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Query Design for Crowdsourced Clustering:
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Figure 1: Pictorial description of the crowdsourced clustering system.

Abstract
Crowdsourced clustering leverages human input to group items
into clusters. The design of tasks for crowdworkers, specifically
the number of items presented per query, impacts answer quality
and cognitive load. This work investigates the trade-off between
query size and answer accuracy, revealing diminishing returns be-
yond 4-5 items per query. Crucially, we identify contextual bias in
crowdworker responses – the likelihood of grouping items depends
not only on their similarity but also on the other items present in
the query. This structured noise contradicts assumptions made in
existing noise models. Our findings underscore the need for more nu-
anced noise models that account for the complex interplay between
items and query context in crowdsourced clustering tasks.

CCS Concepts
• Human-centered computing → Empirical studies in collabora-
tive and social computing; • Computing methodologies → Cluster
analysis; • Information systems → Crowdsourcing.
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1 Introduction
Deep neural networks, from LeNet-5 [23] to ResNet [14], have
become indispensable, particularly after the unprecedented results of
AlexNet [21] in the 2012 ImageNet Large Scale Visual Recognition
Challenge [38]. The collection of large volumes of labeled data is a
critical step that has contributed significantly to the success of these
models. For example, ImageNet [10] contains 3.2 million labeled
images, a massive leap from the scale of previous datasets, such as
Caltech 256 [12], which had approximately 31, 000 labeled images.

One way to build such a large labeled dataset is hiring experts
or training ad hoc experts for the labeling task. However, this costs
money and time. Instead, researchers can take advantage of the
wisdom of crowds to solve this problem, that is, resort to crowd-
sourcing [37, 41], a method in which a crowd of nonexperts, known
as crowdworkers, assumes the labeling task. One may argue that
auto-labeling [48] or foundation model [36] can be used to label
a dataset. However, in the case where a highly specialized dataset
is required for a domain-specific task, utilizing crowdsourcing is
inevitable.

One aspect of crowdsourcing that cannot be overlooked is that
non-expert crowdworkers on platforms like Amazon Mechanical
Turk (AMT) [1] provide noisy answers. However, label quality is
crucial for the effectiveness of supervised algorithms. Therefore, it
is vital to formulate crowdsourcing tasks that are easy for nonexperts
to answer, minimizing noise, and maximizing information gathered
under a given budget.

1.1 Crowdsourced Clustering
While it is straightforward for nonexperts to label general classes
like “dog" or “cat", obtaining a more granular label, i.e. the specific
breed of a given animal, is challenging.
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Figure 2: Two types of queries: (a) direct labeling task and (b)
comparison task.

Consider the task of labeling images of different bird species. To
accurately label each bird with its specific species (Figure 2a), a
worker needs a certain level of expertise in identifying various bird
species, or they need to be trained—both of which are expensive
options. However, if we present a pair of bird images (Figure 2b) and
ask "Are these two birds from the same species?", the task becomes
considerably simpler than direct labeling. These pairwise compar-
ison queries are the building blocks of crowdsourced clustering
systems [11, 44, 47, 50].

A typical crowdsourced clustering system builds a graph from
the answers to the queries. Given a dataset consisting of 𝑛 items,
we construct a graph by treating each of the items in the dataset as
a node. The graph is represented by an adjacency matrix 𝐴. Each
column and row of 𝐴 corresponds to an item in the dataset, and
the entry 𝑖, 𝑗 of 𝐴, denoted as 𝐴𝑖 𝑗 , is an indicator of whether there
is an edge between the item 𝑖 and the item 𝑗 in the graph. That is,
𝐴𝑖 𝑗 = 1 if there is an edge between the item 𝑖 and the item 𝑗 and
𝐴𝑖 𝑗 = 0 otherwise. At the same time, having an edge between the
item 𝑖 and the item 𝑗 indicates that they are similar. Each entry,
whether containing a numerical value of 0 or 1, could be in two
states: observed or unobserved.

When a crowdworker decides that the item 𝑖 and the item 𝑗 are
from the same cluster, the corresponding entry 𝐴𝑖 𝑗 is observed and
filled with 1. Otherwise, the entry 𝐴𝑖 𝑗 is observed and filled with 0.
After the querying process is done, the matrix 𝐴 is fed to a graph
clustering algorithm, which outputs the clustering of the dataset. To
obtain the labels, we hire experts to label each cluster found.

A natural question we ask is "How should we design a query?"
Querying all entries is prohibitive since the number of queries is in
the order of O(𝑛2), where 𝑛 is the number of items in the dataset.
Therefore, we need to determine what to query. Should we query two
images at a time, thus filling one entry, or should we present three
images to fill three entries, or four images to fill six entries of the
adjacency matrix? In other words, should we present as many images
as possible per query to maximize the number of edges explored
and obtain better clustering? Or will the information demands of
these tasks exceed the processing capabilities of the crowdworkers
(cognitive overload)?

In addition to query design, we investigate the noise present
in the answers provided by the crowdworkers. The noise level in
the answers could be influenced not only by the abilities of the
workers and the task difficulty but also by the specific set of items
being queried, as human perception is highly context-dependent
(contextual bias).

Our contribution: We conducted experiments on AMT to empir-
ically assess the impact of cognitive overload and contextual bias
in crowdsourced clustering with multi-item queries. Our findings
demonstrate that the benefit of incorporating more items per query
diminishes after around 4-5 items, likely due to cognitive overload.
We also reveal a structured pattern in the "noise" of crowdworker
responses, where item grouping depends not only on pairwise sim-
ilarity but also on the broader query context and hierarchical rela-
tionships among the items. Additionally, we conduct simulations to
investigate the impact of query size on clustering results, as well
as address a gap in the literature focused primarily on pairwise and
triangle queries.

2 Related Works
2.1 Direct Labeling Query
Many works on the theoretical understanding of crowdsourcing
focus on labeling tasks, where crowdworkers are asked to label
items directly [9, 13, 17–19, 24, 34, 40? ? ]. [17, 18] adopted the
“spammer-hammer model”, which treats workers as a mixture of
“spammers”, who randomly answer the questions, and “hammers”,
who answer correctly. [24, 34] utilized methods from information
theory and coding theory to reconstruct the labeling from the answers
to the queries. [24] modeled noises from the crowdworker similar to
bit flipping. [34] considered noise as whether a query is answered
or not. [13] pointed out that although crowdworkers give incorrect
errors, some are more correct than others.

2.2 Comparison Query
Another line of work focuses on the comparison query, where crowd-
workers are asked to group the items by their similarity, which is
based on crowdworkers’ perception of them [2, 22, 25, 31, 42, 43,
45, 47]. [11] showed that the wisdom of crowds can be used for
crowd clustering. [47] studied clustering algorithms that work with
partially observed graphs and provided theoretical guarantees on
when clustering works in such scenarios. [31] introduced a frame-
work of using pairwise comparison comparison with Elo scoring
to reduce the variability and bias introduced by subjectivity. [2]
considers the clustering task over texts instead of images.

Methods in [25? ] tried to actively select images to be queried.
[43] present active crowdclustering, which does not rely on any
unknown parameters and can recover clusters regardless of their
sizes. [6] extends this work by implementing the algorithm and
conducting experiments on AMT.

