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Abstract

Optimizing neural networks for quantized objectives is fundamentally challenging because the quan-
tizer is piece-wise constant, yielding zero gradients everywhere except at quantization thresholds
where the derivative is undefined. Most existing methods deal with this issue by relaxing gradient
computations with techniques like Straight Through Estimators (STE) and do not provide any guar-
antees of convergence. In this work, taking inspiration from Nesterov smoothing, we approximate
the quantized loss surface with a continuous loss surface. In particular, we introduce LOTION,
Low-precision Optimization via sTochastic-nolse smQOothiNg, a principled smoothing framework
that replaces the raw quantized loss with its expectation under unbiased randomized-rounding noise.
In this framework, standard optimizers are guaranteed to converge to a local minimum of the loss
surface. Moreover, when using noise derived from stochastic rounding, we show that the global
minima of the original quantized loss are preserved. We empirically demonstrate that this method
outperforms standard QAT on synthetic testbeds and on 150M- and 300M- parameter language
models.

1. Introduction

While the performance of LLMs scales predictably with the size of the model and the amount of data
it was trained on [12], these improved capabilities are accompanied by a corresponding cost when
the model is deployed for inference. As a result, model compression and low-precision execution are
becoming the default for training and serving LLMs on modern accelerators.

Although post-training quantization (PTQ) and quantization-aware training (QAT) directly
alleviate this burden by compressing model weights and/or activations to low-precision formats, it
turns the training objective into a highly discontinuous surface: every forward pass hard-assigns
weights to a finite codebook, zeroing gradients almost everywhere. The usual workaround is
the straight-through estimator (STE), which simply treats the non-differentiable quantizer as the
identity in the backward pass. Despite some empirical successes, naive, identity-based STEs provide
no guarantees and tend to become unstable in newer low-precision formats that quantize more
aggressively, motivating a more principled alternative [10, 15, 18, 20, 22-25]. This work seeks a
fully principled, parameter-free alternative which is applicable to a wide variety of rounding schemes.
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We propose LOTION—Low-precision Optimization via sTochastic-nolse smQothiNg. Instead
of modifying the gradient, LOTION directly smooths the loss itself: it trains on the expectation of the
quantized loss under (possibly unbiased) stochastic-rounding noise. This expectation is differentiable
almost everywhere, so any standard first- or second-order optimizer can be used with its usual
convergence guarantees. A diagonal Gauss—Newton analysis reveals that LOTION is equivalent to
adding a data-dependent regularization whose strength is tied to the error induced by per coordinate
quantization and the hessian curvature in the coordinate, yielding the first explicit connection between
randomized rounding and curvature-aware regularization.

Our contributions.

* We introduce LOTION, a loss-smoothing framework that replaces discontinuous quantized
objectives with an almost everywhere differentiable surrogate obtained via stochastic rounding.

* Via a diagonal Gauss—Newton approximation, we derive a closed-form curvature-aware regu-
larizer, providing a transparent interpretation of how stochastic rounding stabilizes training.

* We show that smoothing preserves all global minima of the original quantized problem and,
when coupled with any convergent optimizer (e.g. Adam, Shampoo), inherits their convergence
guarantees.

* As a proof of concept, we show that LOTION vastly exceeds the accuracy of widely used
STE-based QAT and PTQ methods at INT4 precision on a synthetic linear regression task.
Additionally, we pretrain 150M and 300M parameter language models and quantize them to
INT4, INTS, and FP4, achieving lower post-quantization validation loss than PTQ and QAT
baselines.

2. Problem Setting

We adopt the standard supervised learning setup. Let (z,y) ~ D denote input-label pairs and let
f(w; z) be the output of a neural network parameterised by weights w € R?. With a per-example
loss £(-, ), the population loss is

‘C(w) = E(m,y)w’l)[g(f(w;x)’ y)}

Quantization constrains us to a finite codebook of representable weights. Let cast : RY — Q
denote the quantization operator mapping real-valued weights to Q@ C R¢. We therefore seek

min £ (cast(w)).

weR4

Remark 1 The mapping w E(cast(w)) is piecewise constant; gradients vanish except on the
measure-zero cell boundaries induced by the quantizer, where the gradients do not exist.

