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Abstract

Parallel data collection has redefined Reinforce-
ment Learning (RL), unlocking unprecedented
efficiency and powering breakthroughs in large-
scale real-world applications. In this paradigm, N
identical agents operate in N replicas of an envi-
ronment simulator, accelerating data collection by
a factor of N . A critical question arises: Does spe-
cializing the policies of the parallel agents hold
the key to surpass the N factor acceleration? In
this paper, we introduce a novel learning frame-
work that maximizes the entropy of collected
data in a parallel setting. Our approach carefully
balances the entropy of individual agents with
inter-agent diversity, effectively minimizing re-
dundancies. The latter idea is implemented with a
centralized policy gradient method, which shows
promise when evaluated empirically against sys-
tems of identical agents, as well as synergy with
batch RL techniques that can exploit data diver-
sity. Finally, we provide an original concentration
analysis that shows faster rates for specialized par-
allel sampling distributions, which supports our
methodology and may be of independent interest.

1. Introduction
Exploration, or taking sub-optimal decisions to gather in-
formation about the task, lies at the heart of Reinforcement
Learning (RL, Bertsekas, 2019) from its very foundation.
When the task of interest is defined through a reward func-
tion, exploration shall be carefully balanced with the ex-
ploitation of the current information to maximize the re-
wards collected over time (Mnih et al., 2013). When a task
is not known at the time of the interaction, exploration be-
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comes an objective per se, in order to foster the collection
of maximally informative data.

A common formulation of the latter pure exploration setting
is state entropy maximization (Hazan et al., 2019), in which
the agent aims to maximize the entropy of the data distribu-
tion induced by its policy. The state entropy objective has
been widely studied in the literature, e.g., to provide data col-
lection strategy for offline RL (Yarats et al., 2022; Park et al.,
2023), experimental design (Tarbouriech & Lazaric, 2019),
or transition model estimation (Tarbouriech et al., 2020),
and as a surrogate loss for policy pre-training in reward-free
settings (Mutti & Restelli, 2020). All of the above uphold
the status of state entropy maximization as a flexible tool for
exploration. To this day, however, an important gap remains
in how to deploy state entropy maximization on parallel
simulators.

Let us picture an illustrative example to guide our thoughts:
A robotic arm control task. We may want the robot to be
able to perform a wide range of tasks, such as interacting
with a diverse set of objects. A good strategy is to exploit
a simulator of the robotic arm to learn good manipulation
policies in advance, instead of relying on costly online in-
teractions, in which exploration may be unsafe. Since not
all of the future tasks may be known in advance, one could
opt for state entropy maximization, in order to collect ex-
ploration data once and for all. Collecting those data on
complex simulators may be inefficient though, resulting in
long simulation times. However, one crucial advantage of
sampling in simulation rather than the physical system is
that the sampling process does not have to be sequential.

In many modern simulators (NVIDIA Isaac Sim; Genesis,
2024; Todorov et al., 2012), the process of learning is ac-
celerated by instantiating vectorized instances of agents and
environments simultaneously. Parallelization was shown
to be a game-changing approach that allowed for unprece-
dented performance in standard RL (Espeholt et al., 2018),
and the use of a multitude of identical agents operating
on copies of the same environment allowed RL systems
to tackle increasingly complex and large-scale problems.
While the maximum entropy formulation has been widely
adopted in prior works, how to better take advantage of
parallel exploration agents is still to be investigated.
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This is far from being a trivial problem. Zhong et al. (2024)
recently showed that not explicitly caring for redundant be-
haviors among the agents often results in inefficient use of
computational resources, which is why parallelization is
employed in the first place. Additionally, as highlighted
in Rudin et al. (2022), solving complex problems necessi-
tates intelligent strategies for constructing experience that
accelerate algorithmic convergence. This challenge is fur-
ther compounded in scenarios where access to real-world
process data is limited, examples are scarce, or simulators
are computationally expensive. Following these considera-
tions, our study is centered around the following questions:

How should parallel agents optimize their policies
for efficient exploration?

What is the best way to leverage parallelism in state
entropy maximization?

In this paper, we generally address this question by extend-
ing state entropy maximization to incorporate the role of
parallel agents, enabling a deeper investigation into their ex-
ploration efficiency. First, we introduce a specific problem
formulation that can explicitly leverage parallelism. Rather
than considering agents independently, we look at them as
a whole, and consider the distribution a single one virtual
agent would induce if it was following a uniform mixture
of the agents’ policies. Additionally, we theoretically char-
acterize how the entropy of the distribution of state visits
concentrates in the single-agent and parallel-agent cases and
demonstrate the significant impact of parallelization on the
rate of entropy stabilization and exploration diversity. Then,
we shift our attention to how to solve the problem of parallel
state exploration in practice, by proposing a policy gradient
strategy (Williams, 1992) that explicitly optimizes for the
objective at hand. Finally, we use illustrative experiments to
show that the proposed algorithm is indeed able to optimize
for the state entropy and that the induced behavior enables
agents to balance individual exploration with inter-agent di-
versity. This synergy is particularly relevant when integrated
with batch RL techniques (Levine et al., 2020).

Original Contributions. Throughout the paper, we make
the following contributions:

• We define the problem of State Entropy Maximization in
Parallel MDPs (Section 3);

• We provide high-probability concentration bounds de-
scribing the rate at which the entropy of empirical distri-
butions converges to the entropy of their stationary distri-
butions. The proofs employ novel techniques that may be
of independent interest (Section 4);

• We introduce a policy gradient algorithm to take advan-
tage of parallel agents for maximizing the entropy of the
visited states (Section 5);

• We provide numerical experiments to corroborate our
findings, both in terms of state entropy maximization and
batch RL on the collected data (Section 6).

2. Preliminaries
Before diving into the technical contributions of our work,
we introduce the notation and the relevant background.

Notation. We denote [N ] := {1, 2, . . . , N} for a con-
stant N <∞. We denote a set with a calligraphic letter A
and its size as |A|. We denote AT := ×T

t=1A the T -fold
Cartesian product of A. The simplex on A is denoted as
∆A := {p ∈ [0, 1]|A||

∑
a∈A p(a) = 1} and ∆B

A denotes
the set of conditional distributions p : A → ∆B. Let X,X ′

random variables on the set of outcomes X and correspond-
ing probability measures pX , pX′ , we denote the Shannon
entropy of X asH(X) = −

∑
x∈X pX(x) log(pX(x)) and

the Kullback-Leibler (KL) divergence as DKL(pX∥pX′) =∑
x∈X pX(x) log(pX(x)/pX′(x)).

