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ABSTRACT

Influence function, a method from robust statistics, measures the changes of model
parameters or some functions about model parameters concerning the removal or
modification of training instances. It is an efficient and useful post-hoc method for
studying the interpretability of machine learning models without the need for ex-
pensive model re-training. Recently, graph convolution networks (GCNs), which
operate on graph data, have attracted a great deal of attention. However, there is no
preceding research on the influence functions of GCNs to shed light on the effects
of removing training nodes/edges from an input graph. Since the nodes/edges in a
graph are interdependent in GCNs, it is challenging to derive influence functions
for GCNs. To fill this gap, we started with the simple graph convolution (SGC)
model that operates on an attributed graph and formulated an influence function to
approximate the changes of model parameters when a node or an edge is removed
from an attributed graph. Moreover, we theoretically analyzed the error bound
of the estimated influence of removing an edge. We experimentally validated the
accuracy and effectiveness of our influence estimation function. In addition, we
showed that the influence function of a SGC model could be used to estimate the
impact of removing training nodes/edges on the test performance of the SGC with-
out re-training the model. Finally, we demonstrated how to use influence functions
to guide the adversarial attacks on GCNs effectively.

1 INTRODUCTION

Graph data is pervasive in real-world applications, such as, online recommendations (Shalaby et al.,
2017; Huang et al., 2021; Li et al., 2021), drug discovery (Takigawa & Mamitsuka, 2013; Li et al.,
2017), and knowledge management (Rizun, 2019; Wang et al., 2018), to name a few. The growing
need to analyze huge amounts of graph data has inspired work that combines Graph Neural Networks
with deep learning (Gori et al., 2005; Scarselli et al., 2005; Li et al., 2016; Hamilton et al., 2017; Xu
et al., 2019b; Jiang et al., 2019). Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017;
Zhang & Chen, 2018; Fan et al., 2019), the most cited GNN architecture, adopts convolution and
message-passing mechanisms.

To better understand GCNs from a data-centric perspective, we consider the following question:

Without model retraining, how can we estimate the changes of parameters in GCNs
when the graph used for learning is perturbed by edge- or node-removals?

This question proposes to estimate counterfactual effects on the parameters of a well-trained model
when there is a manipulation in the basic elements in a graph, where the ground truth of such an
effect should be obtained from model retraining. With a computational tool as the answer, we can
efficiently manipulate edges or nodes in a graph to control the change of model parameters of trained
GCNs. The solution would provide further extensions like graph data rectification, improving model
generalization, and graph data poison attacks through a pure data modeling way. Yet, current meth-
ods for training GCNs offer limited interpretability of the interactions between the training graph
and the GCN model. More specifically, we fall short of understanding the influence of the input
graph elements on both the changes in model parameters and the generalizability of a trained model
(Ying et al., 2019; Huang et al., 2022; Yuan et al., 2021; Xu et al., 2019a; Zheng et al., 2021).
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In the regime of robust statistics, an analyzing tool called influence functions (Hampel, 1974; Koh
& Liang, 2017) is proposed to study the counterfactual effect between training data and model per-
formance. For independent and identically distributed (i.i.d.) data, influence functions offer an ap-
proximate estimation of the model’s change when there is an infinitesimal perturbation added to the
training distribution, e.g., a reweighing on some training instances. However, unlike i.i.d. data, ma-
nipulation on a graph would incur a knock-on effect through GCNs. For example, an edge removal
will break down all message passing that is supposed to pass through this edge and consequen-
tially change node representations and affect the final model optimization. Therefore, introducing
influence functions to graph data and GCNs is non-trivial work and requires extra considerations.

In this work, we aim to derive influence functions for GCNs. As the first attempt in this direction,
we focused on Simple Graph Convolution (Wu et al., 2019). Our contributions are three-fold:

• We derived influence functions for Simple Graph Convolution. Based on influence functions,
we developed computational approaches to estimate the changes in model parameters caused by
two basic perturbations: edge removal and node removal.

• We derived the theoretical error bounds to characterize the gap between the estimated changes
and the actual changes in model parameters in terms of both edge and node removal.

• We show that our influence analysis on the graph can be utilized to (1) rectify the training graph
to improve model testing performance, and (2) guide adversarial attacks to SGC or conduct
grey-box attacks on GCNs via a surrogate SGC.

Code is publicly available at https://github.com/Cyrus9721/Characterizing_
graph_influence.

2 PRELIMINARIES

In the following sections, we use a lowercase x for a scalar or an entity, an uppercase X for a
constant or a set, a bolder lowercase x for a vector, and a bolder uppercase X for a matrix.

Influence Functions Influence functions (Hampel, 1974) estimate the change in model param-
eters when the empirical weight distribution of i.i.d. training samples is perturbed infinitesi-
mally. Such estimations are computationally efficient compared to learn-one-out retraining it-
erating every training sample. For N training instances x and label y, consider empirical risk
minimization (ERM) θ̂ = argminθ∈Θ

1
N

∑
x,y ℓ(x, y) + λ

2 ∥θ∥
2
2 for some loss function ℓ(·, ·)

through a parameterized model θ and with a regularization term. When down weighing a train-
ing sample (xi, yi) by an infinitely small fraction ϵ, the substitutional ERM can be expressed as
θ̂(xi;−ϵ) = argminθ∈Θ

1
N

∑
x,y ℓ(x, y) − ϵℓ(xi, yi) +

λ
2 ∥θ∥

2
2. Influence functions estimate the

actual change I∗(xi;−ϵ) = θ̂(xi;−ϵ)− θ̂ for a strictly convex and twice differentiable ℓ(·, ·):

I(xi;−ϵ) = lim
ϵ→0

θ̂(xi;−ϵ)− θ̂ = −H−1

θ̂
∇θ̂ℓ(xi, yi), (1)

where Hθ̂
:= 1

N

∑N
i=1 ∇2

θ̂
ℓ(xi, yi) + λI is the Hessian matrix with regularization at parameter θ̂.

For some differentiable model evaluation function f : Θ → R like calculating total model loss over
a test set, the change from down weighing ϵ → (xi, yi) to the evaluative results can be approximated
by ∇θ̂f(θ̂)H

−1

θ̂
∇θ̂ℓ(xi, yi). When N the size of the training data is large, by setting ϵ = 1

N , we can

approximate the change of θ̂ incurred by removing an entire training sample I(xi;− 1
N ) = I(−xi)

via linear extrapolations 1
N → 0. Obviously, in terms of the estimated influence I, removing a

training sample has the opposite value of adding the same training sample I(−xi) = −I(+xi).
In our work, we shall assume an additivity of influence functions in computations when several
samples are removed, e.g., when removing two samples: I(−xi,−xj) = I(−xi) + I(−xj).

