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Abstract001

Large language models have transformed the002
comprehension and generation of natural lan-003
guage tasks, but they come with substan-004
tial memory and computational requirements.005
Quantization techniques have emerged as a006
promising avenue for addressing these chal-007
lenges while preserving accuracy and making008
energy efficient. We propose CPTQuant, a com-009
prehensive strategy that introduces correlation-010
based (CMPQ), pruning-based (PMPQ), and011
Taylor decomposition-based (TDMPQ) mixed012
precision techniques. CMPQ adapts the preci-013
sion level based on canonical correlation anal-014
ysis of different layers. PMPQ optimizes pre-015
cision layer-wise based on their sensitivity to016
sparsity. TDMPQ modifies precision using Tay-017
lor decomposition to assess each layer’s sen-018
sitivity to input perturbation. These strategies019
allocate higher precision to more sensitive lay-020
ers while diminishing precision to robust lay-021
ers. CPTQuant assesses the performance across022
BERT, OPT-125M, OPT-350M, OPT-1.3B, and023
OPT-2.7B. We demonstrate up to 4x compres-024
sion and a 2x-fold increase in efficiency with025
minimal accuracy drop compared to Hugging026
Face FP16. PMPQ stands out for achieving a027
considerably higher model compression. Sensi-028
tivity analyses across various LLMs show that029
the initial and final 30% of layers exhibit higher030
sensitivities than the remaining layers. PMPQ031
demonstrates an 11% higher compression ra-032
tio than other methods for classification tasks,033
while TDMPQ achieves a 30% greater com-034
pression ratio for language modeling tasks.035

1 Introduction036

Large Language Models (LLMs) like GPT, Gem-037

ini, Llama, etc., (Brown et al., 2020; Team et al.,038

2023; Touvron et al., 2023; Zhang et al., 2022)039

have demonstrated ground-breaking advancement040

in a variety of applications (Wu et al., 2023; Sti-041

ennon et al., 2020; Chen et al., 2023; Balija et al.,042

2024) in understanding and modeling natural lan-043
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Figure 1: Visualization of Comparision of LLMs: Pa-
rameters and GPU requirement increases by 10x.

guage tasks. However, achieving such exemplary 044

performances involves training trillions of parame- 045

ters, leading to larger model sizes but higher model 046

quality (Hoffmann et al., 2022; Kaplan et al., 2020) 047

as shown in Figure 1. For example, the GPT- 048

4 model (Achiam et al., 2023) contains approxi- 049

mately 1 trillion parameters, consuming at least 050

2TB of memory to store and run in FP16 with 051

25x80 GB A100 GPUs for inference. The extensive 052

size illustrates the model’s complexity and the nec- 053

essary computational resources. Fine-tuning LLMs 054

for downstream tasks (Wei et al., 2021) adapts a 055

pre-trained model to perform specialized tasks us- 056

ing additional training. By leveraging the knowl- 057

edge acquired in pre-training, the fine-tuning step 058

enables models to achieve high performance on 059

various applications. However, fine-tuning a large- 060

scale language model with billions or even trillions 061

of parameters (Fedus et al., 2022) is computation- 062

ally intensive. Therefore, several parameters and 063

memory-efficient fine-tuning strategies have been 064

introduced (Houlsby et al., 2019; Kim et al., 2024) 065

for less memory storage and task-specific parame- 066

ter updates during deployment. Methods like LoRA 067

reduce memory usage during fine-tuning; for ex- 068

ample, GPT-4 still requires 350 GB of storage for 069

parameters in FP16 after fine-tuning. Despite the 070

remarkable efficacy of LLMs, the financial and 071
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energy demands of the same pose significant chal-072