Interaction Model. As a base model for interaction,
we consider a finite-horizon Parallel Markov Decision Pro-
cess (PMDP, Sucar, 2007) without rewards. A PMDP
Mp = (Mi)i∈[m] consists of m ∈ N+ copies of the same
MDP Mi = (S,A,P, T, µ), composed of a set S of states
and a set A of actions, which we let discrete and finite
with size |S|, |A| respectively. A set of m independent
agents interact with each copy Mi, according to the fol-
lowing protocol. At the start of an episode, the initial
state is drawn from an initial state distribution si0 ∼ µ.
Then the i-th agent takes action ai0 and the state transi-
tions to si1 ∼ P(·|si0, ai0) according to the transition kernel
P : S × A → ∆S . Those steps are repeated until siT is
reached, being T < ∞ the horizon of an episode. The
i-th agent takes actions according to a policy πi ∈ ∆A

S
such that πi(ai|si) denotes the conditional probability of
taking action ai upon observing si. Overall, we refer with
parallel policy the collection of policies πp = (πi)i∈[m].1

Each interaction episode is collected into a trajectory τ i :=
(si0, a

i
0, . . . , s

i
T−1, a

i
T−1, s

i
T ) ∈ K = ST ×AT , where K is

the set of all trajectories of length T .

Trajectory and State Distributions in MDPs. Here we
consider a single MDP Mi for the purpose of expanding the
connection between trajectories and distribution over states,
temporarily dropping the index i from all the quantities. A
policy π interacting with Mi induces a distribution over
the generated trajectories. In particular, a set of n ∈ N+

trajectories τ = (τj)j∈[n] are distributed according to a
probability measure pπ ∈ ∆K defined as:

pπ (τ) =

n∏
j=1

µ(s0,j)

T−1∏
t=0

π(at,j | st,j)P (st+1,j | st,j , at,j).

1In general, we will denote the set of valid per-agent policies
with Πi and the set of joint policies with Π.
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From the realization of these trajectories, one can extract
their empirical distribution ρn ∈ ∆K defined as ρn(τ) =
1
n

∑n
j=1 1(τj = τ), where τj is the trajectory at episode

j in the history of interactions. Additionally, a trajectory
obtained from an interaction episode induces an empirical
distribution over states dn ∈ ∆S given by

dn(s) =
1

nT

n∑
j=1

T−1∑
t=0

1(St,j = s) ∈ ∆S .

With a slight overload of notation, we will denote as dn ∼
pπ an empirical state distribution obtained from a sequence
of trajectories of length T , and with τt ∼ ptπ a sub-trajectory
of length t < T drawn from pπ. Finally, we denote the
expectation of the empirical state distribution under the
policy π as dπ(s) = Edn∼pπ

[dn(s)], such that dπ ∈ ∆S is
called the state distribution induced by π.

State Entropy Maximization in MDPs. In standard
RL (Sutton & Barto, 2018), an agent interacts with an
environment to maximize the (cumulative) reward col-
lected from the MDP. In the absence of a reward, previous
works (Hazan et al., 2019; Mutti & Restelli, 2020; Mutti
et al., 2021) investigated the effects of optimizing a different
metric, namely the state entropyHs defined as:

Hs(π) ≜ H(dπ) := −
∑
s∈S

dπ(s) log dπ(s).

More recently, Mutti et al. (2023) noted that only a finite
number of episodes (called trials) can be drawn in many
practical scenarios. When only n trajectories can be ob-
tained, they propose to focus on dn rather than its expec-
tation dπ, translating the infinite-trials objective of Eq. (2)
with the finite-trials version

Js(π) ≜ Edn∼pπ
H(dn).

The Jensen’s inequality relates the two formulations as
Hs(π) ≥ Js(π).

3. Problem Formulation
In this section, we extend the concept of state entropy to a
novel objective able to incorporate parallel agents interact-
ing with independent copies of the environment. In order to
do so, we first need to introduce the following objects:

Definition 3.1 (Distributions in PMDPs). Let Mp a PMDP
with an interaction over n ∈ N episodes, then overall set
of trajectories τ = {τ ij}

i∈[m]
j∈[n] is distributed according to the

following probability measure:

pπp
(τ) := pπ1,...,πm (τ) =

1

m

m∑
i=1

n∑
j=1

pπi(τ ij),

while the states are distributed according to the following
mixture distribution:

dπp(s) =
1

m

m∑
i=1

dπi(s).

Collecting data from all agents induces an empirical (paral-
lel) distribution over states which we denote as dn,p ∈ ∆S ,
so that it is possible to define the mixture distribution as the
expectation of the empirical state distribution under the par-
allel policies, namely dπp

(s) = Edn,p∼pπp
[dn,p(s)]. This

object allows us to define objectives specifically designed
for PMDPs, that are then able to leverage their structural
properties. First of all, we introduce the following:

Definition 3.2 (Parallel Learning Objective in Infinite Tri-
als). Let Mm a PMDP, then the corresponding infinite trials
objective can be defined as:

Hs,p(π) ≜ H(dπp
) := −

∑
s∈S

dπp
(s) log dπp

(s).

Now, while this objective will be shortly shown to enjoy
rather interesting concentration properties, we are building
over the motivating interest of exploring with a handful of
trials. These considerations lead to:

Definition 3.3 (Parallel Learning Objective in Finite Trials).
LetMm a PMDP with an interaction over n ∈ N episodes,
then the corresponding finite trials objective can be defined
as:

Jp(πp) ≜ Edn,p∼pπp
H(dn,p).

We are now ready to state the novel problem of interest:

Parallel State Entropy Maximization

max
πp∈Π

Jp(πp) = max
πp∈Π

{
Edn,p∼pπp

H(dn,p)
}

(1)

We denote by π⋆
p ∈ argmaxπ Jp(π) a parallel policy that

maximizes the parallel states entropy. In the next sections,
we will show that Parallel Learning Objectives enjoy ex-
tremely nice properties: first of all, they concentrate faster
than their non-parallel counterparts, motivating the need for
parallel exploration; moreover, they can be easily optimized
in a decentralized fashion through policy gradient methods.

4. Fast Concentration of the Entropy in
Parallel Settings

In this section, we present theoretical results that illus-
trate how the (infinite-trials) entropy of the state (or tra-
jectory) distribution concentrates. We will use these results
to demonstrate the significant impact of parallelization on
the rate of entropy stabilization and exploration diversity.
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Key Remarks. While the following theorems are instan-
tiated for state distributions, they are of broader theoretical
interest and apply equally to distributions over trajectories.2

Additionally, we adopt the convention of referring to the
entropy and variance of distributions rather than those of
random variables, as a slight abuse of terminology, since
these quantities are technically defined for random variables
but naturally extend to their associated distributions.

