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Abstract. Accurate segmentation of teeth and pulp in Cone-Beam Com-
puted Tomography (CBCT) is vital for clinical applications like treat-
ment planning and diagnosis. However, manual segmentation requires
extensive expertise and is exceptionally time-consuming, highlighting
the critical need for automated semi-supervised segmentation algorithms
that can utilize unlabeled data. In this paper, we propose U-Mamba2-
SSL, a novel semi-supervised learning framework that builds on the U-
Mamba2 model and employs a multi-stage training strategy. The frame-
work first pre-trains U-Mamba2 in a self-supervised manner using a dis-
ruptive autoencoder. It then leverages unlabeled data through consis-
tency regularization, where we introduce input and feature perturbations
to ensure stable model outputs. Finally, a pseudo-labeling strategy is im-
plemented with a reduced loss weighting to minimize the impact of poten-
tial errors. U-Mamba2-SSL obtained 0.917 DSC and 0.948 mIoU on the
hidden test set, achieving first place in Task 1 of the STSR 2025 challenge.
The code is available at https://github.com/zhiqin1998/UMamba2.

Keywords: Semi-supervised learning · U-Mamba2-SSL · CBCT Imag-
ing · Tooth and Pulp Segmentation · STSR 2025 Challenge

1 Introduction

Cone-Beam Computed Tomography (CBCT) provides comprehensive 3D infor-
mation of the oral region and is an important imaging tool in dentistry, as
shown by its rapid adoption in dental clinics [10]. Precision segmentation of the
tooth and pulp structures is vital to various applications such as dental condi-
tions diagnosis, orthodontic procedures, treatment and surgery planning [14,20].
However, manual segmentation of CBCT scans requires specialized training and
is extremely time-consuming due to its high resolution containing a massive
number of voxels and the high variability across scans, making it impractical
to scale up in practice. This highlights the significance of developing effective
semi-supervised approaches with only limited labeled data while leveraging a
large amount of unlabeled CBCT scans [2, 23,24].

https://github.com/zhiqin1998/UMamba2
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Semi-supervised learning (SSL) incorporates elements from both supervised
and unsupervised learning [4,26], utilizing both labeled and unlabeled data to im-
prove the performance on the supervised task by exploring the latent knowledge
from unlabeled data. This alleviates the need for a significant amount of labels,
which can require considerable resources to obtain. We focus on three categories
of SSL: 1) Knowledge transfer with pre-training refers to the transfer of knowl-
edge from one task to another via pre-training, where autoencoders [8, 21, 22]
are trained to reconstruct corrupted input from a large amount of unlabeled
data to guide the randomly initialized model weights towards potentially better
regions; 2) Consistency regularization training [5, 13, 15] based on the smooth-
ness assumption, enforces the model to produce similar output after perturbing
the input, internal features, or model weights, pushing the model towards better
generalization capability; and 3) Pseudo labeling method [12], one of the most
common approaches in SSL due to its simplicity and model-agnostic nature. It
is a form of entropy regularization [6] with unlabeled data, reducing the overlap
of class probability distribution and favoring a low-density class separation.

In this paper, we present U-Mamba2-SSL, a multi-stage semi-supervised
learning framework for tooth and pulp segmentation in 3D CBCT images, de-
veloped in the scope of the STSR 2025 Task 1 Challenge [1]. To exploit the vast
amount of unlabeled CBCT data, we first pre-train U-Mamba2 [17] with the
disruptive autoencoder on all provided data. Then, the second training stage in-
volves using the labeled data for supervised learning and the unlabeled data for
unsupervised learning via consistency regularization techniques in the input and
feature spaces. Lastly, the final stage introduces the pseudo labeling method to
the training procedure of the previous stage, with a lower loss weight to further
optimize the model weights. The extensive experiments demonstrate the supe-
rior performance of our method, outperforming other alternatives and achieving
first place with an average score of 0.789 in the STSR 2025 hidden test set.

2 Method

Fig. 1 shows the overall process of the U-Mamba2-SSL framework, consisting
of three training stages where we first pre-train the U-Mamba2 [17] model with
reconstruction objectives, then combine supervised loss for the labeled data and
unsupervised loss with consistency regularization for the unlabeled data. The
final third stage introduces pseudo labeling to the training objectives.

U-Mamba2 integrates Mamba2 [3] state space models into the U-Net architec-
ture at the bottleneck region to enhance its ability to capture long-range depen-
dencies. Mamba2 improves upon Mamba [7] by enforcing stronger constraints on
the hidden space structure, leading to higher efficiency without compromising its
performance compared to transformer-based alternatives. We present the details
of the three training stages: pre-training, consistency regularization training, and
pseudo labeling, in the following subsections. Note that the final checkpoint of
each training stage is used to initialize the model of the subsequent stage.
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Fig. 1: Overall diagram of the proposed U-Mamba2-SSL framework. (a) The first
pre-training stage; (b) The second consistency regularization training stage; (c)
The third pseudo labeling training stage.