3. LOTION: Smoothing the Loss

The core idea of our smoothing approach is to turn our non-differentiable (and discontinuous)
optimization problem into a continuous one. In particular, the approach is to consider a stochastically
perturbed optimization problem of the form:

»Csmooth,D (w) = IEqNDw [‘C(Q)]
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where D,, represents a distribution over the points in (), where the distribution is allowed to depend
on w. For example, the Gaussian smoothing approach (analyzed by Nesterov [19]) would be to first
sample € ~ N(0,021), and then take ¢ = cast(w + ). For this choice of D(w), then Lgmootn.p Will
be a continuous and differentiable function for all orders.

In this work, we will consider a stochastic rounding approach, formally defined in B.2, which lets
us make connections to prior work and helps us derive a more principled regularization approach.

3.1. General Case and a Gauss—-Newton Regulariser

We define the smoothed objective

£smooth(w) = ]EENRR(’LU) [£<w + 8)]7

where RR(w) is the unbiased randomized-rounding distribution formally defined in Section B.1.
Under random rounding, a parameter is rounded up or down with probability corresponding to the
distance from the upper and lower quantization bin. For a twice-differentiable loss we have the
second—order expansion

L(w+e)=L(w)+ gw) e+ 3e" Hw)e + O(|[e]?),

with gradient g(w) = V.L(w) and Hessian H(w) = V2L(w). Taking expectations and using
E[e] = 0 yields

Lsmooth(w) = L(w) + % tr(H(w) Eg(w)) + O(]E[HEHBD,
where 3. (w) = Covle].

Gauss—Newton replacement. The Hessian of the neural network f can be decomposed as a sum
of two terms:

Vol =V fTVHV o f +VulVo, f
G(w)
where the first component is positive semi-definite for convex losses and is referred to as the
Gauss-Newton component. As the full Hessian may introduce negative curvature, we therefore
substitute it with the positive-semidefinite Gauss—Newton matrix. Dropping higher-order terms gives
the working approximation

Leon(w) = L(w) + % tr(G(w) B (w)) (1

Diagonal form under unbiased rounding. The random rounding scheme is coordinate-wise, so
Ye(w) = diag(o?,...,03%) with

2 _
o; =

SQB(z) A (1 - Ai)a

where sp(;) is the shared scale of the block B(i) being rounded and A; € [0, 1] is the fractional
part of w; /s p(;), the distance to the lower quantization bin after scaling (see B.2 for more details).
Writing g;;(w) for the ith diagonal element of G/(w),

d d
1 1
Lon(w) = L(w) + 3 Zgii(w) o = L(w)+ 3 Zgii(w) sQB(i) A (1—-4y). (2
i=1 =1
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Interpretation and optimization. Equation 2 shows that randomized rounding injects an ¢-
style curvature-aware ridge regularizer. Because the bound preserves every global minimizer of
the original quantized objective (lemma 4), adding this term merely smooths the landscape; all
optimal quantized solutions remain attainable. In practice, the diagonal terms of the Gauss-Newton
component can be obtained by either using another backpropagation with sampled labels as done
in Sophia [14] or we can use the empirical Fisher approximation by accumulating the square of the
gradients observed in practice as done by Adam [13].

4. Experiments

In this section, we provide both synthetic and large language model experiments to compare the
performance of our smoothed loss with analogous QAT and PTQ baselines. The synthetic experiments
are lightweight and were run on A100s and H100s in less than an hour per run. Both the synthetic
and language model experiments can run on any modern hardware, as all computations are done in
FP32 with simulated weight quantization or rounding. The PTQ runs are trained end-to-end in FP32,
and model checkpoints are naively clamped (standard quantization, see B.1) or rounded (stochastic
rounding, see B.2) for evaluations. The QAT baseline simulates weight quantization in the forward
pass, and Rounding Aware Training (RAT) simulates stochastic rounding. Both perform backward
pass operations in full precision using the straight-through estimator. We train LOTION in full
precision and round for evaluations.