Though efficient, as a drawback, influence functions on non-convex models suffer from estimation
errors due to the variant local minima and usually a computational approximation to H−1

θ̂
for a non-

invertible Hessian matrix. To introduce influence functions from i.i.d. data to graphs and precisely
characterize the influence of graph elements to model parameters’ changes, we consider a convex
model called Simple Graph Convolution from the GCNs family.
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Simple Graph Convolution By removing non-linear activations between layers from typical
Graph Convolutional Networks, Simple Graph Convolution (SGC) (Wu et al., 2019) formulates
a linear simplification of GCNs with competitive performance on various tasks (He et al., 2020;
Rakhimberdina & Murata, 2019). Let G = (V,E) denote an undirected attributed graph, where
V = {v} contains vertices with corresponding feature X ∈ R|V |×D with D the feature dimension,
and E = {eij}1≤i<j≤|V | is the set of edges. Let Γv denote the set of neighborhood nodes around
v, and dv the node degrees of v. We use A denote the adjacency matrix where Aij = Aji = 1
if eij ∈ E, and 0 elsewhere. D = diag(dv) denotes the degree matrix. When the context is
clear, we simplify the notation Γvi → Γi, and the same manner for other symbols. For multi-layer
GNNs, let z(k)v denote the hidden representation of node v in the k-th layer, and with z

(0)
v = xv

the initial node features. Simple Graph Convolution processes node representations as: z
(k)
v =

W(k)
(∑

u∈Γv∪{v} d
−1/2
u d

−1/2
v z

(k−1)
u

)
+ b(k), where W(k) and b(k) are trainable parameters in

k-th layer. In transductive node classification, let Vtrain ⊂ V denote the set of N training nodes asso-
ciated with labels y. ERM of SGC in this task is θ̂ = argminθ∈Θ

1
N

∑
v∈Vtrain

ℓ(z
(k)
v , yv) +

λ
2 ∥θ∥

2
2.

Due to the linearity of SGC, parameters W(k) and b(k) in each layer can be unified, and predictions
after k layers can be simplified as y = argmax(D̃− 1

2 ÃD̃− 1
2 )kXW + b with Ã = A + I and D̃

the degree matrix of Ã. Therefore, for node representations Z(k) = (D̃− 1
2 ÃD̃− 1

2 )kX with y and
cross-entropy loss, ℓ(·, ·) is convex. The parameters θ in ℓ consist of matrix W ∈ RD×|Class| and
vector b ∈ R|Class| with |Class| the number of class, and can be solved via logistic regression.

Additional Notations In what follows, we shall build our influence analysis upon SGC. For no-
tational simplification, we omit (k) in Z(k) and use Z to denote the last-layer node representations
from SGC. We use I∗(−eij) = θ̂(−eij) − θ̂ to denote the actual model parameters’ change where
θ̂(−eij) is obtained through ERM when eij is removed from E. Likewise, I∗(−vi) denotes the
change from vi’s removal from graph G. I(−eij) and I(−vi) are the corresponding estimated
influence for I∗(−eij) and I∗(−vi) based on influence functions, respectively.

3 MODELING THE INFLUENCE OF ELEMENTS IN GRAPHS

We mainly consider the use of influence functions of two fundamental operations over an attributed
graph: removing an edge (in Section 3.1) and removing a complete node (in Section 3.2).

3.1 INFLUENCE OF EDGE REMOVAL

With message passing through edges in graph convolution, removing an edge will incur representa-
tional changes in Z. When eij is removed, the changes come from two aspects: (1) The message
passing for node features via the removed edge will be blocked, and all the representations of k-hop
neighboring nodes of the removed edge will be affected. (2) Due to the normalization operation
over A, the degree of all adjacent edges ejk,∀k ∈ Γi and eik,∀k ∈ Γj will be changed, and these
edges will have a larger value in D̃− 1

2 ÃD̃− 1
2 . We have the following expression to describe the

representational changes ∆(−eij) of node representations Z in SGC incurred by removing eij .

∆(−eij) = [(D̃(−eij)
− 1

2 Ã(−eij)D̃(−eij)
− 1

2 )k − (D̃− 1
2 ÃD̃− 1

2 )k]X. (2)
A(−eij) is the modified adjacency matrix with A(−eij)ij/ji = 0 and A(−eij) = A elsewhere.
Ã(−eij) = A(−eij) + I and D̃(−eij) the degree matrix of Ã(−eij). By having ∆(−eij), we can
access the change in every node. Let δk(−eij) denotes the k-th row in ∆(−eij). δk = 0 implies no
change in k-th node from removing eij , and δk ̸= 0 indicates a change in zk.

We proceed to use influence functions to characterize the counterfactual effect of removing eij .
Our high-level idea is, from an influence functions perspective, representational changes in nodes
z → z + δ is equivalent to removing training instances with feature z, and adding new training
instances with feature z + δ and with the same labels. The problem thus turns back to an instance
reweighing problem developed by influence functions. In this case, we have the lemma below to
prove the influence functions’ linearity.
Lemma 3.1. Consider empirical risk minimization θ̂ = argminθ∈Θ

∑
i ℓ(xi, yi) and θ̂(xj → xj +

δ) = argminθ∈Θ

∑
i̸=j ℓ(xi, yi) + ℓ(xj + δ, yj) with some twice-differentiable and strictly convex
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ℓ, let I∗(xj → xj + δ) = θ̂(xj → xj + δ)− θ̂, the estimated influence satisfies linearity:

I(xj → xj + δ) = I(−xj) + I(+(xj + δ)). (3)

By having Lemma 3.1, we are ready to derive a proposition from characterizing edge removal.
Proposition 3.2. Let δk(−eij) denote the k-th row of ∆(−eij). The influence of removing an edge
eij ∈ E from graph G can be estimated by:

I(−eij) = I(z → z+ δ(−eij)) =
∑
k

I(+(zk + δk(−eij))) + I(−zk)

= −H−1

θ̂

∑
vk∈Vtrain

(∇θ̂ℓ(zk + δk(−eij), yk)−∇θ̂ℓ(zk, yk)).
(4)

Proof. The second equality comes from Lemma 3.1, and the third equality comes from Equation (1).
Realize that removing two representations I(−zi,−zj) = I(−zi) + I(−zj) completing the proof.

Proposition 3.2 offers an approach to calculate the estimated influence of removing eij . In practice,
having the inverse hessian matrix, a removal only requires users to compute the updated gradients
∇θ̂ℓ(zk + δk(−eij), yk) and its original gradients for all affected nodes in (k+1)-hop neighbors.

3.2 INFLUENCE OF NODE REMOVAL

We address the case of node removal. The impact from removing a node vi from graph G to param-
eters’ change are two-folds: (1) The loss term ℓ(xi, yi) will no longer involved in ERM if vi ∈ Vtrain.
(2) All edges link to this node {eij},∀j ∈ Γi will be removed either. The first aspect can be deemed
as a regular training instance removal similar to an i.i.d. case, and the second aspect be can an
incremental extension from edge removal in Proposition 3.2.

The representational changes from removing node vi can be expressed as:

∆(−vi) = [(D̃(−vi)
− 1

2 Ã(−vi)D̃(−vi)
− 1

2 )k − (D̃− 1
2 ÃD̃− 1

2 )k]X, (5)

with A(−vi)jk/kj = Ajk/kj ,∀j, k : j ̸= i ∧ k /∈ Γi, and A(−vi) = 0 elsewhere. Similarly,
Ã(−vi) = A(−vi) + I and D̃(−vi) is the corresponding degree matrix of Ã(−vi). Having
∆(−vi), Lemma 3.1 and Proposition 3.2, we state the estimated influence of removing vi.
Proposition 3.3. Let δj(−vi) denote the j-th row of ∆(−vi). The influence of removing node vi
from graph G can be estimated by:

I(−vi) = I(−zi) + I(z → z+ δ(−vi)) = I(−zi) +
∑
j

I(+(zj + δj(−vi))) + I(−zj)

= −1vi∈Vtrain ·H−1

θ̂
∇θ̂ℓ (zi, yi)−H−1

θ̂

∑
vj∈Vtrain

(∇θ̂ℓ(zj + δj(−vi), yj)−∇θ̂ℓ(zj , yj)),

(6)
where 1 is an indicator function.
Proof. Combining Lemma 3.1 and Equation (1) completes the proof.