[22] assumed that crowdworkers do not make mistakes, making
their method less practical. The method proposed in [45], known as
random triangle query, builds on top of [42] with a modification on
how the question is asked. To model the noises, the authors present
the conditional block model, which builds on top of the stochastic
block model.

2
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2.3 Cognitive Overload
The effect of cognitive overload has been studied extensively in the
field of social psychology and information seeking [5, 7, 16, 33].
[33] and [5] discuss cognitive overload as a "Less is More Effect"
in which people find it more difficult to draw comparisons when
confronted with a large number of options. [16] study the effect in the
setting of consumer behavior. The authors have found that consumers
prefer to purchase from a vendor that displays fewer options. [7]
identifies 4 key factors that impact the effect of cognitive overload
via meta-analysis in the field of consumer psychology.

2.4 Contextual Bias
Contextual bias is the “noise” within the answers provided by crowd-
workers that is a function of the set of items the crowdworkers are
exposed to in a query. [2] shows that having context introduced in
the task is beneficial. Yet, the authors did not investigate how much
context should be added.

Both [29] and ours work try to answer the question of how the
breadth of data affects the outcome of the model’s result. In our
work, however, the breadth concerns the set of items being shown
to crowdworkers, rather than being used by the model. For the
granularity aspect, [29] considers granularity as the level of detail
used (by the model) to explain a model’s decision. Conversely, we
treat granularity as the level of detail used by crowdworkers to make
their decision.

3 Crowdsourcing Study
3.1 Definitions
We refer to a human intelligence task (HIT) as a question that needs
human answer. Each HIT consists of multiple sub-tasks, to which
we refer as query.

3.2 Crowdsourced Clustering
Given a dataset of 𝑛 items, we crowdsource it to 𝑛𝑝 = 300 unique
crowdworkers that have more than 500 HITs approved and a HIT
approval rate greater than 95% on AMT. Each HIT consists of 𝑛𝑞
queries. Each query presents crowdworkers𝑚 (𝑚 ≪ 𝑛) items. When
a crowdworker accepts the task, our crowdsourced clustering system
selects𝑚 ·𝑛𝑞 items from the dataset uniformly at random. We present
𝑛𝑞 queries each with𝑚 items. Queries in the task present these items
sequentially to crowdworkers. That is, the first𝑚 items are shown in
the first query; the second𝑚 items are shown in the second query,
etc. Each query requires the crowdworkers to compare the𝑚 items
and group them by their similarity. When a query is answered, the
corresponding

(𝑚
2
)

entries in the adjacency matrix are filled. After
all HITs are completed, we apply spectral clustering [32, 35, 39]
with the number of clusters 𝐾 equal to the true number of clusters
on the adjacency matrix to obtain the clustering.

Since there are
(𝑛
𝑚

)
possible𝑚-item queries, with a limited num-

ber of queries that we can make on a budget, when we query a
random subset of 𝑚-item queries, the probability that two crowd-
workers work on exactly the same set of queries is very low. Note
that we do not repeat a query multiple times, seeking to denoise the
answers. This choice is informed by previous studies [44], which
have shown that for clustering partially observed graphs under a

Figure 3: Samples of the radio interface deployed on Amazon
Mechanical Turk with 𝑚 = 3 and Birds5 dataset. Instructions
are always shown on top of the page. Crowdworkers click on the
Next button to proceed to the next query.

given budget, the benefit of covering more edges outweighs the
benefit of marginally reducing noise in the entries from repeated
querying.

While filling out the entries of the adjacency matrix from multi-
item queries, it is possible for an entry to be observed multiple times.
In that case, we randomly pick an answer. From our empirical study,
we observe that the percentage in which an edge is queried 3 times
or more is less than 1%. There is no significant difference between
our choice and majoirty voting in terms of selecting repeated edges.

3.3 Cost
We conducted a pilot experiment for both interfaces with 𝑚 = 2
using the Dogs3 dataset. The average time for 20 crowdworkers
to complete 30 drag-and-drop queries was around 201.72 ± 97.91
seconds, whereas the average time to complete 30 radio queries was
approximately 122.54 ± 47.99 seconds. The reward for each drag-
and-drop task was set to $0.50, or approximately $8.92 per hour.
The reward for each radio-button task was $0.30, or approximately
$8.81 per hour.

3.4 Time span
We conducted our experiments in June 2023 and in January, February,
March, April, and June 2022. To save the budget, each batch of HITs
we created on AMT consists of only 9 HITs. We created a series of
batches for each experiment, totaling 300 HITs, and used the same
uniqueturker ID to try to prevent the cases where a crowdworker
works on our HITs multiple times. A batch of HITs is completed
within one day of creation.

3.5 Interface Design
In this section, we describe how the two interfaces work. We de-
fer the technical details of the implementation of the interfaces to
Appendix A.
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Figure 4: Sample of the drag-and-drop interface deployed on
Amazon Mechanical Turk with 𝑚 = 2 and Dogs3 dataset. In-
structions are always shown on the top of the page. Crowdwork-
ers can drag the images to an existing cluster or form a new
cluster.

Radio-button Interface. We included a modified radio-button in-
terface, similar to that used in [45], to maintain continuity with prior
work. However, our version presents queries one at a time (Figure
3), allowing us to track individual query completion times. The task
instructions remain at the top of the page and a progress indicator
shows the number of remaining queries. Crowdworkers can provide
feedback upon completion. A limitation of this interface is scala-
bility. As𝑚 increases, the number of possible groups to be shown
as radio buttons increases, potentially overwhelming crowdworkers.
Figure 14 in the Appendix illustrates this issue.

Drag-and-Drop Interface. To overcome the scaling limitations of
the radio-button interface, we developed a drag-and-drop interface
(Figure 4). The images are presented at the top, and the crowdwork-
ers create groups by dragging and dropping them to the desired
locations. At the end of the HIT, feedback can be submitted to us.
To help crowdworkers familiarize with the interface, we introduce a
tutorial and practice stage to the crowdworkers. Details regarding
the tutorial and practice stage are deferred to Appendix B.

3.6 Datasets
Following previous work [45], we use the following datasets:
Dogs3: consists of images of 3 breeds of dogs from the Stanford
Dogs dataset [20]: Norfolk Terrier (172), Toy Poodle (150), and
Bouvier des Flandres (151), totaling 473 dog images. Figure 5 (a) -
(c) displays selected images from each breed in the Dogs3 dataset.
Birds5: consists of images of 5 species of birds from the CUB-200-
2011 dataset [49]: Laysan Albatross (60), Least Tern (60), Arctic
Tern (58), Cardinal (57), and Green Jay (57). Additionally, it includes
50 random species acting as outliers, resulting in 342 bird images.
Birds5+: is used to investigate the effect of contextual noise. It

is constructed manually by adding 20 Common Terns from the
CUB-200-211 dataset to Birds5 dataset. While selecting these Terns,
we ensure the birds in these images are standing, allowing us to
minimize noise associated with varied bird postures. Figure 5 (d) -
(i) showcase selected bird images from each species in Birds5 and
Birds5+ dataset.

3.7 Evaluation Metric
We use Variation of Information (VI) [26] to quantify clustering
accuracy. VI is a metric that compares two clustering results on the
same dataset. A smaller VI value indicates a closer match between
the two clusterings, and a VI value of 0 denotes an identical cluster-
ing result. We also gather worker edge error rate: the edge error rate
of each individual crowdworker.

