)* + M flI% + pI(f(X),9),

i=1
where A, 1 > 0, and the predictive function is the result f,, x . € argming £,, » .(f).

Remark 3.1. This formulation of the problem could be extended to a bias-aware framework where the sensitive
information is assumed to exist but not observed; that is, it is hidden in the complete input X = (X, S) from
which f is trained. See more details at Appendix A.1

In the following sections, we obtain a solution for a fair predictor in each case by measuring the indepen-
dence via two different covariance operators, precisely the well-known Hilbert-Schmidt Independence
Criterion (HSIC) for DP and the Conditional Cross-covariance Operator (Fukumizu et al., 2008) for EO.

3.3 DP-fair kernel regression through HSIC operator

Measuring statistical independence using reproducing kernels has been investigated in (Gretton et al.,
2005; 2007). We recall some basic definitions and facts that we need in the sequel. In particular, the
Hilbert-Schmidt Independence Criterion (HSIC) provides a measure of dependence between random
variables X on a domain X and S on a domain S with joint distribution Pxs. Roughly speaking, HSIC
measures the distance between an embedding of Px s and the product of the marginals Px ® Pg into an
appropriate RKHS.

To this end, let us introduce the cross-covariance operator Csx : Hx — Hi

Csx = Esx[(¥(S) — pus) @ (9(X) — px)] = Esx[¢(5) @ ¢(X)] — ps @ px -
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Given a sample (x,s) := ((z1,$1), ..., (Tn, S»)), the empirical cross-covariance operator Csx : Hix — Hiy is
defined as

~ 1< . A
Csx = ﬁZQﬁ(SJ) ®'l/)(xj) — s ® fix ,
j=1

where

ﬂs:%zw(sj)a ﬂx:%z(ﬁ(xj)

Then HSIC(Psx, Hi, His) == |Csx s -

We solve the minimisation problem by regularised empirical risk minimisation. In particular, fairness
as DP is incorporated by adding the additional penalty term I(f, X, S) = ||Cox f|%, which can detect
statistical independence f 1L S. A short calculation shows that the minimiser of the above problem is
given by

fff = (Typ 4+ M + pCarCox) 'S5y (5)
The following theorem controls the fair penalised estimator and the unrestricted RKHS regressor.
Theorem 3.2. For any A > 0and p > 0, we have almost surely

£ £ % A M
IFOE = Faollzepy) < MHHCststﬁ :

The proof of this Theorem is provided on Appendix A.2.

3.4 EO-fair kernel regression through conditional cross-covariance operator

The hardness of implementing EO as the fairness constraints into statistical methods usually derives
from relaxations of that condition, such as Equalised correlations or equality of opportunities. In this
work, we directly impose such a fairness condition by considering a conditional independence measure
as a penalty term to the usual risk minimisation problem.

Since it is well-known that the optimal fair predictor

ffair = arg min En,)\(f)

feFro

is not feasible to compute (Woodworth et al., 2017), we propose alternatively to quantify the fairness
regularizer I(f, X, S) = through the conditional cross-covariance operator

Crsiy =Crs —CryCyyCys. (6)

The above operator was introduced in (Fukumizu et al., 2004) as a measure of conditional independence
between random variables. The measure was further formalised later in (Fukumizu et al., 2008). In this
work, we introduce the use of the conditional independence operator as a fairness regularizer. The EO
can be expressed in terms of an extended version of (6) as

YLSY < ICrsiy s = 0.

Therefore, given a sample (x,s,y) := ((z1,51,¥1); - - -, (Zn, Sn, Yn)), EO is impose by adding I(f, X, S) =
|Cesiy 13,5 empirical conditional cross-covariance operator Ces)y : Hgx — Hi is defined as

Cf5|y = Cgs — nyCy‘leys.
A short calculation shows that the minimiser of the fairness regularisation problem is given by

fze;? = (T¢ + A+ M&s\yé\i‘s\y)il‘§ZY~ ()
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Theorem 3.3. Forany A > 0and ;1 > 0, we have almost surely
fEO _ f < M&elCE Couoll F-
1fxn — Iaollzzpy) < Mk[[Cgyy fS\y||4)\'

The proof of this theorem follows the proof of the Theorem 3.2.

Furthermore, we introduce a partially-normalised EO regressor in 3.5.