4 THEORETICAL ERROR BOUNDS

In the above section, we show how to estimate the changes of model parameters due to edge removal:
θ̂ → θ̂(−eij) and node removals: θ̂ → θ̂(−vi). In this section, we study the error between the
estimated influence given by influence functions I and the actual influence I∗ obtained by model
retraining. We give upper error bounds on edge removal ∥I∗(−eij)−I(−eij)∥2 (see Theorem 4.1)
and node removal ∥I∗(−vi)− I(−vi)∥2 (see Corollary A.1).

In what follows, we shall assume the second derivative of ℓ(·, ·) is Lipschitz continuous at θ with
constant C based on the convergence theory of Newton’s method. To simplify the notations, we use
z′i = zi+δi to denote the new representation of vi obtained after removing an edge or a node, where
δi is the row vector of ∆(−eij) or ∆(−vi) depending on the context.
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Theorem 4.1. Let σmin ≥ 0 denote the smallest eigenvalue of all eigenvalues of Hessian matrices
∇2

θ̂
ℓ(zi, yi),∀vi ∈ Vtrain of the original model θ̂. Let σ′

min ≥ 0 denote the smallest eigenvalue of all

eigenvalues of Hessian matrices ∇2
θ̂(−eij)

ℓ(zi, yi),∀vi ∈ Vtrain of the retrained model θ̂(−eij) with

eij removed from graph G. Use L denote the set {v : z′ ̸= z} containing affected nodes from the
edge removal, and Err(−eij) = ∥I∗(−eij)−I(−eij)∥2. Recall λ is the ℓ2 regularization strength,
we have an upper bound on the estimated error of model parameters’ change:

Err(−eij) ≤
N3C

(Nλ+ (N − |L|)σmin + σ′
min|L|)3

· ∥
∑
vl∈L

(∇θ̂ℓ(z
′
l, yl)−∇θ̂ℓ(zl, yl))∥

2
2

+
N

Nλ+ (N − |L|)σmin +min(σmin, σ′
min)|L|

· ∥
∑
vl∈L

(∇θ̂ℓ(z
′
l, yl)−∇θ̂ℓ(zl, yl))∥2.

(7)

Proof sketch. We use the one-step Newton approximation (Pregibon, 1981) as an intermediate step
to derive the bound. The first term is the difference between the actual change I∗(−eij) and its
Newton approximation, and the second term is the difference between the Newton approximation
and the estimated influence I(−eij). Combining these two parts result the bound.

Remark 4.2. We have the following main observations from Theorem 4.1. (1) The estimation error
of influence function is controlled by the ℓ2 regularization strength within a factor of O(1/λ). A
stronger regularization will likely produce a better approximation. (2) The error is controlled by the
inherent property of a model. A smoother model in terms of its hessian matrix will help lower the
upper bound. (3) The upper bound is controlled by the norm of the changed gradient from z → z′.
Intuitively, if removing eij incurs smaller changes in node representations, the approximation of the
actual influence would be more accurate. Also, a smaller Err(−vi) is expected if the model is less
prone to changes in training samples. (4) There are no significant correlations between the bound
and the number of training nodes N . As a special case, if σmin = σ′

min = 0, the bound is irrelevant
to N . We attach empirical verification for our bound in Appendix D.

Similar to Theorem 4.1, we have Corollary A.1 to derive an upper bound on ∥I∗(−vi)− I(−vi)∥2
for removing a node vi from graph presented in Appendix A.

5 EXPERIMENTS

We conducted three major experiments: (1) Validate the estimation accuracy of our influence func-
tions on graph in Section 5.2; (2) Utilize the estimated edge influence to carry out adversarial attacks
and graph rectification for increasing model performance in Section 5.3; and (3) Utilize the estimated
node influence to carry out adversarial attacks on GCN (Kipf & Welling, 2017) in Section 5.4.

5.1 SETUP

We choose six real-world graph datasets:Cora, PubMed, CiteSeer (Sen et al., 2008), WiKi-
CS (Mernyei & Cangea, 2020), Amazon Computers, and Amazon Photos (Shchur et al., 2018) in
our experiments. Statistics of these datasets are outlined in Appendix B Table 4. For the Cora,
PubMed, and CiteSeer datasets, we used their public train/val/test splits. For the Wiki-CS datasets,
we took a random single train/val/test split provided by Mernyei & Cangea (2020). For the Amazon
datasets, we randomly selected 20 nodes from each class for training, 30 nodes from each class
for validation and used the rest nodes in the test set. All the experiments are conducted under the
transductive node classification settings. We only use the last three datasets for influence validation.

5.2 VALIDATING INFLUENCE FUNCTIONS ON GRAPHS

Validating Estimated Influence We compared the estimated influence of removing a node/edge
with its corresponding ground truth effect. The actual influence is obtained by re-training the model
after removing a node/edge and calculating the change in the total cross-entropy loss. We also
validated the estimated influence of removing node embeddings, for example, removing ℓ(zi, yi)
of node vi from the ERM objective while keeping the embeddings of other nodes intact. Figure 2
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Figure 1: The Cora experiment – the estimated influences of individual training nodes/edges on the
validation loss. The largest connected component of the Cora dataset is visualized here. Left: The
dataset. The node size indicates if a node is in the training subset (large) or not (small). Middle:
Influence of the training edges. Each edge is colored accordingly to its estimated influence value
(blue - negative influence, removing it is expected to decrease the loss on the validation set; red –
positive influence, removing it is expected to increase the loss on the validation set; and grey – little
influence. The deeper color indicates higher influence.). Right: Influence of the training nodes. The
same color scheme in the middle plot is used here.

shows that the estimated influence correlates highly with the actual influence (Spearman correlation
coefficients range from 0.847 to 0.981). More results are included in Figure 4 in the appendix.

Visualization Figure 1 visualizes the estimated influence of edge and node removals on the val-
idation loss for the Cora dataset. This visualization hints at opportunities for improving the test
performance of a model or attacking a model by removing nodes/edges with noticeable influences
(see experiments in Sections 5.3 and 5.4).

5.3 APPLICATIONS OF THE ESTIMATED EDGE INFLUENCE

The estimated influence of edge removals on the validation set can be utilized to improve the test
performance of SGC or carry out adversarial attacks on SGC/GCN.

Table 1: Our performance via eliminating
edges with negative influence values.