Problem Formulation. Let Dl = {(xl
1, y1), ..., (x

l
n, yn)} represent the n labeled

samples and Du = {xu
1 , ..., x

u
m} represent the m unlabeled samples, where xl

i ∈
RH×W×D is the i-th labeled input image, yi ∈ RC×H×W×D is its corresponding
voxel-level label, and xu

i is the i-th unlabeled input image. Here, C is the number
of classes while H,W,D are the spatial dimensions. Our goal is to exploit the
larger number of unlabeled samples (i.e. m ≫ n) to train a 3D segmentation
model.

2.1 First Stage: Pre-training with Disruptive Autoencoder

In the medical image domain, data scarcity due to various factors such as com-
plex ethical regulations for accessing and releasing datasets publicly, presents
challenges to model pre-training. Therefore, unlike in computer vision tasks of
natural images, models for medical image applications are often trained from
scratch with random initialization of model weights. However, recent works
[18, 21] have shown that pre-training deep learning models for medical image
tasks can lead to better models that can extract meaningful feature representa-
tions to enhance the performance of downstream segmentation tasks, particularly
when there is limited labeled data to train from scratch effectively.

In the first stage of our proposed SSL framework, we utilize all training data
(i.e. Dl∪Du) to pre-train U-Mamba2 via the disruptive autoencoder (DAE) [21]
method. The DAE method combines three low-level reconstruction tasks for pre-
training, namely denoising, super-resolution, and recovering masked information.

Denoising refers to the task of restoring the original input from its noisy
version, obtained by introducing random additive Gaussian noise to the original
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input. The model must learn to restore all local details in images, such as edges
and textures, to output a good denoised image. Besides that, super-resolution
is the task of increasing the resolution of a low-resolution image, created artifi-
cially by downsampling the original input with linear interpolation. To obtain
a good upsampled image, the model must be able to recover the fine details of
the image with both local and global information. Lastly, we apply masking to
random cubical regions in the input image, setting the voxel values to zero. As
most of the information in medical images is not global but is in the finer local
details, we use a small cube size relative to the spatial dimensions of the input to
prevent discarding too much local information. The model is directed to recover
the masked regions, leading to the ability to extract meaningful global context.
After applying the three input disruptions, U-Mamba2 learns to reconstruct the
original image from the corrupted input with an L1 loss function.

2.2 Second Stage: Consistency Regularization Training

We exploit the smoothness assumption and employ consistency regularization
training in the second training stage, enforcing the invariance of predictions
on the model. In this training stage, we use a combination of supervised loss
and unsupervised loss to learn the model parameters. For a labeled training
sample, xl

i, and its voxel-level class label, yi, the model is trained in a supervised
fashion based on the combination of Dice loss and cross-entropy loss, LS . For
an unlabeled training sample, xu

i , it is first passed through the model to obtain
an unperturbed output, ŷui . Then, we introduce input and feature perturbations
[13] to xu

i and obtain the perturbed output, ỹui , by passing the perturbed input
through the model. The semi-supervised consistency regularization loss, LCR,
is computed as the L1 loss between ŷui and ỹui . We describe the perturbation
details in the following paragraphs.

Input Perturbations. We apply strong data augmentation to the unlabeled
data to obtain a perturbed input. It is crucial not to apply spatial (e.g . mirroring
or rotation) augmentations, as in the context of segmentation, these transforma-
tions are non-local and violate the smoothness assumption. Specifically, in this
stage, we apply median filter, Gaussian blur, Gaussian noise, random brightness,
random contrast, low-resolution simulation, and image sharpening filter.

Feature Perturbations. The perturbed inputs are passed through the encoder
blocks in U-Mamba2 to obtain multi-scale 3D feature maps. Before the encoder
feature maps are connected to the decoder blocks via skip connections, we ap-
ply random perturbations in the feature space to encourage the model to learn
more robust and generalizable feature representations. The feature perturbations
consist of dropping activations or injecting noise in the encoder feature maps:

– Random Spatial Dropout [19]: We apply random channel-wise dropout with
a probability of 0.5. In contrast to i.i.d. dropout, this promotes channel-wise
independence in the encoder feature maps.
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– Random Activation Dropout [16]: Activations with high values are randomly
dropped to enforce the model to focus on inactive regions in the feature map.
We randomly sample a threshold, γdrop ∼ U(0.7, 0.9), then set all activations
above the γdrop percentile to zero. As a result, the top 10% − 30% highly
activated regions in the feature map are dropped.