We start by analyzing the entropy of state distributions in
MDPs, for which the following result holds:

Theorem 4.1. Let dπ be the (categorical) distribution
induced by π over the finite set S with |S| = S, and
let dn be the empirical distribution obtained from n
independent samples drawn from dπ. Then, for any
ϵ > 0, the following bound holds:

P (H(dπ)−H(dn)>ϵ) ≤ 2S exp

(
−n ϵ2Var(dπ)

2S3H2(dπ)

)
,

where H(dn) and H(dπ) denote the entropy of the
empirical and true distributions, respectively, and
Var(dπ) =

∑
s∈[S] dπ(s)(1− dπ(s)) is the variance

of a random variable associated with the categorical
distribution dπ. Furthermore, to ensure this concen-
tration with confidence 1− δ, the number of samples
n must satisfy the following lower bound:

n ≥ 2S3H2(dπ)

ϵ2Var(dπ)
· ln 2S

δ
.

This theorem establishes an upper bound on the probability
that the entropy difference between the true and empiri-
cal distributions exceeds ϵ. Specifically, the probability
of large deviations between these two entropies decreases
exponentially with n, with the rate of convergence influ-
enced by the entropy of the true distribution dπ . Notably, as
limH(dπ)→0

H2(dπ)
Var(dπ)

= 0, distributions with lower entropy
require fewer samples for concentration, implying they are
easier to approximate empirically. The full proof can be
found in Appendix A.

Primary Insight. This result suggests a key advantage of
parallel exploration: when multiple agents explore the envi-
ronment simultaneously, each can focus on different regions
of the state space. As a result, they induce distributions
with lower entropy compared to a single policy covering the
entire space.

We now consider the case of PMDPs with m parallel agents,
each independently collecting n/m samples from the en-

2The number of samples n will represent the number of
episodes for trajectory distributions or the number of steps for
state distributions.

vironment for a total of n samples. This setting induces
mixture distributions dπp and empirical mixture distribu-
tions dn,p as defined in the previous sections.

The entropy of the mixture distributions decomposes as
follows:

H(dπp
) =

1

m

m∑
i=0

H(dπi) +
1

m

m∑
i=0

DKL(dπi ||dπp
),

where the first term is the average entropy of the individual
agent distributions, and the second term captures diversity
among these distributions via the KL divergence. By analyz-
ing this decomposition, we can get insights into the potential
advantages of parallel exploration versus single-agent explo-
ration. To achieve high-entropy mixture distributions, we
have two key strategies:

Homogeneous Exploration: All agents follow the same
entropy-maximizing policy, leading to a mixture with
an entropy equivalent to that of a single agent (the
average of the entropies is equal to the single-agent en-
tropy, and the second term in the above decomposition
is equal to zero). The primary benefit of parallelism, in
this case, is computational speedup rather than sample
complexity reduction.

Diverse Exploration: Agents follow distinct policies with
lower individual entropy, but their induced distribu-
tions are maximally different. Here, the average en-
tropy remains low, but the overall mixture entropy is
high due to diversity (i.e., high values of the KL diver-
gences).

For example, if m agents induce distributions with disjoint
supports, the entropy of the mixture increases by log(m)
while maintaining low individual entropy, enabling faster
concentration. However, if the agents’ distributions overlap,
the average KL divergence term decreases, necessitating
higher individual entropies to maintain high mixture entropy,
thereby increasing sample complexity.

This analysis shows that parallel exploration is beneficial not
only for reducing data collection time but also for improving
sample efficiency by enabling broader state-space coverage
with fewer samples.

5. Policy Gradient for Parallel Exploration
with a Handful of Trials

As stated before, a core motivation of this work is address-
ing the problem of exploration in practical scenarios, where
a strong parallelization of the environment is used to over-
come the difficulty to sample from complex simulators or
even physical instantiations of the agents. In such setting, it
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is crucial to achieve good performances over a finite number
of realizations, and for this reason our attention now shifts
towards finite trials objectives. Specifically, we will focus
on the single trial case, i.e., n = 1, and show that rather
than instantiating m copies of the same algorithm, the paral-
lel learning objective allows for an alternative formulation,
where agents explicitly leverage parallelization. The core
idea lies in the implementation of a policy gradient of the
parallel formulation of Eq. 3.3 on a set of parametric policies
πθi : S → ∆A, where θi ∈ Θi ⊂ Rd is a parameter vector
in a d-dimensional space, uniquely associated with the agent
i. The parallel policy is then defined as πθ = (πθi)i∈[m].

In the following, we derive the gradient of the parallel ob-
jective with respect to the policy parameters. For the sake
of simplifying the notation, we will refer to dn,p as dp for
simplicity. Starting from the cost function:

J (πp) =

∫
pπp

(dp)H(dp),

we take the derivative with respect to the parameters θi:

∂J (πp)

∂θi
=

∂

∂θi

∫
pπp

(dp)H(dp).

Since θi only appears in pπp(·), we can then write:

∂J (πp)

∂θi
=

∫
∂pπp

(dp)

∂θi
H(dp),

Now, we can employ standard log-trick arguments after
noticing that the parameter θi only appears in agent i’s
policy, that is conditioned over the respective trajectory τi,
allowing one to write:

∂pπp
(dp)

∂θi
= pπp

(dp)

T−1∑
t=0

∂ log πθi(a
i
t|sit)

∂θi
,

Then, after substituting back into the original integral we
get:

∂J (πp)

∂θi
=

∫
pπp(dp) log πθiH(dp).

defining the so-called score function as log πθi ≜∑T−1
t=0 ∇θ log πθi(at|st), with πθi(at|st) being the prob-

ability for agent i of taking action at in state st in trajectory
τi. On the other hand, one should note that the entropy is
computed over the empirical distribution dp induced by all
the agents. In other words, each agent can independently
perform gradient updates via a joint estimation of the en-
tropy feedback. In the following, we estimate the gradient
of the parallel objective J (πθ) with respect to its policy pa-
rameters θi using an unbiased Monte-Carlo estimator over
K ∈ N sampled parallel trajectories:

∇θiJ (πθ) ≈
1

K

K∑
k=1

(
T−1∑
t=0

∇θ log πθi(a
i
t,k|sit,k)

)
H(dkp).