lenges while scaling or deploying. Therefore, a con-073

siderable focus has been on compressing weights074

and activation for LLMs using techniques like prun-075

ing and quantization (Frantar and Alistarh, 2023;076

Santacroce et al., 2023; Ma et al., 2023; Lin et al.,077

2023; Frantar et al., 2022a; Kim et al., 2023).078

So, quantization has emerged as a favorable079

method for reducing memory size, preserving accu-080

racy, and making the model energy efficient. More-081

over, the process involves storing the model pa-082

rameters at a lower precision than the 32-bit or083

16-bit used for training purposes. One of the effec-084

tive solutions is post-training quantization (PTQ);085

this method significantly reduces training prereq-086

uisites and simultaneously lowers the weights to087

lower precisions INT8 or INT4. Post-training quan-088

tization reduces the model size and speeds up the089

inference time, making it feasible to deploy in090

resource-constrained environments. Unfortunately,091

post-training quantization below 8-bit often leads092

to substantial accuracy loss, and in some instances,093

even higher numerical precision may be necessary.094

This paper aims to overcome this limitation by ef-095

fectively utilizing all the information encoded in096

the pre-trained model and calibration set.097

To tackle the aforenoted challenges, we strive to098

develop an optimal quantization strategy for con-099

temporary hardware, which typically supports 16,100

8, and 4-bit data types with per-channel quantiza-101

tion of weights. Our approach involves a three-102

stage pipeline that employs techniques on a small103

calibration set to calculate the sensitivities of dif-104

ferent layers. This is followed by integer program-105

ming to optimize the bit-width allocation across106

different layers, thereby reducing overall accu-107

racy loss. Our method adapts mixed-precision108

and is less susceptible to overfitting than existing109

approaches, achieving top-notch results for 8-bit110

quantization on OPT- 1.3B and BERT-base models111

trained on the IMDB and WikiText datasets, re-112

spectively (Maas et al., 2011; Merity et al., 2016).113

This paper presents several innovations in mixed-114

precision post-training quantization, including de-115

veloping novel algorithms for dynamic precision116

allocation based on layer sensitivity analysis and117

integrating Taylor decomposition techniques for en-118

hanced accuracy after quantization. These advance-119

ments not only reduce computational overhead but120

also maintain or even improve the accuracy of the121

models when deployed in resource-constrained en-122

vironments. CPTQuant makes sure to serve large123

language models like Opt-1.3B and Opt-2.7B using 124

only half the GPUs compared to FP16. Our pack- 125

age makes large language models (LLMs) more 126

accessible by offering a comprehensive solution 127

that reduces operational costs. We anticipate that 128

CPTQuant will stimulate further research in this 129

area and can be a step toward making these models 130

available to a broader audience. Our contributions 131

are (i) CPTQuant, an innovative framework for 132

mixed precision post-quantization training that uti- 133

lizes non-uniform quantization. (ii) Initially, we 134

determine the sensitivities of the model’s various 135

layers using our method and assign precision levels 136

based on each layer’s sensitivity. (iii) We assess the 137

framework by measuring the accuracy drop after 138

quantization. (iv) Through comprehensive exper- 139

iments on different LLMs, we demonstrate that 140

our method sets a new benchmark for post-training 141

mixed precision quantization performance. 142

2 Related Works 143

There have been many approaches in post-training 144

quantization in the literature, but the effectiveness 145

of PTQ has been underscored in many studies 146

(Yao et al., 2022; Frantar et al., 2022a; Dettmers 147

and Zettlemoyer, 2023). Moreover, the study 148

of post-training mixed precision quantization of 149

Large language models still needs to be explored. 150

Consequently, developing an effective, hardware- 151

compatible, and ideally training-free mixed pre- 152

cision quantization approach for LLMs that ad- 153

dresses all compute-intensive operations must still 154

be solved. In the literature, there has been signif- 155

icant effort in quantization during training (Cour- 156

bariaux et al., 2015; Han et al., 2015; Zhou et al., 157

2017; Lin et al., 2023). These methods provide 158

strategies to speed up inference through quantiza- 159

tion and compensate for model degradation. One 160

of the research (Leviathan et al., 2023) increases 161

the inference time for transformers and involves an 162

approach to handle queries with varied latency con- 163

straints effectively. Moreover, it involves a unique 164

acceleration technique called speculative decoding 165

for faster inference. 166

Post-training quantization is a more straightfor- 167