– Noise Injection: A noise tensor with the same shape as the feature map is first
sampled from a uniform distribution, N ∼ U(−0.3, 0.3). As the activations
in the feature maps vary, we ensure that the noise tensor is proportional to
the feature map by first multiplying the noise tensor with the feature map
before adding it as Z+(Z⊙N), where Z ∈ RF×H×W×D is the feature map,
⊙ is element-wise multiplication, and F is the number of channels.

Semi-Supervised Learning Schedule. In practice, we utilize both labeled
and unlabeled data during each training epoch. The overall loss signal from
both labeled and unlabeled data is computed as

L = LS + ωCRLCR , (1)

where ωCR is the unsupervised loss weight function. ωCR ramps up exponentially
[11] from zero to a fixed weight, WCR, at the 0.2Tep epoch where Tep is the total
number of training epochs. Additionally, we linearly increase the proportion of
unlabeled data in each epoch from 10% to 50% at the 0.4Tep epoch, allowing the
model to focus on learning the main segmentation task in the early phase.

2.3 Third Stage: Pseudo Labeling

After the second training stage, we obtain a good U-Mamba2 segmentation
model that can maintain local smoothness around its predictions. We capital-
ize on this feature by further training the model with the pseudo labeling [12]
strategy. Specifically, the model’s predictions on unlabeled samples are consid-
ered pseudo labels and used for model training in a supervised manner. For the
predicted class of each voxel, if the class confidence is above a given confidence
threshold, λconf , then we use the predicted class as ground truth; otherwise, the
voxel is set to the background class and is ignored in the loss calculation.

In this stage, the loss function from Eq. (1) becomes:

L = LS + ωCRLCR +WPLLPL , (2)

where LPL is the supervised loss computed with the pseudo labels and ignores the
background class, and WPL is the loss weight for LPL to balance the loss terms.
Similar to the second stage, we linearly increase the proportion of unlabeled
samples in each training epoch from 30% to 50% at the 0.2Tep epoch.

3 Experiments

3.1 Dataset and Evaluation Metrics

The evaluation metrics include Dice Similarity Coefficient (DSC), Normalized
Surface Distance (NSD), Mean Intersection over Union (mIoU), and Identifica-
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Table 1: Development environments and requirements.
System Ubuntu 24.04
CPU Intel(R) Core(TM) Ultra 9 285K
RAM 2 × 32GB; 6400 MHz
GPU NVIDIA RTX 5090 32 GB
CUDA version 12.9
Programming language Python 3.11
Deep learning framework PyTorch 2.7.1, nnU-Net 2.6.2

tion Accuracy (IA) to evaluate the segmentation region overlap and boundary
distance. In addition, the algorithm runtime and memory consumption are also
evaluated and ranked.

3.2 Implementation Details

Preprocessing. We resize all inputs to the median voxel spacing of all training
data, (0.3, 0.25, 0.25), resulting in a median input size of (337, 640, 640). Then,
we clip the input data to the 0.5th and 99.5th percentiles, followed by data
normalization based on the mean and standard deviation of the voxel values.

Environment settings. The development environments and requirements are
presented in Table 1.

Training protocols. We implement U-Mamba2-SSL with the nnU-Net [9]
framework, using a patch-size training and sliding window inference strategy.
During training, we randomly apply rotation, scaling, Gaussian noise, Gaussian
blur, brightness and contrast transform, low resolution simulation, and mirror-
ing as data augmentation. We randomly crop input patches so that at least 33%
of the voxels contain a foreground label. WCR, WPL, and λconf are set to 50,
0.1, and 0.75, respectively. All models have 7 encoder-decoder stages and follow
the model configuration in Table 2. The provided 30 labeled training samples
are split into 20 training and 10 internal validation splits, where the internal
validation split is used to monitor training progress and offline evaluation. We
select the checkpoint with the highest DSC on our internal validation set and
report the performance metrics on the hidden validation set.

4 Results and Discussion

4.1 Quantitative Results

Table 3 presents the results of our proposed method compared with two baselines,
nnU-Net and U-Mamba2. We observe that all methods achieved high DSC, NSD,
and mIoU metrics, which measure overall image-level performance. However, U-
Mamba2-SSL outperforms others significantly in IA, which calculates the average
percentage of classes with IoU > 0.5 across all images. The bottom three rows
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Table 2: Training configuration.
Pre-trained Model See Section 2.1
Batch size 2
Patch size 128× 256× 256

Total epochs 500
Optimizer SGD with 0.99 momentum
Initial learning rate 0.01
Lr decay schedule Polynomial LR decay
Training time 13 hours
Loss function See Equations (1) and (2)
Number of model parameters 156M
Number of flops 6.22T

Table 3: Evaluation results on the validation set. CR denotes consistency regular-
ization; PL denotes pseudo label. Our ablation study is reported in the bottom
three rows, with the last row referring to the final U-Mamba2-SSL.