Algorithm 1: Policy Gradient for Parallel States
Entropy maximization (PGPSE)

1: Input: Episodes N, Trajectories K, Batch Size
B, Learning Rate α, Parameters θ = (θi)i∈[m]

2: for e ∈ {1, . . . , N} do
3: for itr ∈ {1, . . . , B} do
4: for k ∈ {1, . . . ,K} do
5: τ ∼ πθ {Sample parallel trajectories}
6: log πθi ←

∑T−1
t=1 ∇θ log πθ(at | st)

7: dp(s)← 1
km

∑m,k,T
j,i,t=1 1(st,i,j = s)

8: ∇θJ (θ) += log πθi · H(dp)
9: end for

10: end for
11: ∇θJ (θ)← 1

B∇θJ (θ)
12: θ ← θ + α∇θJ (θ)
13: end for
14: Output: Policies πθ = (πi

θi)i∈[m]

Thus, the partial gradient update consists of an internal sum-
mation over the log of the i-th policy executed by agent i, as
it interacts over the horizon T , experiencing various action-
state combinations. This internal summation is further ag-
gregated across the external summation over K trajectories.
This estimator approximates the true gradient by averag-
ing the score function of sampled trajectories, weighted by
the entropy of such induced state distribution. By limiting
parallel agents to experience only one trajectory per each,
we average over a mini-batch B = {(τi)}ni=1 to reduce the
variance of the reinforce estimator, with B = |B| being the
batch-size. The pseudo-code of the resulting Algorithm,
called Policy Gradient for Parallel States Entropy maximiza-
tion (PGPSE), is reported in Algorithm 1.

6. Empirical Corroboration
We report numerical experiments in simple yet illustrative
domains to demonstrate the advantage of exploration with
distinct parallel agents over single agents. The section is
organized into three parts:

• Policy Gradient Optimization: This part analyzes the
results of the learning process based on Algorithm 1, eval-
uating the performance of the learned policy in terms of
normalized entropy and support size.

• Dataset Entropy Evaluation: This part takes a deeper
look at the entropy of a dataset collected from the policies
trained as in the previous section.

• Offline RL: This part provides a comparative analysis of
how the dataset collected with parallel maximum entropy
agents benefits the performance of offline RL.

For all the experiments, we consider variations of discrete
grid-world domains, which we depicted in Appendix B (see
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2 Agents 1 Agent K′ = 2K 6 Agents 1 Agent K′ = 6K

(a) State Entropy (Room-det) (b) State Entropy (Room-stoc) (c) State Entropy (Maze-det) (d) State Entropy (Maze-stoc)

(e) Support size (Room-det) (f) Support size (Room-stoc) (g) Support size (Maze-det) (h) Support size (Maze-stoc)

Figure 1. The top row (a–d) shows the progression of normalized state entropy across different environments, while the bottom row (e–h)
depicts the corresponding size of the support of the entropy. Each plot shows the performance of parallel agents (2 or 6) against single
agents taking 2 and 6 trajectories, respectively. We report average results and standard deviation over 5 independent runs.

Figures 5, 6). One family (referred to as Room) is composed
of two rooms connected by a narrow corridor, with a total of
43 states and 4 actions (one to move in each direction). The
other (referred to as Maze) is a maze of various connected
paths, with same number of total states and actions as before.
For each family, we consider a deterministic version (det)
and a stochastic version (stoc) in which the agent’s chosen
actions are flipped to random actions with some probabil-
ity. Appendix C reports further experimental details, with
additional visualizations and results.

Policy Gradient Optimization. First of all, we test the
ability of PGPSE (Algorithm 1) in addressing maximum
state entropy exploration with parallel agents. We run mul-
tiple instances of the algorithm with an increasing number
of agents m ∈ {2, 4, 6}.3 As a baseline, we consider the
performance of the same algorithm training a single agent
for the finite-trial objective (Eq. 2), with a number of trials
K ′ matching the number of trajectories taken by the parallel
agents. We compare the results in terms of (normalized)
state entropy and the size of the entropy support (i.e., the
number of unique visited states) in all the domains.

Figure 1 reports the resulting learning curves, obtained
over five independent runs. For a fair comparison of al-

3In the main text we omit the result with 4 agents, which are
reported in Figure 7 of the Appendix.

gorithms with varying number of agents, the performance is
reported as a function of the policy updates, which translate
to B ×m×K × T total interactions with the environment.
Across the board, the performance of parallel agents (solid
lines) consistently outperforms the single agent counterparts
(dashed lines). Indeed, they achieve higher entropy values,
thanks to their ability to explore more states as it is evident
from the larger size of the support. This behavior can be
attributed to the intrinsic diversity introduced by parallel
agents: To optimize the team state distribution, each agent
learns an individual behavior that is synergic with the others.

Dataset Entropy Evaluation. Then, we tested the ca-
pabilities of the trained policies in collecting diverse ex-
periences, by analyzing the properties of a single dataset.
Figure 2 illustrates the normalized empirical state entropy
of each dataset collected by the m agents, compared against
the entropy of the dataset collected by a single agent over
K = m trajectories (trained to maximize the entropy on the
corresponding number of trajectories), and a random policy.

To construct these datasets, we sample one trajectory per
agent from the parallel policies, evaluating them across
five seeds. This procedure reveals that datasets generated
through parallel exploration exhibit higher entropy than
those collected by a single agent or a random policy. It
is noteworthy that experience collected in parallel also ex-
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2 Agents 1 Agent K′=2K 6 Agents 1 Agent K′=6K Random

(a) Dataset Entropy (Room-det) (b) Dataset Entropy (Room-stoc)

(c) Dataset Entropy (Maze-det) (d) Dataset Entropy (Maze-stoc)

Figure 2. Entropy evaluation of the dataset generated by sampling
from parallel policies, compared against both random and single-
baselines across different environments. With the notation K′ =
mK we denoted the set in which the single agent had access to
a multiple m of trajectories available to the parallel agents. We
report average and standard deviation over 5 independent runs.

hibits minimal variance across runs, indicating that agents
tend to generate trajectories in a quasi-deterministic manner,
preserving consistency in the collected data.

Offline RL. Finally, we address the following ques-
tion: Can datasets collected with parallel maximum en-
tropy agents benefit offline RL algorithms? One practical
application of the policies learn with PGPSE, in line with
the motivation of this work, is to utilize the experience
gained during the exploration phase to construct informative
datasets for offline RL (Yarats et al., 2022).

Starting from the datasets collected as for Figure 2, we re-
label the transitions with sparse reward functions, assigning
rewards of +1 for a specific goal state and 0 otherwise.
We then train an agent with offline Q-learning (Watkins
& Dayan, 1992). At each training step, the agent
samples a mini-batch of transitions (s, a, r, s′) from the
dataset and updates its Q-value as Q(s, a) ← Q(s, a) +
α [r + γmaxa′ Q(s′, a′)−Q(s, a)] where α is the learning
rate, γ is the discount factor, and maxa′ Q(s′, a′) represents
the best estimated discounted future reward.