ward technique applied after the model is fully 168

trained, making it easier and faster to deploy. How- 169

ever, in such scenarios, if quantization is not strate- 170

gically implemented, it can lead to significant ac- 171

curacy degradation (Frantar et al., 2022b; Krish- 172

namoorthi, 2018; Jacob et al., 2018). In the GPTQ 173

2



study (Frantar et al., 2022a), the quantization is174

applied exclusively to model weights, ignoring the175

activations and leveraging the inference speedups.176

Recent methodologies in the literature aim to bal-177

ance model performance with computational effi-178

ciency. For instance, Zeroquant implements a per-179

token quantization (Yao et al., 2022). This method,180

designed specifically for LLMS, requires special-181

ized CUDA kernels and has primarily been tested182

on models with up to fewer parameters. Despite183

these efforts, maintaining performance comparable184

to larger models remains challenging. In another185

approach, Gpt3.int8() (Dettmers et al., 2022) com-186

bines INT8 and FP16 to address activation outliers.187

Though this method controls data range, it can in-188

troduce latency overheads and possibly making less189

efficient than using FP16 alone. To address acti-190

vation outliers, the outlier suppression technique191

(Wei et al., 2022) uses non-scaling LayerNorm and192

token-wise clipping. These methods are effective193

for smaller models such as BERT (Devlin et al.,194

2018) and BART (Lewis et al., 2019) but struggle195

to maintain accuracy in larger LLM configurations.196

Researchers have begun exploring cost-effective197

techniques for larger LLM models to facilitate effi-198

cient inference. SmoothQuant (Xiao et al., 2023)199

enables 8-bit quantization for both weights and200

activations and significantly reduces memory us-201

age and computational demands. The activation-202

aware weight quantization (AWQ) (Lin et al., 2023)203

method selectively protects salient weights based204

on activation observation. Half precision (FP16)205

optimizes the performance of neural networks by206

using 16-bit floating point precision, significantly207

reducing memory usage and speeding up compu-208

tation compared to full precision (FP32). Addi-209

tionally, LUT-GEMM (Park et al., 2022) intro-210

duces efficient GPU kernels tailored for specific211

binary-coding-based quantization. Though several212

post-training quantization schemes are available in213

the literature, mixed-precision post-training quan-214

tization methodologies are relatively rare. Our215

proposed approach utilizes mixed-precision post-216

training quantization and demonstrates more so-217

phisticated and precise strategies to quantize large-218

language models. Specifically, CPTQuant achieves219

more than double the compression compared to220

previous techniques while maintaining a similar221

level of accuracy.222

3 Method 223

3.1 Problem Setup 224

Consider a trained network M with L layers and 225

trained weights WL. To represent the weights 226

in a designated integer format using b bits (e.g., 227

int8 or float16), we use a quantization op- 228

erator Q. This operator transforms the range 229

[min{Wl}; max{Wl}] to the quantized interval 230

[−2b−1; 2b−1−1] on the integer scale Z. The quan- 231

tization involves applying a scaling factor scale(s) 232

and rounding off the scaled tensor. Let SL be the 233

sensitivities obtained from the CPTQuant package. 234

The L layers of the network are categorized into 235

three distinct groups, L1, L2, and L3, based on 236

their respective magnitudes. Layers with the high- 237

est sensitivities are allocated 16-bit precision, those 238

with moderate sensitivities receive 8-bit precision, 239

and those with the lowest are assigned 4-bit preci- 240

sion. 241

3.1.1 Quantization 242

The quantization function is defined as follows: 243

Q(x) =

⌊
x−min(x)

scale

⌋
+ qmin (1) 244

where x is the weight matrix to be quantized, 245

scale = max(x)−min(x)
qmax−qmin

, qmin and qmax are the min- 246

imum and maximum quantization levels, ⌊·⌋ rep- 247

resents rounding to the nearest integer. MO repre- 248

sents the total original memory. MQ represents the 249

total quantized memory. Final reduction percent- 250

age (FPR) and compression ratio (CR) is defined 251

as follows: 252

FPR = 100×
(
1− MO

MQ

)
(2) 253

254

CR =
MQ

MO
(3) 255

3.1.2 Objective 256

Q(w) represents the quantization function applied 257

to the weights w. L(w,D) is the loss function of 258

the model, where D is the dataset. R(w,Q(w)) is a 259

regularization term that measures the quantization 260

effect, the norm of the difference between origi- 261

nal and quantized weights. λ is a regularization 262

parameter that controls the trade-off between the 263

loss minimization and the quantization effect. The 264

optimization problem is formulated using argmin 265

as follows: 266
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ŵ = argmin
w