We will use the same notation for the matrices associated with the random variables to improve read-
ability. Specifically, let X € R"*¢ be the matrix of the complete input data (samples x dimensionality),
S € R™** the sensitive variable (S is treated as a subset of X), and Y contains the observed true labels,
which can be considered in the multi-output setting being a matrix of outputs. Recall that S is not lim-
ited to the one-dimensional case; rather than that, it can consider an arbitrary, finite number of sensitive
attributes (s > 1).

We expand our formulation to the use of kernels in the nonlinear framework. Then, we map the input
data to an RKHS X — &, recall that ®®"T = K; also map the sensitive attributes as S — ¥, where
VT = Kg; and the representer theorem (Scholkopf et al., 2001) states that w = ® T . The solution of
the so-called FACIL (Fair Conditional Independence Learning) kernel method can be written as

a= (K + M+ p(I —11,)T Ks(I - 11,)K) Y, ®)

where IT, = V(Y TY)'YT is the orthogonal projection; hyperparameters A and ; need to be tuned by
cross-validation or fixed a priori to achieve a sensible fairness level.

Remark 3.4. The solution of the FACIL in its linear formulation can be written as:

w=(XTX+ AN +pX"(I-1,)8S" (I -1,)X)"'XTY.

3.5 EO with normalised conditional independence measures

In this section, we formalised both a framework for including the cross-covariance operators in the cost
function and provided a cross-covariance interpretation of fair learning. We follow this motivation to
obtain models through the normalised conditional independence operator

/2 (

Csx — CsyCylCyx)Cxi?. )

—1

Vsx|y = Css
The above operator (9) codifies the conditional independence relation of S 1L X|Y. However, this
normalised operator does not allow us to obtain a closed-form solution in the kernel case (we want to
note that it can be reached in the linear model formulation). However, a closed-form solution can be
achieved in the kernel case by considering the partially normalised operator as follows:

Vsxjy = Csa'*(Csx — CsyCyiCyx), (10)

and introducing it in the fairness regularisation term as I(f, S, X) = Vgx|y f. By considering the cor-

responding empirical estimator Vs
problem is given by

ly, it can be shown that the minimiser of the fairness regularisation

ff’:ﬁ) = (T¢ + M + ,LLVf*S‘yvfsly)ilgéy.

Corollary 3.5. For any A > 0 and ;1 > 0, we have almost surely
n n 5 D M
1FE9 = Faollzepy) < M“||st\yvfs|y”ﬁ~

The proof of this corollary follows the proof of the Theorem 3.2.
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By following this, and through the use of kernel feature maps and empirical estimators of the operator,
we obtain the dual weights solution of the so-called NFACIL (Fair normalised Conditional Indepen-
dence Learning):

a=(K+ M+ p(I -T1,)" Ks(nel + Ks) " }(I —10,)K)"'Y.

Since the existence of K3 is not ensured, we included the regularisation (¥ ¥ + nel)~!, ¢ is chosen
as in (Smola and Scholkopf, 2001), and applied the Woodbury-Morrison matrix inversion lemma (A +
BCD)™'BC = A"'B(C~'+ DA™'B)~L.

Remark 3.6. The solutions of both (8) and (11) require data centring in Hilbert spaces, which can be done
implicitly by kernel matrix centring through H = I — 1117,

Remark 3.7. The solution of the NFACIL, in its linear formulation, can be written as:

w=(XTX 4+ + gy, Vsxpy) X y.
4 Bias-aware Gaussian models with EO fairness constraints

We first focus on the particular setting of Gaussian regression models under EO constraints. In this case,
estimating an optimal model which satisfies the fairness constraint can be expressed in closed form. To
facilitate the understanding of the subsequent experiments in section 5, and without loss of generality,
we state this section with S one-dimensional.

Building fair Gaussian models with S known have already been studied in the literature. Precisely, the
majority of the works Tan et al. (2020); Li et al. (2022) considered the linear normal model Y = f;_(X)+e,
where the errors €1, ..., &, i.i.d. ~ N(0,1) are such that E(¢ | X, S) = 0, and the predictor is f;_(X) =
BL X, where the parameter 35 € RP*! is different for each group. In other words, S different linear
models are built.