3.8 Effect of Cognitive Overload in Multi-item
Queries

Research conducted by Vinayak and Hassibi [45] suggests that in-
creasing the number of items𝑚 in each query would theoretically
improve the performance of clustering. However, we hypothesize
that when𝑚 exceeds a certain threshold, we would observe a phe-
nomenon of diminishing returns due to the cognitive overload im-
posed on the crowdworkers. To empirically test our hypothesis, we
experiment on AMT with𝑚 ∈ {2, 3, 4, 5, 6, 7, 8}. Although we cannot
fully ensure that crowdworkers in different experiment settings ex-
perience a similar workload, we try our best to balance the workload
and budget of each experiment by fixing the total number of images
shown in a HIT by 60 1.

3.9 Effect of Contextual Bias
We hypothesize that errors made by crowdworkers depend not only
on the design of the query but also on the items being queried, as
crowdworkers may classify images based on different similarity
perception hierarchy induced by the query context. To investigate
this contextual bias effect, we manually select a set of items, among
which some, despite belonging to different ground-truth clusters, are
more similar to each other than to the rest.

We designed three experiments to illustrate the effect of contex-
tual bias. For each of these three experiments, we ask 50 crowdwork-
ers to complete 20 queries, where each query involves 3 images of
different bird species. Across the 50 crowdworkers, we fix the (un-
ordered) set of images presented in each query. The only difference
between the experiments was the three species shown per query:
Experiment 1 (lt-at-ct): Least Tern (lt), Arctic Tern (at), Common
Tern (ct),
Experiment 2 (lt-at-al): Least Tern (lt), Arctic Tern (at), Laysan
Albatross (al),
Experiment 3 (lt-at-ca): Least Tern (lt), Arctic Tern (at), Cardinal
(ca).

Let Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡, 𝑐𝑡) denote the probability of observing an
edge between a Least Tern (lt) and an Arctic Tern (at) given that
the 3 images in the query are Arctic Tern (at), Least Tern (lt), and
Common Tern (ct). Similarly, we define Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡, 𝑎𝑙) and
Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡, 𝑐𝑎).

1When𝑚 = 7, 8, we set the number of queries to 9 and 8, respectively.
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Figure 5: (a) - (c) sample dogs (Norfolk Terrier, Toy Poodle, Bouvier des Flanders) of each species in the Dogs3 dataset. (d) - (i) sample
birds (Albatross, Least Tern, Arctic Tern, Cardinal, Green Jay, Common Tern) of each species in the Birds5 and Birds5+ dataset.

We aim to show that as the dissimilarity between the third image
and the most similar pair of images in a query increase, the likelihood
that the most similar pair being clustered together also increases. For
example, Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡, 𝑎𝑙) ≤ Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡, 𝑐𝑎), as a Cardinal is
more dissimilar to the pair of Least Tern (lt) and Arctic Tern (at) than
an Albatross (al) is. To obtain crowdworkers’ perceptions regard-
ing the similarity between the bird species in Birds5+ dataset, we
query 20 crowdworkers for each pair of species. Each crowdworker
answers 30 pairwise queries, with images randomly selected from
the two pairs of species in Birds5+. Among the 30 pairs, 15 pairs
involve images from different species, and the remaining 15 pairs
involve images from the same species.

4 Results
4.1 Effect of Cognitive Overload in Multi-item

Queries
We present the results obtained from the multi-item query experiment
conducted using the drag-and-drop interface. For each experiment,
we queried 300 unique crowdworkers. We defer the comparison
between the two interfaces to Appendix C.5.

Clustering Performance. Figure 6 (a) reveals the performance of
the clustering algorithms in terms of VI for Dogs3 and Birds5 . We
note that for both datasets, VI reaches its minimum when𝑚 is greater
than or equal to 3. However, we begin to experience diminishing
returns, especially in the Dogs3 dataset. Figure 6 (b) shows the
worker edge error rate in the experiment, where a similar pattern of
diminishing returns can be observed.
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Figure 6: Comparison of (a) time per query, (b) variation of
information (VI), and (c) worker edge error rate between the
Dogs3 and Birds5 datasets using the drag-and-drop interface,
while varying the number of images per query.
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Figure 7: Distribution of worker edge error rate for each number
of items per query (𝑚) on Dogs3 and Birds5 dataset.

Worker Edge Error Rate. Figure 7 illustrates the distribution of the
edge error rate for each crowdworker on Dogs3 and Birds5 dataset
for each number of items per query𝑚. We observe that the majority
of the crowdworkers are better than random guessers: the worker
edge error rate is less than 0.5.

Edge Density between Clusters. Figure 8 shows the empirical
edge density within and between clusters on Dogs3 dataset. The
values on the main diagonal represent the empirical probability of
observing an edge given that the two images are from the same clus-
ter. The other values on the 𝑖 th, 𝑗 th column represent the empirical
probability of observing an edge given that the two images are from
clusters 𝑖 and 𝑗 .

From these matrices, we observe that the probability of observing
an edge between two different clusters when 2 < 𝑚 < 5 is smaller
than when 𝑚 = 2. This means that the adjacency matrix obtained
from crowdworkers exhibits reduced ambiguity across different clus-
ters. However, when 𝑚 ≥ 5, these probabilities start to increase,
indicating a diminishing return. This aligns with the diminishing re-
turn we observed earlier. Similar pattern is shown on Birds5 dataset.
We defer the presentation of the corresponding matrices to Appendix
C.3.

Summary. Our results demonstrate that while increasing the query
size theoretically improves crowdclustering performance, in practice,
it provides no additional benefit to requesters when𝑚 is larger than
4 or 5. We posit cognitive overload as an explanation. The task
of comparing excessive images simultaneously (Figure 15 in the
Appendix) overburdens crowdworkers.

4.2 Effect of Contextual bias
Answer Distribution. Table 1 presents the empirical observation
probability matrix for the three experiments aimed at revealing the
contextual bias of crowdworkers. Each column corresponds to an
experiment, while each row is an answer pattern. The three numbers
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Figure 8: Empirical edge density matrices obtained from querying 300 crowdworkers using the drag-and-drop interface. Matrices
(a)-(g) correspond to the Dogs3 dataset, with𝑚 also varying from 2 to 8. The ± indicates the confidence intervals calculated as described
in Section 5.2.

Answer lt-at-ct lt-at-al lt-at-ca

1 1 1 0.152 ± 0.012 0.048 ± 0.007 0.030 ± 0.001
1 1 0 0.157 ± 0.012 0.443 ± 0.012 0.556 ± 0.016
1 0 1 0.192 ± 0.013 0.113 ± 0.010 0.062 ± 0.08
0 1 1 0.424 ± 0.016 0.112 ± 0.010 0.086 ± 0.009
0 1 2 0.075 ± 0.001 0.284 ± 0.015 0.266 ± 0.014

Table 1: Empirical observation probability matrix for triangle
query. Each column involves 1000 observations. The three num-
bers in the first column indicate the answer to the query. 0 1 2
means all three images are from different clusters; 1 0 1 means
that the first and the third images are from the same cluster, etc.

on the first column of each row represent an answer pattern. Where
items at the positions where the numbers are the same are clustered
together. For instance, 1 1 1 indicates all items are clustered together,
while 1 1 0 means that the first two items form a cluster. Although the
order of items varied between crowdworkers, we sort the items con-
sistently for analysis. The sorted item order aligns with experiment
names. For example, in experiment lt-at-ct, Least Tern (lt) is first,
followed by Arctic Tern (at) and Common Tern (ct). Additionally,
the sum of the first two rows for each column is the empirical esti-
mate of the probability that lt and at get clustered together given the
three items in the queries are lt, at, and ★ (Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡,★)), for
★ ∈ {𝑐𝑡, 𝑎𝑙, 𝑐𝑎}. For instance, the sum of the first two rows in the first
column provides the empirical estimation for Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡, 𝑐𝑡).