(A+ λB) (4)267

268
A = L(Q(w), D) , B = R(w,Q(w)) (5)269

This formulation balances loss function min-270

imization while maintaining perplexity and pro-271

motes significant quantization of the weights with272

a greater compression ratio.273

3.2 Correlation-based mixed precision274

quantization (CMPQ)275

Correlation-Based Mixed Precision Quantization276

(CMPQ) is our first innovative approach to opti-277

mizing large language models. This technique uses278

canonical correlation analysis (CCA) to assess the279

sensitivity of each layer in a model by examin-280

ing the correlation between different layers. By281

measuring how changes in one layer affect other282

layers, CMPQ can determine which layers are most283

sensitive to alterations and, consequently, require284

higher numerical precision during quantization. As285

explained in Algorithm 1, CMPQ first tokenizes286

and passes data through an LLM to extract outputs287

from each layer. These outputs are then analyzed288

using CCA to establish a correlation profile for289

each layer relative to others. Layers with lower290

correlations are highly sensitive and are assigned291

higher precision (16-bit) to preserve their computa-292

tional integrity and minimize information loss after293

quantization. Conversely, layers with higher cor-294

relations are less sensitive and quantized to lower295

precisions (8-bit or 4-bit) without significant loss296

of functionality. Leveraging K-means clustering297

as shown in Figure 2, we categorize the sensitivity298

of different LLM layers into three distinct groups299

and assign appropriate precision levels accordingly.300

A detailed explanation of CCA is shown in Ap-301

pendix A.302

3.3 Pruning-based mixed precision303

quantization (PMPQ)304

Pruning-Based Mixed Precision Quantization305

(PMPQ) is our second innovative approach to opti-306

mize the efficiency and performance of large lan-307

guage models by intelligently varying the precision308

of quantization across different layers based on309

their sensitivity to sparsity. As explained in Al-310

gorithm 2, this method begins with evaluating a311

baseline model’s accuracy on a specific task, such312

as a language modeling task, using a comprehen-313

sive dataset like WikiText for benchmarks. Sub-314

sequently, the model undergoes a systematic alter-315

Algorithm 1 CMPQ Algorithm
1: Load model, tokenizer, dataset→ Define quan-

tized model, Cr, Accuracy Drop.
2: for each layer i in number of layers do
3: Sensitivity using CCA → Calculate mean

sensitivity, output.
4: end for
5: for each layer i do
6: Precision Sensitivities → Quantized

weights.
7: end for
8: Evaluate model accuracy pre and post-

quantization.

la
ye

r_
0

la
ye

r_
1

la
ye

r_
10

la
ye

r_
11

la
ye

r_
12

la
ye

r_
13

la
ye

r_
14

la
ye

r_
15

la
ye

r_
16

la
ye

r_
17

la
ye

r_
18

la
ye

r_
19

la
ye

r_
2

la
ye

r_
20

la
ye

r_
21

la
ye

r_
22

la
ye

r_
23

la
ye

r_
3

la
ye

r_
4

la
ye

r_
5

la
ye

r_
6

la
ye

r_
7

la
ye

r_
8

la
ye

r_
9

Layers

0.000000

0.000283

0.000566

0.000849

0.001133

0.001416

0.001699

0.001982

0.002265

0.002548

Se
ns

iti
vi

ty

CMPQ OPT-350M

Layers
4 bit
8 bit
16 bit

Figure 2: Layerwise sensitivities distribution using the
CMPQ method.