However, in some contexts including econometrics (Wooldridge, 2002; Stock, 2002), it is natural to as-
sume that certain sensitive information exists but is not observed. To address this case, we rather con-
sider S unknown and set the following model

Y = f5 5(X,8) +e, 11
where the predictor
fEO7B(X’S):ﬁOS+ﬂTX7 ﬂOGRa BGRPX1 (12)

is a linear combination of the sensitive and non-sensitive attributes (and the errors are as above). Then,
the joint distribution of (X, S,Y) is (p + 2)—dimensional normal, and we denote the vectors of means
and the covariance matrices as follows

X Yx Yxs Xxvy
N{| ws || Zks Bs sy
Hy E)T(Y EgY Xy

We note that EO requires the linear fair predictor to be independent of S conditionally given Y, that is
Jns(X,8) LS|V,
which under the normal model assumption is equivalent to the second-order moment constraint
Cou(f*(X,S),51Y)=0. (13)

Hence, seeking for fair linear predictor amounts to obtaining conditions on the coefficients 3, 5 for (13)
to hold. If we denote by Asxy € RP*! the vector of correction for fairness

YxsXy — Uy XXy
A = 14
SXY ESZY — E%Y ) ( )

then the optimal fair equality of odds predictor under can be exactly computed as follows, whose proof is
in the Appendix A.
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Proposition 4.1. Under the normal model (11), the optimal EO-fair linear predictor of the form (12) is given as
the solution to the following optimisation problem to obtain By, ¢qir, B Fair

in E|(Y - X, 9))?
arg min B[V~ fo,5(X, )"

among the class of parameters Fro = {(Bo,8) € R x RP} such that ST (SxsXy — SsySxy) +
Bo(EsXy — X%y) = 0. If moreover Y and S are non-linearly dependent, it can be exactly computed as

BO,fair = BfairAsxy
Bfair = E212Z1/7

where

Y7z =%x + UsAsxy Al xy + AsxySks + ExsALxy

Yzy = Yxy +XsyAsxy.

We consider the case where bias is only due to biased observations while the task itself is fair, and
therefore Y and S are not linearly dependent.

Remark 4.2. Note that the previous result can be extended to the case where the sensitive variable S is multidi-
mensional by considering in (14) the matrix of correction for fairness

Asxy = (ExsZy — sy Zxy) (ZsSy — E?gy)_l-

It is of interest to quantify the price for fairness £(Fgo) when imposing (8o, 3) € Fgo. This will be done
in section 5 comparing with the general loss associated with the minimiser

(Bos B) = argmin s, g cpzrE|(V = fas(X, 9))?]. (15)

We observe that condition (13) is generally a weaker constraint in a broader setup, where achieving EO
conveys computational challenges as discussed in (Woodworth et al., 2017). Authors showed that even
in the restricted case of learning linear predictors, assuming a convex loss function, and demanding that
only the sign of the predictor needs to be non-discriminatory, the problem of matching false positive
(FPR) and false negative (FNR) rates requires exponential time to solve in the worst case. Motivated
by this hardness result they also proposed a relaxation of the criterion of EO by a more tractable no-
tion of non-discrimination based on second-order moments. In particular, they introduced the notion of
Equalised correlations, which indeed is generally a weaker condition than (13), but when considering the
squared loss and when (X, S,Y) are jointly Gaussian, it is equivalent (and, subsequently, equivalent to
EO). In this case, they provided a characterisation of the fair linear predictor as a solution to a minimi-
sation problem solved in the case of the binary target Y, where they also computed the price for such a
fair predictor.

Since linear prediction can be seen as the most suitable framework for Gaussian processes, the relaxation
of (13) could be justified as being the appropriate notion of fairness when we restrict ourselves to linear
predictors. Furthermore, linear predictors, especially under kernel transformations, are used in various
applications. They thus form a practically relevant family of predictors where one would like to achieve
non-discrimination.

In Proposition 4.1, we restrict ourselves to the normal framework in which the computation of the op-
timal fair predictor is still feasible. Yet, for many distributions and hypothesis classes, there may not
exist a non-constant, deterministic, fair predictor. Hence, in the next section, we propose an alternative
approach for ensuring EO fairness in a broader setup.
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Figure 2: Boxplots of the computations £(Fio) of the price for fairness under a normal linear model.
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5 EXPERIMENTS

In this section, we provide empirical evidence of the performance of the proposed methods in a set of
experiments. Firstly, numerical evidence of convergence of the loss bound in the EO linear regression
setting is provided over a simulation set. Secondly, we study the trade-off between error rates and
fairness in the proposed cross-covariance metric; the results cover a representative set of six databases.
Thirdly, an empirical comparison of the weights behaviour in the linear model evaluation.