Methods Pre-train CR PL DSC NSD mIoU IA Average
nnU-Net [9] - - - 0.963 0.997 0.928 0.286 0.794
U-Mamba2 [17] - - - 0.965 0.998 0.930 0.464 0.839

U-Mamba2-SSL
✓ 0.967 0.998 0.937 0.731 0.908
✓ ✓ 0.967 0.999 0.935 0.736 0.910
✓ ✓ ✓ 0.967 0.999 0.935 0.738 0.910

of Table 3 also report the ablation study of our proposed method. Notably, pre-
training leads to the largest leap in IA, from 0.464 to 0.731, while incorporating
consistency regularization and pseudo labeling further increases IA to 0.738.

4.2 Qualitative Results

Fig. 2 shows the qualitative comparison between the ground truth and our
model’s predictions of the scans with the highest and lowest DSC in our in-
ternal validation set, in the top and bottom rows, respectively. Generally, we
observe that our method can accurately differentiate between the tooth and dif-
ferent classes of pulp and root canal. The failure cases of our method typically
stem from the inability to precisely predict the thickness and the length or ex-
tent of the pulp. Moreover, our model also struggles with limited field of view
(LFOV) CBCTs where it predicts more false positives around the image edges.

4.3 Final Challenge Submission

We scale up our training procedure by training on all available data for 1000
epochs and increasing the input patch size to 160x256x256. For inference, we
use a sliding window inference with a tile size of 0.9, and enable mirroring in
the anterior/posterior and left/right axes during test-time augmentation (See
Appendix A for the speed optimization). Our method achieved a 0.969 DSC,
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(a) Ground Truth (b) Prediction

Fig. 2: Qualitative results of U-Mamba2-SSL on the internal validation set. The
3D render and a representative 2D slice are shown for: (Top) the best scoring
case and (Bottom) the worst scoring case.

0.998 NSD, 0.940 mIoU, and 0.806 IA on the validation set, while obtaining a
DSC, NSD, mIoU, and IA of 0.917, 0.882, 0.948, and 0.577, respectively, on the
final hidden test set, securing first place in Task 1 of the STSR 2025 challenge.

4.4 Limitation and Future Work

Our work, while successful, is not without limitations. First, the dataset con-
sists of full and LFOV CBCTs, which differ in content and image properties.
Next, the IA metric drops significantly on the final hidden test set, signifying
possible overfitting or domain shift. Future work should design data processing
and augmentation techniques tailored to the different types of CBCTs to lever-
age their differences and improve model generalizability. Lastly, as only a small
region of interest (ROI) in the CBCT image contains the foreground classes, fu-
ture research can exploit this to prevent wasting computation on non-foreground
regions, allowing the model to focus on the true ROI.

5 Conclusion

We presented U-Mamba2-SSL, a novel multi-stage semi-supervised learning frame-
work for tooth and pulp segmentation in CBCT scans, in the scope of the STSR
2025 challenge. The framework consists of first pre-training U-Mamba2 with the
disruptive autoencoder, utilizing unlabeled data for consistency regularization,
and a pseudo labeling strategy in the final stage. Our results demonstrate that
the proposed framework can substantially enhance model performance, achiev-
ing first place with an average score of 0.789 on the hidden test set in Task 1 of
the STSR 2025 challenge.
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Supplementary Material

A Optimizing Speed in Sliding Window Inference

Since inference time is also an evaluation metric in the STSR 2025 challenge, we
explore optimizing the parameters of the sliding window inference technique to
improve inference speed without significantly deteriorating model performance
(i.e. the average score of DSC, NSD, mIoU, and IA). Fig. 3 illustrates the tradeoff
between the model performance and inference time for different tile sizes and
mirror axes combinations in test-time augmentation (TTA). As most of the
voxels in the CBCT image belong to the background class, setting the tile size
to 0.9 substantially reduces the inference time by 53% with a negligible drop
of only 0.002 average score. Furthermore, Fig. 3 demonstrates that although
mirroring in all axes leads to the best performance, it comes with the downside
of long inference time. The optimal mirror axes combination is ‘1,2’, offering a
good average score with an inference time of only 17.08 seconds.

Fig. 3: (Left): Effect of the tile size on the metrics with ‘1,2’ mirror axes in
TTA. (Right): Effect of various mirror axes combinations in TTA on the met-
rics when tile size is set to 0.9. Axis definition: ‘0’ is superior/inferior, ‘1’ is
anterior/posterior, and ‘2’ is left/right.
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