In Figure 3, we report the barplots of the corresponding

(a) Success Rate, Parallel
Dataset (Room-det)

(b) Success Rate, Parallel
Dataset (Maze-det)

(c) Success Rate, Single Agent
Dataset (Room-det)

(d) Success Rate, Single Agent
Dataset (Maze-det)

(e) Success Rate, Random
Dataset (Room-det)

(f) Success Rate, Random
Dataset (Maze-det)

Figure 3. Offline Q-learning success rate for various goal positions:
Each subplot depicts the agent’s ability to reach a goal state posi-
tioned at a different location (one for each state). The results refer
to datasets obtained over 5 independent runs.

offline RL success rate on each dataset relabeled, one for
every possible goal state, ordering the results according to
their respective success rate. Notably, a dataset collected
with parallel agents allows to achieve the best offline RL
performance across a large number of states, far greater than
datasets collected with a single maximum entropy agent
or a random policy. In Appendix C, we provide further
heatmaps visualizations showing the goal positions that
offline RL algorithm is able to reach (Figure 9), and how
each dataset is looking in terms of their empirical state
distribution (Figure 8).

Takeaways. Parallel State Entropy Maximization leads to
better exploration, diverse data collection and improved
performances in offline learning in PMDPs.
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7. Related Work
In the following, we summarize the most relevant works this
paper sets its root in, spanning from entropy maximization,
multi-agent exploration to diverse skill discovery.

State Entropy Maximization. State entropy maximiza-
tion in MDPs has been introduced in Hazan et al. (2019),
from which followed a variety of subsequent works focusing
on the problem from various perspectives (Lee et al., 2019;
Mutti & Restelli, 2020; Mutti et al., 2021; 2022a;b; Mutti,
2023; Zhang et al., 2021a; Guo et al., 2021; Liu & Abbeel,
2021b;a; Seo et al., 2021; Yarats et al., 2021; Nedergaard
& Cook, 2022; Yang & Spaan, 2023; Tiapkin et al., 2023;
Jain et al., 2023; Kim et al., 2023; Zisselman et al., 2023;
Zamboni et al., 2024a;b; 2025).

Policy Gradient. In the RL literature, first-order meth-
ods have been extensively employed to address non-concave
policy optimization (Sutton et al., 1999; Peters & Schaal,
2008). In this work, we proposed a vanilla policy gradi-
ent estimator (Williams, 1992) as a first step, yet several
further refinements could be made, such as natural gradi-
ent (Kakade, 2001), trust-region schemes (Schulman et al.,
2015), and importance sampling (Metelli et al., 2018).

Exploration with Multiple Agents. The problem of
exploration in the presence of multiple agents is a vast and
diverse topic. Among others, concurrent exploration (Guo
& Brunskill, 2015; Parisotto et al., 2019; Jung et al., 2020;
Chen et al., 2022; Qin et al., 2022) has focused on scenarios
where multiple agents operate within the same environment
and learn simultaneously. Of particular interest are the
works that investigate the role of information sharing be-
tween the agents (Alfredo & Arjun, 2017; Holen et al., 2023)
or the ones that characterize the theoretical conditions for
efficient coordinated exploration to happen and scale (Di-
makopoulou & Van Roy, 2018; Dimakopoulou et al., 2018).
Finally, exploration in Multi-Agent RL (MARL, Albrecht
et al., 2024) has gained attention but was almost limited to
reward-shaping techniques based on many heuristics Wang
et al. (2019); Zhang et al. (2021b); Xu et al. (2024). In par-
ticular, Zhang et al. (2023) proposes a term maximizing the
deviation from (jointly) explored regions. Yet, we highlight
a key distinction: In conventional MARL, multiple agents
operate concurrently within a shared environment, requiring
coordination due to the interdependence of their trajectories;
In contrast, our setting involves multiple agents interact-
ing with independent instances of the environment. While
coordination remains beneficial for enabling specialization
and aligning agents with distinct objectives, their trajecto-
ries are decoupled. This structural difference fundamentally
separates our framework from typical MARL formulations
like Li et al. (2021), Zhao et al. (2021) and Lupu et al.
(2021).

Diverse Skills Discovery. The problem of learning a set
of diverse skills and/or policies is somehow linked to the
problem of diversifying exploration via parallelization, and
it has been addressed by a plethora of recent works (Hansen
et al., 2019; Sharma et al., 2020; Campos et al., 2020; Liu
& Abbeel, 2021a; He et al., 2022). The results provided
by Gregor et al. (2017); Eysenbach et al. (2019) are particu-
larly relevant for this work, in which the mutual information
between visited states and skills is maximized, toghether
with the ones in Zahavy et al. (2022), that explicitly maxi-
mizes the diversity between policies.

8. Conclusions
This paper targeted the critical challenge of efficient explo-
ration in reinforcement learning, particularly in scenarios
with slow environment simulators or limited interaction bud-
gets. We introduced a novel parallel learning framework
that leverages the power of multiple agents to maximize
state entropy while explicitly promoting diversity in their
exploration strategies. Unlike traditional approaches that
rely on multiple instances of identical agents, our method,
PGPSE based on policy gradient techniques, employs a cen-
tralized learning mechanism that balances individual agent
entropy with inter-agent diversity, effectively minimizing
redundancy and maximizing the information gained from
parallel exploration.

Our theoretical analysis demonstrated the significant impact
of parallelization on the rate of entropy stabilization and
exploration diversity. Specifically, we showed that parallel
agents, by focusing on different parts of the state space,
can achieve faster convergence to high-entropy distributions
compared to a single agent. These theoretical findings were
strongly corroborated by our empirical results on various
gridworld environments. PGPSE consistently outperformed
single-agent baselines in terms of both state entropy and sup-
port size, demonstrating the effectiveness of our diversity-
promoting approach.

Furthermore, we showed that the datasets collected by par-
allel agents exhibit higher entropy and lead to improved
performance in offline settings, highlighting the practical
value of our method for data-efficient learning. While our
results are promising, we acknowledge certain limitations.
Our current framework is evaluated primarily on discrete
gridworld environments. Future work will involve extend-
ing PGPSE to continuous and more complex environments,
such as those found in robotics and control problems.Future
work will extend, the concept of state entropy maximization
to the trajectory based one, with centrally, the benefit of
parallelizing the exploration strategy to achieve wider and
diverse skills acquisition over complicated real world prob-
lems. These extensions will be crucial for demonstrating
the scalability of our approach to a broader use case.
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A. Main Proofs and Additional Results
Concentration Properties. In the following, we present the proofs of the theoretical results that highlight how the entropy
of the distribution of state or trajectory visits concentrates in the single-agent and parallel-agent cases.