4.1. Quadratic Loss

We begin with a linear regression toy problem where each input « € R? (with d = 12000) is sampled
from a Gaussian distribution whose covariance follows a power-law spectrum ()\; o 1/i!-! for
1 =1, ..., d) that mimics the spectrum for Hessians observed in modern neural networks. The target
is given by w* " for a predetermined w*.

We compare quantized loss, obtained by directly casting or rounding weights, across all methods.
As shown in Figure 1, LOTION outperforms both the PTQ and QAT methods in quantized validation
loss. The behavior of QAT and RAT on the quantized validation loss is jagged and plateaus, while
LOTION continues to decrease the quantized validation loss.

Additionally, we use this same setting to explore whether scaling model size can compensate for
quantization noise, nullifying performance gaps between methods. We reproduce these experiments
on a two-layer network, sweeping over the hidden dimension size. These results, provided in Figure
C.1, show that LOTION maintains its performance gap.

4.2. Large Language Model

In addition to our toy-model experiments, we pretrain models at 150M (Figure 2) and 300M scales
(Figure 5) to evaluate whether LOTION outperforms traditional QAT methods at realistic model
sizes. We train and evaluate our models on C4 [21] using OLMo [11] following the hyperparameter
settings of [26]. Both sets of models are trained with Chinchilla-optimal token budgets (20x as many
tokens as model parameters) [12].

As in the linear regression setting, LOTION outperforms both QAT and PTQ baselines on
quantized loss, especially at lower bit-width. We reproduce these results both at a larger model
size (Figure 5) and with a larger training data budget (Figure 6), showing that LOTION continues
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Method Val. loss

LOTION (round) 0.1673
LOTION (clamp) 0.19834

PTQ (clamp) 0.20564
RAT (round) 0.37145
QAT (clamp) 0.52832

Figure 1: A comparison of INT4 quantized/rounded validation loss between LOTION, QAT, and
PTQ, with summary table. The labels "clamp" and "round" denote whether weights are
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Figure 2: Quantized and rounded validation loss at INT4 (Left) and INT8 (Right) precision for

LOTION, QAT, RAT and PTQ.

Figure 3: Final validation cross-entropy (150M)

Method  Metric INT4 INTS8
PTQ rounded 4.686 3.092
PTQ clamped 3.864 3.085
RAT rounded 3.608 3.090
QAT clamped 3.315 3.079
LOTION rounded 3.295 3.078
LOTION clamped 3.276 3.076

to decrease the quantized validation loss while QAT plateaus. Furthermore, we compare these
methods when quantizing to FP4 precision in Figure 7. FP4 is generally favored over INT4 due to its
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non-uniform quantization bin boundaries, allowing for superior inference accuracy [16]. We show
that LOTION outperforms QAT even in this precision format.

5. Discussion and Limitations

With increasing scales of modern neural networks, low-precision execution is becoming a necessity
to serve them on low-memory devices. Thus, devising better mechanisms for obtaining quantization-
friendly networks is an important challenge. Previous methods such as QAT use straight-through
estimators but do not provide guarantees of convergence.

In comparison, LOTION smooths the loss surface of quantized loss while preserving the global
minima. This preserves the guarantees from traditional optimization literature about convergence
to a stationary point on the smoothed loss surface. We believe that extending the current empirical
results to real neural networks is an important research direction to verify the efficacy of LOTION in
practical settings.