5.1 Loss bound EO linear regression

We show results in simulations aimed at estimating the minimal excess risk when imposing EO in the
normal linear regression framework, that is, the price for fairness

E(Feo) = ’E(f (go,cair,éfm)) - £ (f (BO’B)) ‘

We here consider S ~ N (0,10) and X € R?, such that

(s8]

and Cov(X1,S) = Cov(X3, S) = 0.1. To simulate the true values of the target Y, we have chosen in (12)
true parameters 5§ = 0.1 and 8* = (2, 1).

The results of 1000 replications of the experiment are shown in Fig. 5.1 taking particularly a log-linearly
spaced sequence between 2 and 4 of length 10. In all cases, we varied parameters to the maximum range
possible such that the models did not go into numerical errors. In addition, the average minimal excess
risk and its standard deviation as the sample size increases are included in Table 1. We observe that the
estimation converges as the averaged value stabilises and the standard deviation numerically decreases.

Table 1: Average minimal excess risk &(Fro) and standard deviation sd(€(Fzo)) as sample size in-
creases in a logarithmically spaced grid ranging from 102 to 10? samples.
Size 100 | 167 | 278 | 464 | 774 | 1292 | 2154 | 3594 | 5995 | 10000
E(Fro) 1.02 | 075 | 0.71 | 0.69 | 0.67 | 0.67 | 0.65 | 0.65 | 0.65 | 0.65
sd(£(Fro)) || 0.81 | 0.54 | 0.35 | 0.26 | 0.20 | 0.16 | 0.12 | 0.09 | 0.07 | 0.05
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5.2 EO in open datasets

The second set of experiments uses four real datasets (over six considered protected variables) to demon-
strate the empirical behaviour of the developed methods. The datasets selection has been done based
on the relevance in the field and the wider studies using them. In particular, we consider: 1) the Adult
income dataset (Dua and Graff, 2017), 2) the Communities and Crime (Redmond, 2009) (C&C), 3) the
National Longitudinal Survey of Youth (Bureau of Labor Statistics, 2019) (NLSY), and 4) the Compas
recidivism risk score data (Larson et al., 2016).

Experimental results reveal the trade-off between error rate and fairness through the root-mean-squared
error (RMSE) and in EO terms through the conditional independence measure. All the reported results
are an average of 25 independent trials. We split data into training, validation and test independent
sets. We fix the size of the training set to N = 600 samples, the size of the validation set to 100 sam-
ples, and the test set to 2000 samples, or the remainder available. Recall that our methods can handle
multiple, possibly continuous, protected attributes. We have included Gaussian Process formulations of
FACIL and NFACIL methods to provide a complete comparison. GP versions are used to work closer
to risk minimisation methods; curves are not too long due to numerical problems reported with the u
parameter. For this reason, Figure 3[top row] shows the results of the Adult dataset by using s = 1
considering the ethnic origin and gender as the sensitive variables independently, as well as considered
together (s = 2) in the last column. In the comparison, we have also considered other state-of-the-art
methods that handle multiple protected attributes, particularly those proposed in (Pérez-Suay et al.,
2017; Tan et al., 2020). In the second row, the results of the remaining datasets (2-4) illustrate the good
behaviour of our proposal. Specially paradigmatic is the C&C case, where the normalised FACIL-GP
consistently reduces conditional independence without increasing. Our approach generally achieves
greater accuracy for a given level of fairness.
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Figure 3: Results on Adult income dataset considering single and multiple sensible variables (first row).
Communities and Crime (C & C), National Longitudinal Survey of Youth (NLSY), and the Compas
dataset are in the second row.
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5.3 Linear model sensitivity in weights terms

In this section, we explore the behaviour of the fair DP against EO models unveiled in this work. In
particular, we focus on the linear models of the linear-Fair Learning (P’érez-Suay et al., 2017), and the
linear-FACIL method.

Fairness conditions have been set to enforce independence along ethnic origin (9—th feature) in the
Adult database. Figure 4 illustrates the averaged absolute differences between linear-Fair Learning
weights” model (wrr) and our linear-FACIL weights” model (wr ) proposal against least squares (LS)
weights” models (wLS). As can be seen, the change most notably remains in the enforced feature in
both methods. Moreover, the seems to have a bigger (not significant) difference against the LS weigths’
model.