Methods Cora Pubmed Citeseer

GCN 81.4 ± 0.4 79.0 ± 0.4 70.1 ± 0.5

GAT 83.3 ± 0.7 78.5 ± 0.3 72.6 ± 0.6

FGCN 79.8 ± 0.3 77.4 ± 0.3 68.8 ± 0.6

GIN 77.6 ± 1.1 77.0 ± 1.2 66.1 ± 0.9

DGI 82.5 ± 0.7 78.4 ± 0.7 71.6 ± 0.7

SGC 81.0 ± 0.0 78.9 ± 0.0 71.9 ± 0.1

Ours 81.8 ± 0.0 79.7 ± 0.0 73.7 ± 0.0

Graph Rectification via Edge Removals We be-
gin by investigating the impact of edges with nega-
tive influences. Based on our influence analysis, re-
moving negative influence edges from the original
will decrease validation loss. Thus the classifica-
tion accuracy on the test set is expected to increase
correspondingly. We sort the edges by their esti-
mated influences in descending order, then cumula-
tively remove edges starting from the one with the
lowest negative influence. We train the SGC model,
fine-tune it on the public split validation set and se-
lect the number of negative influence edges to be
removed by validation accuracy. For a fair comparison, we fix the test set remaining unchanged
regarding the removal of the edges. The results are derived based on Figure 8 and displayed in
Table 1, where we also report the performance of several classical and state-of-the-art GNN models
on the original whole set as references, including GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018), FGCN (Chen et al., 2018), GIN (Xu et al., 2019b), DGI (Velickovic et al., 2019) with
a nonlinear activation function and SGC (Wu et al., 2019).

We demonstrate that our proposed method can marginally improve the accuracy of SGC from the
data perspective and without any change to the original model structure of SGC, which validates
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Figure 2: Estimated influence vs. actual influence. Three datasets are used in this illustration Cora
(left column), Pubmed (middle column) and Citeseer (right column). In all plots, the horizontal axes
indicate the actual influence on the validation set, the vertical axes indicate the predicted influence,
and ρ indicates Spearman’s correlation coefficient between our predictions and the actual influences.
Top row: Influence of node embedding removal. Each point represents a training node embedding
Middle row: Influence of edge removals. Each point corresponds to a removed edge. Bottom row:
Influence of node removal. Each point represents a removed training node.

Table 2: Grey-box attacks to GCN via edge removals. A lower performance indicates a more suc-
cessful attack. The best attacks are in bold font. The number following the dataset name is the pre-
attack performance. ‘-’ denotes an out-of-memory issue encountered on GPU with 24GB VRAM.

Dataset Cora - 81.10% Citeseer - 70.07% Pubmed - 79.80%

Elimination Rate 1% 3% 5% 1% 3% 5% 1% 3% 5%

DICE 79.9% 80.1% 80.0% 71.1% 70.3% 69.8% 79.4% 79.7% 79.1%
GraphPoison 80.0% 80.1% 79.6% 70.2% 70.1% 70.0% 79.4% 79.7% 79.1%
MetaAttack 79.6% 77.1% 73.3% 70.4% 69.3% 65.4% - - -
Ours 77.3% 74.2% 72.8% 69.3% 67.4% 64.7% 69.3% 65.2% 64.1%

the impacts of edges with negative influences. In addition, the performance of the SGC model with
eliminating the negative influence edges can outperform other GNN-based methods in most cases.

Attacking SGC via Edge Removals We investigated how to use edge removals to deteriorate
SGC performance. Based on the influence analysis, removing an edge with a positive estimated
influence can increase the model loss and decrease the model performance on the validation set.
Thus, our attack is carried out in the following way. We first calculated the estimated influence of all
edges and cumulatively removed edges with the highest positive influence one at a time. Every time
we remove a new edge, we retrain the model to obtain the current model performance. We remove
100 edges in total for each experiment.
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Figure 3: Study of edges with positive influence on both validation (blue) and test (red) set. Columns
correspond to Cora, Pubmed and Citeseer datasets. Top: scale of values of the edges with negative
influence. Bottom: accuracy drop by cumulatively removing edges with positive influence.

Table 3: Performance of node removing attack. Lower performance means better attacks. The
number after the dataset name means the performance of GCN model without an attack. Victim
model’s test accuracy averaged over 25 runs on the citation network.

Dataset Cora - 81.10% Citeseer - 70.07% Pubmed - 79.80%

Removing Rate 5% 10% 15% 5% 10% 15% 5% 10% 15%

Random 80.4% 80.3% 80.2% 70.6% 69.0% 69.2% 78.9% 79.6% 77.3%
Degree 80.3% 78.7% 79.0% 69.4% 68.3% 68.4% 79.1% 79.6% 77.4%
Ours 74.7% 59.8% 57.9% 69.5% 65.5% 56.1% 79.0% 77.2% 75.2%

We present our results in Figure 3. Apparently, in general, the accuracy of SGC on node classifica-
tion drops significantly. We notice the influence of edges is approximately power-law distributed,
where only a small proportion of edges has a relatively significant influence. The performance
worsens with increasingly cumulative edge removals on both validation and test sets. The empirical
results verify our expectations of edges with a positive estimated influence.

Attacking GCN via Surrogate SGC We further explored the impact of removing positive influ-
ences edges under adversarial grey-box attack settings. Here, we followed Zügner & Günnemann
(2019) to interpret SGC as a surrogate model for attacking the GCN (Kipf & Welling, 2017) as
a victim model, where the assumption lays under that the increase of loss on SGC can implicitly
drop the performance of GCN. We eliminated positive influence edges at different rates 1%, 3%, 5%
among all edges. The drop in accuracy was compared against DICE (Zügner et al., 2018), Graph-
Poison (Bojchevski & Günnemann, 2019), MetaAttack (Zügner et al., 2018). For a fair comparison,
we restrict the compared method can only perturb graph structures via edge removals.

Our results are presented in Table 2. Our attack strategy achieves the best performance in all the
scenarios of edge eliminations, especially on Pubmed with 1% edge elimination rate. Our attack
model outperforms others by over 10% in accuracy drop. Since we directly estimate the impact
of edges on the model parameter change, our attack strategy is more effective in seeking the most
vulnerable edges to the victim model. These indicate that our proposed influence on edges can guide
the construction of grey-box adversarial attacks on graph structures.

5.4 INFLUENCE OF NODE REMOVAL

Attacking GCN via Node Removals In this section, we study the impact of training nodes with
a positive influence on transductive node classification tasks. Again, we assume that eliminating the
positive influence nodes derived from SGC may implicitly harm the GCN model. We sort the nodes
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by our estimated influence in descending order and cumulatively remove the nodes from the training
set. We built two baseline methods, Random and Degree, to compare the accuracy drop in different
node removal ratios: 5%, 10%, 15%. For the Random baseline, we randomly remove the nodes from
the training sets. For Degree baseline, we remove nodes by their degree in descending order.

According to Table Table 3, the model performance on GCN drops by a large margin in all three
citation network datasets as the selected positive influence node is removed, especially on the Cora
dataset. The model outperforms the baseline over 20% on 15% removing ratio. These results indi-
cate that our estimation of node influence can be used to guide the adversarial attack on GCN in the
settings of node removal.

6 RELATED WORKS

Influence Functions Recently, more efforts have been dedicated to investigating influence func-
tions (Koh et al., 2019; Giordano et al., 2019; Ting & Brochu, 2018) in various applications, such
as,computer vision (Koh & Liang, 2017), natural language processing (Han et al., 2020), tabular
data (Wang et al., 2020b), causal inference (Alaa & Van Der Schaar, 2019), data poisoning at-
tack (Fang et al., 2020; Wang et al., 2020a), and algorithmic fairness (Li & Liu, 2022). In this work,
we propose a major extension of influence functions to graph-structured data and systemically study
how we can estimate the influence of nodes and edges in terms of different editing operations on
graphs. We believe our work complements the big picture of influence functions in machine learning
applications.