Theorem A.1. Let dπ be the (categorical) distribution induced by π over the finite set S with |S| = S, and let dn be the
empirical distribution obtained from n independent samples drawn from dπ . Then, for any ϵ > 0, the following bound holds:

P (H(dπ)−H(dn)>ϵ) ≤ 2S exp

(
−n ϵ2Var(dπ)

2S3H2(dπ)

)
,

where H(dn) and H(dπ) denote the entropy of the empirical and true distributions, respectively, and Var(dπ) =∑
s∈[S] dπ(s)(1 − dπ(s)) is the variance of a random variable associated with the categorical distribution dπ. Fur-

thermore, to ensure this concentration with confidence 1 − δ, the number of samples n must satisfy the following lower
bound:

n ≥ 2S3H2(dπ)

ϵ2Var(dπ)
· ln 2S

δ
.

Proof. The proof consists of three main steps. In order to keep the derivation agnostic from the state or trajectory-based
setting, we will now introduce a different yet equivalent notation: let p be a categorical distribution over a finite set X with
|X | = K, and let p̂ be the empirical distribution obtained from n.

Decomposing the Problem via Union Bound. First, we expand the entropy terms to highlight the contribution of the
single components:

P(H(p)−H(p̂) > ϵ) ≤ P

(
K∑
i=1

pi log

(
1

pi

)
− p̂i log

(
1

p̂i

)
> ϵ

)
= P

(
K∑
i=1

h(pi)− h(p̂i) > ϵ

)
,

where pi = P(X = xi) and h(x) = x log
(
1
x

)
.

Applying the union bound to the previous result, we get:

P(H(p)−H(p̂) > ϵ) ≤
K∑
i=1

P
(
h(pi)− h(p̂i) >

ϵ

K

)
. (2)

Bounding the Entropy of the Components using a Linear Approximation. Now, we focus on finding an upper bound
to h(pi)− h(p̂i). We introduce a lower bound to h(p̂i) obtained by a combination of functions that are linear in the
deviation |pi − p̂i|:

h(p̂i) ≥ h(pi)−
h(pi)|pi − p̂i|
min(pi, 1− pi)

≥ h(pi)−
h(pi)|pi − p̂i|
pi(1− pi)

.

As a consequence

P (h(pi)− h(p̂i) > ϵ) ≤ P
(
h(pi)|pi − p̂i|
pi(1− pi)

> ϵ

)
≤ P

(
|pi − p̂i| >

pi(1− pi)

h(pi)
ϵ

)
. (3)

Thanks to this last inequality, we can now focus on the concentration inequality of the Bernoulli distributions associated
with the parameters pi.

Applying a Concentration Inequality for Bernoulli Distributions. Finally, we use a concentration inequality on the
estimation of a Bernoulli-distributed parameter to express this probability bound in terms of the variance of pi
(Var(pi) = pi(1− pi)).

Leveraging Chernoff bound for Bernoulli distributions, we get:

P(|pi − p̂i| > ϵ) ≤ e−nDKL(pi+ϵ||pi) + e−nDKL(pi−ϵ||pi) ≤ 2e
− nϵ2

2pi(1−pi) = 2e
− nϵ2

2Var(pi) . (4)
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Figure 4. The plot shows that H(pi) and Var(pi) are concave symmetric function with their maximum located at pi = 0.5, while Var(pi)
H(pi)2

is a convex symmetric function with its minimum located at pi = 0.5.

We now complete the proof by combining the results in Eqs (2), (3), and (4):

P(H(p)−H(p̂) > ϵ) ≤
K∑
i=1

P
(
h(pi)− h(p̂i) >

ϵ

K

)
≤

K∑
i=1

P
(
|pi − p̂i| >

pi(1− pi)

Kh(pi)
ϵ

)
≤ 2

K∑
i=1

e
−nϵ2pi(1−pi)

2K2h2(pi) . (5)

In order to remove the summation over the K components of the distribution, we need to find a lower bound to the term
pi(1−pi)
H2(pi)

that is independent of the specific component parameter pi. Here, we show the chain of passages that achieve this
goal:

min
i

pi(1− pi)

h2(pi)
≥ min

i

pi(1− pi)

H2(pi)
=

maxi pi(1− pi)

maxiH2(pi)
≥
∑

i pi(1− pi)

KmaxiH2(pi)
≥ Var(p)

KH2(p)
.

The motivations for each step are:

1. H(pi) ≥ h(pi).

2. The value of pi that minimizes pi(1−pi)
H2(pi)

is the one with the highest entropy (see Figure4). The ration between the
variance p(1− p) and the squared entropyH2(p) is symmetric about p = 1

2 and it has negative derivative for p < 1
2

and positive derivative for p > 1
2 . Since the higher the entropyH(pi), the higher is also the variance pi(1− pi), we

can restate the minimization problem as the ratio of two maximization problems.

3. The term in the numerator is the maximum variance, which can be lower bounded by the average variance.

4. The maximum entropy among the Bernoulli distributions associated with all the components is upper bounded by the
entropy of the categorical distribution p.

Leveraging this result in Eq. (5) concludes the proof.
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Frank-Wolfe for Parallel Exploration with Infinite Trials Frank-Wolfe Algorithms have gained much attention for
their strong theoretical guarantees in MDPs (Hansen et al., 2019). In this section, we show that by performing Frank-Wolfe-
like updates in a parallel fashion over infinite-trials objectives as reported in Algorithm 2, it is possible to obtain faster
convergence rates with respect to the non-parallel formulation, through a convenient scaling factor of 1/N with N being the
number of parallel instantiations. In order to allow for a simpler derivation, we will assume access to two kinds of oracles.
First, some approximate planning oracles (one per each agent) that given a reward function (on states) r : S → R and a sub-
optimality gap ϵ1, returns a policy π = APPROXPLAN(r, ϵ1) with the guarantee thatH(π) ≥ maxπ̄H(π̄)−ϵ1. In addition,
some state distribution estimate oracles (one per each agent) that estimate the state distribution d̂ = DENSITYEST(π, ϵ0)
of any given (non-stationary) policy π, guaranteeing that ∥dπ − d̂∥∞ ≤ ϵ1. In addition, we will assume that the entropy
functionalH is β-smooth, B-bounded, and that it satisfies the following inequality for all X,Y :

∥∇H(X)−∇H(Y )∥ ≤ β∥X − Y ∥∞
−βI ≤ ∇2H(X) ≤ βI; ∥∇H(X)∥∞ ≤ B

Under these assumptions, it follows that Algorithm 2 enjoys the following:

Theorem A.2 (Convergence Rate). For any ε > 0, set ε1 = 0.1ε, ε0 = 0.1β−1ε, and η = 0.1|S|−1β−1Nε, where
Algorithm 2 is run for T iterations over N agents in parallel where:

T ≥ 10β|S|N−1ε−1 log 10Bε−1 ,

we have that:
H(πmix,T ) ≥ max

π
H(dπ)− ε .