T T T
- Y s

0% W s Weal |
(]
p}
©
>
o
>
2104 i
®
-
@
(=)
o
(]
z

108 £

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Feature number

Figure 4: Averaged absolute value of weights subtraction between linear models in the Adult dataset
when enforcing fairness with 9—th feature (ethnic origin). Involved models weights are: Least Squares
(wrg), Fair Learning (wrr), and linear-FACIL (wp ).

In light of this, Table 2 summarises a t-test of the hypothesis that both distributions come with equal
means. The null hypothesis (“men are equal”) cannot be rejected at the 5% significance level for 9 of 14
features. The remainder 5 appears in the table and indicates that the null hypothesis can be rejected at
the 5% level. Thus we observe how optimising for EO performs differently in a particular set of features.

Table 2: Features from Adult database where a t-test of |w;s —wpr| and |wrs —wr 4| rejects equal means
at the 5% significance level.

# feature 1 2 3 11 13
p-value (< 0.05) || 1.70e-04 | 3.78e-05 | 5.79e-04 | 8.70e-04 | 1.48e-05

6 Conclusions

We introduced and theoretically motivated a method for learning fair regression models in different
settings. Firstly, we focused on the more simple case, but also useful in many practical applications, of
a linear Gaussian model. An optimal fair linear predictor satisfying EO is obtained as a function of the
model’s parameters in this setting. Moreover, we provided simulations that verify the price convergence
for fairness. Secondly, an empirical risk minimisation family of methods and the most notable solutions
in the linear and kernel cases. Furthermore, additional extensions to the Gaussian Process regression
details are provided in the supplementary material. Along with the proposed methods, two operators
have been used to provide an EO model. Firstly, the conditional cross-covariance operator is used as
an EO fairness measure and a regularisation parameter. Secondly, a partially-normalised version of the
conditional cross-covariance operator. The use of those operators reaches closed-form solutions in all
cases, providing a clear way to develop novel fair methodologies.
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We apply our approach to obtain fair models, demonstrating competitive empirical performance on
several datasets relative to state-of-the-art methods. Regarding the experimental setup, the fairness
parameter ;. allows systemically vary along the fairness-accuracy trade-off. The selection of an optimal
hyperparameter is problem-specific and should be selected a priori. Importantly, this strictly needs
comparable models, which is ensured by introducing the partial normalisation of the operator.

Future work involves developing more scalable algorithms using randomised approximations and pro-
viding fairness conditions to other models like neural networks. This could, unfortunately, trade accu-
racy for the important properties of the linear kernel and the probabilistic GP treatment. In the future,
we also plan to study the effect of the regulariser in the confidence intervals for the predictions and
the feature ranking (eventually through ARD kernels) derived from our FACIL-GP models. It does not
escape our notice of the connection between fairness, causal inference and physical consistency, which
can offer new algorithmic solutions in these fields.
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A Appendix

Remark A.1. The problem could be considered in a more general framework where S does not belong to X.
Assuming Ex[/K(X,X)] < oo and Eg[\/Ks(S,5)] < oo, the tensor kernel K @ Kg expressed as (K ®
Ks)((z,s),(2',s") = K(x,2")Ks(s,s’) defines an RKHS Hygxs which can be compactly embedded into
L2(X x S, Pxs).

More precisely, we let

T := Tw®¢:HK®KS %LQ(XXS,PXS) (16)
f—=Tf

with
(Tf)(:E,S) = <f7 (K®KS)((1775)7')>K®KS :

In this case, the problem is to minimize over functions g : X x S — R
L(g) =E[(Y - g(X, 9))7] .

It is well known that the regression function g*(z,s) = E[Y|(X,S) = (z,s)] € L*(X x S, Pxg) is the unique
minimiser of L. In addition, we will assume our model to be well-specified, that is, g* can be written as

9" (@, 5) = (", (K@ Ks)((2,9),)) ks -
for some f* € Hrgrs.