Understanding Graph Data Besides influence functions, there are many other approaches to ex-
ploring the underlying patterns in graph data and its elements. Explanation models for graphs (Ying
et al., 2019; Huang et al., 2022; Yuan et al., 2021; Bajaj et al., 2021; Abrate & Bonchi, 2021) provide
an accessible relationship between the model’s predictions and corresponding elements in graphs or
subgraphs. They show how the graph’s local structure or node features impact the decisions from
GNNs. As a major difference, these approaches tackle model inference with fixed parameters, while
we focus on a counterfactual effect and investigate the contributions from the presence of nodes and
edges in training data to decisions of GNN models in the inference stage.

Adversarial Attacks on Graph The adversarial attack on an attributed graph is usually conducted
by adding perturbations on the graphic structure or node features (Zügner & Günnemann, 2019;
Zheng et al., 2021). In addition, Zhang et al. (2020) introduces an adversarial attack setting by
flipping a small fraction of node labels in the training set that causes a significant drop in model
performance. A majority of the attacker models (Zügner et al., 2018; Xu et al., 2019a) on graph
structure are constructed based on the gradient information on both edges and node features and
achieved costly but effective attacking results. These attacker models rely mainly on greedy-based
methods to find the graph structure’s optimal perturbations. We only focus on the perturbations
resulting from eliminating edges and directly estimate the change of loss in response to the removal
effect guided by the proposed influence-based approach.

7 CONCLUSIONS

We have developed a novel influence analysis to understand the effects of graph elements on the
parameter changes of GCNs without needing to retrain the GCNs. We chose Simple Graph Con-
volution due to its convexity and its competitive performance to non-linear GNNs on a variety of
tasks. Our influence functions can be used to approximate the changes in model parameters caused
by edge or node removals from an attributed graph. Moreover, we provided theoretical bounds on
the estimation error of the edge and node influence on model parameters. We experimentally val-
idated the accuracy and effectiveness of our influence functions by comparing its estimation with
the actual influence obtained by model retraining. We showed in our experiments that our influence
functions could be used to reliably identify edge and node with negative and positive influences on
model performance. Finally, we demonstrated that our influence function could be applied to graph
rectification and model attacks.
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A PROOFS

Lemma 3.1. Consider empirical risk minimization θ̂ = argminθ∈Θ

∑
i ℓ(xi, yi) and θ̂(xj → xj +

δ) = argminθ∈Θ

∑
i̸=j ℓ(xi, yi) + ℓ(xj + δ, yj) with some twice-differentiable and strictly convex

ℓ, let I∗(xj → xj + δ) = θ̂(xj → xj + δ)− θ̂, the estimated influence satisfies linearity:

I(xj → xj + δ) = I(−xj) + I(+(xj + δ)). (3)

Proof. Notice the actual model parameters in response of the perturbations ∆ can be denoted as:

θ̂(xj → xj + δ)
def
=argmin

θ∈Θ

1

N

N∑
k=1

ℓ (xk, yk)−
1

N
ℓ (xj , yj) +

1

N
ℓ (xj + δ, yj)

In this case, the actual change in model parameters in response of the perturbations can be repre-
sented as: I(xj → xj + δ)=θ̂(xj → xj + δ)−θ̂. For estimating ∆θ, we start by considering
the parameter change from up weighting infinite small ε on {x′

l} and down weight infinite small ε
on {xl} where ∀l ∈ L. By definition, the model parameter in response of perturbation θ̂ε can be
represented as:

θ̂ε
def
=argmin

θ∈Θ

1

N

N∑
k=1

ℓ (xk, yk)− εℓ (xj , yj) + εℓ (xj + δ, yj) (8)

The change of model parameter due to the modification on group of data’s weight on loss be:

∆θε = θ̂ε − θ̂ (9)

Since θ̂ε minimize the changed loss function under perturbation, take the derivative:

0 =
1

N

N∑
k=1

∇θ̂ε
ℓ (xk, yk)− ε∇θ̂ε

ℓ (xj , yj)

+ ε∇θ̂ε
ℓ (xj + δ, yj)

(10)

Apply the first order Taylor expansion of θ̂ε on θ̂ on the right side of the equation, we have:

0 =

[
1

N

N∑
k=1

∇θℓ (xk, yk) + ε∇θℓ (xj + δ, yj)− ε∇θℓ (xj , yj)

]
+[

1

N

N∑
k=1

∇2
θℓ (xk, yk) + ε∇2

θℓ (xj + δ, yj)− ε∇2
θℓ (xj , yj)

]
·∆θε + o(∆θ2ε)

(11)

Since θ̂ minimize the loss function without perturbation, 1
N

∑N
k=1 ∇θ̂ε

ℓ (xk, yk)=0. Dropping
o(∆θ2ε) term, We have:

∆θε ≈−

[
1

N

N∑
k=1

∇2
θℓ (xk, yk) + ε∇2

θℓ (xj + δ, yj)− ε∇2
θℓ (xj , yj)

]−1

·

[ε∇θℓ (xj + δ, yj)− ε∇θℓ (xj , yj)]

(12)

Take the derivative of ∆θε over ε, by dropping O(ε) terms we have:

∂∆θε
∂ε

=− 1

N

N∑
k=1

∇2
θ̂
ℓ (xk, yk)

−1 [∇θ̂ℓ (xj + δ, yj)−∇θ̂ℓ (xj , yj)
]

= −H−1

θ̂

∑
l∈L

(∇ℓ (xj + δ, yl)−∇ℓ (xj , yj))

(13)
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For sufficient large N , by setting ε to 1
N , the changed we can approximate the actual change in

model parameters using: I(xj → xj + δ)=θ̂(xj → xj + δ)−θ̂≈θ̂ε−θ̂. Plugging in to Eq. (13) we
finish the proof:

I(xj → xj + δ) ≈ −H−1

θ̂
(∇ℓ (xj + δ, yl)−∇ℓ (xj , yj))

= −H−1

θ̂
∇ℓ (xj + δ, yl) +H−1

θ̂
∇ℓ (xj , yl)

= I(+(xj + δ)) + I(−xj).

(14)

Proposition 3.3. Let δj(−vi) denote the j-th row of ∆(−vi). The influence of removing node vi
from graph G can be estimated by:

I(−vi) = I(−zi) + I(z → z+ δ(−vi)) = I(−zi) +
∑
j

I(+(zj + δj(−vi))) + I(−zj)

= −1vi∈Vtrain ·H−1

θ̂
∇θ̂ℓ (zi, yi)−H−1

θ̂

∑
vj∈Vtrain

(∇θ̂ℓ(zj + δj(−vi), yj)−∇θ̂ℓ(zj , yj)),

(6)
where 1 is an indicator function.

Proof. Similarly to the edge removal, we first calculate the node representation change incurred
from the removal of the node vi of a 2-layer SGC as follow:

∆(−vi) =
[
(D

− 1
2

−viA−viD
− 1

2
−vi)

2 − (D− 1
2AD− 1

2 )2
]
X. (15)

The above change will affect a set of nodes, including the node vi itself and the 2-hop neighbors
of the node vi connected neighbors. A set of nodes S={s|s ∈ Ni ∪j∈Ni

Nj} capture the changed
node embeddings in the training set, i.e., δs ̸= 0, where ∆−vi = {δi}Ni=1 in Eq. (15). The model
parameter change of the removal of the node vi can be characterized by removing the representation
of the node vi if the node vi is a training sample, and the node representation change from the set S.
Thus, we have

I(−vi) = −1vi∈Vtrain · I (zi, yi) +
∑

s∈{S\vi}

(I (z′s, ys)− I (zs, ys))

= −1vi∈Vtrain ·H−1

θ̂
∇LCE (zi, yi)−H−1

θ̂

∑
s∈S\vi

(∇LCE (z
′
s, ys)−∇LCE (zs, ys)).