Similarity Perception. Table 2 reveals the empirical observation
probability of pairs of images from different species in the Birds5+ dataset
being clustered together. We treat these values as a surrogate for
population perception of the similarity between each pair of species
in the Birds5+ dataset. The higher the value, the more similar people
consider the two species. From the table, we observe that Arctic
Tern (at) and Common Tern (ct) are the most similar pair. This is
what we expected, as shown in Figure 5, the difference between at
and ct is subtle. Similarly, Least Tern (lt) and Cardinal (ca) are the
most dissimilar pair, as lt and ca have completely different plumage.

With these values, we obtain the similarity between a species and
a pair of species by averaging the empirical observation probability
between the species and each in the pair. For example, the similarity
between ca and the pair lt-at is lt-ca + at-ca

2 = 0.060+0.093
2 = 0.0765.

Context Biases Similarity Perception. Figure 9 (a) reveals the
relationship between the similarity of★ ∈ {𝑐𝑡, 𝑎𝑙, 𝑐𝑎} to the pair 𝑙𝑡-𝑎𝑡

and Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡,★). It can be seen that as the similarity increases,
the probability that lt and at are clustered together decreases. For
example, as the third image changes from Cardinal (ca) to Common
Tern (ct), the similarity of the third image to 𝑙𝑡-𝑎𝑡 pair increases
(since they all are Terns). Yet, the probability that lt and at get
clustered together decreases.

We also perform bootstrapping on the observations from the
three experiments by subsampling 75% of all observations 1000
times with replacement. Figure 9 (b) illustrates the distribution of
Pr(𝑙𝑡-𝑎𝑡 | 𝑙𝑡, 𝑎𝑡,★) obtained by bootstrapping. This figure, together
with Figure 9 (b), shows that when the third image is more similar
to the pair lt, at, crowdworkers are more likely to differentiate the
Terns, indicating that they focus on a different level in the hierarchy
of details within different contexts.

Revisiting Table 1, the first column presents the empirical prob-
ability of each answer for Experiment 1: Least Tern (lt), Arctic
Tern (at), Common Tern (ct). Since the at-ct pair is the most sim-
ilar, the majority of crowdworkers group them together. However,
when we see the second column, the most similar pair becomes lt-at.
Therefore, the majority of people group lt-at together. When com-
paring the probability of grouping lt-at (sum of the first two rows)
in the context of lt-at-ct, the value was much higher in the context
of lt-at-al, and even higher in lt-at-ca. Figure 23 in the Appendix
illustrates three sample triangle queries. When the third bird is much
different from the first two birds, crowdworkers perceive on a higher
level of similarity hierarchy, thus overlooking the minor differences
between the two items. When the third bird is similar to the first two
birds, crowdworkers consider similarity on a lower-level hierarchy,
paying more attention to the details.

Summary. We argue that although technically, grouping lt-at to-
gether is incorrect, it is less erroneous than grouping at-al or at-ca
together since they still differentiate Terns at a higher level from the
other species. Therefore, it is important to reflect this phenomenon
when modeling crowd noise.

5 Simulation Study
We use simulations to demonstrate that existing models cannot fully
capture crowdworker errors, especially those due to contextual bias.
The conditional block model (CBM) proposed in [45] has the po-
tential to incorporate contextual bias in a crowdsourced clustering
setting. In the following subsections, we define CBM, describe CBM
simulation settings, and present CBM simulation results.
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pair type lt-at lt-ct lt-al lt-ca at-ct at-al at-ca

probability 0.410 ± 0.028 0.427 ± 0.029 0.120 ± 0.019 0.060 ± 0.014 0.767 ± 0.024 0.210 ± 0.024 0.210 ± 0.024

Table 2: Empirical observation probability of pairs of images from different species in Birds5+ being grouped together. Each type of
pair is asked to 20 different people 15 times.
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Figure 9: (a) similarity between★ and lt-at vs. Pr(𝑙𝑡-𝑎𝑡 |{𝑙𝑡, 𝑎𝑡,★})
for ★ ∈ {𝑐𝑎, 𝑎𝑙, 𝑐𝑡} (b) distribution of Pr(𝑙𝑡-𝑎𝑡 |{𝑙𝑡, 𝑎𝑡,★}) from
bootstrapping 75% of answers, for ★ ∈ {ca, 𝑎𝑙, 𝑐𝑡}.

Definition 5.1 (Conditional Block Model). A conditional block
model (CBM) over a dataset of 𝑛 items that are partitioned by 𝐾
disjoint clusters and outliers (C1, C2, . . . , C𝐾 ) is a generative model
parametrized by an edge density matrix 𝑃 ∈ [0, 1]𝐾 . Let cluster(𝑖) :=
𝑘 if 𝑖 ∈ C𝑘 . Then, given𝑚 items, for each (𝑖, 𝑗) of all

(𝑚
2
)

pairs of
items, we draw an edge with probability 𝑀cluster(𝑖 ),cluster( 𝑗 ) . Note
that not all possible generated configurations of these edges are
admissible. In that case, we regenerate the configurations until an
admissible one.

The above definition of CBM extends the CBM proposed in
[45], which only accounts for three items per query, to multi-item
queries. We simulate clustering results with different values of 𝑚
and different edge density matrices 𝑃 .

Remark 5.2. Given𝑚 items, there are 2(
𝑚
2 ) possible ways of draw-

ing edges among these items. However, not all configurations of
these edge drawings are "reasonable". For example, in the case of
𝑚 = 3, there are only five that are admissible (Figure 26a) out of the
eight possibilities. This is due to the transitivity of "belonging to the
same cluster". When item 𝑖 and item 𝑗 are put in the same cluster
and item 𝑗 and item 𝑘 are in the same cluster, it is implied that item 𝑗

and 𝑘 are in the same cluster. Therefore, in CBM, when the outcome
of drawing edges leads to an inadmissible configuration (Figure
26b), the CBM redraws the edges until an admissible configuration
is obtained.

5.1 Simulation Settings
Let 𝑟 denote the proportion of edges observed (to all possible edges
in the graph). For the first setting, we fix 𝑟 = 0.15, the value used
in [45]. In the second setting, we fix 𝑟 indirectly by fixing the total
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Figure 10: Configurations for a three-item query that are (a)
admissible and (b) inadmissible.

number of edges explored at 9000, which is the number of edges ex-
plored in our crowdsourcing experiments. This way, we can compare
the simulated results with our crowdsourcing experimental results.

Setting 1: varying 𝑝. We construct an edge density matrix whose
main diagonal is 𝑝 and the off-diagonal is 𝑞. We vary 𝑝 from 0.55 to
1, with a step size of 0.05. We set 𝑞 = 0.25, 𝐾 = 3, and 𝑛 = 300. This
is similar to the setting in [45]. For each 𝑝, we run the simulation
ten times.