Given a sample (x,s,y) := (X1, 81,Y1); --s (Tns Sn, Yn)) we consider the empirical minimization problem

Larlf) =+ S (FCgr55) =3 + M lexcs

j=1

where A > 0 is the regularization parameter. Using the property of the RKHS, the solution to this minimization
problem has a solution which can be written as

f)\(x,s) = ijK((x75)7 (xj”sj))

with.
K((x’s)’ (xjvsj)) = K(x’xj) ® KS’(Sa Sj)’

where the w;’s constitute the solution of the minimization
min{|ly — Kw|? + \KTwK}
w
This leads up us to the closed-form solution

w=(K+AX)'(X®S)"y. (17)

A.1 Proofs of section 4

We start recalling some facts about Gaussian random variables.
Proposition A.2. If (U, V, W) are jointly Gaussian, then

» Conditional expectation E(U|V') is linear in V and is given by

EUV) =EU) + Zpv Sy (V - E(V))
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* Conditional covariance Xy, vy w does not depend on W and is given by
Swwvyw = Zov — Suw Sy i w

Proof of Proposition 4.1. In the particular normal model, this independence means that the elements in
positions (1,2) and (2, 1) of the covariance matrix of random vector (f(X,,S),S | Y) are exactly zero.
Therefore, the class of fair predictors is written as

Fro:={f: & xS — R: Cov(f(X,,S),S|Y) =0} (18)

More precisely, the previous condition can be written in terms of the covariances of (X, S,Y) and the
coefficients (8p, 8) of the linear model (11). Observe that the joint distribution of the random vector
(me/B(X?M S), S, Y) is

ﬁOS + ﬁTXu BO/u’S + BT/"LXu Z 2
1 12
S ~ N Hus P |: T :| ’
Y Ly Y1y Yy
where
s _ | BiZs + 8T Ex, B+ 2608 Sx, s BoBs + B Tx,s | o gaxe
! BoXsy + BT Sx,y s ’
[ BoZsy + B Ex,y 2x1
Y2 = [ Say e R**L,

Hence, from Proposition A.2, we know that
1
Cov(f(Xu,S),S|Y) =%, — gzlzzf{?

Substituting the expressions above for 3; and X5, we obtain that gg, 3 € Fro if and only if
(Bo%s + 87 Ex,5)Sy = Zsy (BoZsy + 57 Tx,v)-
Then the optimal EO-fair predictor in this setting is the solution to the following optimization problem:

A A L . o 2
(Bo.sair Bowr) =g min B[V fa,.5(X, 9)’] 19)

Fro ={(Bo,B) ERxR? | BT (2x,55y — Zsy Ex,v) + Bo(ZsZy — B&y ) = 0}.
We note that the Cauchy-Schwarz inequality and the assumption that " and S are nonlinearly depen-

dent ensure X gXy — E%Y > 0. Then we obtain that the class of EO-fair predictors (59, 3) € Fro are
such that 8y = 87Cs x, v, where

Yx,58y — sy XX,y
Coxuy i= =2 X ) e R
S7X,“/7Y ( ESEY _ EQSY

Hence, the optimal EO-fair predictor (19) can be obtained equivalently
A o . _ T 2
Brair = arg /grelﬁrgE{(Y BN (Xu+5Csx,,v)) }

Now if we denote Z := X, + SCg x,,v, it is easy to check that the optimal EO-fair predictor can be
exactly computed as

A —1
/Bfai,r = EZ Ez7y, where
T T T
Y¥z=%x, +¥sCsx,vCsx,v +Csx,vEx,s +2x,5C05 x, v

Yzy = ¥x,vy + XsvCsx,.v-
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A.2 Proofs of section 3

Proof of Theorem 3.2. For any two bounded invertible operators A, B acting on some Hilbert space we
have the relation
Al —B'=A"YB-AB".

This can be proved by expanding the right term as follows A~'(B — A)B~' = A (BB ') —
(AA~Y)B~! = A~1(I) — (I)B~. From this, we easily deduce:

(T + M + 4CCax) ™" — (T + AI)

= —u(Ty + M + pChCox) "' CorCox(Ty + M) .