LOTION in particular uses stochastic rounding noise to help smooth the loss surface, resulting in
an almost everywhere differentiable loss. However, the loss surface is still not completely smooth
due to the undefined derivatives at the quantization bin boundaries. Using other noise distributions
for obtaining a smooth loss surface while preserving the global minima property is an interesting
research direction.
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Appendix A. Related Work

Quantization-Aware Training (QAT) vs Post-Training Quantization (PTQ). Neural network
quantization is typically performed either during training (QAT) or after training (PTQ). QAT
methods often rely on the straight-through estimator (STE)—a heuristic gradient approximation
introduced by Hinton and formalized by Bengio et al. [2]. STE enables gradient-based training by
pretending the quantizer is the identity during backpropagation. Despite its popularity, STE lacks
convergence guarantees and is known to cause gradient instability, especially at 4- or 2-bit precision.
Numerous works attempt to mitigate this via gradient scaling, learned quantization scales [9], or
progressive bit-reduction schedules [17]. PTQ methods, by contrast, quantize pretrained models
post hoc and optimize auxiliary calibration objectives. Layer-wise curvature metrics, such as the
Hessian trace [5], or sensitivity analyses are often used to allocate bits across layers. While PTQ
avoids instability, it often underperforms QAT at very low precision.

Loss Smoothing via Noise and Stochastic Rounding. Another line of work introduces noise to
smooth the quantized objective, sidestepping non-differentiability. This idea is rooted in classical
techniques such as Nesterov smoothing [19] and randomized smoothing [6, 7]. In neural network
quantization, additive noise has been used to simulate quantization effects during training [1, 8], with
improved empirical stability. Recent methods extend this idea to fully differentiable quantization-
aware training. For instance, NIPQ [23] replaces hard quantization with a noise proxy, allowing
optimization over bit-widths and scales. However, NIPQ makes two limiting assumptions: (a) it uses
only a scalar proxy (Hessian trace) for curvature, and (b) it relies on a fixed rounding scheme, limiting
generality. Moreover, such proxies typically lack convergence guarantees and must be manually
tuned.

Quantization and Curvature-Awareness. Several works relate quantization error to curvature
of the loss landscape. For instance, HAWQ [5] and its successors use the Hessian spectrum to
guide bit allocation. Other approaches estimate layer sensitivity using Hutchinson-based Hessian
trace approximations [27]. Some training-time regularization methods penalize sharp minima [18],
promoting flatness to better tolerate quantization. These methods highlight the importance of
curvature in quantization-aware optimization, but often rely on global heuristics or require non-
standard solvers.

Our Approach: LOTION. LOTION introduces a loss-level smoothing framework that avoids
heuristic gradient modifications. Instead of backpropagating through a non-differentiable cast func-
tion, LOTION directly optimizes the expected quantized loss under unbiased stochastic rounding
noise. This yields a smooth, differentiable objective that preserves all global minima of the original
quantized loss and supports a broad range of rounding schemes. Unlike NIPQ, which uses a scalar
proxy, LOTION derives a curvature-aware regularizer via a diagonal Gauss—Newton approximation,
making explicit the connection between quantization noise and second-order structure. This prin-
cipled formulation provides both empirical stability and theoretical guarantees absent from prior
methods.

10
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Appendix B. Quantization formats
B.1. Fine-Grained Shared-Scale Integer Quantization

We study the standard symmetric signed integer quantization method in which parameters are scaled
into the desired dynamic range and partitioned into uniform blocks as in the absolute maximum
quantization method described in LLM.INT8() [4]. We prefer absolute maximum quantization
because it prevents overflow and avoids the computation and memory burden of methods like zero-
point asymmetric schemes that are particularly costly for weight-only quantization. Absolute max
quantization is often use in practice, notably in the FP8 "fine-grained shared-scale" format adopted
by DEEPSEEK [3]. Parameters are partitioned into blocks B (possibly as small as a single element).
For each input block w; we store one floating-point (FP16) scale sp and an n-bit integer tensor z
defined by

[cast(w)]; = spzi (i € B).

sB = maxies juwi] %= LﬂL

2n—1 -1 ’ SB

Because |w;| < (2"~! —1) sp by construction, the rounded values satisfy z; € [—(2"~!1 —1),2" "1 —
1] and thus lie safely within the representable range; no explicit clipping step is required.