ation where each encoder layer of an OPT model is 316

pruned independently to a predetermined sparsity 317

level to assess its impact on the model’s accuracy. 318

By leveraging the insights gained from sensitiv- 319

ity analysis as shown in Figure 3, PMPQ aims to 320

achieve an optimal balance between model size, 321

speed, and accuracy. The final model is then rig- 322

orously evaluated to confirm that the performance 323

metrics, such as classification accuracy and lan- 324

guage modeling perplexity, meet the desired stan- 325

dards. This method provides a path toward more 326

scalable and efficient AI systems, particularly in 327

environments where computational resources are 328

at a premium. Among these three methods, PMPQ 329

has demonstrated outstanding performance by com- 330

pressing the model 4X while only experiencing 331

a minimal accuracy drop of 0.3. PMPQ would 332

be an excellent method to integrate with NVIDIA 333

TensorRT-LLM for categorization tasks. 334

Applying sparsity in neural networks involves 335

generating a mask based on the weight magnitudes 336

relative to a predefined threshold, where wi are the 337
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Algorithm 2 PMPQ Algorithm
1: Load model, dataset.
2: Initialize data loader and device→ Evaluate

base accuracy.
3: for each sparsity level s do
4: for each layer l in OPT model do
5: Clone model→ Apply PMPQ to layer l

with sparsity s.
6: Evaluate model accuracy.
7: end for
8: Compute sensitivity→ Base accuracy - Cur-

rent accuracy
9: Output layer l sensitivity.

10: end for
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Figure 3: Layerwise sensitivities distribution using the
PMPQ method.

layer weights.338

The mask and threshold is determined by:339

maski =

{
1 if |wi| > threshold
0 otherwise

(6)340

341
threshold = quantile(|w|, sparsity level) (7)342

Here, w is the flattened weight tensor of a layer, and343

the sparsity level is the quantile used to compute the344

threshold. The accuracy of a model is calculated345

as the average of correctly predicted labels over all346

batches:347

Accuracy =
1

N

N∑
i=1

(ŷi == yi) (8)348

where N is the total number of batches, ŷi are the349

predicted labels, and yi are the true labels. The350

comparison results in a boolean value that’s aver-351

aged over all batches.352

3.4 Taylor Decomposition-based Mixed 353

Precision Quantization (TDMPQ) 354

Taylor Decomposition-based Mixed Precision 355

Quantization (TDMPQ) is our third innovative ap- 356

proach that enhances the computational efficiency 357

and performance of large language models like 358

OPT (Open Pre-trained Transformers) through se- 359

lective precision quantization as explained in Algo- 360

rithm 3. This method leverages Taylor’s decompo- 361

sition to assess the sensitivity of each layer within 362

the model to small perturbations in its inputs, which 363

serves as a basis for applying mixed precision quan- 364

tization strategies effectively. The primary focus 365

is on calculating the first-order derivatives of the 366

output concerning the inputs. By measuring how 367

the output of each layer responds to these perturba- 368

tions, we determine the sensitivity of that layer to 369

changes in its inputs. Layers that exhibit higher sen- 370

sitivity are considered crucial for maintaining the 371

model’s performance and are thus assigned higher 372

quantization precision (e.g., 16-bit). Conversely, 373

as shown in Figure 4, layers with lower sensitiv- 374

ity, demonstrating robustness to input variations, 375

are quantized at lower precision levels (e.g., 4-bit 376

or 8-bit), reducing the computational resources re- 377

quired without significantly impacting the overall 378

accuracy. Perturbation is applied to the weights as 379

follows: 380

W ′
param = Wparam + ϵ (9) 381

where W ′
param is the perturbed weight, Wparam is 382

the original weight of the first parameter of the 383

layer, and ϵ is the perturbation vector sampled from 384

a normal distribution with the same dimensions as 385

Wparam. After perturbation, the total variation (TV) 386

in loss is calculated as: 387

TV =
∑

batch∈Dataloader

L(model(Xbatch)) (10) 388

where L represents the loss function, and Xbatch 389

denotes the input batch. 390

The sensitivity of a layer is computed using the 391

total variation: 392

Sl =
Total Variation

N
(11) 393

where N is the total number of samples in the 394

dataset. After the sensitivity analysis, the original 395

weights are restored to prevent compound modifi- 396

cations across multiple layers: 397

Wparam ←Woriginal (12) 398
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Algorithm 3 TPMPQ Algorithm
1: Load model, dataset→ Initialize data loader

on device.
2: for each layer i in model do
3: Store original state→ Perturb first parame-

ter.
4: Compute loss variation across batches →

Restore original layer state.
5: end for
6: Calculate and output normalized sensitivity for

each layer.
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4 Experiments Details399