Moreover, the spectral theorem yields (Theorem 2.7-8 in Kreyszig (1978), page 96), through the polar
decomposition Sy = U|S,| (Theorem 2, in Vito et al. (2005)) the following

. 1
Ty + )7 < —=,
(T + A1)~ Wi

and, we define the cross-covariance operator as C:Cox = KsK = S7,845554, and Sy, is the sampling
operator through 1. As both Sy, S,, are bounded operators, we recall the polar decomposition of Sy =
U|S¢|, Sq/) = V|S¢| Then,

(T + AL+ 1CaxCox) S5l = (5556 + AL+ 1S5.865555) Syl = 1186 > + AL+ 1542156 %) 7S] =
t 1

sup =
te(0,]S,[) 2+ A+ plP2 2¢/X
1€[0,]1Su ]

N ~ o~ 1
Ty + M+ puClCox) | < —= .
1By AL+ i Con) ™ < 5

Hence, since [|S]y||x < M~ we get using (21)

) ¢ 2 % A\ — % A 2 - * % A M
[ = Fxollae by < N(Tp + M + pCoCox) ™ (—1CaxCox ) (T + M) D15y [ x < ME[|CoxCoxll -

d

A.3 Summary of the proposed methods

Table 3: Summary of the proposed methods based on the frequentist ERM principle. Method name,
operator acting as a regularizer and weights’ solution in its corresponding linear (w) or kernel (c) coun-
terpart.
| Method | Operator | Solution ‘
FACIL | g4y w=(XTX+M+pX"(I-1,)SST(I -T,)X) 1X Ty
K-FACIL | ¥y, o= (K + M+ pu(l —T1,)Ks(I —T1,)K) 'y
NFACIL | Vsxjy = g5 (Coxy) Ty~ | w = (XX + M +uS30 8, SesSsx Sk ) T X Ty
K-NFACIL | Psx), = g5 (Zsxy) a= (K + M+ p(l —T,)Kg(nel + Kg)~ (I —I1,)K)~*

A.4 EO with Gaussian Processes

We can derive a probabilistic version of FACIL using Gaussian processes (Rasmussen and Williams,
2006). Standard regression approximates observations {y; }?_; as the sum of some unknown latent func-
tion f(x) of the some covariates {z; € R4} | plus constant power (homoscedastic) Gaussian noise, i.e.
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yi = f(xi) + e; where e; ~ N(0,02%). GP regression proceeds in a Bayesian, non-parametric way, to
fit observations. For convenience, let us assume the transformed data X = ST (I — II,) X collectively
contains all transformed points & = S’ (I — II,)z. Likewise, we can define the relation explicitly in
Hilbert spaces: ® = ST (I — 1I1,))® = C® so we can compute the corresponding kernel matrix (without
explicitly mapping the data or applying the transformation) as K = ®& " = CKC''.

Essentially a GP prior is placed on the latent function f(Z) and a Gaussian prior is used for each latent
noise term e;, f(#) ~ GP(0,Ks(i,4')), where K5(#,#') is a covariance function parameterized by
§, and o2 is a hyper-parameter that specifies the noise variance so that the vector containing all the
hyper-parameters is 6 = [0, o].

Essentially, a GP is a stochastic process whose marginals are distributed as a multivariate Gaussian. In
particular, given the prior GP, samples drawn from f(Z) at the set of locations {7;}}., follow a joint
multivariate Gaussian with zero mean and covariance matrix X with [K];; = K(;(a:z, a:]) Specifically,
considering y = [y1,...,¥ N} and X = [#1,...,Zy] ", with a GP formulation we can obtain analytically

p(f(@)|z, X,y) = N(f(z )|f(:i) 0(Z)), where the posterior mean and variance are:
() = K(&,X) (K 4+ 02Iy)"!
(x) = K(&,&) — K(Z, X)(K + 0?Iy) 'K (3,X)".

)

)

QD =

The FACIL-GP uses the kernel K = CKCT, which can be readily computed and optimized with
marginal log-likelihood maximization. GP regression and the kernel ridge regression solution for the
predictive mean are identical (Kanagawa et al., 2018). However, with a GP formulation, we can directly
control the matrix K by the choice of the kernel function K;(#;, ), infer the model parameters by max-
imum log-likelihood, and obtain the posterior predictive variance & (), not just point-wise estimates for
the prediction.

Given a sample (x,s,y) := ((z1,51,¥1); -, (Zn, Sn, Yn)) We consider minimising

jmin £(f) 20)

with N
Z )2+ Al FII% + 1l Cox FII% -

S\H

where A > 0, i > 0 are the regularlsatlon parameters. A short calculation shows that the minimiser of
the above problem is given by

Faw = (T + A+ uCCox) ™' Sy - (21)
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