Proof of Theorem A.2. Let π∗ be a maximum-entropy policy, ie. π∗ ∈ argmaxπH(dπ).

H(dπmix,t+1
) = H((1− η)dπmix,t + ηdπt+1

)

≥H(dπmix,t) + η⟨dπt+1 − dπmix,t ,∇H(dπmix,t)⟩ − η2β∥dπt+1 − dπmix,t∥22

≥H(dπmix,t) +
η

N

∑
i

⟨dπi
t+1
− dπmix,t ,∇H(dπmix,t)⟩ −

η2β

N2

∑
i

∥dπi
t+1
− dπmix,t∥22

The second inequality follows from the smoothness of H , the third applies the definition of distributions induced by mixture
policies. Now, to incorporate the error due to the two oracles, observe that for each agent it holds

⟨dπi
t+1

,∇H(dπmix,t)⟩ ≥ ⟨dπi
t+1

,∇H(d̂iπmix,t
)⟩ − β∥dπmix,t − d̂iπmix,t

∥∞

≥ ⟨dπ∗ ,∇H(d̂iπmix,t
)⟩ − βε0 − ε1

≥ ⟨dπ∗ ,∇H(dπmix,t)⟩ − 2βε0 − ε1

The first and last inequalities invoke the assumptions on the entropy functional. Note that the second inequality above
follows from the defining character of the planning oracle. Using the above fact and continuing on

H(dπmix,t+1) ≥H(dπmix,t) +
η

N

∑
i

⟨dπi
t+1
− dπmix,t ,∇H(dπmix,t)⟩ −

η2β

N2

∑
i

∥dπi
t+1
− dπmix,t∥22

≥H(dπmix,t) + η⟨dπ⋆ − dπmix,t ,∇H(dπmix,t)⟩ − 2βηε0 − ηε1 −
η2β

N
|S|

≥(1− η)H(dπmix,t) + ηH(dπ∗)− 2ηβε0 − ηε1 −
η2β|S|
N

The last step here utilizes the concavity of H . It follows that
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H(dπ∗)−H(dπmix,t+1) ≤ (1− η)(H(dπ∗)−H(dπmix,t)) + 2ηβε0 + ηε1 +
η2β|S|
N

.

Telescoping the inequality, this simplifies to

H(dπ∗)−H(dπmix,T ) ≤ (1− η)T (H(dπ∗)−H(dπmix,0)) + 2βε0 + ε1 + ηβ

≤ Be−Tη + 2βε0 + ε1 +
η2β|S|
N

.

H(dπ∗)−H(dπmix,T )

≤ (1− η)T (H(dπ∗)−H(dπmix,0)) + 2βε0 + ε1 +
ηβ|S|
N

≤ Be−Tη + 2βε0 + ε1 +
ηβ|S|
N

.

Setting ε1 = 0.1ε, ε0 = 0.1β−1ε, η = 0.1N |S|−1β−1ε, T = η−1 log 10Bε−1 leads to the final result.

Algorithm 2 Parallel Frank-Wolfe.

1: Input: Step size η, number of iterations T , number of agents N , planning oracle tolerance ε1 > 0, distribution
estimation oracle tolerance ε0 > 0.

2: Set {Ci
0 = {πi

0}}i∈N where πi
0 is an arbitrary policy, αi

0 = 1.
3: for t = 0, . . . , T − 1 do
4: Each agent call the state distribution oracle on πmix,t =

1
N

∑
i(α

i
t, C

i
t):

d̂iπmix,t
= DENSITYEST (πmix,t, ε0)

5: Define the reward function rit for each agent i as

rit(s) = ∇H(d̂iπmix,t
) :=

dH(X)

dX

∣∣∣∣∣
X=d̂i

πmix,t

.

6: Each agent computes the (approximately) optimal policy on rt:

πi
t+1 = APPROXPLAN

(
rit, ε1

)
.

7: Each agent updates

Ci
t+1 = (πi

0, . . . , π
i
t, π

i
t+1), (6)

αi
t+1 = ((1− η)αi

t, η). (7)

8: end for
9: πmix,T = 1

N

∑
i(α

i
T , C

i
T ).
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Figure 5. Two rooms gridworld, with starting position
in the corridor and goal state in the left bottom corner. Figure 6. Maze gridworld, with multiple

path, goal state in the upper section

B. Experimental Details
Environments. In this paper, we present two distinct grid-world environments designed to illustrate the effectiveness of
parallel exploration in enabling agents to overcome exploration bottlenecks and efficiently discover optimal trajectories in
both structured and intricate scenarios.. In the first, two rooms are connected through a corridor with the goal positioned in
the left room. In the second one, we considered a maze-like space, with a more complex layout with many bifurcations but
only one path leading to a goal. The two environments are shown in Figures 5 and 6. In the following, we briefly describe
the two environments more thorough.

B.1. Room

This is a 5× 11 grid world inspired by the toy example from Towers et al. (2024). It consists of two rooms connected by a
single horizontal corridor. The agent moves until reaching the goal or the episode terminates. The starting position is fixed
at the center of the corridor, (2, 5). The agent navigates the grid using actions from {0, 1, 2, 3}, where the index indicate 0:
Move left, 1: Move down, 2: Move right, 3: Move up. The observation space represents the player’s current position as an
index computed by obs = row× ncols+ col where rows and columns are zero-indexed. For instance, the goal position (4, 0)
is mapped to 4× 11 + 0 = 44.. The total number of observations depends on the grid size. The environment is evaluated
in both reward-free and sparse-reward settings, where in the latter case reward function r : S ×A→ R with r = 1 upon
reaching the goal and 0 otherwise. Throughout the paper, we consider two configurations:

• Room-det: A deterministic version where executing an action a under policy πθ always results in the intended
movement.

• Room-stoc: A stochastic variant where the agent plays the intended action with probability 1− p and deviate from it
with p.

B.2. Maze

This is a grid world 10× 10. The environment consists of a discrete grid-based navigation task, where an agent must reach a
goal position while navigating through a structured maze. The grid is structured to restricting movement to specific corridors.
The agent, starts from an initial position (5, 6) and can move in four directions: up, down, left, or right, as in the B.1 case.
The goal serves as the terminal state, where the episode ends upon successful navigation or after a number of maximum
steps. Upon a different structure, the environment shares with the previous environment the reward function, the action
space and the state index conversion. In the paper we present two different version of the environment as following defined:

• Maze-det: A deterministic version where executing an action a under policy πθ always results in the intended movement.