B.2. Randomized Rounding

To define a general notion of randomized rounding, let us first denote the support of the cast function
as @, i.e, Q = {x | Jw s.t. cast(w) = x}. Also, let us define a notion of distance between two finite
sets (51, So) of points in R? as d(S1, S2) = max{||w; — wsl|a|w; € S1,ws € So}.

Definition 2 (Randomized Rounding) Randomized Rounding (RR) is a function from R — P[Q)]
that satisfies the following three properties:

1. Yw € Rd,EquR(w) [q] =w

2. RR is continuous and locally bounded ' (with RR(w) having a finite support), where the
continuity is defined with respect to Ws distance on P|Q] and L1 distance on R,

3. Yw € Q which satisfy cast(w) = w, RR(w) has probability 1 on w.
Smoothed loss defined with respect to randomized rounding satisfies some nice properties.

Lemma 3 For any loss function L(w) which is continuous w.r.t Ly norm and any f : R¢ — P[Q]
satisfying the 2nd axiom above, B ¢(.,)[L(q)] is also continuous w.r.t the Ly norm.

Lemmad4 Forany f : R? — P[Q] which satisfies the 3rd axiom above,
iy egi B ) [L()] = minegaL{cast(w))

The above two lemmas combined show that Err(w)[L(g)] is a continuous function whose
global minima matches the global minima of the quantized loss function. Thus, we have a better
optimizable function, which does not impact the global minimum of the loss surface.

1. Locally bounded means that for any compact set D C R%, d(spt(RR(D)), {0}) is finite

11
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EXAMPLE: SHARED-SCALE INTEGER ROUNDING

We provide an example of a randomized rounding scheme corresponding to the casting function
defined in Section B.1. Consider a scalar 2/ as defined below:

r— W
Zp = ot

The randomized rounding scheme is defined as below:

spz)if z; = 2,
RR(w) = { spl2] wp. [2] =
splzi] wp. 2 — 2]

We use this rounding scheme for LOTION with integer formats.

B.3. Warm-Up: Quadratic Losses

To visualize how we incorporate randomized rounding into LOTION, we first consider a setting
where the (population) loss is quadratic

L(w) = % (w — w*)TH (w—w*)+C, H >0,

e.g. L(w) = 3[|Aw — b||3 with H = ATA and C = 1||b||3 — %||Aw*||3. Let € denote the
randomized-rounding noise, so RR(w) = w + ¢ with E[¢] = 0 and X, := Cov[e]. Because the
stochastic rounding noise is zero-mean, expanding the quadratic and taking expectations gives a
closed form:

Esmooth(w) = E[ﬁ(w + €)] = £(w) + % tr(H EE) (3)

Covariance of unbiased randomized rounding. For the fine-grained shared-scale rule in Sec-
tion B.1, each coordinate i (belonging to block B(7) with scale sp) is rounded independently:

w; |21]  wp. [2] — 2,
z; = 71’ g = SB(Ri_Z£)7 R; = t ,Z /7,
5B [2i]  wp. 2; — |#].
Writing A, := 2} — |2}| € [0,1],
Var[ei] == S2B Al (1 - AZ) < % S2B.
Since distinct coordinates round independently, ¥, = diag(o?, ..., 03) with 07 = sQB(i)Ai(l —A).
Interpretation: An Implied Regularizer Plugging this diagonal covariance into equation 3 yields

an /o-style ridge term:

ﬁsmooth(w) = ﬁ(w) +

[N

d
=1

Thus, randomized rounding exactly adds a data-dependent diagonal regularizer whose strength is
dependent on the curvature of the hessian and the expected rounding error in the given coordinate.
This makes the smoothed objective strictly smoother than the original yet preserves all global minima
(See lemma 3 and 4).
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Figure 4: Quantized validation loss (Left) and rounded validation loss (Right) as a function of the
hidden dimension, K, of a two layer linear network for LOTION, QAT, GT, and PTQ.