4.1 Datasets400

We evaluated our model using two large-scale401

datasets, WikiText (Merity et al., 2016) and Imdb402

(Maas et al., 2011). WikiText is a language model-403

ing dataset with over 100 million tokens extracted404

from the set of verified goods and featured arti-405

cles on Wikipedia. IMDB is a binary classification406

dataset consisting of sentiment data for movie re-407

views.408

4.2 Baselines and Evaluation Metrics409

We compare our method with the previous state-410

of-the-art methods on WikiText and IMDb. To411

evaluate the performance of each method (PMPQ,412

CMPQ, TDMPQ), we use the three standard met-413

rics: Compression ratio (Cr), Accuracy drop (Ad),414

and Perplexity Drop (Pd). A higher compression415

ratio with a lesser accuracy drop indicates better416

performance.417
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Figure 5: Comparision of accuracy drop of different
types of BERT models using CMPQ, PMPQ, TDMPQ
with FP16.
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Figure 6: Comparision of accuracy drop of different
types of OPT models using CMPQ, PMPQ, TDMPQ
with FP16.

4.3 Experimental Setup and Results 418

Our experiments used Amazon SageMaker, lever- 419

aging instances optimized explicitly for machine 420

learning tasks. To execute the OPT-1.3B and OPT- 421

2.7B models, we utilized the g4dn.12xlarge in- 422

stance, which provided the necessary computa- 423

tional power and memory to train and test our mod- 424

els efficiently. Amazon SageMaker enabled scal- 425

able deployment and facilitated the management of 426

computational resources, ensuring consistent per- 427

formance throughout our experiments. A detailed 428

explanation of the hardware used and results is 429

shown in Appendix B. 430

4.4 Superior Performance of our 431

Quantization Methods Over FP16 432

The methods in CPTQuant consistently show lower 433

accuracy drops compared to the FP16 method 434

across several BERT and OPT models. This in- 435

dicates CPTQuant’s higher effectiveness in main- 436

taining the model’s performance post-quantization. 437

This is crucial for applications where preserving the 438

model’s accuracy is vital, such as tasks requiring 439

high reliability and precision. In models like OPT- 440

1.3B, CMPQ exhibits an accuracy drop of just 0.02 441

compared to FP16’s more significant drop of 0.4, 442
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Figure 7: Comparision of the compression ratio of different types of BERT and OPT models using CMPQ, PMPQ,
TDMPQ with FP16.

Model OPT 125M OPT 350M OPT 1.3B
First 30% Layers 3.573 4.108 7.681
Mid 30% Layers 3.183 3.451 5.724
Remaining Layers NaN 3.662 3.662

Table 1: Average Standard Deviation from Mean Sensitivity across different OPT Model sizes (125M, 350M, 1.3B,
2.7B), segmented by first 30%, middle 30%, and remaining layers.

2.0 2.5 3.0 3.5 4.0 4.5
Speedup (x times)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Ef
fic

ie
nc

y

Speedup vs Efficiency by Quantization Method
Method

CMPQ
PMPQ
TDMPQ
FP16

Figure 8: Comparision of speed and efficiency of
CMPQ, PMPQ, TDMPQ with FP16.