(16)

We finish the proof.

Theorem 4.1. Let σmin ≥ 0 denote the smallest eigenvalue of all eigenvalues of Hessian matrices
∇2

θ̂
ℓ(zi, yi),∀vi ∈ Vtrain of the original model θ̂. Let σ′

min ≥ 0 denote the smallest eigenvalue of all

eigenvalues of Hessian matrices ∇2
θ̂(−eij)

ℓ(zi, yi),∀vi ∈ Vtrain of the retrained model θ̂(−eij) with

eij removed from graph G. Use L denote the set {v : z′ ̸= z} containing affected nodes from the
edge removal, and Err(−eij) = ∥I∗(−eij)−I(−eij)∥2. Recall λ is the ℓ2 regularization strength,
we have an upper bound on the estimated error of model parameters’ change:

Err(−eij) ≤
N3C

(Nλ+ (N − |L|)σmin + σ′
min|L|)3

· ∥
∑
vl∈L

(∇θ̂ℓ(z
′
l, yl)−∇θ̂ℓ(zl, yl))∥

2
2

+
N

Nλ+ (N − |L|)σmin +min(σmin, σ′
min)|L|

· ∥
∑
vl∈L

(∇θ̂ℓ(z
′
l, yl)−∇θ̂ℓ(zl, yl))∥2.

(7)

Proof. In this proof, we utilize one-step Newton approximation as an intermediary to estimate the
error bound of the change in model parameters, i.e.,

Err(−eij) =
[
I∗(−eij)− INt(−eij)

]
+
[
INt(−eij)− I(−eij)

]
, (17)
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where I∗(−eij)=∆θ̂ε=θ̂ε−θ̂, INt(−eij) is the one-step Newton approximation with the model
parameter θ̂Nt=θ̂+∆θ̂Nt. According to Boyd et al. (2004) (Section 9.5.1), ∆θ̂Nt can be calculated
as follows:

∆θ̂Nt =−
(
Hθ̂ + λI

)−1 · 1

N
(

N∑
i=1

∇θ̂ℓ(zi, yi) +
∑
vl∈L

∇θ̂ℓ(z
′
l, yl)

−
∑
vl∈L

∇θ̂ℓ(zl, yl) + λ∥θ̂∥2).
(18)

In the following, we will calculate the bound of I∗(−eij)− INt(−eij) and INt(−eij)− I(−eij)
as two separate steps and combine them together. Here we define the before and after objective
functions with the removal of edge eij as follows:

Lb(θ) =

n∑
i=1

ℓ(zi, yi) +
λ

2
∥θ∥22,

La(θ) =

n∑
i=1

ℓ(zi, yi) +
∑
vl∈L

ℓ(z′l, yl)−
∑
vl∈L

ℓ(zl, yl) +
λ

2
∥θ∥22.

(19)

Step I: Bound of I∗(−eij)− INt(−eij).

Due to that SGC model is convex on θ, we take the second derivative of La(θ) and have

λI+
1

N

[
N∑
i=1

∇2L (zi, yi) +
∑
vl∈L

∇2L (z′l, yl)−
∑
vl∈L

∇2L (zl, yl)

]
≻ 0. (20)

To simplify the above equation, we define σ′
min and σ′

max are the smallest and largest eignenvalues
of ∇2ℓ (z′l, yl) and σmin and σmax are the smallest and largest eignenvalues of ∇2L (zl, yl). Then
we have

I ·
(
λ+

(N − |L|) · σmin + |L| · σ′
min

N

)
≻ 0. (21)

Therefore, the SGC loss function corresponds to the removal of edge is strictly convex with the
parameter

(
λ+

(N−|L|)·σmin+|L|·σ′
min

N

)
. By this convexity property and the implications of strong

convexity (Boyd et al., 2004) (Section 9.1.2), we can bound I∗(−eij) − INt(−eij) with the first
derivative of SGC loss function as follows:

I∗(−eij)− INt(−eij)

=∥∆θ̂ε −∆θ̂Nt∥2 = ∥(∆θ̂ε + θ̂)− (∆θ̂Nt + θ̂)∥2 = ∥θ̂ε − θ̂Nt∥2

≤ 2N

Nλ+ (N − |L|)σmin + |L|σ′
min

·
www 1

N
(

N∑
i=1

∇θ̂Nt
ℓ(zi, yi) +

∑
vl∈L

∇θ̂Nt
ℓ(z′l, yl)

−
∑
vl∈L

∇θ̂Nt
ℓ(zl, yl) + λ∥θ̂Nt∥2)

www
2
.

(22)

If we take a close look at the second term in the above equation, we notice it is equal the first
derivative of La(θ), i.e.,

∇θℓa(θ̂Nt) =
1

N
(

N∑
k=1

∇θ̂Nt
ℓ(zk, yk)+

∑
vl∈L

∇θ̂Nt
ℓ(z′l, yl)−

∑
vl∈L

∇θ̂Nt
ℓ(zl, yl)+λ∥θ̂Nt∥2). (23)

Therefore, we focus on bounding ∥∇θLa(θ̂Nt)∥2 in the following.

∥∇θLa(θ̂Nt)∥2 = ∥∇θLa(θ̂ +∆θ̂Nt)∥2
=∥∇θLa(θ̂ +∆θ̂Nt)−∇θLa(θ̂) +∇θLa(θ̂)∥2
=∥∇θLa(θ̂ +∆θ̂Nt)−∇θLa(θ̂)−∇2

θLa(θ̂)∆θ̂Nt∥2

(24)
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The above last equation holds due to the definition of ∆θ̂Nt in Eq. (18).

For any continuous function f and any inputs a and b, there exists f(a+ b)− f(a)− bf ′(a)=
∫ 1

0
b ·

(f ′(a+ bt)− f ′(a))dt. Based on that, we can rewrite ∥∇θLa(θ̂Nt)∥2 as follows:

∥∇θLa(θ̂Nt)∥2 =∥∇θLa(θ̂ +∆θ̂Nt)−∇θLa(θ̂)−∇2
θLa(θ̂)∆θ̂Nt∥2

=
www∫ 1

0

∆θ̂Nt(∇2
θLa(θ̂ +∆θ̂Nt · t)−∇2

θLa(θ̂))dt
www

2
.

(25)

We assume the loss function ℓ on is twice differentiable and the second derivative of the loss func-
tion is Lipschitz continuous at θ, with parameter C. Here C is controlled by the third derivative
(Curvature) of the loss function ℓ. Thus, we have

∥∇2
θℓ(θ1)−∇2

θℓ(θ2)∥2 ≤ C · ∥θ1 − θ2∥2. (26)

Then we take Eq. (26) into Eq. (25) and have

delt∥∇θLa(θ̂Nt)∥2

≤∥NC∆θ̂Nt

∫ 1

0

tdt∥2 =
NC

2
∥∆θ̂Nt∥22 =

NC

2
∥∇2

θLa(θ̂)
−1 · ∇θLa(θ̂)∥22

≤NC

2
· N2

(Nλ+ (N − |L|) · σmin + |L| · σ′
min)

2
· ∥
∑
l∈L

(∇θ̂ℓ (z
′
l, yl)−∇θ̂ℓ (zl, yl))∥

2
2.