Setting 2: using empirical edge density matrix. We use the
empirical edge density matrices obtained from our crowdsourcing
experiments with the drag-and-drop interface and𝑚 = 2, as our edge
density matrix 𝑃 . We use 𝑃 to simulate the edge density for𝑚 ≥ 2,
with each𝑚 10 times. We run these simulations with settings similar
to our experiments: 𝑛 = 473, 𝐾 = 3 for Dogs3 and 𝑛 = 342, 𝐾 = 6
2 for Birds5. Lastly, we ensure the budget across different 𝑚 by
fixing the total number of edges explored to 9000, and the number
of queries for each𝑚 is 2 9000𝑚 .
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Figure 11: CBM simulation results. The percentage of edges
explored (𝑟 ) is 0.15. (a) Variation of Information (VI) and (b)
edge error rate at different (inter-cluster) edge probability (𝑝)
when the number of items to be clustered is 300, the number of
clusters is 3, and 𝑞 = 0.25, while varying edge density inside the
clusters 𝑝.

2We treat the outliers as one cluster.
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Figure 12: (a) Variation of Information (VI) and (b) edge error
rate at different number of images per query (𝑚) when the edge
density matrix comes from the crowdsourcing experiment. We
fix the total number of edges explored to 9000.
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Figure 13: Empirical edge density matrices obtained from simu-
lation using the empirical edge density obtained from drag-and-
drop interface when𝑚 = 2. Matrices (a)-(g) correspond to the
Dogs3 dataset, with𝑚 ranging from 2 to 8. The ± indicates the
confidence intervals calculated as described in Section 5.2.

5.2 Simulation Results
Figure 11 shows the variation of information (VI) and edge error
rate as we vary the edge probability (density). It can be observed
that as the number of items per query, 𝑚, increases, both VI and
edge error rates decrease. However, the magnitude of improvement
diminishes as𝑚 increases, indicating a diminishing return effect.

Figure 12 illustrate the relationship between 𝑚 and VI as well
as 𝑚 and the edge error rate. We observe that as 𝑚 increases, the
magnitude of improvement of the two errors decreases, which can
be considered as some diminishing return effect. However, there is
still a difference between what we experimentally observed, where
the diminishing return effect is more significant.

Figure 13 shows the edge density matrices obtained from the
simulation by weighted-averaging each entry across the 10 edge
density matrices. We use weighted-average here because the num-
ber of times an entry is observed for each edge density matrix is
different. To help us compare these matrices to the ones we obtained
from the experiment, we use Hoeffding’s inequality to construct a
concentration bound. Results regarding simulations on Birds5 and
the concentration bound are deferred to the Appendix E.

6 Discussion
Our findings confirm prior literature by demonstrating the benefits of
multi-item queries in crowdsourced clustering, but with diminishing
returns beyond 4-5 items per query. This aligns with the established
"magical number" concept in human information processing capacity
[8, 28]. Additionally, our simulations, extending the Conditional
Block Model (CBM) [45] to larger query sizes, reveal that the model
does not fully capture this diminishing returns effect, suggesting a
need for improved, more nuanced models for multi-item queries.

7 Conclusion
We examine the impact of cognitive overload and contextual bias
of crowdworkers using simulations based on the conditional block
model (CBM) and experiments conducted on AMT. Our simulations
demonstrate that CBM does not fully explain the noise patterns
observed in crowdsourcing. Moreover, in the experiments, we show
that while there are advantages of having more items per query, these
advantages tend to diminish after approximately 4 or 5 items per
query. Furthermore, we discover that the noise in the answers varies
depending on the specific items included in the query. The grouping
of two items together relies not only on their relative similarity but
also on the other item in the query.

Our results highlight the need for a more nuanced approach to
modeling noise in crowdsourcing tasks, as current models fail to
capture the underlying structure within the noise, which is crucial
in practical applications. In the future, we will provide a more theo-
retical analysis of the guaranteed recovery of the actual adjacency
matrix.
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A User Interface
We develop our interface using React.js [27], which compiles into a static website.
We host our website on AWS S3 [4] and use AWS Lambda [3] to bridge the
connection between the static website and our database hosted on MongoDB
Atlas [30]. When a crowdworker accepts our HIT, he or she is given a link to our
website. To enhance the experiment’s efficiency, each crowdworker is required
to complete more than one query. When a crowdworker completes all queries,
their answers are saved to our dataset. Upon completion, the website generates a
unique identifier for the crowdworker. The crowdworker must input this identifier
into a text box in AMT before submitting this task on AMT. We use this unique
identifier to make sure that we only analyze answers submitted by crowdworkers
who submit this task 3.

B Crowdsourcing Study
B.1 Tutorial Stage
In the tutorial stage of the drag-and-drop interface, a series of prompts teach a
crowdworker how to manipulate the interface. At the end of the tutorial stage, the
crowdworker must accurately group a set of𝑚 items. Note that the set of items
shown in the tutorial stage is fixed for all crowdworkers; and they are manually
picked by us so that it is very easy for crowdworkers to give a correct grouping.

B.2 Practice Stage
After the tutorial stage, the crowdworkers need to complete 3 easy queries. Simi-
larly to the tutorial stage, the items in the practice stage are fixed across crowd-
workers and are maually picked by us. For each practice query, a crowdworker
has 3 chances to give a correct grouping. If an incorrect grouping is given, our
system will prompt the crowdworker that a mistake is made and they need to redo
the practice query.

3We host our website on the Internet. Technically, everyone can access the website if
they know the URL to it. Although this is unlikely, we still add this step to ensure that
we only analyze those crowdworkers who accepted the task. We do so by checking if
the unique ID of an answer exists in AMT.
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Figure 14: Samples of the radio interface deployed on Amazon Mechanical Turk with𝑚 = 4 and Dogs3 dataset. Instructions are always
shown on top of the page. Crowdworkers need to click on the Next button to proceed to the next query. As we can see, when𝑚 = 4, the
number of radio buttons is 15. These many radio buttons may induce cognitive overload.

C Additional Results
C.1 Distribution of time per query
Figure 16 illustrates the distribution of time per query on Dogs3 datasets. Figure
17 illustrate the distribution of time per query for datasets. We can observe that
the distributions shift to the right when𝑚 increases in the two datasets.

C.2 Distribution of worker edge error rate
Figure 18 and 19 illustrates the distribution of the edge error rate for each crowd-
worker on Dogs3 and Birds5 dataset for each number of items per query𝑚. We
observe that the majority of the crowdworkers are better than random guessers:
the worker edge error rate is less than 0.5.

C.3 Empirical edge density
Figure 20 and 21 show the empirical edge density both within and between
clusters. The values on the main diagonal represent the empirical probability
of observing an edge given that the two images are from the same cluster. The

other values on the 𝑖-th row, 𝑗 -th column represent the empirical probability of
observing an edge given that the two images are from clusters 𝑖 and 𝑗 .
From these matrices, we observe that as𝑚 increases, the probability of observing
an edge between two different clusters decreases. This means that the adjacency
matrix obtained from crowdworkers exhibits reduced ambiguity across different
clusters. Although the edge probability between images from the same clusters
also decreases as 𝑚 increases, the benefits of reducing the ambiguity across
different clusters outweigh this. This is because exploring more edges, when𝑚
is larger, with some level of uncertainty can be more beneficial than gathering a
smaller number of high-quality, precise edges [46]. However, when𝑚 ≥ 4, the
ambiguity between difference clusters reemerges. This aligns with the diminishing
return we observed earlier.