• Maze-stoc: A stochastic variant where the agent plays the intended action with probability 1− p and deviate from it
with p.

Implementation Details of Algorithm 1. As outlined in the pseudocode of Algorithm 1, in each episode, a batch
|B| = 40, of K trajectories are experienced by parallel learners. K is fixed during the experiment always to 1, due to
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the assumption of having access to the minimum size of possible interactions that the agents can have with respect to the
environment. To reproduce the policy gradient performance of the single agent, this K should coincide to the number of
agent m, at which the single is compared to. Indeed, in the 1 with respectively {2, 6} agents involved, the single agent
experiences K = {2, 6} trajectories, from which the state distribution dn is derived. Over the 10k episodes, the parallel
agents interact with the environment with finite trajectories of lenght T that in the Room-det and Room-stoc environments is
set to 8, while in Maze-det and Maze-stoc, due to a bigger state space, is set to 10.

The parallel policy, as collection of parametric single policy on θ, is a Softmax function defined as:

πθ(a|s) =
eθ·s∑

a′∈A eθ·s

θ parameters are updated via gradient ascent maximization, with learning rate α set initially to 0.1 with exponential decay
rate λ of 0.999. The training is performed over 5 different seeds {0, 1, 2, 42, 133}.

C. Further Experimental Details and Analysis
The code to reproduce the experiments is made available at the following link.

C.1. Performance of Four Parallel Agents

To further validate our approach, we extend the experimental analysis presented in the main body by including results for
four parallel agents. Figure 7 illustrates the performance of this configuration in terms of normalized state entropy (top row)
and support size (bottom row) across the four environments: Room-det, Room-stoc, Maze-det, and Maze-stoc.

As observed, the four-agent configuration consistently outperforms the single-agent baseline, achieving significantly higher
normalized entropy and support size. This demonstrates the continued effectiveness of our parallelized exploration strategy,
with the centralized update mechanism of Algorithm 1 enabling the agents to collectively learn policies that lead to a more
diverse and comprehensive exploration of the state space.

However, it is also evident that the marginal benefit of adding more agents diminishes as the number of agents increases. This
phenomenon is likely attributable to the relatively small size of the state space in the considered environments. With more
agents, the overlap in their explored trajectories increases, leading to a less pronounced improvement for each additional
agent.

C.2. Dataset Analysis

To further understand the benefits of parallel exploration, we analyze the datasets generated by the learned parametric
policies. These datasets are constructed analogously to those in the single-agent case and the random policy baseline.
Specifically, for each parallel-agent configuration, we sample K = m trajectories to ensure a consistent comparison across
settings. The mean and standard deviation of the state entropy are computed over these trajectories and averaged across the
five random seeds used during training. Let’s look deeply at the dataset created from the paralell agents, when interacting
with the more complex Maze environment. Figures 8 present heatmaps visualizing the state occupancy distributions for the
Maze environments, respectively the deterministic and stochastic case. These heatmaps provide a qualitative comparison of
the exploration patterns achieved by single agents, parallel agents, in the two implemented versions.

C.3. Offline Q-Learning Implementation

While single agents might discover effective exploration strategies, it is the diversity inherent to our parallel policy induction
that ensures robust and consistent state space coverage, even in stochastic environments. This diversity, validated across
multiple random seeds, translates into a highly informative dataset for downstream learning tasks. The effectiveness of our
approach is further highlighted by the fact that this valuable dataset is constructed from a mere six trajectories per agent, a
significant improvement over the data generated by untrained policies. Combined with an offline procedure, the parallel
approach incredibly speedup the learning procedure. For the construction of Figure 3, we implement an offline Q-learning
algorithm. The agent learns from a replay buffer with a batch size of 20 (s, a, s′, r) interactions. The experiences collected
from the parallel agents are incorporated into the replay buffer, without interacting with the environment. The Q-learning
agent is trained for 100 episodes, with the Q-value function Q(s, a) being updated using a learning rate of α = 0.1 and a
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2 Agents 1 Agent K′ = 2K

4 Agents 1 Agent K′ = 4K

6 Agents 1 Agent K′ = 6K

(a) State Entropy (Room-det). (b) State Entropy (Room-stoc). (c) State Entropy (Maze-det). (d) State Entropy (Maze-stoc).

(e) Support (Room-det). (f) Support (Room-stoc). (g) Support (Maze-det). (h) Support (Maze-stoc).

Figure 7. Performance of four parallel agents. The top row (a–d) shows the progression of normalized state entropy across different
environments, while the bottom row (e–h) depicts the corresponding support size dynamics. Each plot illustrates the performance of
parallel agents against a single instance visiting a number of trajectories corresponding to the number of parallel agents.

discount factor of γ = 0.99 according to the Bellman equation update rule.

The high quality of the dataset generated by our parallel agents is further evidenced in Figure 9. The offline agent, trained
solely on this data, demonstrates significantly improved goal-reaching capabilities, even in the stochastic environment, as
indicated by the broader and warmer-colored regions of the heatmap, particularly for goals distant from the starting location.

C.4. Diversity Analysis

Figure 10 provides a visual comparison of the learned policies for parallel agents versus single agents in both Room-det
and Maze-det environments. In the single-agent setting (Figures 10a and 10b), the agent tends to develop policies with
higher stochasticity in its action choices. This is a consequence of the need to explore a larger portion of the state space
alone, necessitating a more randomized approach to discover high-entropy trajectories. In contrast, the parallel agent
setting (Figures 10c and 10d) reveals that the centralized update mechanism, based on the aggregate state distribution dn,
encourages individual agents to specialize in more deterministic policies.
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(a) Parallel Agents (Maze-det). (b) Parallel Agents (Maze-stoc).

(c) Single Agent (Maze-det). (d) Single Agent (Maze-stoc).

Figure 8. Dataset extrapolation based on the Maze environments.
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(a) Offline Goal Reachability, learning from
the parallel agents experience.

(b) Offline Goal Reachability, learning from
the single agents experience.

(c) Offline Goal Reachability, learning from a
random policy experience.

Figure 9. Offline Result of Gained Experience
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(a) Single Agent (Room-det). (b) Single Agent (Maze-det).

(c) Parallel Agents (Room-det).

(d) Parallel Agents (Maze-det).

Figure 10. Analysis of stochasticity and determinism of parallel vs. single agents.
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