(27)

The above last inequation holds according to the bound of ∇2
θLa(θ̂)

−1 and Eq. (19).

Combining Eq. (22), (23) and (27), we finish the bound of I∗(−eij)− INt(−eij) as follows:

∥I∗(−ei,j)− INt(−ei,j)∥2

≤ N3C

(Nλ+ (N − |L|)σmin + σ′
min|L|)3

· ∥
∑
vl∈L

(∇θ̂ℓ (z
′
l, yl)−∇θ̂ℓ (zl, yl))∥

2
2.

(28)

We finish Step I.

Step II: Bound of INt(−eij)− I(−eij).

By the definition of INt(−eij) and I(−eij)), we have:

INt(−eij)− I(−eij)

=

{(
λI+

1

N

[
n∑

k=1

∇2
θ̂
ℓ (zk, yk) +

∑
vl∈L

∇2
θ̂
ℓ (z′l, yl)−

∑
vl∈L

∇2
θ̂
ℓ (zl, yl)

])−1

−

(
λI+

1

N

n∑
k=1

∇2
θ̂
ℓ (zk, yk)

)−1}
·

{∑
vl∈L

(∇θ̂ℓ (z
′
l, yl)−∇ℓ (zl, yl))

}
.

(29)

For simplification, we use matrix A, B and C for the following substitutions:

A = λI+
1

N

[
n∑

k=1

∇2
θ̂
ℓ (zk, yk)−

∑
vl∈L

∇2
θ̂
ℓ (zl, yl)

]
,

B =
1

N

∑
vl∈L

∇2
θ̂
ℓ (z′l, yl) , and C =

1

N

∑
vl∈L

∇2
θ̂
ℓ (zl, yl) ,

(30)

where A, B and C are positive definite matrix and have the following properties:

λ+
(N − |L|)σmax

N
≻A ≻ λ+

(N − |L|)σmin

N
,

|L|σ′
max

N
≻B ≻ |L|σ′

min

N
, and

|L|σmax

N
≻ C ≻ |L|σmin

N
.

(31)

16



Published as a conference paper at ICLR 2023

Therefore, we have

INt(−eij)−I(−eij) = ((A+B)−1 − (A+C)−1) ·

{∑
vl∈L

(∇θ̂ℓ (z
′
l, yl)−∇θ̂ℓ (zl, yl))

}
, (32)

where (A+B)−1 − (A+C)−1 ≺ N
Nλ+(N−|L|)σmin+|L|min(σ′

min,σmin)
I.

The l2 norm of the error between our predicted influence and Newton approximation can be bounded
as follows:

∥INt(−eij)− I(−eij)∥2

≤ N

Nλ+ (N − |L|)σmin +min(σ′
min, σmin)|L|

· ∥
∑
vl∈L

(∇ℓθ̂ (z
′
l, yl)−∇ℓθ̂ (zl, yl))∥2.

(33)

We finish Step II.

Combining the conclusion in Step I and II in Eq. (28) and (33), we have the error between the actual
influence and our predicted influence as:

Err(−eij)

≤∥I∗(−eij)− INt(−eij)∥2 + ∥INt(−eij)− I(−eij)∥2

=
N3C

(Nλ+ (N − |L|)σmin + |L|σ′
min)

3
· ∥
∑
vl∈L

(∇θ̂ℓ (z
′
l, yl)−∇θ̂ℓ (zl, yl))∥

2
2

+
N

Nλ+ (N − |L|)σmin +min(σ′
min, σmin)

· ∥
∑
vl∈L

(∇θ̂ℓ (z
′
l, yl)−∇θ̂ℓ (zl, yl))∥2.

(34)

We finish the whole proof.

Corollary A.1. Let σmin ≥ 0 denote the smallest eigenvalue of all eigenvalues of Hessian matrices
∇2

θ̂
ℓ(zi, yi),∀vi ∈ Vtrain of the original model θ̂. Let σ′

min ≥ 0 denote the smallest eigenvalue of all

eigenvalues of Hessian matrices ∇2
θ̂(−vi)

ℓ(zi, yi),∀vi ∈ Vtrain of the retrained model θ̂(−vi) with

vi removed from graph G. Use S denote the set {v : z′ ̸= z} containing affected nodes from the
node removal, and Err(−vi) = ∥I∗(−vi) − I(−vi)∥2. We have the following upper bound on the
estimated error of model parameters’ change:

Err(−vi) ≤
N3m2C

((N − 1)λ+ (N − |S|)σmin + σ′
min|S|)3

+
(N − 1)m

Nλ+ (N − |S|)σmin +min(σmin, σ′
min)|S|

+
N3C

(Nλ+ (N − 1)σmin)3
· ∥ℓ (z′i, yi) ∥22 +

N

Nλ+Nσmin
· ∥ℓ (z′i, yi) ∥2

(35)
where m = ∥

∑
vs∈S [∇θ̂ℓ(z

′
s, ys)−∇θ̂ℓ(zs, ys)]−∇θ̂ℓ(zi, yi)∥2.

Proof. We provide a simple proof for the error bound of removing a complete nodes. Notice that
this error can be decomposed into two parts, 1, the error or removing a single node embedding zi
and 2, the error of adding z′s and removing zs, where s∈S. where we have

Err(−vi) ≤
∑
s∈S

Err(zs → z′s) + Err(−zi)

Notice that Eq. Theorem 4.1 proofs the error bound of Err(−vi), in the proving process we decom-
pose the problem in to deriving the error bound by adding z′l and removing zl where l∈L, where
L is the set of changed node embedding caused by removing a edge from the graph. Following the
same proving setting of Eq. Theorem 4.1, Again, notice that S is the set of changed node embedding
caused by removing a node from the graph. We simply substitute L by S, we have the error bounds
for
∑

s∈S Err(zs → z′s).∑
s∈S

Err(zs → z′s) ≤
N3m2C

Nλ+ (N − |S|)σmin + σ′
min|S|)3

+
(N − 1)m

Nλ+ (N − |S|)σmin +min(σmin, σ′
min)|S|

,
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Where m = ∥
∑

vs∈S [∇θ̂ℓ(z
′
s, ys)−∇θ̂ℓ(zs, ys)]∥2.

For Err(−zi), it can be derived following the same proving process as Eq. Theorem 4.1, but we
only remove one data points. In this case we have:

Err(−zi) ≤
N3C

(Nλ+ (N − 1)σmin)3
· ∥ℓ (z′i, yi) ∥22 +

N

Nλ+Nσmin
· ∥ℓ (z′i, yi) ∥2.

Combining the two error bounds we have:

Err(−vi) ≤
N3m2C

((N − 1)λ+ (N − |S|)σmin + σ′
min|S|)3

+
(N − 1)m

Nλ+ (N − |S|)σmin +min(σmin, σ′
min)|S|

+
N3C

(Nλ+ (N − 1)σmin)3
· ∥ℓ (z′i, yi) ∥22 +

N

Nλ+Nσmin
· ∥ℓ (z′i, yi) ∥2

(36)

B DATASET STATISTICS

We present the data statistic on our experiments below. We choose only small and medium-sized
data. Because, each time we validate the influence of the elements in a graph, we need to retrain the
model.