C.4 Cost
Figure 25a illustrates the amount of time crowdworkers spend on each query and
exhibits a roughly linear relationship with the number of images per query, for
both Dogs3 and Birds5 datasets. Since we fixed the total number of images each
crowdworker could see (except for𝑚 = 7, 8), we compensated crowdworkers
the same amount of money across different𝑚. Figures 16 and 17 illustrate the

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Query Design for Crowdsourced Clustering:
Effect of Cognitive Overload and Contextual Bias Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Figure 15: Sample of the drag-and-drop interface deployed on Amazon Mechanical Turk with𝑚 = 2 and Dogs3 dataset. Instructions
are always shown on the top of the page. Crowdworkers can drag the images to an existing cluster or form a new cluster.

distribution of time per query for the two datasets. We can observe that the
distribution moves to the right when𝑚 increases in the two datasets.

C.5 Other observations
Our Radio vs. Prior Radio interface. Using the Dogs3 dataset, we were able
to replicate the prior results from [45], which demonstrated better clustering
performance with triangle queries compared to edge queries. Additionally, we
also observed diminishing returns in VI with increasing 𝑛𝑝 (the number of items
per query). Specifically, when moving from 2 to 4 images per query, the VI
worsened. This can be attributed to the mental exhaustion caused by the excessive
options presented in the radio button interface (as shown in Figure 14), which can
lead to misclicks and errors. We again note that for𝑚 ≥ 5, radio button interface
is too cumbersome. Hence, we design the drag-and-drop interface (Section 3.5).

Figure 22 illustrates the empirical edge density within and across clusters. We
observe a similar pattern to the results reported in [45] and in Section 4.1. As𝑚
increases from 2 to 3, the adjacency matrix obtained from crowdworkers exhibits
reduced ambiguity across different clusters. However, at𝑚 = 4, the ambiguity
strikes back. This finding aligns with the diminishing returns observed in the
table.

Radio vs. Drag-and-drop interface. Tables 3 and 4 compare the crowdcluster-
ing outcomes between the radio and the drag-and-drop interfaces on the Dogs3 and
Birds5 datasets, respectively. For both datasets, the variation of information (VI) is
lower with the drag-and-drop interface compared to the radio interface, indicating
a significant impact of interface design on noise levels and subsequent denoising
performance. However, it should be noted that the drag-and-drop queries take
longer to complete, which could increase the total collection time and expenses
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Figure 16: Distribution of time per query for Dogs3 dataset. (a)-(g) correspond to the number of items per query𝑚 from 2-8.

(a) (b) (c) (d)

(e) (f) (g)

Figure 17: Distribution of time per query for Birds5 dataset. (a)-(g) correspond to the number of items per query𝑚 from 2-8.

for requesters. C.6 Hierarchy of Birds
Figure 23 illustrates the three triangle queries. When the third bird is much
different from the first two birds, crowdworkers perceive on a higher level of
similarity hierarchy, thus overlooking the minor differences between the two
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Figure 18: Distribution of worker edge error rate for Dogs3 dataset. (a)-(g) correspond to the number of items per query𝑚 from 2-8.

(a) (b) (c) (d)

(e) (f) (g)

Figure 19: Distribution of worker edge error rate for Birds5 dataset. (a)-(g) correspond to the number of items per query𝑚 from 2-8.

items. When the third bird is similar to the first two birds, crowdworkers consider
similarity on a lower-level hierarchy, paying more attention to the details.

D Conditional Block Model
Definition D.1 (Stochastic Block Model). A stochastic block model (SBM) over
a dataset of 𝑛 items that are partitioned by 𝐾 disjoint clusters and outliers is
a generative model parametrized by 0 < 𝑝,𝑞 < 1. Given a pair of items 𝑖, 𝑗 ,
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Figure 20: Empirical edge density matrices obtained from querying 300 crowdworkers using the drag-and-drop interface. Matrices
(a)-(g) correspond to the Dogs3 dataset, with𝑚 also varying from 2 to 8. The ± indicates the confidence intervals calculated as described
in Section 5.2.

m
radio interface drag-and-drop interface

no.
unique edges

VI edge error rate time per query (sec.)
no.

unique edges
VI edge error rate time per query (sec.)

2 8,663 1.576 0.314 ± 0.005 5.356 ± 11.567 8,637 0.950 0.258 ± 0.005 6.952 ± 8.895
3 16,619 1.520 0.321 ± 0.003 7.207 ± 14.054 16,632 0.814 0.262 ± 0.003 10.828 ± 13.319
4 24,044 1.754 0.366 ± 0.003 10.656 ± 20.475 23,968 0.357 0.191 ± 0.002 16.626 ± 18.445

Table 3: Number of edges explored, VI for the clustering outcome, edge error rate, and mean completion time of a single question
among all crowdworkers who participate in the experiment using the radio interface and drag-and-drop interface on Dogs3 Dataset.

m
radio interface drag-and-drop interface

no.
unique edges

VI edge error rate time per query (sec.)
no.

unique edges
VI edge error rate time per query (sec.)

2 8,393 2.449 0.264 ± 0.003 4.779 ± 10.550 8,341 1.378 0.157 ± 0.004 6.694 ± 13.259
3 15,513 2.233 0.232 ± 0.003 7.024 ± 14.937 15,542 1.213 0.154 ± 0.003 10.140 ± 17.239
4 21,633 2.698 0.265 ± 0.005 9.914 ± 26.283 21,551 1.169 0.167 ± 0.002 14.667 ± 20.090

Table 4: Number of edges explored, VI for the clustering outcome, edge error rate, and mean completion time of a single question
among all crowdworkers who participate in the experiment using the radio interface and drag-and-drop interface on Birds5 Dataset.

we draw an edge between them given that they are from the same cluster, with
probability 𝑝; we draw an edge between them given that they are not from the
same cluster, with probability 𝑞.

Definition D.2 (three-item Conditional Block Model [45]). A three-item con-
ditional block model (CBM) over a dataset of 𝑛 items that are partitioned by 𝐾
disjoint clusters and outliers (C1, C2, . . . , C𝐾 ) is a generative model parametrized
by 0 < 𝑝,𝑞 < 1. Given 3 items, there could be 8 edge configurations (see 26),
among which 5 are admissible. We first draw edges between each pair of the 3

items following SBM. If the resulting configuration is inadmissible, we regenerate
configurations until an admissilbe one.

We extend the three-item conditional block model proposed in [45] for multi-item
query, and we use a matrix 𝑃 to parametrize the model to account for different
inter-cluster edge densities between different clusters.

Definition D.3 (Conditional Block Model). A conditional block model (CBM)
over a dataset of 𝑛 items that are partitioned by 𝐾 disjoint clusters and outliers
(C1, C2, . . . , C𝐾 ) is a generative model parametrized by an edge density matrix
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Figure 21: Empirical edge density matrices obtained from querying 300 crowdworkers using the drag-and-drop interface. Matrices
(a)-(g) correspond to the Birds5 dataset, with𝑚 ranging from 2 to 8. The ± indicates the confidence intervals calculated as described in
Section 5.2.