demonstrating CMPQ’s superior ability to main-443

tain model precision under quantization as shown444

in Figure 5 and Figure 6. Table 1 shows different445

OPT models with average standard deviation from446

mean sensitivity segmented by first 30%, middle447

30%, and last remaining layers.448

4.5 Increased Compression Ratios449

Figure 7 results show that this method maintains450

better accuracy and provides higher compression451

ratios than FP16. This suggests that these methods452

are more efficient in reducing model size without453

compromising much on performance. Higher com-454

pression ratios are beneficial for deploying models455

on devices with limited storage and processing ca-456

pabilities, such as mobile devices and embedded457

systems. TDMPQ stands out by achieving a com-458

pression ratio of 4.53 in the Opt-1.3B model on the 459

WikiText dataset, which is significantly higher than 460

FP16’s ratio of 2.35, underscoring TDMPQ’s effi- 461

ciency in data reduction while preserving essential 462

model characteristics. 463

4.6 Model-Specific Quantization Suitability 464

Figure 8 and other results indicate that the effec- 465

tiveness of a quantization method can vary signif- 466

icantly between different models. For example, 467

some strategies that work well with OPT-350M 468

might perform less effectively with OPT-2.7B. This 469

highlights the importance of selecting a quantiza- 470

tion method tailored to each model’s specific char- 471

acteristics and requirements, ensuring optimal per- 472

formance and efficiency. Despite the high compres- 473

sion ratios, PMPQ in the OPT-2.7B model keeps 474

the perplexity drop to a minimal five on the Wiki- 475

Text dataset, far better than the ten observed with 476

FP16, indicating a solid balance between compres- 477

sion and performance retention. The detailed com- 478

parison in Table 2 of all the model performances 479

with our three strategies and the FP16 benchmarked 480

model with IMDB and WikiText data summarises 481

the efficiency of CPTQuant. 482

5 Conclusion 483

In this paper, we propose CPTQuant, a package 484

of three novel mixed precision quantization tech- 485

niques that surpass the constraints of existing ap- 486

proaches by diminishing the complexity of imple- 487

mentation while enhancing the model’s compress- 488
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Model Method IMDB WikiText
Accuracy Drop Cr Perplexity Drop Cr

BERT base model CMPQ 0.03 2.18x 5 3.019x
PMPQ 0.03 4x 4 3.21x

TDMPQ 0.12 3.2x 8 3.644x
FP16 0.9 3.2x 12 2x

BERT large model CMPQ 0.0036 3.2x 2 3.055x
PMPQ 0.1 2.9x 7 3.45x

TDMPQ 0.0084 2.45x 6 3.7x
FP16 0.38 2x 12 2x

BERT multilingual base model CMPQ 0.01 3.1x 10 3.33x
PMPQ 0.00136 2.29x 5 2.17x

TDMPQ 0.0172 2.67x 7 3.85x
FP16 0.345 2x 12 2x

OPT-125M CMPQ 0.002 3.05x 6 2.91x
PMPQ 0.00184 3.59x 6 3.89x

TDMPQ 0.00184 3.15x 3 2.86x
FP16 0.4 2.5x 12 2x

OPT–350M CMPQ 0.004 2.81 7 4.33x
PMPQ 0.002 2.60x 6 3.85x

TDMPQ 0.002 3.25x 8 3.14x
FP16 0.3 2.5x 10 2x

OPT-1.3B CMPQ 0.02 2.57x 7 4.33x
PMPQ 0.01681 2.60x 8 3.85x

TDMPQ 0.017 4.53x 9 3.14x
FP16 0.4 2.35x 12 2x

OPT-2.7B CMPQ 0.0176 2.4x 6 4.25x
PMPQ 0.014 2.43x 5 3.88x

TDMPQ 0.015 4.55x 4 3.34x
FP16 0.3 2.5x 10 2x

Table 2: Comparison of model performance across CMPQ, PMPQ, TDMPQ, FP16 using IMDB and WikiText
dataset using accuracy drop, compression ratio, and perplexity drop.