Appendix C. Additional Synthetic Experiments
C.1. Linear Network

In this section, we use our toy model to explore whether scaling the model can compensate for
quantization noise, thereby eliminating meaningful performance differences between methods. We
conduct experiments on a two-layer linear network given by

f(SU) = %WQW;LI'

where Wy € R™* W, € R¥*? and 2 € R?. We again consider the input distribution to be
Gaussian with d = 12000 with a power-law decaying spectrum given by \; Z% The targets are
given by y = w* " z, for w* sampled from a Gaussian distribution. The following lemma holds for
the above network as k — oo.

Lemma 5 For the uniform INT fine-grained, shared-scale quantization scheme, the quantized loss
for f(z) goes to 0 as k — oo.

The above lemma holds as all the elements of the outputs W5 can be set to 1 and each row of
the first layer I/ can be equal to a stochastically rounded w*. We provide a proof for this lemma in
Appendix A.

We expect that as K grows, the smoothed loss and the quantized loss for various methods will
decrease. We plot these results in Figure 4. For each value of K, we plot the lowest quantized loss
achieved at this model size. PTQ_ROUND and PTQ_CLAMP are models that are trained in full
precision and rounded or clamped to measure quantized loss. GT_ROUND and GT_CLAMP are
initialized from models where all elements of W5 are set to 1 and where the rows of W7 are w*.
These models are then rounded for GT_ROUND or clamped for GT_CLAMP. Following lemma 5,
GT_ROUND’s quantized loss goes to 0 as £ — oco. As shown in the figure, LOTION outperforms
all methods in quantized loss even as we scale up model size.
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Appendix D. Additional Language Model Experiments
D.1. 300M parameter model

In addition to the 150M parameter model sweep, we train 300M parameter models and similarly
evaluate validation loss after quantizing with LOTION and our various baselines. As with the 150M
models, LOTION outperforms QAT and PTQ at both INT4 and INT8 precision.

« LOTION + PTQ v QAT ---- clamped —— rounded
5.00 C4 Val Loss (INT4) 425 C4 Val Loss (INT8)
3.05
4.75 3.04 1%
4.00 3.034 2T

> 4.50+ o 3.02 ]
S ) 3.011
£ 4.254 £ 3751 3.001
P 0 2.99] .
2 4.00 <) 2.98 — T —
9 9350 26000 28000 30000
S s N\ \
5375 =
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2 350 g 3251

3.251
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Figure 5: Quantized and rounded validation loss at INT4 (Left) and INTS8 (Right) precision for
LOTION, QAT, and PTQ.

Table 1: Final validation cross-entropy (300M)
Method  Metric INT4  INTS8

PTQ rounded 3.9745 3.0045
PTQ clamped 3.6062 2.9992
QAT clamped 3.2230 2.9972

LOTION rounded 3.1772 2.9959
LOTION clamped 3.1031 2.9905

D.2. Overtrained models

In figure 6, we also include training runs for our 150M parameter model trained to 5x chinchilla (a
token budget that is 100x larger than the number of parameters) to validate that LOTION continues
to decrease the quantized loss while QAT plateaus.

D.3. FP4

Quantization to FP4 is generally favored over INT4 because of its non-uniform quantization scheme
that can represent small values while accounting for rare large outliers. This increased precision
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Figure 6: Quantized and rounded validation loss at INT4 (Left) precision for LOTION, QAT, and
PTQ.

for smaller values tends to lead to lower overall quantization error and higher inference accuracy.
In figure 7, we validate that LOTION grants performance gains over QAT even with this modern
precision format.

e LOTION_FP4 + PTQ_FP4 v QAT _FP4 ----- clamped —— rounded
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Figure 7: Quantized and rounded validation loss at FP4 (Left) precision for LOTION, QAT, and
PTQ.
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