𝑃 ∈ [0, 1]𝐾 . Let cluster(𝑖 ) := 𝑘 if 𝑖 ∈ C𝑘 . Then, given𝑚 items, for each (𝑖, 𝑗 )
of all

(𝑚
2
)

pairs of items, we draw an edge with probability 𝑀cluster(𝑖 ),cluster( 𝑗 ) .
Note that not all possible generated configurations of these edges are admissible.
In that case, we regenerate configurations until an admissible one.

Given 𝑚 items, there are 2(𝑚2 ) possible ways of drawing edges among these
items. However, not all configurations of these edge drawings are "reasonable".
For example, in the case of𝑚 = 3, there are only five that are admissible (Figure
26a) out of the eight possibilities. This is due to the transitivity of "belonging to
the same cluster". When item 𝑖 and item 𝑗 are put in the same cluster and item

15



1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

0.68

0.75

0.83

0.81

0.87

0.35

0.39 0.31 0.14 0.14 0.24

0.39 0.69 0.17 0.23 0.23

0.31 0.69 0.17 0.17 0.24

0.14 0.17 0.17 0.18 0.24

0.14 0.23 0.17 0.18 0.27

0.24 0.23 0.24 0.24 0.27

(a)

0.51

0.58

0.65

0.64

0.74

0.24

0.28 0.23 0.13 0.13 0.17

0.28 0.5 0.13 0.15 0.18

0.23 0.5 0.13 0.14 0.16

0.13 0.13 0.13 0.16 0.15

0.13 0.15 0.14 0.16 0.2

0.17 0.18 0.16 0.15 0.2

(b)

0.42

0.5

0.5

0.56

0.6

0.25

0.23 0.24 0.17 0.16 0.18

0.23 0.39 0.18 0.2 0.19

0.24 0.39 0.17 0.21 0.19

0.17 0.18 0.17 0.19 0.21

0.16 0.2 0.21 0.19 0.21

0.18 0.19 0.19 0.21 0.21

(c)

0.72

0.58

0.73

0.35 0.24

0.35 0.31

0.24 0.31

(d)

0.48

0.39

0.57

0.23 0.18

0.23 0.22

0.18 0.22

(e)

0.42

0.34

0.48

0.25 0.23

0.25 0.26

0.23 0.26

(f)

Figure 22: Empirical edge density matrices obtained from querying 300 crowdworkers using the radio interface. Matrices (a)-(c)
correspond to the Birds5 dataset, with𝑚 ranging from 2 to 8. Matrices (d)-(f) correspond to the Dogs3 dataset, with𝑚 also varying
from 2 to 8.

𝑗 and item 𝑘 are in the same cluster, it is implied that item 𝑗 and 𝑘 are in the
same cluster. Therefore, in CBM, when the outcome of drawing edges leads to
an inadmissible configuration (Figure 26b), the CBM redraws the edges until an
admissible configuration is obtained.
The edge density matrix 𝑃 that parametrizes the model represents the inter and
intra cluster density. The entries on the main-diagonal represent the intra-cluster
density whereas the off-diagonal entries represent the inter-cluster density. Note
that the edge density matrix is a generalization of the 𝑝 and 𝑞 in the classic SBM.
When the main-diagonal and off-diagonal entries are fixed to 𝑝 and 𝑞, we draw
edges exactly like SBM.
The above definition of CBM extends the CBM proposed in [45], which only
accounts for three items per query, to multi-item queries. We simulate clustering
results with different values of𝑚 and different edge density matrices 𝑃 .

E Simulation Concentration Bounds
Let 𝑃 ∈ [0, 1]𝑑×𝑑 denote an edge density matrix, and let𝑂 ∈ N𝑑×𝑑 denote an
edge observation matrix, where𝑂𝑖 𝑗 denotes the number of times this entry is ob-
served. We use Hoeffding’s inequality [15, 51], which provides the concentration
bound 𝑃𝑖 𝑗 ± 𝜀 such that the expected 𝑃𝑖 𝑗 falls out of the interval defined by the
bound with probability at most 𝛿 ′:

P( |𝑃𝑖 𝑗 − E[𝑃𝑖 𝑗 ] | ≥ 𝜖 ) ≤ 2 exp(−2 ·𝑂𝑖 𝑗 · 𝜖2 ) = 𝛿 ′ . (1)

Figure 27 and 28 show the edge density matrices obtained from the simulation
by weighted-averaging each entry across the 10 edge density matrices from the
simulations. We use weighted-average here because the number of times an
entry is observed for each edge density matrix is different. To help us compare
these matrices to the ones we obtained from the experiment, we use Hoeffding’s
inequality to construct a concentration bound.

By definition, 𝑃 is a symmetric matrix. Therefore, there are 𝑑2−𝑑
2 + 𝑑 unique

entries. We apply a union-bound correction to compare all entries at the same
time:

P ©«
⋃

1≤𝑖≤ 𝑗≤𝑑
|𝑃𝑖 𝑗 − E[𝑃𝑖 𝑗 ] | ≥ 𝜖

ª®¬ (2)

≤
∑︁

1≤𝑖≤ 𝑗≤𝑑
2 exp

(
−2 ·𝑂𝑖 𝑗 · 𝜖2

)
(3)

= (𝑑2 + 𝑑 ) exp(−2 ·𝑂𝑖 𝑗 · 𝜖2 ) = 𝛿. (4)

Therefore, with union bound correction, for each edge density matrix being
compared, we can have a confidence intervals for all the unique entries that are
simultaneously valid with probability at least 1 − 𝛿 .
Figures 29 and 30 illustrate the concentration bound (𝛿 = 0.05) for Dogs3 and
Birds5 dataset, while we vary𝑚 from 2 to 8. Having 𝛿 = 0.05 means that the
probability that the expected entry value falls out of its corresponding interval is at
most 0.05. Figures 31a and 31b show the number of mismatches between the two
bounds for Dogs3 and Birds5 dataset, as a function of𝑚. We observe that as𝑚
increases, the number of entries in which the two bounds do not overlap increases.
This means that there is a huge difference between the edge density predicted
by CBM and the one we observed from the experiment once𝑚 is greater than 2.
Therefore, there must exist other factors influencing the ’noises’ that the model
failed to capture. And one of the factors could be the contextual bias we described
in the previous section.

F Extended Related Works
F.1 Direct Labeling Query
Many works on theoretical understanding of crowdsourcing focus on labeling
tasks, where crowdworkers are asked to label items directly [9, 13, 17–19, 24, 34,
40? ? ]. Karger et al. and Karger et al. [17, 18] adopted the “spammer-hammer
model”, which treats workers as a mixture of “spammers”, who randomly answer
the questions, and “hammers”, who answer correctly. Mazumdar and Pal and
Pang et al. [24, 34] treated each query as a function that takes 𝑛 items as input and
outputs 0 or 1. They utilized methods from information theory and coding theory
to reconstruct the labeling from the answers to the queries. Mazumdar and Pal [24]
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Figure 23: Example of the three triangle queries we used to investigate the contextual bias effect. When the third bird is much different
from the first two birds, crowdworkers perceive on a higher level of similarity hierarchy, thus overlooking the minor differences
between the two items. When the third bird is similar to the first two birds, crowdworkers consider similarity on a lower-level hierarchy,
paying more attention to the details.

modeled noises from the crowdworker similar to bit flipping, where the answer
provided by crowdworker is correct with probability 1 − 𝑞, and incorrect with
probability 𝑞. Pang et al. [34] considered noise as whether a query is answered
or not. They assumed that a query is answered with probability 1 − 𝑞 and not
with probability 𝑞. Han et al. [13] pointed out that although crowdworkers give
incorrect errors, some are more correct than others. For example, when the ground
truth is English Foxhound, getting a label Foxhound is not totally wrong due to the
hierarchical relationship between the two. Hence, they propose a new evaluation
metric that measures the crowdworker’s error based on how specific the label
given by the crowdworker, compared to the ground truth.