ibility with minimal reduction in perplexity. We489

demonstrate that CPTQuant outperforms existing490

state-of-the-art post-training quantization methods491

in accuracy and computational efficiency. The492

PMPQ method achieves an 11% higher compres-493

sion ratio than other methods in grouping tasks,494

whereas TDMPQ attains a 30% more excellent495

compression ratio in language modeling tasks. Ad-496

ditionally, we provide CMPQ, PMPQ, and TDMPQ497

for convolution and transformer versions, respec-498

tively, to demonstrate the scheme’s satisfactory499

architecture generality. The larger model (OPT-500

1.3B) consistently shows higher standard devia-501

tions from the mean sensitivity than the smaller502

models (OPT-125M and OPT-350M) across all seg-503

ments. This suggests that larger models may have504

layers with more varied sensitivities, and this is505

due to more complex or diverse representations 506

learned by larger models or potentially more spe- 507

cialized layers that react differently depending on 508

the specific function they serve in the model. From 509

the analysis, we consider prioritizing CMPQ and 510

PMPQ for broader use across various NLP models. 511

Considering their generally lower error rates and 512

competitive performance metrics, further optimiza- 513

tions might be necessary for TDMPQ, particularly 514

in handling complex models like Llama-7B and 515

OPT-2.7B. 516
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Our experiments were limited to publicly avail-527

able datasets. Testing our current methods on528

large-scale language modeling datasets will pro-529

vide valuable insights. Due to computational chal-530

lenges, we couldn’t test our strategies on large-531

scale LLM models like Llama 2 7B, 13B, and 70B.532

In our future work, we plan to extend this work to533

large vision models like VILA-2.7B and language534

models like Llama-3 and Gemini 1.5 and further535

aim to implement targeted fine-tuning stages post-536

quantization. This will enable the model to adjust537

effectively to the modified head configurations by538

employing strategies such as differential learning539

rates on underperforming data segments. Then, the540

model can better adapt to these changes. These541

fine-tuning enhancements are designed to mitigate542

any potential accuracy declines resulting from the543

quantization of the heads, thereby enhancing the544

model’s overall performance.545

Ethical Impact546

We have used publicly available datasets to assess547

the performance of each strategy proposed in this548

research across different open-source pre-trained549

LLM models. Our research benchmarked various550

parameter sizes of the LLM model (from small to551

large) with Hugging Face FP16. Through this com-552

prehensive study, we could generalize our strategies553

and compare accuracy drop and compression ratio.554

CPTQuant addresses the environmental impact of555

large language models involving compute-intensive556

tasks. The proposed methodologies will help make557

LLMs energy efficient while preserving accuracy558

and making such large models to deploy efficiently559

to resource-constrained environments.560
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Appendix754

A Methods755

A.1 Canonical Correlation Analysis (CCA)756

Canonical Correlation Analysis (CCA) solves a757

specific optimization problem to identify linear758

combinations of features from different layers out-759

puts that are maximally correlated. The correlation760

coefficient obtained through this method is crucial761

for understanding the sensitivity or dependency762

of one layer’s outputs on another. This insight is763

particularly valuable for exploring the internal dy-764

namics of neural networks, offering a deeper look765

at how different layers interact and influence each766

other’s behavior.767

Find wX and wY to maximize768

corr(XwX ,YwY ), where:769

• X and Y are the feature matrices from two770

different layers,771

• wX and wY are the weight vectors to be772

found,773

• corr(·, ·) denotes the correlation function.774

Maximize:775

w⊤
XCXY wY (13)776

Subject to:777

w⊤
XCXXwX = 1 and w⊤

Y CY Y wY = 1
(14)778

where:779
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Figure 9: Accuracy Drop, Compression ratio, and Per-
plexity drop for IMDB and WikiText data across all
models.

• CXY is the covariance matrix between X and 780

Y, 781

• CXX and CY Y are the covariance matrices 782

of X and Y respectively. 783

B Experimental Settings and Results 784

For models like BERT, we used 4 Nvidia GeForce 785

GTX 1080 graphics cards. We also used the Py- 786

Torch accelerator package for parallel processing 787

using 4-GPU while training and inference. For 788

large models like OPT, we used Amazon Sage- 789

Maker g4dn.12xlarge instance. It has 48 vCPUs, 790

192.0 Memory (GiB), Intel Xeon Family, a Clock 791

Speed of 2.5 GHz, 4 GPUs, and 64 GB Video Mem- 792

ory. We spent around 200 USD on AWS usage for 793

our entire research work. Figure 9 shows the de- 794

tailed results with different metrics. 795
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