Table 4: Dataset Statistics

Dataset # Node # Edge # Class # Feature # Train/Val/Test

Cora 2,708 5,429 7 1,433 140 / 500 / 1,000
Citeseer 3,327 4,732 6 3,703 120 / 500 / 1,000
Pubmed 19,717 44,338 3 500 60 / 500 / 1,000
WikiCS 11,701 216,123 10 300 250/ 1769 /5847
Amazon Computer 13,752 245,861 10 767 200 / 300 / Rest
Amazon Photo 7,650 119,081 8 745 160 / 240 / Rest

C VALIDATING INFLUENCE OF ELEMENTS: EXTRA DATASETS

For the Wiki-CS dataset, we randomly select one of the train/val/test split as described in Mernyei &
Cangea (2020) to explore the effect of training nodes/edges influence. For the Amazon Computers
and Amazon Photo dataset, we follow the implementation of Shchur et al. (2018). To set random
splits, On each dataset, we use 20 ∗ C nodes as training set, 30 ∗ C nodes as validating set and the
rest nodes as testing set, where C is the number of classes.. Because for validating every edge’s
influence, we need to retrain the model and compare the change on loss, the computation cost is
exceptionally high. We randomly choose 10000 edges of each datasets and validate their influence.
We observe that even for medium-size datasets, our estimated influence is of high correlation to the
actual influence.

D EMPIRICAL VERIFICATION OF THEOREM 4.1

As the value of l2 regularization term decreases, the accuracy of our estimation of the influence
of edges drops, and the Spearman correlation coefficient decrease correspondingly. This trend is
consistent with the interpretations of the error bound on Theorem 4.1 that the estimation error of an
influence function is inversely related with the l2 regularization term. We also notice that the edges
that connects high-degree nodes have overall less influence. Their estimation points lies relatively
close to the y=x line and thus could have relative small estimation error.
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Figure 4: Estimated influence vs. actual influence on medium-sized graphs. Three datasets are
used in this illustration Wiki-CS (left column), Amazon Computers (middle column) and Amazon
Photo (right column). In all plots, the horizontal axes indicate the actual influence on the test set,
the vertical axes indicate the predicted influence, and ρ indicates Spearman’s correlation coefficient
between our predictions and the actual influences. Top row: Influence of node embeddings. Middle
row: Influence of edge removals. Each point corresponds a removed training edge. Bottom row:
Influence of node removal. Each point represents a removed training node.

Figure 5: Spearman correlation on Citeseer dataset with different l2 regularization term on validating
influence of edges. The orange points denote the summations of the degrees of the two nodes that an
edge connects is high. The blue points denote the edges, which are the summations of the degrees
of the two nodes connecting the edge.
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E GROUP EFFECT OF REMOVING MULTIPLE EDGES

We study the group effect of influence estimation on removing multiple edges. On dataset Cora, we
randomly sample k edges from the attributed graph, where k’s values were chosen increasingly as
2, 10, 50, 100, 200, 350. Every time, we remove k edges simultaneously and validate their estimated
influence. We observe: though with high correlation, our influence plots tend to move downward
as more edges are removed at the same time. In this case, our method tends to be less accurate and
underestimates the influence of a simultaneously removed group of edges.

Figure 6: Estimating group influence on Cora. The horizontal axes indicate the actual influence on
the validation set, and the vertical axes indicate the predicted influence. On each set, we randomly
sample k edges (k=2, 10, 50, 100, 200, 350) from the graph and repeat this process 5000 times. Each
time, we remove k edges simultaneously and validate our influence estimation.

F VALIDATING INFLUENCE FOR ARTIFICIALLY ADDED EDGES

In this section, we validate our influence estimation for artificially added edges on dataset Cora,
Pubmed, and Citeseer. On each dataset, we randomly select 10000 unconnected node pairs, add an
artificial edge between them and validate its influence estimation. Figure 7 shows that the estimated
influence correlates highly with the actual influence. This demonstrates that our proposed method
can successfully evaluate the influence of artificially added edges.

Figure 7: Estimated influence vs. actual influence on artificially added edges. Three datasets are
used in this illustration Cora, Pubmed, and Citeseer. Due to the high time complexity of evaluating
the influence on every pair of nodes, we randomly sample 10000 node pairs and add artificial edge.
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G STUDY OF EDGES WITH NEGATIVE INFLUENCE

Here we demonstrate the performance via cumulatively removing edges with negative influence in
Figure 8. The detailed implementation has been discussed in Section 5.3. Due to that the inaccurate
influence estimation with more edges removed, we consider a maximum of 50 edges to be removed
for each dataset. We observe an overall increase in model performance as we cumulatively remove
edges predicted as a negative influence. This again demonstrates the usefulness of our influence
estimation on edges.

Figure 8: Study of edges with negative influence, each column corresponds to Cora, Pubmed, and
Citeseer dataset. Top: the scale of edges with negative influence. Bottom: accuracy by cumula-
tively removing edges with negative influence. Blue and red lines present the accuracy changes of
validation and test in response to negative influence edge removal, respectively.

H EXTEND INFLUENCE METHOD TO OTHER GNN MODELS

Theoretically, our current pipeline can be extended to other nonlinear GNNs under some viola-
tion of assumption. (1) According to Propositions Proposition 3.2 and Proposition 3.3, we require
the existence of the inverse of the Hessian matrix, which is based on the assumption that the loss
function on model parameters is strictly convex. Under the context of some GNN models with non-
linear activation functions, we can use the pseudo-inverse of the hessian matrix instead. (2) For
non-convex loss functions of most GNN, our proposed error bound in Theorem Theorem 4.1 does
not hold unless a large regularization term is applied to make the hessian matrix positive definite.
From the implementation purpose, (1) From the implementation perspective, the non-linear models
usually have more parameters than the linear ones, which require more space to store the Hessian
matrix. Accordingly, the calculation of the inverse of the Hessian matrix might be out of memory.
It needs to reformulate the gradient calculation and apply optimization methods like Conjugate gra-
dient for approximation. (2) Our current pipeline is constructed based on mathematical, hands-on
derived gradients adopted from Koh et al. (2019). Existing packages like PyTorch use automatic
differentiation to get the gradients on model parameters. It could be inaccurate for second-order
gradients calculation. Extending the current pipeline to other GNNs may require extensive first and
second-order gradient formulations. We will explore more GNN influence in the future.

I RUNNING TIME COMPARISON

We present the running time comparison between calculating the edge influence via the influence-
based method and retrieving the actual edge influence via retraining. We conduct our experiment on
dataset Cora, Pubmed, and Citeseer. We demonstrate our method is 15-25 faster than the retrained
method. Notably, for tasks like improving model performance or carrying out adversarial attacks via
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edge removal, it could save a considerable amount of time in finding the edge to be removed with
the lowest/largest influence.

Table 5: Running time comparisons for edge removal by second. Self-loop edges are not recorded.
Dataset Infl. (single edge) Infl. (all edges) Retrain (single edge) Retrain (all edges)

Cora 0.0049±0.0006 24.86 0.0683±0.0216 370.80
Pumbed 0.0008±0.0001 34.58 0.0203±0.0044 899.62
Citeseer 0.0097±0.0008 45.90 0.1578±0.0404 746.47
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