F.2 Comparison Query
Another line of work focuses on comparison query, where crowdworkers are asked
to group the items by their similarity, which is based on crowdworkers’ perception
of them [2, 22, 25, 31, 42, 43, 45, 47]. Gomes et al. [11] showed that the wisdom

of crowds can be used for crowd clustering. Vinayak et al. [47] studied clustering
algorithms that work with partially observed graphs and provided theoretical
guarantees on when clustering works in such scenarios. Images in the dataset are
considered as nodes in a graph. When a pair of images is deemed as similar by
the crowdworkers, an edge connects the two corresponding nodes of the images.
A (graph) clustering algorithm is applied to the adjacency matrix that represents
the graph generated from the crowds. This work also provides experiments to
demonstrate that crowdsourced clustering with a random querying strategy works
more in practice. Narimanzadeh et al. [31] introduced a framework of using
pairwise comparison comparison with Elo scoring to reduce the variability and
bias introduced by subjectivity. They have shown that their framework outputs a
better result compared to the widely used majority voting method. This work also
explains why pairwise comparison is preferred over direct labeling. André et al.
[2] considers the clustering task over texts instead of images.
Methods in [25? ] have tried to actively select which images to be queried. How-
ever, they typically come with severe limitations, such as they need to know
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Figure 24: Distribution of time per query for each number of items per query (𝑚) on Dogs3 and Birds5 dataset.

(a) (b) (c)

Figure 25: Comparison of (a) time per query, (b) variation of information (VI), and (c) worker edge error rate between the Dogs3 and
Birds5 datasets using the drag-and-drop interface, while varying the number of images per query.

the number of clusters a priori, or they assume that crowdworkers’ error is
parametrized by a single scalar. Vinayak [43] present active crowdclustering,
which does not rely on any unknown parameters and can recover clusters re-
gardless of their sizes. The author provides a theoretical guarantee, under mild
assumptions that crowdworkers are independent and better than random guessers,
that the algorithm can recover the clusters exactly with high probability. While
some simulations are provided, empirical evaluation on a real crowdsourcing plat-
form is missing. Chen et al. [6] extends this work by implementing the algorithm
and conducting experiments on AMT.
Lahouti et al. [22] proposes a method that generates clusters on the fly, instead
of building an adjacency matrix and applying graph clustering on that matrix.
However, they assume that crowdworkers do not make mistakes, making their
method less practical. The method proposed by Vinayak and Hassibi [45], known
as random triangle query, builds on top of [42] with a modification on how the
question is asked. Crowdworkers in Vinayak and Hassibi [45] need to provide
one of the five relationships of the three images presented: 1. All are similar,
denoted by 𝑙𝑙𝑙 . 2. A and B are similar, 𝑙𝑙𝑚. 3. A and C are similar, 𝑙𝑚𝑙 . 4. B and
C are similar,𝑚𝑙𝑙 . 5. None, 𝑙𝑚𝑗 . Similar to random edge query, only a subset of
all

(𝑛
3
)

possible triplet will be queried. To model the noises, the authors present
the conditional block model, which builds on top of the stochastic block model
and normalizes the error probability based on the allowed configurations. The
benefit of presenting three images at a time and seeking answers from 5 options is
that when the budget is the same, this crowdsourcing task is more reliable than a
random edge query.

F.3 Cognitive Overload
The effect of cognitive overload, where when the number of options is increased,
tasks involving comparison-based choice-making become harder and the decisions
made by people become worse, has been studied extensively in the field of social
psychology and information seeking [5, 7, 16, 33]. [33] and [5] discuss cognitive
overload as a "Less is More Effect" in which people find it more difficult to draw
comparisons when confronted with a large number of options. [16] study the
effect in the setting of consumer behavior. The authors have found that consumers
prefer to purchase from a vendor that displays fewer options. [7] identifies 4 key
factors, “choice set complexity, decision task difficulty, preference uncertainty,
and decision goal”, that impact the effect of cognitive overload via meta-analysis
in the field of consumer psychology.

F.4 Contextual Bias
Contextual bias is the “noise” within the answers provided by crowdworkers,
not due to the lack of effort or expertise, that is a function of the set of items
the crowdworkers are exposed to in a query. Several workers have studied how
the set of items affects the answer [2, 29]. [2] considers the clustering task over
texts instead of images. It also discusses the effects of context. The result shows
that having context introduced in the task is beneficial. Yet, the authors did not
investigate how much context should be added. The only contextual case they
have in their setting is having 10 items (text) shown at the same time.
Both Mishra and Rzeszotarski [29] and our work tries to answer the question of
how the breadth of data affects the outcome of the model’s result. In our work,
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Figure 26: Configurations for a three-item query that are (a) admissible and (b) inadmissible.
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Figure 27: Empirical edge density matrices obtained from simulation using the empirical edge density obtained from drag-and-drop
interface when𝑚 = 2. Matrices (a)-(g) correspond to the Dogs3 dataset, with𝑚 ranging from 2 to 8. The ± indicates the confidence
intervals calculated as described in Section 5.2.

however, the breadth concerns the set of items being shown to crowdworkers,
rather than being used by the model. For the granularity aspect, Mishra and
Rzeszotarski [29] considers granularity as the level of detail used (by the model)
to explain a model’s decision. Conversely, we treat granularity as the level of
detail used by crowdworkers to make their decision. We could consider our work
as a reverse version of [29], in a way such that crowdworkers in our work are the

explainable model in their work (although the crowdworkers in our work do not
explain how they make the decision).

Received 20 February 2007; revised 12 March 2009; accepted 5 June
2009
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Figure 28: Empirical edge density matrices obtained from simulation using the empirical edge density obtained from drag-and-drop
interface when𝑚 = 2. Matrices (a)-(g) correspond to the Birds5 dataset, with𝑚 ranging from 2 to 8. The ± indicates the confidence
intervals calculated as described in Section 5.2.
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Figure 29: Visualization of the concentration bounds for the entries in the edge density matrix obtained from crowdsourcing experiments
(blue) and simulations (orange). Matrices (a)-(g) compare the bounds on each entry with𝑚 ranging from 2 to 8 and Dogs3 dataset. It
can be seen that as𝑚 increases, more and more entries contain bounds that do not overlap. This indicates that the edge density matrix
predicted by CBM does not match with our empirical observation.
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Figure 30: Visualization of the concentration bounds for the entries in the edge density matrix obtained from crowdsourcing experiments
(blue) and simulations (orange). Matrices (a)-(g) compare the bounds on each entry with𝑚 ranging from 2 to 8 and Birds5 dataset. It
can be seen that as𝑚 increases, more and more entries contain bounds that do not overlap. This indicates that the edge density matrix
predicted by CBM does not match with our empirical observation.
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Figure 31: Proportion of non-overlapped entries to the total number of unique entries of the edge density matrix as a function of𝑚 for
(a) Dogs3 and (b) Birds5 dataset. As𝑚 increases, the number of entries contain bounds that do not overlap also increase.
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